PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 15/173, HO4N 7/173, GO6F 11/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/1/217

8 April 1999 (08.04.99)

(21) International Application Number: PCT/US98/20532

(22) International Filing Date: 1 October 1998 (01.10.98)

(30) Priority Data:

08/943,049 us

1 October 1997 (01.10.97)

(71) Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
[US/US]; 1200 East California Boulevard, Pasadena, CA

91125 (US).

(72) Inventors: BRUCK, Jehoshua; 5657 Bramblewood Road, La
Canada, CA 91011 (US). BOHOSSIAN, Vasken; 11675
Lavigne Apartment 6, Montreal, Quebec H4J 1X4 (CA).
FAN, Chenggong; Apartment 115, 156 S. Meridith Avel,
Pasadena, CA 91106 (US). LEMAHIEU, Paul; Apartment
301, 1032 E. Del Mar Boulevard, Pasadena, CA 91106 (US).
RIEDEL, Marcus, David, Daniel; 1015 Strauss, Brossard,
Quebec J4X 1T2 (CA). XU, Lihao; Apartment 5, 307 South
Wilson Avenue, Pasadena, CA 91106 (US).

(74) Agent: HALL, David, A.; Heller Ehrman White & McAuliffe,
Suite 700, 4250 Executive Square, La Jolla, CA 92037 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S], SK,
SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: A RELIABLE ARRAY OF DISTRIBUTED COMPUTING NODES

(57) Abstract

10 2
SWITCH SWITCH
100
%0
REDUNDANT coMP
STORAGE Moo NoDE NODE NODE
10
A 102 0
NETH
RECONFIG

A system which uses redundant storage and redundant communication to provide a robust distributed server system.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
CzZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugosiav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
Us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/17217 PCT/US98/20532

-1-

A RELIABLE ARRAY OF DISTRIBUTED COMPUTING NODES

TECHNICAL FIELD

This application describes a reliable array of distributed computing nodes forming
a network which includes redundant communication and storage of information in a way
to form robust communications and distributed read and write operations. The system
may also use detection of a condition which indicates the need for redundancy, and

reconfiguration in response to the condition in order to compensate for the condition.

BACKGROUND ART

Computing and storage over a distributed environment has a great potential of
leveraging existing hardware and software. Such a system would find use as a
distributed and highly available storage server. Possible applications include use as
multimedia servers, web servers, and database servers. More generally, however, a
system of this type can be used for any application where information needs to be
distributed among locations.

The challenge, however, is the proper mix of connections, monitoring and
operation which allows reliability without excessively increasing the cost.

It is known how to provide redundant storage systems which can compensate for
certain faults. One example of such a system is the so-called reliable array of
independent disks or “RAID”. Two examples of the RAID type system are found in
U.S. Patent Numbers 5,579,475, and 5,412,661. These systems provide redundant data
storage, so that failure of any disk of the system will be compensated by redundant data
elsewhere in the system.

Communication systems are known in which each computer in the system
(“node”) is connected with the other nodes. One example is Ethernet, which 1s a bus-

based protocol. The computing nodes communicate via the bus. A server typically

“stores all of the shared data for all the nodes. The nodes may also have local data

storage.

10

15

20

25

30

WO 99/17217 PCT/US98/20532

2.

A single network system includes a single Ethernet link between the nodes and
the server. Therefore, if any fault occurs in the connection or in the communication to
the server, or in the server itself, the nodes may no longer be able to obtain conventional
data access services from the server. The nodes are then forced to operate in stand alone
mode. Those nodes can then only operate using data which is available locally.

Server based systems which attempt to increase the reliability of such a system
are known. One such system uses a dual bus connection. Each computing node is
provided with two Ethernet connections, using two separate Ethernet cards, to two
separate buses to two separate servers. This is effectively two separate systems, each
having its full complement of hardware and storage.

If either connection or bus has an error, normal operation can still continue over
the other bus. A system with two redundant buses and two redundant servers is called
dual bus, dual server. Such a dual bus, dual server system will tolerate any single
network fault. However, such systems usually require that all information be duplicated

on each server.

DISCLOSURE OF INVENTION

The system described in this application leverages existing hardware and software

by using relatively low power workstations, such as personal computers. These personal
computers are connected by a redundant connection. The connection can use existing
hardware, e.g. local and/or wide area networks.

The present application describes a redundant distributed server formed from an
array of distributed computing nodes. Each of the computing nodes stores information
in a special redundant way, and also runs a protocol ensuring robust communication.

The system includes a special architecture and operation which allows fault
tolerance in the network, preferably such that some specific number of network faults
will not affect the operation of the remaining nodes of the system. However, no single
one of the nodes should duplicate the storage of all of the information.

The server system includes redundant communication and storage. The redundant
communication is obtained from a system architecture allowing each node to

communicate to each other node over one of at least two different paths. The redundant

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-3-

storage is obtained from redundant storage of the information using a special redundant
coding scheme.

The server system also runs a distributed detection routine which detects system
functional states. One system functional state, for example is a network fault. The
network fault can include a communication fault such as a broken link, or an inoperable
node or switching device. More generally, however, the system functional state can be
any condition which may prevent any operation of the network. The system functional
state can be compensated by the system redundancy.

The server system preferably runs a network monitor process which detects the
system functional state. A logical network process reconfigures the system, to make use
of the redundancy to compensate for the system functional state.

The system also uses a distributed read and write system which allows alternative
operation in the presence of a system fault. This alternative operation uses the system

redundancy.

BRIEF DESCRIPTION OF DRAWING

The objects, advantages and features of this invention will be more readily
appreciated from the following detailed description, when read in conjunction with the
accompanying drawing, in which:

Figure 1 shows a basic block diagram of the simplest networking example;

Figure 2 shows a more complicated example with more switches and more
computing nodes;

Figure 3 shows an even further reliable networking example;

Figure 4 shows a fault-tolerant system;

Figure 5 shows an example of how this system would be used to store video;

Figure 6 shows how such a system could tolerate link faults;

Figure 7 shows a block diagram of a software architecture for reliable
communications;

Figure 8 shows a basic software flowchart of the network monitor process;

Figure 9 shows a connectivity protocol state machine for the network monitor

process;

10

15

20

25

30

WO 99/17217 PCT/US98/20532

4

Figure 10A shows formation of the data structure for connectivity;

Figure 10B shows a flowchart of the link status operation;

Figure 11 shows a flowchart of the RUDP process;

Figure 12 shows a possible arrangement of computing nodes and switching
elements;

Figure 13 shows a more advanced arrangement of computing nodes and switching
elements;

Figures 14A through 14E show calculation of parity rows in X code for an array
code of 5 by 5; and

| Figure 15 shows the basic layout of the X code system.

BEST MODE FOR CARRYING OUT THE INVENTION

Figure 1 shows a first, most basic embodiment of a reliable redundant
distributed network server system. The system is formed of the computing nodes
(“nodes™) and the network which carries out switching between the nodes.

The network of Figure 1 includes both communication and storage redundancy
among the nodes and the network. This redundancy can be used to compensate for a
defined number of system functional states. The system functional states which are
compensated by the redundancy can include faults in the network (“communication
faults”), faults in memory storage where the memory could be disks, volatile memory,
or any other kind of memory which stores data (“memory faults”), or any other kind of
fault which produces an undesired result.

