
US 20050075882A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0075882 A1

Fay et al. (43) Pub. Date: Apr. 7, 2005

(54) ACCESSING AUDIO PROCESSING Publication Classification
COMPONENTS IN AN AUDIO GENERATION
SYSTEM (51) Int. Cl." G10L 11/00; G 10L 21/00;

G10H 1/36; G1OH 7/00
(52) U.S. Cl. .. 704/270

(75) Inventors: Todor J. Fay, Bellevue, WA (US); (57) ABSTRACT
Brian L. Schmidt, Bellevue, WA (US) An application program provides a performance manager

and an audio rendition manager to produce a rendition
Correspondence Address: corresponding to an audio Source. The performance manager
LEE & HAYES PLLC receives audio data from the audio Source and instantiates
421 W RIVERSIDEAVENUE SUTE 500 audio data processing components to process the audio data.
SPOKANE, WA 992.01 The audio rendition manager receives the audio data from

the performance manager and instantiates audio data pro
cessing components to further process the audio data,

(73) Assignee: Microsoft Corporation, Redmond, WA including a Synthesizer component that generates audio
Sound wave data, and audio buffers that process the audio

(21) Appl. No.: 10/994,572 Sound wave data. The audio data processing components are
instantiated as objects having an interface that can be called

(22) Filed: Nov. 22, 2004 by the application program. The application program
requests a programming reference to an interface of an audio

Related U.S. Application Data data processing component in the performance manager, or
in the audio rendition manager, by calling an interface

(63) Continuation of application No. 09/801,938, filed on method of the performance manager or the audio rendition
Mar. 7, 2001. manager, respectively.

Sources

100 y Application Program 102

Sources

11 104. 10

Audio Rendition
Manager

Audio Performance
Manager

116
Audio Rendering
Components

Patent Application Publication Apr. 7, 2005 Sheet 1 of 5 US 2005/0075882 A1

1OO y Application ProCram 102

11

Audio
Sources

11 106

Audio Rendition
Manager

104

Audio
Sources

Performance
Manager

116
Audio Rendering
Components

Patent Application Publication Apr. 7, 2005 Sheet 2 of 5 US 2005/0075882 A1

200 102 - Application
Program

108

104 A.
106

Performance \
Manager /

2O2 Audio Rendition
\ Manager

214 Segment

Instruction
Processors

218

204
instruction O
Processors

Mapping
Component

2O6 Output utpu
Processor 226 C

Synthesizer
Component

228 O

Multi-bus
Component

230 C

Patent Application Publication Apr. 7, 2005 Sheet 3 of 5 US 2005/0075882 A1

300 Mappina Component .
308(1) 308(2)

Channel Block 1 Channel Block 2 224

310(1) \ 310(16) \ 312(1) \ 312(16) \

Channel 1 - Channel 16 Channel 17 H Channel 32

SVnthesizer Componen

Channel Group 1 Channel Group 2 226
304(1) 304(16)

Multi-bus
Component

228

314(4)
Bus 1: Bus 4:

Left Audio Reverb

230

sy 322

- (5 320

Effects

2 5 s Processor

Patent Application Publication Apr. 7, 2005 Sheet 4 of 5 US 2005/0075882 A1

Performance Manager Audio Rendition Manager

and provides a
programming reference

400 : 412
Provide a Provide an audio

performance manager : rendition manager
:

: o 402 : 414
Receive audio content Receive audio data from

: from audio sources | : performance manager

404 | 416 Provide an audio content
Component for an audio Provide audio data processing Components SOUCe :
N

-

406 418 Provide audio data Process audio data in
processing Components audio rendition manager |

: :

Generate audio data 408 Route audio data to an 420
from the received output device to produce
audio Content : a corresponding rendition :

- - - - - - - - - m am aws a m- - - - - - - - - - - - -

410
Process audio data in alor. As 426
performance manager HO

Receive the
programming
reference

to an interface

Provide interface method
search parameters to
identify audio data

processing component

Request a programming
reference to an interface

of an audio data
processing component

Patent Application Publication Apr. 7, 2005 Sheet 5 of 5 US 2005/0075882 A1

Remote
Computing

Application
Programs

Operating
System 526 Video Adapter Adapter

Application
526

Swstem Bus
Data Media y Programs 528
Interfaces

Other Program
Modules 530

Operating 526 Program
System

Application 528 Processing
Programs Unit
Program 530
Modules
Program 532
Data

I/O interfaces

E ET |Fior 538 a UN II, AF AIR E o oo
Printer Mouse Keyboard Other Device(s) 2

546 536 534 22,

US 2005/0075882 A1

ACCESSING AUDIO PROCESSING COMPONENTS
IN AN AUDIO GENERATION SYSTEM

RELATED APPLICATIONS

0001. This application is a continuation of and claims
priority to U.S. patent application Ser. No. 09/801,938
entitled "Accessing Audio Processing Components in an
Audio Generation System” filed Mar. 7, 2001 to Fay et al.,
the disclosure of which is incorporated by reference herein.
0002 This application is related to U.S. patent applica
tion Ser. No. 09/801,922 entitled “Audio Generation System
Manager filed Mar. 7, 2001 to Fay et al., the disclosure of
which is incorporated by reference herein.
0003. This application is also related to U.S. patent
application Ser. No. 09/802,111 entitled “Synthesizer Multi
Bus Component” filed Mar. 7, 2001 to Fay et al., the
disclosure of which is incorporated by reference herein.
0004. This application is also related to U.S. patent
application Ser. No. 09/802,323 entitled “Dynamic Channel
Allocation in a Synthesizer Component' filed Mar. 7, 2001
to Fay, the disclosure of which is incorporated by reference
herein.

TECHNICAL FIELD

0005. This invention relates to audio processing and, in
particular, to accessing and controlling individual audio
processing components within an audio generation System.

BACKGROUND

0006 Multimedia programs present data to a user
through both audio and Video events while a user interacts
with a program via a keyboard, joystick, or other interactive
input device. A user associates elements and occurrences of
a Video presentation with the associated audio representa
tion. A common implementation is to associate audio with
movement of characters or objects in a Video game. When a
new character or object appears, the audio associated with
that entity is incorporated into the Overall presentation for a
more dynamic representation of the Video presentation.
0007 Audio representation is an essential component of
electronic and multimedia products Such as computer based
and Stand-alone video games, computer-based slide Show
presentations, computer animation, and other similar prod
ucts and applications. As a result, audio generating devices
and components are integrated with electronic and multi
media products for composing and providing graphically
asSociated audio representations. These audio representa
tions can be dynamically generated and varied in response to
various input parameters, real-time events, and conditions.
Thus, a user can experience the Sensation of live audio or
musical accompaniment with a multimedia experience.
0008 Conventionally, computer audio is produced in one
of two fundamentally different ways. One way is to repro
duce an audio waveform from a digital Sample of an audio
Source which is typically stored in a wave file (i.e., a wav
file). A digital sample can reproduce any Sound, and the
output is very Similar on all Sound cards, or Similar computer
audio rendering devices. However, a file of digital Samples
consumes a Substantial amount of memory and resources for
Streaming the audio content. As a result, the variety of audio

Apr. 7, 2005

Samples that can be provided using this approach is limited.
Another disadvantage of this approach is that the Stored
digital Samples cannot be easily varied.
0009. Another way to produce computer audio is to
Synthesize musical instrument Sounds, typically in response
to instructions in a Musical Instrument Digital Interface
(MIDI) file. MIDI is a protocol for recording and playing
back music and audio on digital Synthesizers incorporated
with computer Sound cards. Rather than representing musi
cal sound directly, MIDI transmits information and instruc
tions about how music is produced. The MIDI command set
includes note-on, note-off, key Velocity, pitch bend, and
other methods of controlling a Synthesizer. Typically, a
Synthesizer is implemented in computer Software, in hard
ware as part of a computer's internal Sound card, or as an
external device such as a MIDI keyboard or module. A
synthesizer receives MIDI inputs on sixteen channels that
conform to the MIDI standard.

0010. The audio sound waves produced with a synthe
sizer are those already Stored in a wavetable in the receiving
instrument or Sound card. A wavetable is a table of Stored
Sound waves that are digitized Samples of actual recorded
Sound. A wavetable can be Stored in read-only memory
(ROM) on a sound card chip, or provided with software.
Prestoring Sound waveforms in a lookup table improves
rendered audio quality and throughput. An advantage of
MIDI files is that they are compact and require few audio
Streaming resources, but the output is limited to the number
of instruments available in the designated General MIDI set
and in the Synthesizer, and may Sound very different on
different computer Systems.

0011) MIDI instructions sent from one device to another
indicate actions to be taken by the controlled device, Such as
identifying a musical instrument (e.g., piano, flute, drums,
etc.) for music generation, turning on a note, and/or altering
a parameter in order to generate or control a Sound. In this
way, MIDI instructions control the generation of Sound by
remote instruments without the MIDI control instructions
carrying Sound or digitized information. A MIDI Sequencer
stores, edits, and coordinates the MIDI information and
instructions. A Synthesizer connected to a Sequencer gener
ates audio based on the MIDI information and instructions
received from the Sequencer. Many Sounds and Sound effects
are a combination of multiple Simple Sounds generated in
response to the MIDI instructions.
0012 MIDI inputs to a synthesizer are in the form of
individual instructions, each of which designates the channel
to which it applies. Within a Synthesizer, instructions asso
ciated with different channels are processed in different
ways, depending on the programming for the various chan
nels. A MIDI input is typically a serial data stream that is
parsed in the synthesizer into MIDI instructions and syn
thesizer control information. A MIDI command or instruc
tion is represented as a data structure containing information
about the Sound effect or music piece Such as the pitch,
relative Volume, duration, and the like.

