04/049137 A2 I 0K . O 0

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

AT Y00 R

(10) International Publication Number

WO 2004/049137 A2

(43) International Publication Date
10 June 2004 (10.06.2004)

(51) International Patent Classification’: GO6F (74) Agents: ROBERTS, Raymond, E. et al.; IPLO Intellec-
tual Property Law Offices, 1901 South Bascom Ave., Suite

(21) International Application Number: 660, Campbell, CA 95008 (US).

PCT/US2003/037954

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR,
26 November 2003 (26.11.2003) CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR,
(25) Filing Language: English KZ,LC,LK,LR,LS,LT, LU, LV,MA, MD, MG, MK, MN,
MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL,, PT, RO, RU,
(26) Publication Language: English SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,

UG, UZ, VC, VN, YU, ZA, ZM, ZW.
(30) Priority Data:

10/305,726 26 November 2002 (26.11.2002) US (84) Designated States (regional): ARIPO patent (BW, GH,
10/707,190 25 November 2003 (25.11.2003) US GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
10/707,191 25 November 2003 (25.11.2003) US Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(71) Applicant: SECURE DATA IN MOTION, INC. ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
[US/US]; 1875 South Grant Street, 10th Floor, San Mateo, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
CA 94402 (US). GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(72) Inventors: OLKIN, Terry, M.; 104 Regent Drive, Los Published:
Gatos, CA 95032 (US). MOREH, Jahanshah; 2122 Cen- — without international search report and to be republished
tury Park Lane, Apt. 417, Los Angeles, CA 90067 (US). upon receipt of that report

[Continued on next page]

(54) Title: KEY SERVER FOR SECURITY AND IMPLEMENTING PROCESSES WITH NONREPUDIATION AND AUDIT

Database
310 “{‘ 332
s
.‘0\)\3
P@EL/@(@“ Key:é%rver
S5,
) == S
r%/'ﬁ/% Q A"’% ¥
X
— ‘\(\6‘3%{5/ & ‘3’6’\98
Originator g ——— g Recipient
312, 314 _ommunication oe% 312,316

Authentication
Authority

318

(57) Abstract: Key server (216, 320, 420) based systems (210, 310, 410) permitting sender and recipient participants (212, 312,
412) to securely exchange communications (218, 324, 424). The key server (216, 320, 420) creates, stores, and releases keys that
the participants use to protect the message. The participants employ keys (220, 330, 430), typically provided by the key server, to
exchange the communications in encrypted form. Assertions (322, 422) from an authentication authority (318, 418) can be used
to establish identities of the participants. Positive and negative events (342, 344) can be determined based on controlling events
(340) and if, when, how often requests for a key for decryption occur. The key server can also store information from assertions
in association with a transaction ID, to establish senders and recipients of communications in a manner that cannot plausibly be
repudiated and can easily be audited.

WO 2004/049137 A2 [NV A0VOA0 T 00000 OO0 AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2004/049137 PCT/US2003/037954
1

KEY SERVER FOR SECURITY AND IMPLEMENTING PROCESSES WITH
NONREPUDIATION AND AUDIT

TECHNICAL FIELD

The present invention relates generally to providing security for messages
communicated in networks, including the Internet, and specifically to establishing
information to determine events related to the messages, including auditing them, and to

make the messages nonrepudiate able.
BACKGROUND ART

Virtually every user of electronic communications mediums has at some time or
another paused to wonder about the security of communications within those systems.
Various reasons exist for concern in this regard, probably ones far too numerous to cover
here, but a few examples include having to depend on complex technologies, having to rely
on unknown and possibly untrustworthy intermediaries, and the increasing anonymity in our
electronic networks due to the distances which communications may travel and the masses of
people which we may now reach.

Existing communications systems have had a long time to establish security
mechanisms and to build up trust in them by their users. In the United States our conventional
postal mail is a good example. We deposit our posted letters into a receptacle which is often
very physically secure. Our letters are then picked up, sorted, transported, and ultimately
delivered to a similar receptacle for retrieval by their recipients. Between the receptacles of a
sender and a receiver the persons handling a letter are part of a single organization (at least
intra-nationally) that is well known to us and considered to be highly trustworthy. Even on
the rare occasions when the security of our postal system does fail, it has mechanisms to
quickly detect and to correct this.

Unfortunately, most of us do not have anywhere near a similar degree of trust in the
security of electronic communications as they pass between senders and receivers in our
modern networks. We generally trust only in our ability to maintain the security of our
sending and receiving "receptacles” for messages, such as e-mail, instant messages, video-
conferences, collaborative documents, etc. This is because these receptacles are personal

computers (PCs), workstations, Internet appliances, etc. that are within our personal physical

WO 2004/049137 PCT/US2003/037954
2

control. We also typically appreciate that we have much less control over what goes on in the
electronic medium between such receptacles. For instance, potentially any number of
miscreants might receive and copy an unsecured message without its sender and intended
receivers being any the wiser. Even worse, in many cases, electronic communications can be
lost in transit, maliciously altered, fraudulently concocted entirely, or later simply repudiated.