The distributed server system also includes a detection process. The detection
process operates in each node to view the connection to other nodes in the network.
Each node views the network according to the same protocol, using a pool of hints about
the condition of the network. This detection process guarantees that both sides see the
same history of the network. Even though the detection process is distributed, it
maintains the network history of the nodes of the network consistent within a desired
threshold, using a token passing system. The tokens limit the degrees of freedom of
the two sides, by allowing only a specified number of actions without an

acknowledgment that the other side has taken an action.

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-5.

The detection process runs invisibly relative to the other programs and user
applications. The preferred mode of the detection process uses a network monitor
(“NETM”) process which operates to gather information about the system being
monitored. That NETM process preferably determines whether the other node is
properly operating. However, more generally, the NETM process determines a
parameter related to usability. That can include, as in the following, is the system up
or down. It could also include an indication of how busy that system is, which
indication could be used for load balancing.

The system of figure 1 illustrates the features of the invention using four
computing nodes (“nodes”) 100, 102, 104, and 106 connected by two switches 110 and
112. Each node can communicate with each other node over two different and hence
redundant paths. For example, node 100 can communicate with node 106 via
interconnection 120 between node 100 and switch 110. A totally separate path exists
which allows redundant interconnection over path 122 from switch 110 to node 106.
Node 100 can alternatively communicate to node 106 using interconnection 124 from
node 100 to switch 112 and interconnection 126 from switch 112 to node 106. Each
node, therefore, is connected to each other node by at least two completely separate and
redundant connection paths.

This redundant communication capability allows selection of a different path in
case it is preferable to avoid use of one communications link. For example, loss of
switch 110 or any part of the line of 120 and/or 122 will still allow communication over
lines 124 and 126 via switch 112.

The information is also stored in a redundant manner which allows retrieval of
any information, even if any part of the network fails or is otherwise unavailable, e.g.,
due to high traffic. The redundant storage mechanism is illustrated in Figure 1 as
element 140. The data in redundant storage 140 is preferably stored such that loss of
any n-x nodes, where n is the total number of nodes in the system and « is selected
number, will not affect the ability to obtain any desired data from the system. This is
preferably done by storing data according to a maximum distance separable (“MDS”)

coding system which includes stored redundancy information in each of the nodes. This

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-6-

redundancy information can be used with other node data to reconstruct the data for any
missing node or nodes.

If the detection process determines any kind of undesirable system functional
state, such as an inoperable node, or a broken communication link, a reconfiguration
process 140 is carried out. The reconfiguration process 140 is robust against faults by
virtue of its ability to use at least one of the storage redundancy or the communication
redundancy. Reconfiguration process allows the system to operate in the presence of a
specified fault. This might not, however, require any dedicated switching. For example,
a path between nodes 100 and 106 can be established over path 1 via 120/110/122, or
over path 2 via 124/112/126. Under normal operation, the communication would
alternately occur over path 1, then path 2, then path 1, etc. However, if there is a fault
or overload in path 1, then all communications will occur over path 2. This is a
reconfiguration in the sense that the communications are appropriately directed. Even
though half of the communications would have been directed over path 2 anyway, the
reconfiguration makes all of the communications occur over path 2.

Figure 1 therefore illustrates the basic features of the distributed server as
described by the present specification. These features include redundancy of
communication, redundancy of storage, detection of an event which can be compensated
by the redundancy, and reconfiguration to use the redundancy to compensate for the

event.

Redundant Communication

The Figure 1 system shows a simple redundant connection with four nodes 100-
106 and two switches 110 and 112. The nodes are preferably standalone workstations,
such as personal computers (“PCS”) each with two PCI bus-based communication cards.
The communication cards communicate via the switches to similar communication cards
in the other PCS. The protocol of the communication cards could be any commercially
available type, such as Ethernet or others. The preferred system uses Myrinet switches
for the switching nodes 200 as shown in Figure 2. Myrinet switches are available for
sale commercially, and are also described in Boden et al. “Myrinet : a gigabit per

second local area network” IEEE Micro 1995.

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-

The special node connection used by the present invention provides a
communication redundancy which improves the ability to operate normally in the
presence of network communication faults. These network communication faults include
faulted communication, including switch faults, broken links, or switch failures. The
connections are established in a way that minimizes the possibility that any
communication fault or combination of communication faults could cause a
communication disruption or isolation of nodes. The importance of proper connection
is illustrated with reference to the following.

Figure 2 shows a system that connects eight computing nodes 200 through 214
using four switches 220 through 226. Every computing node includes two possible
interconnect link paths. This provides redundancy of communications.

Communication failures in the system of Figure 2, however, have the possibility
of undesirably “isolating” groups of computing nodes. These isolated groups of
computing nodes are isolated in the sense that they are no longer able to communicate
with all of the other working nodes of the distributed server.

As an example, if both switches 224 and 226 were to fail, then the computing
nodes 200 to 206 would be totally isolated from the computing nodes 208 through 214.
This causes an isolatable system which is usable, but less preferred.

For example consider an example where the MDS code used requires six of eight
nodes to reconstruct data. If the system were isolated as explained above, then only half
of the nodes would have communication. Since there would be four communicable
nodes, this particular fault would prevent the data from being reconstructed.

The connectivity structure of Figure 3 is preferred. This ten node, four switch
system has improved interconnection in the case of communications faults. The
connection interface is made such that loss of any two switches can affect only two
computing nodes in the worst case. See for example Figure 4 which illustrates the
situation of switches 320 and 326 having failed. The bolded lines show the
communication lines which are affected by this failure. Only the computing nodes 304
and 312 are isolated by this two-switch failure. This leaves all other nodes being totally

operational, and no isolation of nodes.

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-8-

An important part of the fault tolerance is obtained from the specific
interconnection of the switches and nodes. As an example given above, the Figure 2
system has a possible drawback that it becomes possible to isolate two halves of the
computing nodes. The isolated system includes computing nodes 200 through 206 which
are capable of communicating but are isolated from the group of nodes 208 through 214.

Another example of the problem is shown in Figure 12 which represents one
possible way of interconnecting a number of computing nodes using switching nodes.
Each switching node N is located between two adjacent computing nodes C. This is a
usable, but less preferred configuration. Note that if computing nodes 1200 and 1202
ever become simultaneously faulted, the communication capability of the system will be
split along the dotted lines shown in Figure 12. This will effectively isolate one-half of
the system 1204 from the other half of the system 1206.

An object of the connection described in this specification is to avoid this kind
of possible isolation formed by any two communications failures. The preferred system
describes connecting the nodes in the most non-local way possible. This compares with
the system of Figure 12 in which each switching node is connected to the two closest
computing nodes. The inventors found that the unobvious system of connecting between
non-local switches produces the highest degree of fault tolerance.