0013 A MIDI instruction, such as a “note-on”, directs a
Synthesizer to play a particular note, or notes, on a Synthe
sizer channel having a designated instrument. The General
MIDI standard defines standard Sounds that can be com
bined and mapped into the Sixteen Separate instrument and
sound channels. A MIDI event on a synthesizer channel

US 2005/0075882 A1

corresponds to a particular Sound and can represent a
keyboard key stroke, for example. The “note-on' MIDI
instruction can be generated with a keyboard when a key is
pressed and the “note-on' instruction is sent to the Synthe
sizer. When the key on the keyboard is released, a corre
sponding "note-off instruction is Sent to Stop the generation
of the Sound corresponding to the keyboard key.
0.014) A MIDI system allows audio and music to be
represented with only a few digital Samples rather than
converting an analog signal to many digital Samples. The
MIDI standard Supports different channels that can each
Simultaneously provide an output of audio Sound wave data.
There are sixteen defined MIDI channels, meaning that no
more than Sixteen instruments can be playing at one time.
Typically, the command input for each channel represents
the notes corresponding to an instrument. However, MIDI
instructions can program a channel to be a particular instru
ment. Once programmed, the note instructions for a channel
will be played or recorded as the instrument for which the
channel has been programmed. During a particular piece of
music, a channel can be dynamically reprogrammed to be a
different instrument.

0015 ADownloadable Sounds (DLS) standard published
by the MIDI Manufacturers Association allows wavetable
Synthesis to be based on digital Samples of audio content
provided at run time rather than Stored in memory. The data
describing an instrument can be downloaded to a Synthesizer
and then played like any other MIDI instrument. Because
DLS data can be distributed as part of an application,
developerS can be Sure that the audio content will be
delivered uniformly on all computer Systems. Moreover,
developerS are not limited in their choice of instruments.
0016 A DLS instrument is created from one or more
digital Samples, typically representing Single pitches, which
are then modified by a Synthesizer to create other pitches.
Multiple Samples are used to make an instrument Sound
realistic over a wide range of pitches. DLS instruments
respond to MIDI instructions and commands just like other
MIDI instruments. However, a DLS instrument does not
have to belong to the General MIDI set or represent a
musical instrument at all. Any Sound, Such as a fragment of
Speech or a fully composed measure of music, can be
associated with a DLS instrument.

0.017. A multimedia program, Such as a video game,
incorporates the audio rending technologies to create an
audio representation corresponding to a Video presentation.
An application program creates an audio representation
component to proceSS audio data that correlates with the
Video presentation. The audio representation component
creates audio data processing components to process and
render the audio data. However, the application program
creating the audio representation component cannot directly
access the audio data processing components that are created
by the audio representation component.

SUMMARY

0.018. An audio generation system includes a perfor
mance manager, which is an audio Source manager, and an
audio rendition manager to produce a rendition correspond
ing to an audio Source. An application program provides the
performance manager and the audio rendition manager to
produce the rendition.

Apr. 7, 2005

0019. The performance manager receives audio content
from one or more audio Sources and instantiates audio data
processing components to process the audio content, includ
ing audio content components corresponding to each of the
audio Sources. The audio content components have one or
more track components that generate audio data in the form
of event instructions from the received audio content. The
audio data processing components also process the event
instructions to produce audio data in the form of audio
instructions. The performance manager provides, or routes,
the audio instructions to the audio rendition manager.
0020. The audio rendition manager instantiates audio
data processing components to process the audio instruc
tions, including a Synthesizer component that generates
audio Sound wave data from the received audio instructions,
and audio buffers that process the audio Sound wave data.
The components of the audio generation System, and the
audio data processing components in the performance man
ager and in the audio rendition manager are instantiated as
objects having one or more interfaces that can be called by
a Software component, Such as the application program.
0021. The application program can request a program
ming reference, Such as a pointer, to an interface of an audio
data processing component in the performance manager by
calling an interface method of the performance manager.
Similarly, the application program can request a program
ming reference to a interface of an audio data processing
component in the audio rendition manager by calling an
interface method of the audio rendition manager. The
respective interface method determines the interface of a
particular audio data processing component and provides a
programming reference to the interface. The respective
interface method also returns the requested reference to the
application program, or Software component, that called the
interface method.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. The same numbers are used throughout the draw
ings to reference like features and components.
0023 FIG. 1 is a block diagram that illustrates compo
nents of an exemplary audio generation System.
0024 FIG. 2 is a block diagram that further illustrates
components of the audio generation System shown in FIG.
1.

0025 FIG. 3 is a block diagram that further illustrates
components of the audio generation System shown in FIG.
2.

0026 FIG. 4 is a flow diagram of a method for an audio
generation System.
0027 FIG. 5 is a diagram of computing systems, devices,
and components in an environment that can be used to
implement the invention described herein.

DETAILED DESCRIPTION

0028. The following describes systems and methods to
implement audio data processing components of an audio
generation System, and access the audio data processing
components via programming object interface methods. An
audio rendition manager is instantiated as a component
object which in turn instantiates various audio data proceSS

US 2005/0075882 A1

ing components that proceSS audio data into audible Sound.
An application program of the audio generation System can
locate an application programming interface (API) of an
audio data processing component in the audio rendition
manager by calling an interface method of the audio rendi
tion manager. The interface method determines the
requested API of an audio data processing component and
passes a reference to the API back to the application program
that called the interface method.

0029 Exemplary Audio Generation System
0030 FIG. 1 illustrates an audio generation system 100
having components that can be implemented within a com
puting device, or the components can be distributed within
a computing System having more than one computing
device. The audio generation System 100 generates audio
events that are processed and rendered by Separate audio
processing components of a computing device or System.
See the description of “Exemplary Computing System and
Environment' below for Specific examples and implemen
tations of network and computing Systems, computing
devices, and components that can be used to implement the
technology described herein. Furthermore, additional infor
mation regarding the audio generation Systems described
herein can be found in the U.S. patent application entitled
“Audio Generation System Manager”, which is incorporated
by reference above.
0.031 Audio generation system 100 includes an applica
tion program 102, a performance manager component 104,
and an audio rendition manager 106. Application program
102 is one of a variety of different types of applications, such
as a video game program, Some other type of entertainment
program, or any other application that incorporates an audio
representation with a video presentation.
0.032 The performance manager 104 and the audio ren
dition manager 106 can be instantiated as component
objects. The application program 102 interfaces with the
performance manager 104, the audio rendition manager 106,
and the other components of the audio generation System
100 via application programming interfaces (APIs). Specifi
cally, application program 102 interfaces with the perfor
mance manager 104 via API 108 and with the audio rendi
tion manager 106 via API 110.
0033. The various components described herein, such as
the performance manager 104 and the audio rendition man
ager 106, can be implemented using Standard programming
techniques, including the use of OLE (object linking and
embedding) and COM (component object model) interfaces.
COM objects are implemented in a system memory of a
computing device, each object having one or more inter
faces, and each interface having one or more methods. The
interfaces and interface methods can be called by application
programs and by other objects. The interface methods of the
objects are executed by a processing unit of the computing
device. Familiarity with object-based programming, and
with COM objects in particular, is assumed throughout this
disclosure. However, those skilled in the art will recognize
that the audio generation Systems and the various compo
nents described herein are not limited to a COM and/or OLE
implementation, or to any other specific programming tech
nique.
0034. The audio generation system 100 includes audio
Sources 112 that provide digital Samples of audio data Such

Apr. 7, 2005

as from a wave file (i.e., a wav file), message-based data
such as from a MIDI file or a pre-authored segment file, or
an audio sample such as a Downloadable Sound (DLS).
Audio Sources can be also be Stored as a resource component
file of an application rather than in a separate file. Audio
Sources 114 are incorporated with application program 102.
0035 Application program 102 initiates that an audio
Source 112 and/or 114 provide audio content input to the
performance manager 104. The performance manager 104
receives the audio content from the audio Sources 112 and/or
114 and produces audio instructions for input to the audio
rendition manager 106. The audio rendition manager 106
receives the audio instructions and generates audio Sound
wave data. The audio generation system 100 includes audio
rendering components 116 which are hardware and/or Soft
ware components, Such as a speaker or Soundcard, that
renderS audio from the audio Sound wave data received from
the audio rendition manager 106.
0036) Exemplary Audio Generation System
0037 FIG. 2 illustrates an application program 102, a
performance manager component 104, and an audio rendi
tion manager 106 as part of an audio generation System 200.
The performance manager 104 can receive audio content
from a wave file (i.e., wav file), a MIDI file, or a segment
file authored with an audio production application, Such as
DirectMusic(R) Producer, for example. DirectMusic(R) Pro
ducer is an authoring tool for creating interactive audio
content and is available from Microsoft Corporation, Red
mond Wash. Additionally, the performance manager 104 can
receive audio content that is composed at run-time from
different audio content components.
0038. The performance manager 104 includes a segment
component 202, an instruction processors component 204,
and an output processor 206. The Segment component 202 is
an audio content component and represents audio content
input from an audio Source, Such as from audio Source 112
(FIG. 1). Although the performance manager 104 is shown
having only one Segment 202, the performance manager can
have a primary Segment and any number of Secondary
Segments. Multiple Segments in can be arranged concur
rently and/or Sequentially with the performance manager
104.

0039 Segment component 202 can be instantiated as a
programming object having one or more interfaces 208 and
asSociated interface methods. In the described embodiment,
segment object 202 is an instantiation of a COM object class
and represents an audio or musical piece. An audio Segment
represents a linear interval of audio data or a music piece and
is derived from an audio Source input which can be digital
audio data or event-based data, Such as MIDI formatted
inputs.
0040. The segment component 202 has a track compo
nent 210 and an instruction processors component 212.
Although only one track component 210 is shown, a Seg
ment 202 can have any number of track components and can
combine different types of audio data in the segment 202
with the different track components. Each type of audio data
corresponding to a particular Segment is contained in a track
component in the Segment. An audio Segment is generated
from a combination of the tracks in the Segment.
0041. The segment component 202 contains references to
the track component 210. The track component 210 can be

US 2005/0075882 A1

instantiated as a programming object having one or more
interfaces 214 and associated interface methods. Track
objects are played together in a Segment to render the audio
and/or musical piece represented by the Segment object
which is part of a larger overall performance. When first
instantiated, a track object does not contain actual music or
audio performance data (Such as a MIDI instruction
Sequence). However, each track object has a stream input/
output (I/O) interface method through which audio data is
Specified.
0042. The track component 210 generates event instruc
tions for audio and music generation components when the
performance manager 104 plays the Segment 202. Audio
data is routed through the components in the performance
manager 104 in the form of event instructions which contain
information about the timing and routing of the audio data.
The event instructions are routed between and through the
components in the performance manager 204 on designated
performance channels. The performance channels are allo
cated as needed to accommodate any number of audio input
Sources and routing event instructions.
0043. To play a particular audio or musical piece, per
formance manager 104 calls Segment object 202 and Speci
fies a time interval or duration within the musical Segment.
The Segment object in turn calls the track play method of
track 210, Specifying the same time interval. The track
object responds by independently rendering event instruc
tions at the Specified interval. This is repeated, designating
Subsequent intervals, until the Segment has finished its
playback. A Segment State is an instance of a Segment that is
playing, and is instantiated as a programming object. The
audio content contained within a Segment is played by the
performance manager on an audio rendition manager, which
is a Segment State of the Segment.
0044) The event instructions generated by track compo
nent 210 in Segment component 202 are input to the instruc
tion processors component 212 in the Segment. The instruc
tion processors component 212 can also be instantiated as a
programming object having one or more interfaces 216 and
asSociated interface methods. The instruction processors
component 212 has any number of individual event instruc
tion processors (not shown) and represents the concept of a
graph that specifies the logical relationship of an individual
event instruction processor to another in the instruction
processors component. An instruction processor can modify
an event instruction and pass it on, delete it, or Send a new
instruction.