The problem of e-message security is severe and is already receiving considerable
attention. Legal mechanisms have already been put into place, and stronger ones continue to
be put into place, at least for e-mail messages, to punish and to discourage security breaches.
However, the very beneficial ability of electronic messages to travel so far and so swiftly as
they can also means that they may cross legal boundaries, potentially hampering such legal
efforts and definitely creating a crisis in user confidence.

Old technologies have been revived and extended for use in the new electronic
medium, and often these are variations of ones long used in combination with conventional
postal systems to obtain heightened security there. Thus we are seeing a resurgence of
interest in and the use of cryptography.

Many of the existing systems for securing electronic communications are unwieldy,
not well trusted, or both. The very electronic systems which have made modern electronic
communications possible and efficient have already made many conventional cryptographic
systems obsolete, or at least highly suspect. Equally or more modermn computer systems have
the ability to perform staggering numbers of tedious operations in a massively parallel
manner, and many strong cryptographic systems of the past have now been shown to be no
longer reliable.

New systems for securing electronic communications have emerged, however. The
last 25 years have seen the introduction, rapid development, and more recently the
application of public-key and private-key based systems commonly termed a "public key
infrastructure" (PKI). These are presently quite popular, but perhaps prematurely and unduly.

The foundation of the PKI system is generally attributed to work done by Ron Rivest,
Adi Shamir, and Leonard Adleman at the Massachusetts Institute of Technology in the mid
1970's. The result of that work, commonly known as the RSA algorithm, is a cryptosystem
wherein both a public and a private key are assigned to a principal. The public key is revealed
to all, but the private key is kept secret. The keys used are both large prime numbers, often
hundreds of digits long, and the inherent strength of the RSA algorithm lies in the difficulty
in mathematically factoring large numbers.

To send a message securely the message is encrypted using the public key of its

WO 2004/049137 PCT/US2003/037954
3

intended recipient (here the principal). The message can then only be decrypted and read by
the recipient by using their private key. In this simple scenario anyone can send messages to
the recipient which only the recipient can read.

A highly beneficial feature of the PKI approach is that a sender can also be a principal
and can send a message which only they could have sent. i.e., a non-repudiable message. For
this the sender encrypts a message (often only a part of what will be a larger message) using
their private key. A recipient then knows that the purported or disputed sender is the true
sender of the message, since only using that sender's public key will work to decrypt the
message.

In practice, the sender and the receiver often are both principals in PKI systems. The
sender encrypts a "signature" using their private key, then embeds this signature into their
message, and then encrypts the result using the recipient's public key. The message then is
secure from all but the recipient. Only the recipient can decrypt the message generally, using
their private key, and once that is done the recipient may further uée the sender's public key to
specifically decrypt the signature. In this manner the receiver may rest assured that the sender
is the true, non-repudiable, source of the signature (and implicitly the entire message; but this
works more securely still if the signature uniquely includes something like a hash of the
general message). ‘

As the presence of the term "infrastructure" in PKI implies, however, this popular
cryptographic system requires a considerable support system. The public keys must be
published so that those wishing to send a message can determine the keys for the intended
message recipients. Additionally, public keys are certified for a specific period of time (e.g.,
one year) and must be renewed. Finally, if the private key is compromised or suspected as
having been compromised, the corresponding public key must be revoked. Consequently, any
communicating party must check the revocation status of a public key before using it to
encrypt messages or verify signatures. These tasks are usually handled by a "certification
authority." Unfortunately, as the marketplace in our competitive society is now
demonstrating, this can lead to a plurality of certification authorities all vying for acceptance
and thoroughly confusing the potential users. Moreover, the lifecycle of public keys
(creation, distribution, renewal, and revocation) can lead to complex and unmanageable
deployment scenarios.

Of course public and private key systems are possible without the use of a
certification authority, say, among small groups wishing to carry out secure communications

among themselves and where repudiation is not a concern. But as the very negative reaction

WO 2004/049137 PCT/US2003/037954
4

by our government to initial publication of and about the RSA algorithm aptly demonstrated,
true, unbridled security can be perceived as a threat to a government's ability to protect
society. While it is proba‘bly now too late for most governments to fully suppress the use of
ultra-strong cryptography, it also follows that such governments will be more receptive to
cryptosystems that can be opened when truly appropriate (often termed "key escrow”
systems).