Figure 13 shows such a device. Each node is shown as connected to two
switches. The diagram depicts the connection as being between any two most distant
switches. When laying out the diagram of switches and nodes as shown in Figure 13,
this diagrams the connections as diameters to connect between two of the switches that
are physically most distant from one another. This connection has the advantage that
cancellation of any three switches cannot have the effect of isolating two halves of the
unit. On the contrary, breaking the unit in any two places still allows communication
between many of the nodes. Any three losses isolates only some constant number of
nodes -- those directly affected -- regardless of total number of nodes in the system.

Assume for example, a communication failure at the location 1310 and another
break at the location 1312. It is apparent that nodes can still communicate since switch
1300 is still connected to switch 1302 via switch 1304. Switch 1300 is also connected

to switch 1306 via switch 1308. In an analogous way, all of these switches are

10

15

20

25

WO 99/17217 PCT/US98/20532

-9-

connected to one another even if there is such a break. Moreover, with this preferred
system, the most node to node connection that could possibly be necessary is one quarter
of a way around the system.

The non-locality concept is also applicable to arrangements other than a ring.
For example, any arrangement which could be visualized as a ring is alternatively
usable.

The preferred server system shown in Figures 1 through 3 uses personal
computer-based workstations connected via redundant networks using the Myrinet
interconnect technology. Alternatively, of course, other communication technology, such
as 100 MB Ethernet can be used. All of these systems have in common the capability
of maintaining redundancy in the presence of faulty links. The system could be used
with any number of communications elements, although two is the preferred and

disclosed number.

Redundant Storage

In the preferred embodiment of Figure 1, each node stores only a portion of any
given stored data. The stored data is retrieved using a part of each information that is
actually stored in the local node, and a part from other nodes. An illustration of this
concept is shown with reference to Figure 5. Figure 5 illustrates a video server. The
distributed server provides data indicative of video, which is displayed as shown. Each
computing node is shown storing half of the total data. The data is redundantly stored
such that any video frame can be reconstructed from the data in the one node requesting
the data, when it is combined with the data in any other node.

This storage scheme allows any node to receive its desired information so long
as that node does not become isolated from all other nodes. This scheme would provide
storage redundancy for the case of many failures in the distributed server.

More generally, however, the preferred scheme defined herein allows
reconstructing data from any subset of k working nodes out of the total of n nodes. The

example given below includes k=2 and n=4.

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-10-

Figure 6 illustrates how the remaining computing nodes can reconstitute any item
of served-out video, in the case of a node failure. This can be accomplished by any
coding scheme which allows redundant storage.

The preferred system has the ability to lose any two communication links without
losing any other communication function of the server system, and without effecting
other nodes besides those which actually include the faults.

The redundant memory feature of the system stores encoded data of a smaller
size than the total data half the data in each node. Therefore, for each file of size K in
a system with k working nodes, in this preferred embodiment, K/ of that file is stored
on each node of the server. The other (k-1) of the file is obtained from other k-1

working nodes.

X - Code

Storage redundancy is obtained according to the preferred embodiment by
distributing the storage of the information between nodes. As explained above, for each
item of information of size K, the preferred system stores K/k data (the original size of
the information)in each node, where « is the number of nodes that will be necessary to
reconstruct the data. Each node can reconstruct any of the items of information by
accessing the other K/k of the information from any other node. The information is
preferably stored using a maximum distance separable (“MDS”) code to store the
information. The preferred mode of storing the information uses a new coding system
called X-Code. The X-Code as described herein is the special, but optimized, code for
storing each item of information spread among the nodes, and more specifically, the
disks of the nodes.

Most preferably, only a part of the information, some portion of the encoded
data, is stored on each node. Each node also stores information indicating some
property of information on other nodes. For example, that property could be a
checksum or parity, indicating a sum of data on the other nodes. That information is
used along with the information on the other nodes in order to reconstruct the

information on those other nodes.

10

15

20

25

WO 99/17217 PCT/US98/20532

-11-

As described above, the preferred code used is X-code, which is described in
detail in the following. X-code is a Maximum Distance Separable (“MDS”) array code
of N by N where N is preferably a prime number. This code can be both encoded and
decoded using only exclusive OR (“XOR™) and cyclic shift operations. This makes X-
code much faster to encode and decode as compared with more computationally-
intensive codes such as Reed-Solomon codes.

The X-Code has a minimum column distance of 3. This means that the code can
correct either one column error or two column erasures. X-code has a specific property
that the change of a single information unit, e.g., a single information bit or symbol in
X-code, will always effect only two parity bits or symbol. Therefore, whenever any
information is updated, only those two parity bits or symbols will need to be changed.

The system of X-Code uses an array shown in Figure 15. Each column 1500
represents the information in a single node. maps to each node. The parity symbols are
stored in rows rather than columns.

The code is arranged using all the nodes of the network collectively to form an
array of N x n where N is preferably = n. The array includes
N-2 x N information symbols, and 2 x n parity symbols. Figure 14A shows an
exemplary array with n=5. The portion of the nodes 1400 represent the information,
with each boxed element representing one unit of information, e.g. a bit, a sector or
some other unit of a disk. These units will be generically referred to in this
specification as symbols.

The non-information part 1402 represents redundant information. As will be
explained herein, for any disk, e.g. disk number 1404 represented by a single column
of the array, the redundant information 1402 represents redundancy information from
other disks -- that is the redundant information is only from disks other than 1404.

The X-Code system forms a column representing the contents of the entire disk
1404. The parity symbols of the X-Code are formed of two extra rows 1402 on the
disk. Each disk therefore has N-2 information symbols as well as two parity symbols.

Any error or erasure of a symbol in a column can be recovered from column erasures.

WO 99/17217 PCT/US98/20532

-12-

Turning specifically to the encoding procedure, if we let C;; be the symbol of the

ith row and jth column, then the parity symbols of X-Code are constructed according to

equation 1:
n-3
Cn—z,i = Ck,(i +l+2),
K=0
n-3
Co1i= Ck,(i—k—2),,
K=0

where [=0, 1,-, n-1, and (x), = X mod n.

5 This translates in geometrical terms to the parity rows representing the checksums along
the diagonals of slope 1 and -1, respectively.

Figure 14A shows how the first parity check row 1410 is obtained by assuming
that the second parity check row 1412 does not exist or is all zeros. This is referred to
as an imaginary zero row. Checksums are formed on all diagonals of slope -1. In -

10 Figure 14A, all of the triangle shapes are added to form the first parity check row 1410.
This means that the elements 1414, 1416, 1418 and 1420 are added to form the parity
element 1422.

Figure 14B shows an example of calculating the first parity check row for

exemplary single bits. Notice the diagonal elements 1414, 1416, 1418 and 1420 require
15 addition of 1+1+1+0 leading to a parity of 1 which is stored as symbol 1422.

The diagonals are continued in an adjoining row once reaching the outer edge
of the array. For example, the diagonal row 1430 including elements 1432, 1434, 1436
and 1438 is continued beginning at the top of the next row as 1440. The parity symbol
1436 corresponds to an addition of the symbols 1432, 1434, 1438 and 1440. Figure 14B

20 shows these symbols corresponding to 0+0+0+1 which equals 1. The value 1 is stored
as symbol 1436.