004.5 The instruction processors component 204 in the
performance manager 104 also processes, or modifies, the
event instructions. The instruction processors component
204 can also be instantiated as a programming object having
one or more interfaces 218 and associated interface methods,
and has any number of individual event instruction proces
Sors. The event instructions are routed from the performance
manager instruction processors component 204 to the output
processor 206 which converts the event instructions to MIDI
formatted audio instructions. The audio instructions are then
provided, or routed, to the audio rendition manager 106.
0046) The audio rendition manager 106 processes audio
data to produce one or more instances of a rendition corre
sponding to an audio Source, or audio Sources. That is, audio
content from multiple Sources can be processed and played

Apr. 7, 2005

on a Single audio rendition manager 106 Simultaneously.
Rather than allocating a buffer and hardware audio channels
for each Sound, an audio rendition manager 106 can be
created to proceSS multiple Sounds from multiple Sources.
Additionally, the audio rendition manager 106 dynamically
allocates hardware channels as needed and can render more
than one Sound through a Single hardware channel because
multiple audio events are pre-mixed before being rendered
via a hardware channel.

0047 The audio rendition manager 106 has an instruction
processors component 220 that receives event instructions
from the output of the instruction processors component 212
in Segment component 202 in the performance manager 104.
The instruction processors component 220 in the audio
rendition manager 106 is also a graph of individual event
instruction modifiers that process event instructions.
Although not shown, the instruction processors component
220 can receive event instructions from any number of
Segment outputs. Additionally, the instruction processors
component 220 can be instantiated as a programming object
having one or more interfaces 222 and asSociated interface
methods, and is instantiated by the audio rendition manager
106 when the audio rendition manager is itself created.
0048. The audio rendition manager 106 also includes
Several audio data processing components that are logically
related to process the audio instructions received from the
output processor 206 of the performance manager 104. The
audio data processing components represent the concept of
a graph that specifies the logical relationship of one audio
data processing component to another in the audio rendition
manager.

0049. The logical configuration of the audio data pro
cessing components defines the flow of audio data through
out the audio rendition manager. The audio rendition man
ager 106 has a mapping component 224, a Synthesizer
component 226, a multi-bus component 228, and an audio
buffers component 230. Each of the audio data processing
components in the audio rendition manager 106 can be
instantiated by the audio rendition manager when the audio
rendition manager is itself created.
0050 Mapping component 224 can be instantiated as a
programming object having one or more interfaces 232 and
asSociated interface methods. The mapping component 224
maps the audio instructions received from the output pro
cessor 206 in the performance manager 104 to the synthe
sizer component 226. Although not shown, an audio rendi
tion manager can have more than one Synthesizer
component. The mapping component 224 allows audio
instructions from multiple Sources (e.g., multiple perfor
mance channel outputs from the output processor 206) to be
input to one or more Synthesizer components 226 in the
audio rendition manager 106.
0051. The synthesizer component 226 can be instantiated
as a programming object having one or more interfaces 234
and associated interface methods. The Synthesizer compo
nent 226 receives the audio instructions from the output
processor 206 via the mapping component 224. The Syn
thesizer component 226 generates audio Sound wave data
from Stored wavetable data in accordance with the received
MIDI formatted audio instructions. Audio instructions
received by the audio rendition manager 106 that are already
in the form of audio wave data are mapped through to the
Synthesizer component 226, but are not synthesized.

US 2005/0075882 A1

0.052 A segment component 202 that corresponds to
audio content from a wave file is played by the performance
manager 104 like any other Segment. The audio data from a
wave file is routed through the components of the perfor
mance manager 104 on designated performance channels
and is routed to the audio rendition manager 106 along with
the MIDI formatted audio instructions. Although the audio
content from a wave file is not Synthesized, it is routed
through the Synthesizer component 226 and can be pro
cessed by MIDI controllers in the synthesizer.
0053. The multi-bus component 228 can be instantiated
as a programming object having one or more interfaces 236
and associated interface methods. The multi-bus component
228 routes the audio wave data from the synthesizer com
ponent 226 to the audio buffers component 230. The multi
bus component 228 is implemented to represent actual
Studio audio mixing. In a Studio, various audio Sources Such
as instruments, vocals, and the like (which can also be
outputs of a Synthesizer) are input to a multi-channel mixing
board that then routes the audio through various effects (e.g.,
audio processors), and then mixes the audio into the two
channels that are a Stereo signal.
0.054 The audio buffers component 230 can be instanti
ated as a programming object having one or more interfaces
238 and associated interface methods. The audio buffers
component 230 receives the audio wave data from the
Synthesizer component 226 via the multi-bus component
228. Individual audio buffers in the audio buffers component
230 receive the audio wave data and stream the audio wave
data in real-time to an audio rendering device, Such as a
Sound card, that produces the rendition represented by the
audio rendition manager 106 as audible Sound.
0.055 Exemplary Audio Rendition Components
0056 FIG. 3 illustrates a component relationship 300 of
various audio data processing components in the audio
rendition manager 206 in accordance with an implementa
tion of the audio generation Systems described herein.
Details of the mapping component 224, Synthesizer compo
nent 226, multi-bus component 228, and the audio buffers
component 230 are illustrated, as well as a logical flow of
audio data instructions through the components. Additional
information regarding the audio data processing components
described herein can be found in the concurrently-filed U.S.
patent applications entitled "Dynamic Channel Allocation in
a Synthesizer Component” and “Synthesizer Multi-Bus
Component', both of which are incorporated by reference
above.

0057 The synthesizer component 226 has two channel
groups 302(1) and 302(2), each having sixteen MIDI chan
nels 304(1-16) and 306(1-16), respectively. Those skilled in
the art will recognize that a group of Sixteen MIDI channels
can be identified as channels zero through fifteen (0-15). For
consistency and explanation clarity, groups of Sixteen MIDI
channels described herein are designated in logical groups of
one through sixteen (1-16). A synthesizer channel is a
communications path in the Synthesizer component 226
represented by a channel object. A channel object has APIs
and associated interface methods to receive and proceSS
MIDI formatted audio instructions to generate audio wave
data that is output by the Synthesizer channels.
0.058 To support the MIDI standard, and at the same time
make more MIDI channels available in a synthesizer to

Apr. 7, 2005

receive MIDI inputs, channel groups are dynamically cre
ated as needed. Up to 65,536 channel groups, each contain
ing Sixteen channels, can be created and can exist at any one
time for a total of over one million channels in a Synthesizer
component. The MIDI channels are also dynamically allo
cated in one or more Synthesizers to receive multiple audio
instruction inputs. The multiple inputs can then be processed
at the same time without channel overlapping and without
channel clashing. For example, two MIDI input Sources can
have MIDI channel designations that designate the same
MIDI channel, or channels. When audio instructions from
one or more Sources designate the same MIDI channel, or
channels, the audio instructions are routed to a Synthesizer
channel 304 or 306 in different channel groups 302(1) or
302(2), respectively.
0059. The mapping component 224 has two channel
blocks 308(1) and 308(2), each having sixteen mapping
channels to receive audio instructions from the output pro
cessor 206 in the performance manager 104. The first
channel block 308(1) has sixteen mapping channels 310(1-
16) and the second channel block 308(2) has sixteen map
ping channels 312(1-16). The channel blocks 308 are
dynamically created as needed to receive the audio instruc
tions. The channel blocks 308 each have sixteen channels to
Support the MIDI Standard and the mapping channels are
identified Sequentially. For example, the first channel block
308(1) has mapping channels 1-16 and the second channel
block 308(2) has mapping channels 17-32. A subsequent
third channel block would have sixteen mapping channels
33-48.

0060 Each channel block 308 corresponds to a synthe
sizer channel group 302, and each mapping channel in a
channel block maps directly to a Synthesizer channel in the
Synthesizer channel group. For example, the first channel
block 308(1) corresponds to the first channel group 302(1)
in Synthesizer component 226. Each mapping channel
310(1-16) in the first channel block 308(1) corresponds to
each of the sixteen synthesizer channels 304(1-16) in chan
nel group 302(1). Additionally, channel block 308(2) corre
sponds to the Second channel group 302(2) in the Synthesizer
component 226. A third channel block can be created in the
mapping component 224 to correspond to a first channel
group in a Second Synthesizer component (not shown).
0061 Mapping component 224 allows multiple audio
instruction Sources to share available Synthesizer channels,
and dynamically allocating Synthesizer channels allows
multiple Source inputs at any one time. The mapping com
ponent 224 receives the audio instructions from the output
processor 206 in the performance manager 104 So as to
conserve System resources Such that Synthesizer channel
groups are allocated only as needed. For example, the
mapping component 224 can receive a first Set of audio
instructions on mapping channels 310 in the first channel
block 308 that designate MIDI channels 1, 2, and 4 which
are then routed to synthesizer channels 304(1), 304(2), and
304(4), respectively, in the first channel group 302(1).
0062) When the mapping component 224 receives a
Second Set of audio instructions that designate MIDI chan
nels 1, 2, 3, and 10, the mapping component 224 routes the
audio instructions to synthesizer channels 304 in the first
channel group 302(1) that are not currently in use, and then
to Synthesizer channels 306 in the Second channel group

US 2005/0075882 A1

302(2). That is, the audio instruction that designates MIDI
channel 1 is routed to synthesizer channel 306(1) in the
second channel group 302(2) because the first MIDI channel
304(1) in the first channel group 302(1) already has an input
from the first set of audio instructions. Similarly, the audio
instruction that designates MIDI channel 2 is routed to
Synthesizer channel 306(2) in the Second channel group
302(2) because the second MIDI channel 304(2) in the first
channel group 302(1) already has an input. The mapping
component 224 routes the audio instruction that designates
MIDI channel 3 to synthesizer channel 304(3) in the first
channel group 302(1) because the channel is available and
not currently in use. Similarly, the audio instruction that
designates MIDI channel 10 is routed to synthesizer channel
304(10) in the first channel group 302(1).
0.063. When particular synthesizer channels are no longer
needed to receive MIDI inputs, the resources allocated to
create the Synthesizer channels are released as well as the
resources allocated to create the channel group containing
the Synthesizer channels. Similarly, when unused Synthe
sizer channels are released, the resources allocated to create
the channel block corresponding to the Synthesizer channel
group are released to conserve resources.
0.064 Multi-bus component 228 has multiple logical
buses 314(1-4). A logical bus 314 is a logic connection or
data communication path for audio wave data received from
the synthesizer component 226. The logical buses 314
receive audio wave data from the synthesizer channels 304
and 306 and route the audio wave data to the audio buffers
component 230. Although the multi-bus component 228 is
shown having only four logical buses 314(1-4), it is to be
appreciated that the logical buses are dynamically allocated
as needed, and released when no longer needed. Thus, the
multi-bus component 228 can Support any number of logical
buses at any one time as needed to route audio wave data
from the synthesizer component 226 to the audio buffers
component 230.
0065. The audio buffers component 230 includes three
buffers 316(1-3) that are consumers of the audio sound wave
data output by the synthesizer component 226. The buffers
316 receive the audio wave data via the logical buses 314 in
the multi-bus component 228. Abuffer 316 receives an input
of audio wave data from one or more logical buses 314, and
Streams the audio wave data in real-time to a Sound card or
Similar audio rendering device.
0.066 The audio buffers component 230 includes three
types of buffers. The input buffers 316 receive the audio
wave data output by the Synthesizer component 226. A
mix-in buffer 318 receives data from any of the other buffers,
can apply effects processing, and mix the resulting wave
forms. For example, mix-in buffer 318 receives an input
from input buffer 316(1). A mix-in buffer 318, or mix-in
buffers, can be used to apply global effects processing to one
or more outputs from the input buffers 316. The outputs of
the input buffers 316 and the output of the mix-in buffer 318
are input to a primary buffer (not shown) that performs a
final mixing of all of the buffer outputs before sending the
audio wave data to an audio rendering device.
0067. In addition to temporarily storing the received
audio wave data, an input buffer 316 and/or a mix-in buffer
318 can process the audio wave data input with various
effects-processing (i.e., audio processing) components 320

Apr. 7, 2005

before Sending the data to be further processed and/or
rendered as audible Sound. The effects processing compo
nents 320 are created as part of a buffer 316 and 318, and a
buffer can have one or more effects processing components
that perform functions Such as control pan, Volume, 3-D
Spatialization, reverberation, echo, and the like.
0068 Additionally, the effects-processing components
320 can be instantiated as programming objects in the audio
buffers when the audio buffers component 230 is created by
the audio rendition manager 106. The effects-processing
components 320 have one or more interfaces 322 and
asSociated interface methods that are callable by a Software
component to modify the effects-processing components.
0069. The audio buffers component 230 includes a two
channel stereo buffer 316(1) that receives audio wave data
input from logic buses 314(1) and 314(2), a single channel
mono buffer 316(2) that receives audio wave data input from
logic bus 314(3), and a single channel reverb stereo buffer
316(3) that receives audio wave data input from logic bus
314(4). Each logical bus 314 has a corresponding bus
function identifier that indicates the designated effects
processing function of the particular buffer 316 that receives
the audio wave data output from the logical bus. For
example, a bus function identifier can indicate that the audio
wave data output of a corresponding logical bus will be to
a buffer 316 that functions as a left audio channel Such as
from bus 314(1), a right audio channel such as from bus
314(2), a mono channel such as from bus 314(3), or a reverb
channel such as from bus 314(4). Additionally, a logical bus
can output audio wave data to a buffer that functions as a
three-dimensional (3-D) audio channel, or output audio
wave data to other types of effects-processing buffers.
0070 A logical bus 314 can have more than one input,
from more than one Synthesizer, Synthesizer channel, and/or
audio Source. A Synthesizer component 226 can mix audio
wave data by routing one output from a Synthesizer channel
304 and 306 to any number of logical buses 314 in the
multi-bus component 228. For example, bus 314(1) has
multiple inputs from the first synthesizer channels 304(1)
and 306(1) in each of the channel sets 302(1) and 302(2),
respectively. Each logical bus 314 outputs audio wave data
to one associated buffer 316, but a particular buffer can have
more than one input from different logical buses. For
example, buses 314(1) and 314(2) output audio wave data to
one designated buffer. The designated buffer 316(1), how
ever, receives the audio wave data output from both buses.
0071 Although the audio buffers component 230 is
shown having only three input buffers 316(1-3) and one
mix-in buffer 318, it is to be appreciated that there can be
any number of audio buffers dynamically allocated as
needed to receive audio wave data at any one time. Further
more, although the multi-bus component 228 is shown as an
independent component, it can be integrated with the Syn
thesizer component 226, or the audio buffers component
230.

0072 Audio Generation System Component Interfaces
and Methods

0073 Embodiments of the invention are described herein
with emphasis on the functionality and interaction of the
various components and objects. The following Sections
describe specific interfaces and interface methods that are
Supported by the various programming objects.

US 2005/0075882 A1

0074 An interface method, getObject (GetObjectInPath),
is Supported by various component objects of the audio
generation system 200. The audio rendition manager 106,
Segment component 202, and audio buffers in the audio
buffers component 230, for example, each Support the
getObject interface method that allows an application pro
gram 102 to access and control the audio data processing
component objects. The application program 102 can get a
pointer, or programming reference, to any interface (API) on
any component object in the audio rendition manager while
the audio data is being processed.
0075 Real-time control of audio data processing com
ponents is needed, for example, to control an audio repre
Sentation of a Video game presentation when parameters that
are influenced by interactivity with the Video game change,
Such as a video entity's 3-D positioning in response to a
change in a Video game Scene. Other examples include
adjusting audio environment reverb in response to a change
in a Video game Scene, or adjusting music transpose in
response to a change in the emotional intensity of a Video
game Scene.

0076) Audio Rendition Manager Interface Method
0077. An AudioPath interface (IDirectMusicAudioPath8)
represents the routing of audio data from a performance
manager component to the various audio data processing
components that comprise an audio rendition manager. The
AudioPath interface includes the getObject method and
accepts the following parameters to request a pointer, or
programming reference, to an API for a component object:

0078 dwStage is a component identifier parameter
that identifies a particular audio data processing
component having the requested API, Such as a
component in the performance manager 104 or audio
rendition manager 106. The dwStage parameter can
be one of the following values to indicate the com
ponent object:

0079) “AudioPath Graph” searches for an
instruction processors component, Such as instruc
tion processors component 220 in the audio ren
dition manager 106. If an instruction processors
component does not exist in the audio rendition
manager, one is created.

0080) “AudioPath Tool” searches for a particular
instruction processor in an instruction processors
component, Such as in instruction processors com
ponent 220 in the audio rendition manager 106.

0081) “Buffer” searches for an input audio buffer,
Such as input audio buffer 316 in the audio buffers
component 230.

0082) “Buffer DMO” searches for an effects pro
ceSSor in an input audio buffer, Such as effects
processor 320 in an input audio buffer 316 in the
audio buffers component 230 (“DMO” is a direct
music object, e.g., an effects processor).

0083) “Mixin Buffer” searches for a mix-in audio
buffer, Such as mix-in audio buffer 318 in the
audio buffers component 230.

0084) “Mixin Buffer DMO” searches for an
effects processor in a mix-in audio buffer, Such as

Apr. 7, 2005

an effects processor 320 in a mix-in audio buffer
318 in the audio buffers component 230.

0085 “Performance” searches for a performance
manager component, Such as performance man
ager 104.

0086) “Performance Graph” searches for an
instruction processors component, Such as instruc
tion processors component 204 in the performance
manager 104. If an instruction processors compo
nent does not exist in the performance manager,
one is created.

0087) “Performance Tool” searches for a particu
lar instruction processor in an instruction proces
Sors component, Such as in instruction processors
component 204 in the performance manager 104.

0088 “Port searches for a synthesizer compo
nent, Such as Synthesizer component 226 in the
audio rendition manager 106.

0089 dwpChannel is a channel identifier parameter
that identifies an audio data channel in an audio data
processing component that the component object
having the requested API is associated with. A value
of “PChannel All” indicates a search of all audio
data channels in the audio data processing compo
nent, Such as the performance manager 104 or audio
rendition manager 106.

0090 dwBuffer is an audio buffer identifier param
eter that identifies a particular audio buffer, Such as
audio buffers 316 and 318 in the audio buffers
component 230. If the dwStage parameter value is
“Buffer DMO' or “Mixin Buffer DMO", the audio
buffer identifier indicates the audio buffer having the
effects processor 320. If the dwStage parameter
value is “Buffer” or “Mixin Buffer", the audio buffer
identifier indicates the audio buffer itself.

0091 guidObject is a component class identifier
parameter which is a unique identifier for the com
ponent object having the requested API, and can be
an object class identifier (CLSID) of the component
object. A value of “GUID All Objects” indicates a
Search for an object of any class.

0092 dwindex is an index parameter that indicates
a particular component object having the requested
API within a list of matching objects. This parameter
is not used if the dwStage parameter value is
“Buffer” or “Mixin Buffer” (the parameter value for
a particular audio buffer is already indicated by the
dwBuffer parameter).

0093 idInterface is an interface identifier parameter
that indicates the interface corresponding to the
requested API being Searched for.

0094 ppObject is an identifier parameter that indi
cates a memory address of a reference to the
requested programming reference.

0.095 The getObject method for the AudioPath interface
returns a pointer, or programming reference, to the requested
component object API. The method can also return error
values to indicate that the requested API was not found. The
parameters for the getObject method have a hierarchical

US 2005/0075882 A1

precedence to filter out unwanted component objects when
Searching for a corresponding component object interface.
The parameter Search hierarchy is specified as dwStage,
guidObject, dwpChannel, dwBuffer, and then dwindex.
Additionally, if a matching component object is located with
the parameter search, but the requested API identified by
idInterface cannot be obtained, the method fails and returns
an error value.