The second parity check row is formed from a diagonal of slope +1. Figure 14C

shows this analogous second parity row calculation with Figure 14D showing a specific

example. The row 1440 includes symbols 1442, 1444, 1446, 1448 and 1450. Parity

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-13-

symbol 1450 is calculated as 1442 + 1444 + 1448 + 1446. Figure 14D shows a
concrete example where the parity 0 is obtained from a sum of +0+0+1=1.

Figure 14E shows the complete code word formed by combining the two parity
check rows. The two parity check rows are obtained totally independent of one another.
Each information symbol appears exactly once in each parity row. All parity symbols
depend only on information symbols from other columns (other disks) and not on each
other. Therefore, an update of one information symbol results in an update of only two
parity symbols.

X-code as described above uses a prime number n allowing for real diagonal
computation. If n is not prime, however, a different line of computation can be used.
For example, any suitable given envelope which traverses all of the n-1 disks can be
used according to X-Code. All of the lines are preferably paraliel.

As described above, X-Code has a column distance of three allowing correction
of two column erasures or one column error. An erasure is when there is a problem and
it is known which area has the problem. An error occurs when the specific source of
the problem is unknown. The decoding operation can be used without requiring finite
field operations, using only cyclic shift and exclusive OR.

Correction of one erasure can simply recover that erasure along the diagonals of
slope 1 or -1 using either of the parity rows.

In an array of size N by n, assume the two columns are erasures. In this case,
the basic unknown symbols of the two columns are the information symbols in those
columns. Since each of the columns has (n-2) information symbols, the number of
unknown symbols become 2 x (n-2). Similarly, the remaining array includes 2 x n-2
parity symbols, including all of the 2 x (n-2) unknown symbols. Hence, the erasure
correction becomes a problem of solving 2 x (n-2) unknowns from 2 x (n-2) linear
equations. Since these linear equations are linearly independent, these linear equations
become solvable.

Moreover, no two information symbols of this code in the same column can
appear in the same parity symbol. Therefore, each equation has at most two unknown
symbols. Some equations have only one unknown symbol. This will drastically

decrease the complexity of equation solving. The system used according to this system

10

15

WO 99/17217 PCT/US98/20532

-14-

starts with any equation with one known unknown symbol. Solving for those equations
is relatively simple. The process continues to solve for the other unknown solutions
until all equations are solved.

Suppose the erasure columns are the ith and jth (0 <I<j <n-1) columns. Since
each diagonal traverses only n - 1 columns, if a diagonal crosses a column at the last
row, no symbols of that column are included in this diagonal. This determines the
position of the parity symbol including only one symbol of the two erasure columns.
The symbol can be recovered from the simple checksum along this diagonal.

First consider the diagonals of slope 1. Suppose the xth symbol of the ith
column is the only unknown symbol in a diagonal. Then, this diagonal hits the jth
column at the (n-1)th row, and hits the first parity row at the yth column, i.e., the three
points (x,i), (n - 1,j) and (n -2,y) are on the same diagonal slope 1, thus the following

equation holds:

(n-1)-x=j~i modn
{(n-l)—xEj—i modn

(n-1)-(@n-2) = j-y mod n
Since 1<j-I<n-1,and 0 <j -1 <n -1, the solutions for x and y are

x=<m-1)-G-0>,=@m-1)-¢G-10
y=< -1 =j-1

So, the parity symbol C,,,;; allows calculation of the symbol Cy,) ., In the ith column.
Similarly, the symbol C,_,; in the jth column can be solved directly from the parity

symbol Cn-2,<1- 1>n*

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-15-

Symmetrically with the diagonals of slope -1, the symbol C;; in the ith column
can be solved from the parity symbol C,, >, and the symbol Cg yyp; in the jth
column can be solved from the parity symbol C_ ;..

Notice that an information symbol is crossed by the diagonals of slope 1 and -1
exactly once, respectively. If an unknown symbol is solved along a diagonal of slope
1 (or -1), then the parity symbol along the diagonal of slope -1 (or 1) which crosses the
solved symbol, another unknown symbol in the other column can be solved. This
procedure can be used recursively until the parity symbol is an erasure column or the
solved symbol itself is a parity symbol. These same techniques can be used to recover
any desired unknown symbol or symbols.

The preferred system uses N = n or N being prime. Systems such as Figs 5 and

6, (n=4; k=2) can also be used as described above.

Distributed Read/Write

The system allows a new kind of operation by its use of a distributed read and
write system.

The redundant storage of information allows the system to read from all n of the
nodes to maximize the bandwidth of the system. In that case, the system is reading only
from the raw information parts 1502 of the nodes.

Alternatively, only k of the nodes are read, but.those k are read along with their
parity portions 1504. Unlike the conventional “correcting”, this system selects which
of the available clusters will be used, based on the system’s view of the state of the
network different parts could be used for different codes, e.g., the even/odd code.

Distributed write involves writing to all effecting nodes each time information
is changed. However, the update is maintained to be as small as possible. The MDS
code guarantees redundancy and makes the update optimally minimum and efficient.
Average unit parity update number represents the average number of parity bits that is
effected when a change of a single information bit occurs in the codes. The parameter
becomes particularly crucial when array codes are used in storage applications. X-code
is optimal in the sense that each single information bit change requires an update of only

two parity bits.

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-16-

Another important feature of X-code follows from its formation of independent
parity bits. ~ Many of the codes, which have been previously used, rely on dependent
parity columns in order to form code distances of three. Since the parities are dependent
on one another, the calculation of these parities can be extremely complicated. This
often leads to a situation where the average unit parity update number of the code
increases linearly with the number of columns of the array.

Systems such as the EVENODD code described in U.S. Patent No. 5,579,475 and
other similar systems use independent parity columns to make the information update

more efficient.

Detection

The distributed data storage system spreads the server function across the nodes.
This is done according to the present system using a special communication layer
running on each of the multiple nodes which is transparent to the application. A special
distributed read system and distributed write system also maintains the robust operation
of the system.

The communication architecture of the preferred system is shown in Figure 7.
The actual communication and network interfaces are shown as elements 700. The
communication can be done in any conventional manner, including Ethernet, Myrinet,
ATM Servernet, or any other conventional schemes of communication. These
conventional network interfaces are controlled by the redundant communication layer.

The communication is monitored by the net monitor (“NETM”) protocol system
702. NETM maintains a connectivity protocol which determines channel state and
history of the channel state at each node. More specifically, NETM monitors all
connections from the local node on which NETM is running, to each remote node, over
each connection path from the local node to the remote node. NETM maintains a
connectivity chart which includes an indication of the status of all of the possible
connections from the local node to each remote node at all times.

The actual communication is controlled by the reliable user data protocol
(“RUDP”). RUDP operates based on a request to communicate from the local node

(“node A”) to some other node (“node B”). RUDP then obtains connectivity

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-17-

information about properly-operating communications paths from node A to node B
from NETM. RUDP selects a communication path using the information gathered by
NETM, and sends the information using bundled interfaces. RUDP also properly
packages the information using known protocol systems, to provide in-order confirmed
delivery.

NETM system runs on each node of the system to find information about the
system. NETM sees the node on which it is running as the local node. NEvTM uses
system clues to determine the state of the connection between the local node and all
other nodes in the system.