0096 Segment Component Interface Method
0097 A SegmentState interface (IDirectMusicSegment
States) represents an instance of a segment in a performance
manager which is comprised of multiple tracks. The Seg
mentState interface includes the getObject method and
accepts the following parameters to request a pointer, or
programming reference, to an API for a component object:

0098 dwStage is a component identifier parameter
that identifies a particular audio data processing
component having the requested API, Such as the
performance manager 104 or a component in the
performance manager, or the audio rendition man
ager 106 or a component in the audio rendition
manager. The dwStage parameter can be one of the
following values to indicate the component object:

0099 “AudioPath” searches for an audio rendi
tion manager on which the Segment State is play
ing, Such as audio rendition manager 106.

0100 “AudioPath Graph” searches for an
instruction processors component, Such as instruc
tion processors component 220 in the audio ren
dition manager 106. If an instruction processors
component does not exist in the audio rendition
manager, one is created.

0101 “AudioPath Tool” searches for a particular
instruction processor in an instruction processors
component, Such as in instruction processors com
ponent 220 in the audio rendition manager 106.

0102) “Buffer searches for an input audio buffer,
Such as input audio buffer 316 in the audio buffers
component 230.

0103) “Buffer DMO” searches for an effects pro
ceSSor in an input audio buffer, Such as effects
processor 320 in an input audio buffer 316 in the
audio buffers component 230 (“DMO” is a direct
music object, e.g., an effects processor).

0104 “Mixin Buffer” searches for a mix-in audio
buffer, Such as mix-in audio buffer 318 in the
audio buffers component 230.

0105. “Mixin Buffer DMO” searches for an
effects processor in a mix-in audio buffer, Such as
an effects processor 320 in a mix-in audio buffer
318 in the audio buffers component 230.

0106 “Performance” searches for a performance
manager component, Such as performance man
ager 104.

0107 “Performance Graph” searches for an
instruction processors component, Such as instruc
tion processors component 204 in the performance

Apr. 7, 2005

manager 104. If an instruction processors compo
nent does not exist in the performance manager,
one is created.

0108) “Performance Tool” searches for a particu
lar instruction processor in an instruction proces
Sors component, Such as in instruction processors
component 204 in the performance manager 104.

0109) “Port searches for a synthesizer compo
nent, Such as Synthesizer component 226 in the
audio rendition manager 106.

0110) “Segment' searches for a segment compo
nent that the Segment State originates from, Such
as Segment 202 in the performance manager 104.

0111 "Segment Graph” searches for an instruc
tion processors component in a Segment compo
nent, Such as instruction processors component
212 in the Segment 202. If an instruction proces
Sors component does not exist in the Segment, one
is created.

0112 “Segment Tool” searches for a particular
instruction processor in an instruction processors
component, Such as the instruction processors
component 212 in the Segment 202.

0113 "Segment Track” searches for track 210 in
segment 202.

0114 dwpChannel is a channel identifier parameter
that identifies an audio data channel in an audio data
processing component that the component object
having the requested API is associated with. A value
of “PChannel All” indicates a search of all audio
data channels in the audio data processing compo
nent, Such as the performance manager 104 or audio
rendition manager 106.

0115 dwBuffer is an audio buffer identifier param
eter that identifies a particular audio buffer, Such as
audio buffers 316 and 318 in the audio buffers
component 230. If the dwStage parameter value is
“Buffer DMO' or “Mixin Buffer DMO", the audio
buffer identifier indicates the audio buffer having the
effects processor 320. If the dwStage parameter
value is “Buffer” or “Mixin Buffer", the audio buffer
identifier indicates the audio buffer itself.

0116 guidObject is a component class identifier
parameter which is a unique identifier for the com
ponent object having the requested API, and can be
an object class identifier (CLSID) of the component
object. A value of “GUID All Objects” indicates a
Search for an object of any class.

0117 dwindex is an index parameter that indicates a
particular component object having the requested
API within a list of matching objects. This parameter
is not used if the dwStage parameter value is
“Buffer” or “Mixin Buffer” (the parameter value for
a particular audio buffer is already indicated by the
dwBuffer parameter).

0118 idInterface is an interface identifier parameter
that indicates the interface corresponding to the
requested API being Searched for.

US 2005/0075882 A1

0119 ppObject is an identifier parameter that indi
cates a memory address of a reference to the
requested programming reference.

0120) The getObject method for the SegmentState inter
face returns a pointer, or programming reference, to the
requested component object API. The method can also
return error values to indicate that the requested API was not
found. The parameters for the getObject method for the
SegmentState interface also have a hierarchical precedence
as described above with reference to the AudioPath interface
to filter out unwanted component objects when Searching for
a corresponding component object interface. If a matching
component object is located with the parameter Search, but
the requested API identified by idInterface cannot be
obtained, the method fails and returns an error value.
0121 Table 1 below shows a relationship of the getOb
ject method parameters, and which of the parameters are
provided to request a programming reference to an API for
a particular audio data processing component as identified
by a dwStage parameter value. For example, to request a
programming reference to an API for a Synthesizer compo
nent, identified by dwStage parameter value “Port', the
method parameters guidObject, dwpChannel, and dwindex
are also provided with the dwStage parameter. Another
example is a request for a programming reference to an API
for an audio buffer component identified by dwStage param
eter value “Buffer'. The method parameters dwpChannel
and dwBuffer are also provided with the dwStage parameter.
For Some requests for a programming reference to an API,
the dwStage parameter (and associated value) is the only
method parameter provided, Such as for an audio rendition
manager identified by dwStage parameter value "Audio
Path.

TABLE 1.

dwStage guidObject dwPChannel dw8uffer

AudioPath

AudioPath Graph
AudioPath Tool guidObject dwPChannel
Performance

Performance Graph
Performance Tool guidObject dwPChannel
Segment

Segment Track guidObject
Segment Graph
Segment Tool guidObject dwPChannel
Port guidObject dwPChannel
Buffer dwPChannel dw8uffer
Buffer DMO guidObject dwPChannel dw8uffer
Mixin Buffer dw8uffer
Mixin Buffer DMO guidObject dw8uffer

0122) Audio Buffer Interface Method

0123) A Buffer interface (IDirectSound Buffer8) repre
sents an audio buffer 316 or 318 in the audio buffers
component 230. The Buffer interface includes the getObject
method and accepts the following parameters to request a
pointer, or programming reference, to an API for an effects
processor 320 associated with an audio buffer:

Apr. 7, 2005

0.124 rguidObject is a component class identifier
parameter which is a unique reference identifier for
the component object having the requested API, and
can be an object class identifier (CLSID) of the
component object. A value of “GUID All Objects”
indicates a Search for an object of any class.

0.125 dwindex is an index parameter that indicates
a particular component object having the requested
API within a list of matching objects.

0.126 rguidInterface is an interface identifier param
eter that indicates the interface corresponding to the
requested API being Searched for.

0127 ppObject is an identifier parameter that indi
cates a memory address of a reference to the
requested programming reference.

0128. The getObject method for the Buffer interface
returns a pointer, or programming reference, to the requested
component object API. The method can also return error
values to indicate that the requested API was not found.
When a requesting application program is returned a pointer
to the requested effects processor API, the application pro
gram can modify the effects processor via interface methods,
Such as by changing the position of a Sound in real-time to
position the Sound Source in relation to a Video entity's
position.

0129. File Format and Component Instantiation
0.130 Configuration information for an audio rendition
manager object and the associated component objects is
Stored in a file format Such as the ReSource Interchange File
Format (RIFF). A RIFF file includes a file header that
contains data describing the object followed by what are

dwindex

dwindex

dwindex

dwindex

dwindex
dwindex

dwindex

dwindex

known as “chunks.” Each of the chunks following a file
header corresponds to a data item that describes the object,
and each chunk consists of a chunk header followed by
actual chunk data. A chunk header Specifies an object class
identifier (CLSID) that can be used for creating an instance
of the object. Chunk data consists of the data to define the
corresponding data item. Those skilled in the art will rec
ognize that an extensible markup language (XML) or other

US 2005/0075882 A1

hierarchical file format can be used to implement the com
ponent objects and the audio generation Systems described
herein.

0131) ARIFF file for a mapping component and a syn
thesizer component has configuration information that
includes identifying the Synthesizer technology designated
by Source input audio instructions. An audio Source can be
designed to play on more than one Synthesis technology. For
example, a hardware Synthesizer can be designated by Some
audio instructions from a particular Source, for performing
certain musical instruments for example, while a wavetable
Synthesizer in Software can be designated by the remaining
audio instructions for the Source.

0132) The configuration information defines the synthe
sizer channels and includes both a Synthesizer channel-to
buffer assignment list and a buffer configuration list Stored
in the Synthesizer configuration data. The Synthesizer chan
nel-to-buffer assignment list defines the Synthesizer channel
Sets and the buffers that are designated as the destination for
audio wave data output from the Synthesizer channels in the
channel Set. The assignment list associates buffers according
to buffer global unique identifiers (GUIDs) which are
defined in the buffer configuration list.

0133) Defining the buffers by buffer GUIDs facilitates the
Synthesizer channel-to-buffer assignments to identify which
buffer will receive audio wave data from a synthesizer
channel. Defining buffers by buffer GUIDs also facilitates
sharing resources. More than one synthesizer can output
audio wave data to the same buffer. When a buffer is
instantiated for use by a first Synthesizer, a Second Synthe
sizer can output audio wave data to the buffer if it is
available to receive data input. The buffer configuration list
also maintains flag indicators that indicate whether a par
ticular buffer can be a shared resource or not.