Since the same protocol is running on all nodes, each NETM process on each
node will determine the same condition for any given A to B connection state. NETM
also uses a history checking mechanism, such that all nodes see the same history of
channel state over time.

The preferred system clues are obtained from messages that are sent from node
A to each other node in the system, over each possible path to the other node. These
messages are called “heartbeats”. NETM sends a message from the local node (“node
A”) to each remote node (“node B”) over each pathway. Each connection is
characterized by three items of information called the Ci,j,k “tuple” including I= local
interface; j= remote node and k = remote interface. This tuple defines an unambiguous
path.

NETM uses the heartbeats to determine if there is an operational communication
link between A and B over each pathway Ci,j,k. Since the NETM protocol is also
running on node B, that remote NETM will likely make the same decision about the
state of connectivity from node B to A over pathway Ci,j,k.

Certain faults, such as, for example, a buffer overflow, might cause a loss of
channel in only one direction. The connection protocol uses a token passing system to
make the history of the channel symmetrical.

The history detection is based on a pool of hints about the operability of the
connection. The heartbeat is the preferred hint, and is described herein in further detail.
Another hint, for example, is a fault indication from the communication hardware, e.g.,

from the Myrinet card. If the Myrinet card that is controlling the communication on

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-18-

path X indicates that it is inoperable, the protocol can assume that path to be inoperable.

The pool of hints is used to set the state of a variable which assesses the state of
the communication path A to B over X. That variable has the value U for up and D for
down.

The operation is shown in the summary flowchart of Figure 8. The Figure 8
embodiment uses a heartbeat message formed from an unreliable message. A reliable
messaging system requires the sending node to receive confirmation of receipt of a
message. The sending node will continue to send the message until some confirmation
of receipt of the message is obtained by the sending node. In contrast, the Figure 8
system uses unreliable messaging: that is, the message is simply sent. No confirmation
of receipt is obtained.

The message 800 is sent as an unreliable package message to node B. The
heartbeat is preferably sent every 10ms. The system waits and checks network hints at
step 802 to assess the state and history of the network link. The heartbeat can be any
message that is sent from one node to the other node.

Since the same protocol is running on each node, each node knows that it should
receive a heartbeat from each other node each 10 ms. Each NETM runs a timer which
is reset each time that NETM receives a heartbeat from the other node. If the timer
expires without receiving a heartbeat from the other node, then the judgement can be
made that there is a problem with the connection.

Each side also tries to ensure that it sees the same history over time. This is
carried out by passing reliable tokens between the pair of nodes constituting the point
to point protocol. Each token indicates that the node has seen an event. When the
token is received by the other node, it, too should have seen a comparable event and sent
a token. Each side passes a token when it sees the event. This maintains the history on
both sides as being the same.

Each side has a finite number of tokens that can be passed. This has the effect
of limiting the number of events that can occur before the event is acknowledged by the
other node. For example, if there are two tokens per side initially, then the node only
has two tokens to pass. After each perceived change in channel state, a token is passed.

If no token arrives from the other side, the node will run out of tokens after these two

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-19-

perceived changes. This means that each node can only be two events or actions ahead
of (or behind) the other node. The token passing limits the number of degrees of
freedom between the two nodes -- how far apart the two nodes can be before one holds
the reported state of the channel as down waiting for the other side to catch up.
Another way of looking at this is that the tokens set the maximum number of

transitions that one node can make before hearing that the other node has acted similarly.

The preferred embodiment of the NETM system is illustrated in the connectivity
protocol state machine of Figure 9 and the flowchart of Figures 10A and 10B. Step
1000 comprises an initial step of forming the Ci,j,k 3-tuple comprising the local
interface ID, the remote machine ID and remote interface ID for each possible physical
channel from the node to all other known nodes. The process ConnP(C,,j,k) is rﬁn for
all C,,j,k 3-tuples to determine the connectivity state for each of these channels. This
creates a data structure called Connected(C,,j,k) that stores a Boolean value indicating
the up/down (1 or 0) status for each C; channel.

Step 1002 determines whether there has been a ConnP (C,,j,k) event. If not,
there is nothing to do, so the process returns.

If there is an event detected at step 1002, flow then proceeds to step 1004 which
determines if the event is a system up event. If so, the result returns a “1". If not, the
result returns a “0".

The link status flowchart of Figure 10B uses a count of “tokens” as evidence of
the operation of the other endpoint system.

At step 1010, the process begins with the token count (“t”) being set to its initial
value n=2. The system starts with its state initially being up (“1") at step 1012. Step
1014 detects whether there has been a time-in event. A time-in event is caused, for
example, by the receipt of a heartbeat from the node B. Since the state is already up
at this point, the detection of a time-in event leaves the state up and takes no further
action. If there is not a time-in event at step 1014, then 1016 determines a time-out
event caused, e.g., by not receiving an éxpected heartbeat before the timer expired. If
not, step 1018 determines whether a token has been received (“ a token arrival event”).

If none of these events have occurred, control again passes to step 1012 where the node

10

15

20

25

30

WO 99/17217 PCT/US98/20532

-20-

continues to monitor whether one of those events has occurred. Since the system always
has a token at that point, there is no need to check for another one.

The time-out event at step 1016 means that no heartbeat has been received from
node B over path X, so that there is likely a problem with communication to node B
over path X. Hence, control passes to step 1020, which sends a token to the node B
indicating the time out event reporting the omission of heartbeats for the specified time.
Since the token has been sent, then token count is also decremented at 1020. This is
followed by changing the state of ConnP to D at step 1022.

A token arrival event at step 1018 is followed by a step of receiving the token
at 1024 and incrementing the token count. If the current token count is less than the
maximum token value n at 1026, the token count is incremented at 1028. Since there
is a missing token, the transition on the other end is within the allowable degrees of
freedom allowed by the token passing scheme and the received token brings the two
sides back in sync.

If the token count is not less than N, the token count is at its maximum value.
The system therefore needs to undergo a transition. This is effected by sending a token
at 1030, followed by the system going down, indicated by ConnP - 0 or D at 1022.
This begins the down routine processing operation.

The down routine processing operation is analogous to the up routine processing
operation. A time-out event is detected at 1030 which has no effect since the system
is already down. A time-in event is detected at 1032. This time-in event will allow the
system to return to the UP state, providing that a token exists to send in order to indicate
the transition. The routine checks for a token at step 1040. If none are available, then
no transitions can occur, and flow returns to 1022. If a token exists to be passed, then
it is passed at 1042, and the token count is decremented. The ConnP variable returns
to its UP state, and begins the token processing routine.

Each system of node A to node B over path X is characterized in this way by the
NETM protocol.

The applications run on top of RUDP. For example, an application with a
process ID first identifies itself to the system. For example, the application may send

a message identifying itself as process 6 and indicating a desire to send to process 4.

10

15

20

25

30

WO 99/17217 PCT/US98/20532

21-

This identification uses the Ci,jk tuple described above. NETM determines a
communication path for this operation.

The actual communication, once determined, operates using the so-called sliding
window protocol. Sliding window is well known and is described, for example, in U.S.
Patent Number 5,307,351. Sliding window supervises a reliable messaging scheme by
appropriate packaging of the data packet. Sliding window essentially manages sequence
numbers and acknowledges. The data is sent as a reliable packet, requiring the recipient
to acknowledge receipt before more that one window will be sent out. Once the receipt
is properly acknowledged, the window of information “slides” to the next
unacknowledged packet of information.

RUDP uses the sliding window module to perform the actual communication.
RUDP also calls NETM to provide a valid information path. If more than one of the
paths between nodes is usable, then RUDP cycles between the usable paths.

RUDP also acts as a logical network by reconfiguring the system using the
information provided by NETM.

The basic RUDP flowchart is shown in Figure 11. The operation starts with a
determination of a receive event at step 1100. If no receive event is received at step
1100, step 1102 determines if there has been a send event. If not, LNET has nothing
to do, and flow returns to continue checking for events.

If a receive event is detected at step 1100, flow passes to step 1110 which
determines whether the data is indicative of some C.j.k tuple. If not, an error is
determined at step 1112.

If proper data is obtained, that data is received at step 1114 and then returned to
the system at step 1116.

A send event requires the C,j,k arguments indicating the data to be sent, and the
remote machine to receive the event. This requires a determination at 1120 of whether
some up channel C,,j,k exists for the remote machine indicated as one of the arguments
of the operation. If not, step 1122 declares a lost connection error. If, in the more usual
case, at least one up channel exists, its address is using the arguments of the Cj,k tuple.

The process then returns at 1130.

10

15

20

25

30

WO 99/17217 PCT/US98/20532

22
The process 1120 uses NETM to look up the existing paths from the local
machine to the remote machine. Therefore, NETM maintains the data structure while

LNET uses the data structure.

INFORMATION SERVER

The system described herein has special application in an information server - i.e.
a server that provides information to a user on request. The information server can be
an Internet (web) server, a video server, or any other type device where information is
provided.

The system is used as a server in the sense that any node can request any stored
information from any other node or combination of nodes. For example, a request can
be made which requires the information from 25 different nodes. This system can select
the 25 closest nodes or 25 least-used nodes. This allows the system to ignore overloaded
nodes just as if they were faulted.

When it is used as a video server, the video that is to be delivered might be
stored anywhere on the system. According to the present scheme, the video is stored
as distributed information among the different nodes of the network in a way that allows
the video information to be retrieved even in the event of specified network failures.

The server system requests the video to be provided from the node that is storing
it. The special techniques of the system ensure that no specified number of failures can
interrupt operation of the system as a whole. No two node failure, for example can
prevent obtaining the stored information, since the information is redundantly stored at
other locations in the network.

Another application is as a web server. The web server uses the TCP/IP protocol
and packeted communications to obtain Internet information. Again, this information
could be stored anywhere within the distributed server. No two faults of any kind --
communication or storage, can prevent the information from being obtained.

Another application of this system is in expansion and repair. Any node can be
removed at any time, and the rest of the system will continue to operate without
interruption. That node could be replaced with a blank node, in which case the network

will begin writing information to the blank column it sees using the redundancy data.

WO 99/17217 PCT/US98/20532

23

Although only a few embodiments have been disclosed in detail above, those
having ordinary skill in the art will recognize that other embodiments are within the
disclosed embodiments, and that other techniques of carrying out the invention are

predictable from the disclosed embodiments.

10

15

20

WO 99/17217 PCT/US98/20532

24-
CLAIMS

1. A redundant distributed network system, comprising:

a plurality of system nodes, each of said system nodes including at least two
communication devices and a storage device, said storage device including redundant
storage of information for the network;

a plurality of switching devices, connected to said communication devices of said
system nodes in a way such that each of said communication devices in any one system
node is connected to a different one of said switching devices, allowing each of said
system nodes to communicate to each other of said system nodes over one of at least
two different paths, thereby providing redundant communication;

a detection routine which detects system functional state which may prevent any
operation of the network system; and

a logical network process which reconfigures the network using one of at least
said communication redundancy or said storage redundancy to compensate for the system

functional state using the network redundancy.

2. A system as in claim 1 wherein said detection routine detects runs on a least
a plurality of said system nodes, with an identical protocol being run by each said

detection routine on each of said system nodes.

3. A system as in claim 1, wherein said system functional state include faults
in network communication or faults in memory storage or any other kind of fault which

produces an undesired result.

4, A system as in claim 3, wherein when said system functional state includes
a fault in network communication, said logical network process commands a connection

to be changed to a different connection.

WO 99/17217 PCT/US98/20532

-25-

5. A system as in claim 4, wherein when said system functional state includes
a fault in memory storage, said logical network process commands desired information

to be obtained from said redundant data storage.

6. A system as in claim 1, wherein said detection routine operates in each node

5 to view a state of connection to other nodes in the network.

7. A system as in claim 6, wherein said detection routine operates to determine

said state of connection using hints about a condition of the network.

8. A system as in claim 7, wherein said hints include a heartbeat signal which
is produced by each said node at specified intervals, and said detection routine operates
10 to receive said heartbeat signal and to detect a presence or absence of said heartbeat

signal as one of said hints.

9. A system as in claim 7, further comprising a token passing system, wherein

each node determines events in a monitored node over a monitored channel and passes

a token to said monitored node over said monitored channel to indicate said event,

15 wherein said monitored node passes back said token to indicate operation based on said
event, and wherein each node has only a specified number of tokens to limit a number

of events which can occur on one of said nodes without a corresponding event occurring

on the other of said nodes.

10. A system as in claim 6, further comprising means for guaranteeing that each

20 said node sees a same history of the network.

11. A system as in claim 1, wherein said connection is made such that no groups

of computing nodes can be isolated.

12. A system as in claim 1, wherein said switches connect said nodes in the

most non-local way possible.

WO 99/17217 PCT/US98/20532

-26-

13. A system as in claim 12, wherein said switches connect between two nodes

which are farthest from one another.

14. A system as in claim 13, wherein said connections are made such that no
failure of any two nodes can isolate any group of nodes from communicating with any

5 other group of nodes.

15. A system as in claim 1, wherein each node is connected with each other
node by at least two paths,

and further comprising a network monitor running at each said node and
monitoring all connections from a local node on which said network monitor is running

10 to each remote node over each connection path from the local node the remote node.

16. A system as in claim 15, further comprising a reliable user data protocol
running on said local node, and receiving a request to communicate from the local node

to some other node, and determining a path from said network monitor process.

17. A system as in claim 16, further comprising reconfiguring a path of said
15 communicating using a logical network interconnection that allows changing a physical

connection between the nodes to a different node connection.

18. A system as in claim 1, further comprising a network monitor, determining
operational connections among said nodes, a reliable user protocol, which processes
information for the running nodes, and a logical network which reconfigures the

20 communications based on said operational connections.

19. A system as in claim 1, wherein said storage device stores only a part of the

information on each disk of each node.

20. A system as in claim 19, wherein each disk of each node also stores

information indicating some property of information on other disks.

10

15

20

25

WO 99/17217 PCT/US98/20532

27-

21. A redundant distributed server, comprising:

an array of distributed computing nodes, each of said computing nodes storing
different information than each other node, and said stored information being redundant
among said
computing nodes,

a switching system, connected to said array of computing nodes, and providing
redundant communication paths among said array of computing nodes, operating such
that any specified number of network faults will not affect the operation of the
remaining nodes of the system,

each of said computing nodes running the same protocol to determine network

status, such that each said computing node will see the same network history.