0134) The configuration information also includes iden
tifying whether a Synthesizer channel ten will be designated
as a drums channel. Typically, MIDI devices Such as a
synthesizer designates MIDI channel ten for drum instru
ments that map to it. However, some MIDI devices do not.
The mapping component identifies whether a Synthesizer
channel ten in a particular channel group will be designated
for drum instruments when instantiated. The configuration
information also includes a configuration list that contains
the information to allocate and map audio instruction input
channels to Synthesizer channels.
0135 The RIFF file also has configuration information
for a multi-bus component and an audio buffers component
that includes data describing an audio buffer object in terms
of a buffer GUID, a buffer descriptor, the buffer function and
associated effects (i.e., audio processors), and corresponding
logical bus identifiers. The buffer GUID uniquely identifies
each buffer. A buffer GUID can be used to determine which
Synthesizer channels connect to which buffers. By using a
unique buffer GUID for each buffer, different synthesizer
channels, and channels from different Synthesizers, can
connect to the same buffer or uniquely different ones,
whichever is preferred.
0.136 The instruction processors, mapping, Synthesizer,
multi-bus, and audio buffers component configurations Sup
port COM interfaces for reading and loading the configu
ration data from a file. To instantiate the components, an

Apr. 7, 2005

application program instantiates a component using a COM
function. The components of the audio generation Systems
described herein are implemented with COM technology
and each component corresponds to an object class and has
a corresponding object type identifier or CLSID (class
identifier). A component object is an instance of a class and
the instance is created from a CLSID using a COM function
called CoCreatenstance. However, those skilled in the art
will recognize that the audio generation Systems and the
various components described herein are not limited to a
COM implementation, or to any other specific programming
technique.
0.137 The application program then calls a load method
for the object and specifies a RIFF file stream. The object
parses the RIFF file stream and extracts header information.
When it reads individual chunks, it creates the object com
ponents, Such as Synthesizer channel group objects and
corresponding Synthesizer channel objects, and mapping
channel blockS and corresponding mapping channel objects,
based on the chunk header information.

0.138 Audio sources and audio generation systems hav
ing audio rendition managers can be pre-authored which
makes it easy to develop complicated audio representations
and generate music and Sound effects without having to
create and incorporate Specific programming code for each
instance of an audio rendition of a particular audio Source.
An audio rendition manager and the associated component
objects can be instantiated from an audio rendition manager
configuration data file.
0.139. Alternatively, a segment data file can contain audio
rendition manager configuration data within its file format
representation to instantiate an audio rendition manager.
When a Segment is loaded from a Segment data file, an audio
rendition manager is created. Upon playback, the audio
rendition manager defined by the configuration data is
automatically created and assigned to the Segment. When the
audio corresponding to a Segment component is rendered, it
releases the System resources allocated to instantiate the
audio rendition manager and the associated components.
0140 Methods Pertaining to an Exemplary Audio Gen
eration System
0141 Although the invention has been described above
primarily in terms of its components and their characteris
tics, the invention also includes methods performed by a
computer or Similar device to implement the features
described above.

0.142 FIG. 4 illustrates a method for implementing the
invention described herein. The order in which the method
is described is not intended to be construed as a limitation.
Furthermore, the method can be implemented in any Suitable
hardware, Software, firmware, or combination thereof.
0.143 At block 400, a performance manager component
is instantiated. The performance manager can be instantiated
by an application program as part of an audio generation
System that produces an audio representation to correlate
with a Video presentation. Furthermore, the performance
manager can be instantiated as a component object having
an interface and interface methods that are callable by a
Software component. At block 402, audio content is received
from one or more audio Sources. The audio Sources provide
digital Samples of audio data Such as from a wave file,

US 2005/0075882 A1

message-based data Such as from a MIDI file or a pre
authored Segment file, or an audio Sample Such as a Down
loadable Sound (DLS).
0144. At block 404, an audio content component is
instantiated that corresponds to an audio Source from which
audio content is received. An example of an audio content
component is the Segment component in the performance
manager. The Segment can be instantiated as a component
object by the performance manager and have an interface
and interface methods that are callable by a Software com
ponent. Additionally, the Segment component can be created
from a file representation that is loaded and Stored in a
Segment configuration object that maintains the configura
tion information.

0145 At block 406, audio data processing components
are instantiated in the performance manager. The audio data
processing components include instruction processor com
ponents and an output processor. The audio data processing
components can be instantiated by the performance manager
as component objects having an interface and interface
methods that are callable by a Software component. At block
408, audio data is generated from the received audio content
by the Segment component. The Segment component has
Segment tracks that generate the audio data as event instruc
tions when the performance manager calls the Segment
which in turn calls the Segment tracks.
0146). At block 410, the audio data is processed in the
performance manager with the performance manager audio
data processing components. For example, the output pro
cessor component processes the event instructions (audio
data) to produce audio data in the form of audio instructions,
Such as MIDI formatted instructions.

0147 At block 412, an audio rendition manager compo
nent is instantiated. The audio rendition manager can be
instantiated by an application program or the performance
manager as part of an audio generation System that produces
an audio representation to correlate with a Video presenta
tion. Furthermore, the audio rendition manager can be
instantiated as a component object having an interface and
interface methods that are callable by a Software component.
Additionally, the audio rendition manager can be created
from a file representation that is loaded and Stored in a audio
rendition manager configuration object that maintains the
configuration information.

0.148. At block 414, the audio rendition manager receives
the audio data from the performance manager. At block 416,
audio data processing components are instantiated in the
audio rendition manager. The audio data processing com
ponents in the audio rendition manager include instruction
processor components, a Synthesizer component, a mapping
component, a multi-bus component, and an audio buffers
component. The audio data processing components can be
instantiated by the audio rendition manager as component
objects having an interface and interface methods that are
callable by a Software component.

0149. At block 418, the audio data is processed in the
audio rendition manager with the audio data processing
components. For example, the Synthesizer component
receives the audio data and produces audio Sound wave data
that is then routed to audio buffers in the audio buffers
component. At block 420, the output of the audio buffers is

Apr. 7, 2005

routed to an external device to produce an audible rendition
corresponding to the audio data processed by the various
audio data processing components in the performance man
ager and audio rendition manager.

0150. At block 422, a software component, such as an
application program, requests a programming reference
(e.g., a pointer) to an object interface of one of the audio data
processing components in either the performance manager
or audio rendition manager. The Software component calls
an interface method of a performance manager interface, or
an audio rendition manager interface, and provides one or
more interface method Search parameters (at block 424) to
identify which object interface of which audio data proceSS
ing component the programming reference is being
requested. The Software component can request a program
ming reference to an object interface of one of the audio data
processing components at any time during the method as
described in blocks 400 through 420.
0151. At block 426, the respective interface method asso
ciated with the performance manager or audio rendition
manager determines the object interface of the particular
audio data processing component and provides a program
ming reference (e.g., a pointer) to the particular object
interface. At block 428, the application program receives the
programming reference from the performance manager or
audio rendition manager interface method.
0152 Exemplary Computing System and Environment
0153 FIG. 5 illustrates an example of a computing
environment 500 within which the computer, network, and
System architectures described herein can be either fully or
partially implemented. Exemplary computing environment
500 is only one example of a computing System and is not
intended to Suggest any limitation as to the Scope of use or
functionality of the network architectures. Neither should
the computing environment 500 be interpreted as having any
dependency or requirement relating to any one or combina
tion of components illustrated in the exemplary computing
environment 500.

0154) The computer and network architectures can be
implemented with numerous other general purpose or Spe
cial purpose computing System environments or configura
tions. Examples of well known computing Systems, envi
ronments, and/or configurations that may be Suitable for use
include, but are not limited to, personal computers, Server
computers, thin clients, thick clients, hand-held or laptop
devices, multiprocessor Systems, microprocessor-based Sys
tems, Set top boxes, programmable consumer electronics,
network PCs, minicomputers, mainframe computers, gam
ing consoles, distributed computing environments that
include any of the above Systems or devices, and the like.
0.155) An audio generation system having audio data
processing components may be described in the general
context of computer-executable instructions, Such as pro
gram modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com
ponents, data Structures, etc. that perform particular tasks or
implement particular abstract data types. An audio genera
tion System having audio data processing components may
also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib

US 2005/0075882 A1

uted computing environment, program modules may be
located in both local and remote computer Storage media
including memory Storage devices.
0156 The computing environment 500 includes a gen
eral-purpose computing System in the form of a computer
502. The components of computer 502 can include, by are
not limited to, one or more processors or processing units
504, a system memory 506, and a system bus 508 that
couples various System components including the processor
504 to the system memory 506.
0157. The system bus 508 represents one or more of any
of Several types of bus Structures, including a memory bus
or memory controller, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of a
variety of bus architectures. By way of example, Such
architectures can include an Industry Standard Architecture
(ISA) bus, a Micro Channel Architecture (MCA) bus, an
Enhanced ISA (EISA) bus, a Video Electronics Standards
Association (VESA) local bus, and a Peripheral Component
Interconnects (PCI) bus also known as a Mezzanine bus.
0158 Computer system 502 typically includes a variety
of computer readable media. Such media can be any avail
able media that is accessible by computer 502 and includes
both volatile and non-volatile media, removable and non
removable media. The system memory 506 includes com
puter readable media in the form of volatile memory, Such
as random access memory (RAM) 510, and/or non-volatile
memory, Such as read only memory (ROM) 512. A basic
input/output system (BIOS) 514, containing the basic rou
tines that help to transfer information between elements
within computer 502, Such as during Start-up, is Stored in
ROM 512. RAM 510 typically contains data and/or program
modules that are immediately accessible to and/or presently
operated on by the processing unit 504.
0159) Computer 502 can also include other removable/
non-removable, Volatile/non-volatile computer Storage
media. By way of example, FIG. 5 illustrates a hard disk
drive 516 for reading from and writing to a non-removable,
non-volatile magnetic media (not shown), a magnetic disk
drive 518 for reading from and writing to a removable,
non-volatile magnetic disk 520 (e.g., a "floppy disk’), and
an optical disk drive 522 for reading from and/or writing to
a removable, non-volatile optical disk 524 such as a CD
ROM, DVD-ROM, or other optical media. The hard disk
drive 516, magnetic disk drive 518, and optical disk drive
522 are each connected to the system bus 508 by one or more
data media interfaces 526. Alternatively, the hard disk drive
516, magnetic disk drive 518, and optical disk drive 522 can
be connected to the system bus 508 by a SCSI interface (not
shown).
0160 The disk drives and their associated computer
readable media provide non-volatile Storage of computer
readable instructions, data Structures, program modules, and
other data for computer 502. Although the example illus
trates a hard disk 516, a removable magnetic disk 520, and
a removable optical disk 524, it is to be appreciated that
other types of computer readable media which can Store data
that is accessible by a computer, Such as magnetic cassettes
or other magnetic Storage devices, flash memory cards,
CD-ROM, digital versatile disks (DVD) or other optical
Storage, random access memories (RAM), read only memo
ries (ROM), electrically erasable programmable read-only

Apr. 7, 2005

memory (EEPROM), and the like, can also be utilized to
implement the exemplary computing System and environ
ment.