22. A server as in claim 21, wherein said stored information on each node stores
only part, but not all of any desired information, and wherein no two nodes store the

same information.

23. A server as in claim 22, wherein said stored information includes an
information portion, and a redundancy portion, said redundancy portion being

information indicative of information portions for other nodes only.

24. A server as in claim 23, wherein said redundancy portion is formed from an
array code where a plurality of said nodes are arranged into an array to form said
information portion, and said redundancy portion are formed from checksums along

diagonals of said array.

25. A redundant network, comprising:

a plurality of nodes, collectively storing system data, each node storing raw data,
and redundant data indicative of raw data that is stored in nodes other than said each
node; and

a controlling process, operating to carry out a distributed read from said plurality

of nodes, said distributed read comprising determining a parameter related to availability

WO 99/17217 PCT/US98/20532

28-

of nodes, and reading said raw data from said plurality of nodes if said parameter
indicates availability, and reading both said raw data and said redundant data from less

than said plurality of nodes if said parameter indicates less than availability.

26. A method of using an error correcting code, comprising:
5 storing raw information and redundant information indicating the error correcting
code into a plurality of information nodes;
determining a parameter indicating usability of said information nodes;
reading said raw information from said plurality of nodes if said parameter
indicates that said plurality of nodes are usable, and reading both said raw data and said
10 redundant data from less than said plurality of nodes if said parameter indicates that at

least a portion of said plurality of nodes are less than usable.

27. A coding method for an array of nodes, comprising:
forming an array of information, by forming each column of the array
15 representing information from a node,
forming a raw portion of each column including raw information indicating data,
forming a redundant information indicating redundancy information, said
redundancy information indicating information about other nodes besides said each node,
as taken along an envelope of a specified shape that obtains information from said other

20 node.

28. A coding method as in claim 27, wherein said envelope is a diagonal which

is extended to other nodes beyond edges of said array.

29. A method of forming a redundantly-coded network formed from a plurality
of nodes, comprising:
25 mapping each node to a column of an array;
forming two rows of redundant information from said columns of the array, and

placing said two rows into said columns, to form a resultant array of N by N including

WO 99/17217 PCT/US98/20532

229.

N-2 by N information symbols, and 2 by N redundant information symbols, said parity

symbols being constructed according to:

n-3

G, 20" Ck,(i “k+2),
K=0
n-3

Cory = Chrik -2),
K-0

where I =0, 1,-, n-1, and (x), = X mod n.

30. A redundant video server system, comprising:

5 a plurality of system video storage nodes, each of said system video storage
nodes including at least two communication devices and a storage device, said storage
device including redundant storage of video information;

a plurality of switching devices, connected to said communication devices of said
system video storage nodes in a way such that each of said communication devices in
10 any one system node is connected to a different one of said switching devices, allowing
each of said system nodes to communicate to each other of said system nodes over one
of at least two different paths, thereby providing redundant communication,
a connection on said switching devices and the redundant storage of video
information being of a form that no specified number of failures can interrupt operation
15 of the video server;
a detection routine which detects system functional state which may prevent any
operation of the network system; and
a logical network process which reconfigures the network using one of at least
said communication redundancy or said storage redundancy to compensate for the system

20 functional state using the network redundancy.

PCT/US98/20532

1/13

WO 99/17217

T "Old

\ 914N0J3Y

W13N

Otl

300N 39VHOLS
ONILNdWOD INVONNQ3Y

071 <
ol

HOLIMS HIOLIMS

A3 - oiL ~

SUBSTITUTE SHEET (RULE 26)

WO 99/17217 PCT/US98/20532

2/13

200 202 201./206 208

..
--
0 .

™
N
-
o
O™,
-t
N
™~
N
—
&

..........
--

FIG. 2< 220\5%‘52 22 B 224 S T—226
TH = computer

switch

/300,302,304 306,308 310 ,312 314 ,316 ,318
(% ([

--
--

--
--

FIG. 3 < 320)M,
{64 = computer 322 324 326

\ = switch

SUBSTITUTE SHEET (RULE 26)

7 WO 99/17217

FIG. 4

FIG. 5<

3/13

......

.....
......

v O
......

ol

......

304

.....

PCT/US98/20532

.....
......

......

......

.....

U

ﬁ

computer

switch

s

computer

switch

SUBSTITUTE SHEET (RULE 26)

......

o
......
.....

switch

PCT/US98/20532

WO 99/17217

4/13

4 "OId

004 —1 ,ausensss W1V }OUNAW e
di dI dl di
) |)
saonfiaqu] yLomiaN « Y
dany e WL3N
oL — -0z

yiomjeu Joojbo} uo ojuj Jayjebo} sespjiejup Bujjpung sp jjem so AieA|ep
pawijjuos JapJo-ul sapjaold :(jodojoid woibpjop Jasn siqoidd) 4ANY

julodpus yopa }b 8}D}S JIUUDYD

jo AJo}siy |Dojjuep} SD @M SD 9}D}S |aUUDYD jo uoydajep Ajaul
eajupionb 0} 1030josd A}Al}oauu0d sasn :{Jojuouw }au) WIIN

UOLIDNUNWULO) 3]QDLIAY Lof BUNFodIYILY 24DMP0S

SUBSTITUTE SHEET (RULE 26)

WO 99/17217

5/13

GED

SEND UNRELIABLE
PACKET MESSAGE
TO B AS HEARTBEAT

800

WAIT AND
CHECK NETWORK
HINTS

| 802

FIG. 8

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20532

WO 9917217 PCT/US98/20532

6/13

Connectivity Protocol State Machine

(tin: nop)

{tok && t<n: ?T; tes}

t=n initiﬂ{ '

n>L

{tin && f>|lT_; t--} {tout: IT; t--}
{tok && t>0: ?T; IT) {tok && t=n: ?T; IT}

t: token count

tok: token arrival
tout: time-out event
tin: time-in event
iT: send token

?T: recv token

&&,1l: and, or
ncp: no operation

{tout: nop}
{tin && t<=1: nop}
{tok && t=0: ?T; te+}

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 99/17217 PCT/US98/20532

7/13

NETM

Ci)k = (local iface id, remote machine lId,
remote iface id)

for each physical channel from

this machine to all other known
machines

o<l € number of local Interfaces;

o<j € number of nodes in the system
o<k < number of remote Interfaces
Run comp for all Cjyjk

Create data structure that stores

Boolean up/down state for
each Ci

pramrnmstrem—— R |

<l
o>

Yes

1002

Output to data
structure

FIG. 10A

SUBSTITUTE SHEET (RULE 26)

WO 99/17217

PCT/US98/20532

t token count

tok token arrival
tout token out event
tin token Iin event
?T recv token

IT send token

8/13
1010_\ t=n
1012 *
state=
- " S

_—

s
L — 1024

1020 — IT; t-- T,

No

1026 f- 1028
Yes

tes

IT; t--

1030

1042 —IT; t-- tro \No
Yes
IT; t-- FIG. 10B
et |

SUBSTITUTE SHEET (RULE 26)

WO 99/17217

112
A

Error,
no data

9/13

Recv()
event

Cli k)

on some

Physical
Rev

Return

FIG.

PCT/US98/20532

up channel
Cljk for
the remote

machine

Send

Error

Return

11

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20532

WO 99/17217
10/13
C C
g
1204 S , /
S O,
4
C /1202 X €
4
e // —~——1206
/ 4
S S
d
/, ///
,,’/ ,,I
cl) 1200 // C
(4
“ S //, S
1 7
Lom’ S
C C
FIG. 12

SUBSTITUTE SHEET (RULE 26)

\ WO 99/17217 PCT/US98/20532

11/13

General problem

Setting: a network of switches and nodes.
Goal: node to node communication.
Fault: switch, node or link failure.

Specific problem

Setting: switches forward packets, nodes do not.
Goal: constant number of isolated nodes.
Fault: switch failure.

1306 1304

1302

FIG. 13

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20532

WO 99/17217

12/13

Lot gt
dAvT DId [o]t|i o]0
1iolt foTo] 'St piomapod ajajdwos ay} uayj
LjL]0] L |0
Li{Ljo|ofli 0SY7h ~
oToToToTo] — ™0 furubour ——1Q (O |$ |V | @
”wwmw ~—mos yooyo Agund puz — | O | |7 | @ |OT "
L[t]o]1]0 ¢ |V|i®|0Q|V| OV DI
NG STelolvl+
avt DId vlo 0:% -

877l avyL 9991

:smopaf so ‘4— adozs fo spuobvyp eyz Huop pagpmorpo s} mot Apund puocdss ayjf

mS/_ QNWF 2 geqy B WHT DL
5o 5 To0T5 - mos—) RuDulboWL —mr 4\. L JEa) Kol 209
fL[L]0]0]| =—mos yooyo Rprund 35; —o v A K¢,
L{o[t oo e.a‘\.v v \
t{Tlols (o Old(V|®|O
\ N
HT]ofo]T 0071 DO\+.404|.MM.=
gyT Ol AN
\ a7 A n—L——3—"707

:smopef sv ‘mou—Q Asourbowy

077 ,—M 1
D Ao Buraq mos u.wR a2

upm ‘4 adogs fo sppuoBmp ay3 Buorp pappmorpo sp mos Apund psuyf

G X G jo epod Aoviip uy | 8 onw

SUBSTITUTE SHEET (RULE 26)

WO 9917217 PCT/US98/20532
13/13

f 1500

—1502

=

-

2 1504

FIG. 15

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inter nal Application No

PCT/US 98/20532

CLASSIFICATION OF SUBJECT MATT!

TPC e CCDRHIE TS HOAN7/173 GO6F11/00

According to Intemationai Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F HO4N

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A M.M. BUDDHIKOT ET AL.: "Design of a large
scale multimedia storage server"

COMPUTER NETWORKS AND ISDN SYSTEMS,

vol. 27, no. 3, December 1994, pages
503-517, XP002093312

The Netheriands

see page 508, right-hand column, line 1 -
line 16

-f=

1,21

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

“T* later document published after the intemational filing date

npn . e jority date and not in conflict with the application but
A" document defining the general state of the art which is not or prion i :
considered to be of particular relevance %ltvee%:icz):nderstand the principle or theory underying the
ugn e?{lier c;io'cument but published on or after the international "X* document of particular relevance; the claimed invention
lling cale cannot be considered novel or cannot be considered to
"L dochun;‘ent whié:h may tglro;vtﬁoubti Ipn tprior‘ijty clafim(s)t r?r invoive an inventive step when the document is taken alone
which is cited to establish the publication date of another " document of ; . " . :
Ao : 5 particular relevance; the claimed invention
citation or other special reasor.\ (as specified) cannot be considered to involve an inventive step when the
"0O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P* document published prior to the international filing date but in the art.
later than the priority date claimed '&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report

12 February 1999 26/02/1999

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswiik
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Name and mailing address of the ISA Authorized officer

Fax: (+31-70) 340-3016 Absalom, R

Form PCTASA/210 (second sheet) (July 1992)

page 1 of 3

INTERNATIONAL SEARCH REPORT

Interr al Appiication No

PCT/US 98/20532

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages Relevant to claim No.
A N.J. BODEN: "Myrinet: A 1
Gigabit-per-Second"
IEE MICRO,

vol. 15, no. 1, February 1995, pages
29-36, XP000501486

los alamitos, ca, usa

cited in the application

see page 31, right-hand column, line 12
line 16; figure 2

see page 34, right-hand column, Tine 4 -
line 17

Y US 5 579 475 A (BLAUM ET AL.) 28,29
26 November 1996

cited in the application
A see the whole document

X P.C. WONG ET AL.: "Redundant Array of 27
Inexpensive Servers (RAIS) for On-demand
Multimedia Services"

IEEE INTERNATIONAL CONFERENCE ON
COMMUNICATIONS,

vol. 2, 8 June 1997, pages 787-792,
XP000742048

Montreal, Canada

Y see the whole document 28,29

A US 5 612 897 A (REGE) 18 March 1997 1-30
see the whole document

X US 5 630 007 A (KOBAYASHI ET AL.) 25,26
13 May 1997
see the whole document

A WO 91 14229 A (SF2 CORPORATION) 1,30
19 September 1991
see page 1 - page 6, line 24; figure 1

A S. NAKAMURA ET AL.: "Distributed RAID
style video server"

TIEICE TRANSACTIONS ON COMMUNICATIONS,
vol. e79-b, no. 8, 1908 - August 1996,
pages 1030-1038, XP000628640

japan

A A. COHEN ET AL.: "Segmented Information
Dispersal (SID) for fault-tolerant video
servers"

PROC. OF THE SPIE,

vol. 2604, 23 October 1995, pages 58-69,
XP000578588

usa

-

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 3

INTERNATIONAL SEARCH REPORT

Intert ‘nal Application No

PCT/US 98/20532

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

R. TEWARI: "High Availability in
Clustered Multimedia Servers"

PROC 12TH CONFERENCE ON DATA ENGINEERING,
26 February 1996, pages 645-654,
XP000632617

New Orleans, usa

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 3 of 3

INTERNATIONAL SEARCH REPORT

7
ndormation on patent family members

Interr

nal Application No

PCT/US 98/20532

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5579475 A 26-11-1996 us 5271012 A 14-12-1993
DE 69408498 D 19-03-1998
EP 0632376 A 04-01-1995
JP 2750316 B 13-05-1998
JP 7028710 A 31-01-1995
EP 0499365 A 19-08-1992
JP 2514289 B 10-07-1996
JP 4310137 A 02-11-1992
EP 0519669 A 23-12-1992
us 5351246 A 27-09-1994

US 5612897 A 18-03-1997 NONE

UsS 5630007 A 13-05-1997 JP 8329021 A 13-12-1996
GB 2299424 A,B 02-10-1996

WO 9114229 A 19-09-1991 us 5388243 A 07-02-1995
AU 7486091 A 10-10-1991
CA 2077447 A 10-09-1991
EP 0518965 A 23-12-1992

Form PCTASA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