0.161 Any number of program modules can be stored on
the hard disk 516, magnetic disk 520, optical disk 524, ROM
512, and/or RAM 510, including by way of example, an
operating System 526, one or more application programs
528, other program modules 530, and program data 532.
Each of Such operating System 526, one or more application
programs 528, other program modules 530, and program
data 532 (or some combination thereof) may include an
embodiment of an audio generation System having audio
data processing components.

0162 Computer system 502 can include a variety of
computer readable media identified as communication
media. Communication media typically embodies computer
readable instructions, data Structures, program modules, or
other data in a modulated data Signal Such as a carrier wave
or other transport mechanism and includes any information
delivery media. The term "modulated data Signal” means a
Signal that has one or more of its characteristics Set or
changed in Such a manner as to encode information in the
Signal. By way of example, and not limitation, communi
cation media includes wired media Such as a wired network
or direct-wired connection, and wireleSS media Such as
acoustic, RF, infrared, and other wireleSS media. Combina
tions of any of the above are also included within the Scope
of computer readable media.

0163 A user can enter commands and information into
computer System 502 via input devices Such as a keyboard
534 and a pointing device 536 (e.g., a “mouse”). Other input
devices 538 (not shown specifically) may include a micro
phone, joystick, game pad, Satellite dish, Serial port, Scanner,
and/or the like. These and other input devices are connected
to the processing unit 604 via input/output interfaces 540
that are coupled to the system bus 508, but may be connected
by other interface and bus Structures, Such as a parallel port,
game port, or a universal Serial bus (USB).
0164. A monitor 542 or other type of display device can
also be connected to the system bus 508 via an interface,
such as a video adapter 544. In addition to the monitor 542,
other output peripheral devices can include components
Such as speakers (not shown) and a printer 546 which can be
connected to computer 502 via the input/output interfaces
540.

0.165 Computer 502 can operate in a networked envi
ronment using logical connections to one or more remote
computers, Such as a remote computing device 548. By way
of example, the remote computing device 548 can be a
personal computer, portable computer, a Server, a router, a
network computer, a peer device or other common network
node, and the like. The remote computing device 548 is
illustrated as a portable computer that can include many or
all of the elements and features described herein relative to
computer system 502.

0166 Logical connections between computer 502 and the
remote computer 548 are depicted as a local area network
(LAN) 550 and a general wide area network (WAN) 552.
Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Inter
net. When implemented in a LAN networking environment,

US 2005/0075882 A1

the computer 502 is connected to a local network 550 via a
network interface or adapter 554. When implemented in a
WAN networking environment, the computer 502 typically
includes a modem 556 or other means for establishing
communications over the wide network 552. The modem
556, which can be internal or external to computer 502, can
be connected to the system bus 508 via the input/output
interfaces 540 or other appropriate mechanisms. It is to be
appreciated that the illustrated network connections are
exemplary and that other means of establishing communi
cation link(s) between the computers 502 and 548 can be
employed.

0167. In a networked environment, such as that illus
trated with computing environment 500, program modules
depicted relative to the computer 502, or portions thereof,
may be stored in a remote memory Storage device. By way
of example, remote application programs 558 reside on a
memory device of remote computer 548. For purposes of
illustration, application programs and other executable pro
gram components, Such as the operating System, are illus
trated herein as discrete blocks, although it is recognized that
Such programs and components reside at various times in
different Storage components of the computer System 502,
and are executed by the data processor(s) of the computer.

Conclusion

0168 The getObject interface method allows a software
component, Such as an application program, to acceSS and
control audio data processing component objects within
audio generation System components. An application pro
gram can obtain a pointer, or programming reference, to any
object interface on any component object in a performance
manager, or in an audio rendition manager, while the audio
data is being processed. When an application program
creates an audio representation component that then creates
audio data processing components to process and render
audio data to create an audio representation corresponding to
a Video presentation, the application program creating the
audio representation component can directly access the
audio data processing components that are created by the
audio representation component.
0169. Although embodiments of accessing audio pro
cessing components in an audio generation System have
been described in language specific to Structural features
and/or methods, it is to be understood that the subject of the
appended claims is not necessarily limited to the Specific
features or methods described. Rather, the Specific features
and methods are disclosed as exemplary implementations of
the methods and Systems for accessing audio processing
components in an audio generation System.

1. One or more computer readable media comprising
computer executable instructions that, when executed, direct
an audio generation System to:

generate an audio rendition manager having audio data
processing components to proceSS audio data, the audio
data processing components being instantiated by the
audio rendition manager as component objects having
one or more interfaces that are callable by an applica
tion program;

receive a request from the application program for a
programming reference corresponding to an interface

Apr. 7, 2005

of one of the instantiated audio data processing com
ponents, the request from the application program
being a call to an interface method of the audio rendi
tion manager to provide one or more interface method
Search parameters, and

return the requested programming reference to the appli
cation program.

2. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to return a memory address of a reference to the requested
programming reference.

3. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to generate the audio rendition manager as a component
object having one or more interface methods that are call
able by the application program.

4. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
audio rendition manager interface method.

5. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
audio rendition manager interface method in accordance
with the one or more interface method search parameters.

6. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that identifies the par
ticular one of the instantiated audio data processing com
ponents.

7. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that is a component
identifier of one of the instantiated audio data processing
components, the Search parameter having a value that iden
tifies Said component.

8. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that is a component
identifier of one of the instantiated audio data processing
components, the Search parameter having a value that iden
tifies Said component as a component object having one or
more audio data modifying components.

9. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that is a component
identifier of one of the instantiated audio data processing
components, the Search parameter having a value that iden
tifies Said component as an audio Sound wave data mixing
component.

10. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc

US 2005/0075882 A1

tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
one or more interface method Search parameters that
include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies Said component as an audio
buffer component that receives audio Sound wave data
from a plurality of audio buffer components, and

an audio buffer identifier that identifies the audio buffer
component.

11. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
one or more interface method Search parameters that
include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies Said component as an audio
buffer component;

an audio buffer identifier that identifies the audio buffer
component; and

an audio data channel identifier that identifies an audio
data channel corresponding to the audio buffer compo
nent.

12. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
one or more interface method Search parameters that
include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies Said component as an audio
data modifying component;

an audio data channel identifier that identifies an audio
data channel corresponding to the audio data modifying
component,

a component class identifier that identifies a component
class corresponding to the audio data modifying com
ponent; and

an indeX parameter that identifies the audio data modify
ing component in a group of audio data modifying
components that each correspond to the audio data
channel and to the audio data modifying component
class.

13. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
one or more interface method Search parameters that
include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies said component as a Synthe
Sizer component;

Apr. 7, 2005

an audio data channel identifier that identifies an audio
data channel corresponding to the Synthesizer compo
nent,

a component class identifier that identifies a component
class corresponding to the Synthesizer component, and

an indeX parameter that identifies the Synthesizer compo
nent in a group of Synthesizer components that each
correspond to the audio data channel and to the Syn
thesizer component class.

14. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
one or more interface method Search parameters that
include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies Said component as an effects
processor component in an audio buffer component that
receives audio Sound wave data from a plurality of
audio buffer components,

an audio buffer identifier that identifies the audio buffer
component corresponding to the effects processor com
ponent,

a component class identifier that identifies a component
class corresponding to the effects processor compo
nent; and

an indeX parameter that identifies the effects processor
component in a group of effects processor components
that each correspond to the audio buffer component and
to the effects processor component class.

15. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
one or more interface method Search parameters that
include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies Said component as an effects
processor component in an audio buffer component;

an audio buffer identifier that identifies the audio buffer
component corresponding to the effects processor com
ponent,

an audio data channel identifier that identifies an audio
data channel corresponding to the effects processor
component,

a component class identifier that identifies a component
class corresponding to the effects processor compo
nent; and

an indeX parameter that identifies the effects processor
component in a group of effects processor components
that each correspond to the audio buffer component, to
the audio data channel, and to the effects processor
component class.

16. An audio generation System, comprising:
means for generating an audio rendition manager having

audio data processing components to proceSS audio

US 2005/0075882 A1

data, the audio data processing components being
instantiated by the audio rendition manager as compo
nent objects having one or more interfaces that are
callable by an application program;

means for receiving a request from the application pro
gram for a programming reference corresponding to an
interface of one of the instantiated audio data process
ing components, the request from the application pro
gram being a call to an interface method of the audio
rendition manager to provide one or more interface
method Search parameters, and

means for returning the requested programming reference
to the application program.

17. An audio generation System as recited in claim 16,
further comprising means for returning a memory address of
a reference to the requested programming reference.

18. An audio generation System as recited in claim 16,
further comprising means for generating the audio rendition
manager as a component object having one or more interface
methods that are callable by the application program.

19. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with the audio rendition manager
interface method.

20. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with the audio rendition manager
interface method in accordance with the one or more inter
face method Search parameters.

21. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that identifies the particular one of the instantiated
audio data processing components.

22. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that is a component identifier of one of the
instantiated audio data processing components, the Search
parameter having a value that identifies Said component.

23. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that is a component identifier of one of the
instantiated audio data processing components, the Search
parameter having a value that identifies Said component as
a component object having one or more audio data modi
fying components.

24. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that is a component identifier of one of the
instantiated audio data processing components, the Search
parameter having a value that identifies Said component as
an audio Sound wave data mixing component.

25. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with the one or more interface
method Search parameters that include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies Said component as an audio

15
Apr. 7, 2005

buffer component that receives audio Sound wave data
from a plurality of audio buffer components, and

an audio buffer identifier that identifies the audio buffer
component.

26. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with the one or more interface
method Search parameters that include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies Said component as an audio
buffer component;

an audio buffer identifier that identifies the audio buffer
component; and

an audio data channel identifier that identifies an audio
data channel corresponding to the audio buffer compo
nent.

27. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with the one or more interface
method Search parameters that include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies Said component as an audio
data modifying component;

an audio data channel identifier that identifies an audio
data channel corresponding to the audio data modifying
component,

a component class identifier that identifies a component
class corresponding to the audio data modifying com
ponent; and

an indeX parameter that identifies the audio data modify
ing component in a group of audio data modifying
components that each correspond to the audio data
channel and to the audio data modifying component
class.

28. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with the one or more interface
method Search parameters that include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies said component as a Synthe
Sizer component;

an audio data channel identifier that identifies an audio
data channel corresponding to the Synthesizer compo
nent,

a component class identifier that identifies a component
class corresponding to the Synthesizer component, and

an indeX parameter that identifies the Synthesizer compo
nent in a group of Synthesizer components that each
correspond to the audio data channel and to the Syn
thesizer component class.

29. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with the one or more interface
method Search parameters that include:

US 2005/0075882 A1

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies said component as an effects
processor component in an audio buffer component that
receives audio Sound wave data from a plurality of
audio buffer components,

an audio buffer identifier that identifies the audio buffer
component corresponding to the effects processor com
ponent,

a component class identifier that identifies a component
class corresponding to the effects processor compo
nent; and

an indeX parameter that identifies the effects processor
component in a group of effects processor components
that each correspond to the audio buffer component and
to the effects processor component class.

30. An audio generation System as recited in claim 16,
further comprising means for determining the requested
programming reference with the one or more interface
method Search parameters that include:

a component identifier of one of the instantiated audio
data processing components, the Search parameter hav
ing a value that identifies said component as an effects
processor component in an audio buffer component;

an audio buffer identifier that identifies the audio buffer
component corresponding to the effects processor com
ponent,

an audio data channel identifier that identifies an audio
data channel corresponding to the effects processor
component,

a component class identifier that identifies a component
class corresponding to the effects processor compo
nent; and

an indeX parameter that identifies the effects processor
component in a group of effects processor components
that each correspond to the audio buffer component, to
the audio data channel, and to the effects processor
component class.

31. One or more computer readable media comprising
computer executable instructions that, when executed, direct
an audio generation System to:

generate a performance manager as an audio data pro
cessing component having an interface that is callable
by an application program;

instantiate audio data processing components to proceSS
audio data, each of the audio data processing compo
nents being instantiated as a component object having
an interface that is callable by the application program,
wherein the audio data processing components include
an audio content component that generates the audio
data, and an audio rendition manager corresponding to
an audio rendition and processing the audio data to
render the corresponding audio rendition;

receive a request from the application program for a
programming reference corresponding to an interface
of one of the audio data processing components, the
request from the application program being a call to an

Apr. 7, 2005

interface method of the audio content component to
provide one or more interface method Search param
eters, and

return the requested programming reference to the appli
cation program.

32. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to return a memory address of a reference to the requested
programming reference.

33. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
audio content component interface method.

34. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
audio content component interface method in accordance
with the one or more interface method Search parameters.

35. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that identifies the par
ticular one of the audio data processing components.

36. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that is a component
identifier of one of the audio data processing components,
the Search parameter having a value that identifies Said
component.

37. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that is a component
identifier of one of the audio data processing components,
the Search parameter having a value that identifies the
performance manager.

38. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that is a component
identifier of one of the audio data processing components,
the Search parameter having a value that identifies the audio
rendition manager.

39. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that is a component
identifier of one of the audio data processing components,
the Search parameter having a value that identifies the audio
content component.

40. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with an
interface method Search parameter that is a component

US 2005/0075882 A1

identifier of one of the audio data processing components,
the Search parameter having a value that identifies said
component as an audio data processing component having
one or more audio data modifying components.

41. One or more computer readable media as recited in
claim 31, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
one or more interface method Search parameters that
include:

a component identifier of one of the audio data processing
components, the Search parameter having a value that
identifies said component as an audio data modifying
component,

an audio data channel identifier that identifies an audio
data channel corresponding to the audio data modifying
component,

a component class identifier that identifies a component
class corresponding to the audio data modifying com
ponent; and

an indeX parameter that identifies the audio data modify
ing component in a group of audio data modifying
components that each correspond to the audio data
channel and to the audio data modifying component
class.

42. One or more computer readable media as recited in
claim 31, further comprising computer eXecutable instruc
tions that, when executed, direct the audio generation System
to determine the requested programming reference with the
one or more interface method Search parameters that
include:

a component identifier of one of the audio data processing
components, the Search parameter having a value that
identifies Said component as an audio data processing
component in the audio content component that Said
generates the audio data;

a component class identifier that identifies a component
class corresponding to the audio data processing com
ponent in the audio content component, and

an indeX parameter that identifies the audio data process
ing component in a group of audio data processing
components that each correspond to the component
class.

43. An audio generation System, comprising:
means for generating a performance manager as an audio

data processing component having an interface that is
callable by an application program;

means for instantiating audio data processing components
to process audio data, each of the audio data processing
components being instantiated as a component object
having an interface that is callable by the application
program, wherein the audio data processing compo
nents include an audio content component that gener
ates the audio data, and an audio rendition manager
corresponding to an audio rendition and processing the
audio data to render the corresponding audio rendition;

means for receiving a request from the application pro
gram for a programming reference corresponding to an
interface of one of the audio data processing compo

Apr. 7, 2005

nents, the request from the application program being
a call to an interface method of the audio content
component to provide one or more interface method
Search parameters, and

means for returning the requested programming reference
to the application program.

44. An audio generation System as recited in claim 43,
further comprising means for returning a memory address of
a reference to the requested programming reference.

45. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with the audio content component
interface method.

46. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with the audio content component
interface method in accordance with the one or more inter
face method Search parameters.

47. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that identifies the particular one of the audio data
processing components.

48. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that is a component identifier of one of the audio
data processing components, the Search parameter having a
value that identifies said component.

49. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that is a component identifier of one of the audio
data processing components, the Search parameter having a
value that identifies the performance manager.

50. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that is a component identifier of one of the audio
data processing components, the Search parameter having a
value that identifies the audio rendition manager.

51. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that is a component identifier of one of the audio
data processing components, the Search parameter having a
value that identifies the audio content component.

52. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with an interface method Search
parameter that is a component identifier of one of the audio
data processing components, the Search parameter having a
value that identifies Said component as an audio data pro
cessing component having one or more audio data modify
ing components.

53. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with the one or more interface
method Search parameters that include:

a component identifier of one of the audio data processing
components, the Search parameter having a value that
identifies said component as an audio data modifying
component,

US 2005/0075882 A1

an audio data channel identifier that identifies an audio
data channel corresponding to the audio data modifying
component,

a component class identifier that identifies a component
class corresponding to the audio data modifying com
ponent; and

an indeX parameter that identifies the audio data modify
ing component in a group of audio data modifying
components that each correspond to the audio data
channel and to the audio data modifying component
class.

54. An audio generation System as recited in claim 43,
further comprising means for determining the requested
programming reference with the one or more interface
method Search parameters that include:

a component identifier of one of the audio data processing
components, the Search parameter having a value that
identifies Said component as an audio data processing
component in the audio content component that Said
generates the audio data;

a component class identifier that identifies a component
class corresponding to the audio data processing com
ponent in the audio content component, and

an indeX parameter that identifies the audio data process
ing component in a group of audio data processing
components that each correspond to the component
class.

55. One or more computer readable media comprising
computer executable instructions that, when executed, direct
an audio generation System to:

generate an audio rendition manager having audio data
processing components to proceSS audio data;

request a reference corresponding to an interface of one of
the audio data processing components, the audio ren
dition manager receiving the request and determining
the requested reference, the audio rendition manager
further receiving the request as a call to an interface
method of the audio rendition manager to provide one
or more interface method Search parameters, and

receive the requested reference from the audio rendition
manager.

56. One or more computer readable media as recited in
claim 55, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to receive a memory address of a reference identifier that
identifies the requested reference.

57. One or more computer readable media as recited in
claim 55, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to call the interface method of the audio rendition manager,
and determine the requested reference with the audio ren
dition manager interface method.

58. One or more computer readable media as recited in
claim 55, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to instantiate the audio rendition manager as a component
object having one or more interfaces, call the interface
method of the audio rendition manager, and determine the
requested reference with the audio rendition manager inter
face method.

Apr. 7, 2005

59. One or more computer readable media as recited in
claim 55, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested reference with the audio rendition
manager interface method in accordance with the one or
more interface method Search parameters.

60. One or more computer readable media as recited in
claim 55, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested reference with an interface
method Search parameter that identifies the particular one of
the audio data processing components.

61. One or more computer readable media as recited in
claim 55, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested reference with an interface
method Search parameter that is a component identifier of
one of the audio data processing components, the Search
parameter having a value that identifies Said component as
an audio buffer component.

62. One or more computer readable media as recited in
claim 55, further comprising computer executable instruc
tions that, when executed, direct the audio generation System
to determine the requested reference with an interface
method Search parameter that is a component identifier of
one of the audio data processing components, the Search
parameter having a value that identifies Said component as
a Synthesizer component.

63. An audio generation System, comprising:
means for generating an audio rendition manager having

audio data processing components to proceSS audio
data;

means for requesting a reference corresponding to an
interface of one of the audio data processing compo
nents, the audio rendition manager receiving the
request and determining the requested reference, the
audio rendition manager further receiving the request
as a call to an interface method of the audio rendition
manager to provide one or more interface method
Search parameters, and

means for receiving the requested reference from the
audio rendition manager.

64. An audio generation System as recited in claim 63,
further comprising means for calling the interface method of
the audio rendition manager, and means for determining the
requested reference with the audio rendition manager inter
face method.

65. An audio generation System as recited in claim 63,
further comprising means for instantiating the audio rendi
tion manager as a component object having one or more
interfaces, means for calling the interface method of the
audio rendition manager, and means for determining the
requested reference with the audio rendition manager inter
face method.

66. An audio generation System as recited in claim 63,
further comprising means for determining the requested
reference with the audio rendition manager interface method
in accordance with the one or more interface method Search
parameterS.

67. An audio generation System as recited in claim 63,
further comprising means for determining the requested
reference with an interface method Search parameter that

US 2005/0075882 A1

identifies the particular one of the audio data processing
components.

68. An audio generation System as recited in claim 63,
further comprising means for determining the requested
reference with an interface method Search parameter that is
a component identifier of one of the audio data processing
components, the Search parameter having a value that iden
tifies Said component as an audio buffer component.

Apr. 7, 2005

69. An audio generation System as recited in claim 63,
further comprising means for determining the requested
reference with an interface method Search parameter that is
a component identifier of one of the audio data processing
components, the Search parameter having a value that iden
tifies Said component as a Synthesizer component.