PKT also has some other problems with regard to usability and efficiency. Since the
keys are quite large, usually well beyond the capability of an average human to memorize,
they are awkward to work with. Machine based storage and usage mechanisms usually must
be employed just to handle the keys. This is a severe impediment to mobile use across
multiple systems and to recovery after erasure from volatile memory, and it creates a whole
host of additional problems related to protecting what effectively becomes a physical key
needed to contain the private key. A receiver based key system, such as PKI, is also unwieldy
in some situations. For example, if there are multiple intended recipients, a public key for
each must be obtained and used to separately encrypt each message copy. This can
encompass quite a severe computational burden as a list of intended message recipients
grows in number. Accordingly, the common case in actual practice is that the message is first
encrypted with a single symmetric key. The message key is then encrypted multiple times
using each recipient’s public key. Thus, the message itselfiis only encrypted once. It is the
message key that is encrypted multiple times.

Accordingly, prior art cryptosystems and PKI systems, and the electronic message
systems that employ these, provide many benefits. Unfortunately, even these have been found
wanting. As it increasingly became apparent that it was desirable to improve on, augment, or
even replace such systems the present inventors developed a “Secure E-Mail System” and a
“Security Server System”. These are respectively covered in U.S. Pat. No. 6,584,564 and
U.S. App. No. 10/305,726, hereby incorporated by reference in their entirety.

The approaches discussed above have considerably improved digital message
communications, but they have still left room for further improvement. For example, many
businesses use digital communication to conduct business with their customers, suppliers,
partners, and other business associates. Digital communication (e.g., electronic mail,
enterprise instant messaging (EIM), etc.), like non-digital communication (e.g., paper mail) is
seldom a stand-alone process. Often, digital communication is a step in the overall business
process flow and is triggered by a business event. For example, when a financial brokerage

company determines that a customer’s margin call is due it must send the customer a notice.

WO 2004/049137 PCT/US2003/037954
5

The brokerage company may follow up with a phone call. The ability of the business to
determine if the customers have opened their notices impacts the process of calling the
customers to follow up. In this example, if the business can prove that the customer has
opened the notice, then it need not call the customer to follow up. This can result in a reduced
number of customer follow up calls, which in turn translates into savings for the business.

For illustration purposes we will use electronic email to provide background. E-mail
is good for this because it always involves a transaction (the e-mail), a transaction originator
(the sender of the e-mail), and transaction targets (one or more recipients of the e-mail). It
also assumes a decoupled environment, where the sender and recipients do not directly
communicate with each other. The reading of an e-mail constitutes an event, and not reading
an e-mail within a specified period of time also constitutes an event. Knowledge of such
events can be particularly useful, both in business and other contexts.

Existing systems for digital message communications, such as the example described
above in a business processes context, have a number of limitations. For instance, they are -
not transparent. The existing technology they use, such as a Public Key Infrastructure (PKI),
requires user participation in acknowledging receipt of the communicated data. They do not
* support both action and the lack of action. In the existing technology such systems usage only
-provides knowledge about receipt of the communicated data. These systems fail to provide
any information about the lack of receipt. Existing systems are-alsomot decoupled. The
existing technology they use, such as web-based communication, requires the sender of
- communication data to directly connect with the recipient. The existing systems also require :
voluntary participation by the recipients. A return-receipt e-mail, for example, requires
voluntary participation by the recipient. If the recipient chooses not to acknowledge receipt of
the communication, the originator cannot discern the difference between this event and the
recipient not receiving the communication at all. The limitations make existing systems
unduly recipient controlled, or not controlled at all, rather than originator-controlled. Existing
technology, such as PKI-based e-mail, also does not permit an originator to control when a
recipient can view the data. Once a message is transmitted, the recipients can view the data as
soon as they receive it. Existing systems are often also constrained by the size of the
communication data. Existing technologies, such as web-based communication, are
dependent on the size of the communication data. The larger the data, the more memory and
processing power is required for the underlying system. This unpredictability results in
difficulties in managing the expected capacity of the communication systems.

Accordingly, prior art cryptosystems, and PKI systems in particular, have also proven

WO 2004/049137 PCT/US2003/037954
6

to be wanting when it comes to determining events related to digital communications,
including but not necessarily limited to business communications.

The approaches discussed above have still not addressed all concerns with the use
digital communications. The general prior art systems, as well as the priorA work by the
present inventors, have not provided ways to that well address two particularly vexing
problems: communication nonrepudiation and auditing.

Existing systems for digital message communications that attempt to provide either
nonrepudiation or auditing have a number of limitations. For instance, these systems are not
transparent. Technologies such as PKI burden the user with maintaining a private key and
actively using it for producing a signature. Additionally, a party needing to verify a
transaction must have a copy of, or otherwise retrieve the digital certificate of the transaction
signer. Moreover, existing technologies do not provide a single service for both
nonrepudiation and audit. PKI-based technologies require the use of a Public Key
Infrastructure that is trusted by all parties (both originator and target of a transaction). Non-
PKI technologies (e.g., storing a transaction log in a database) use a completely different
mechanism and do not interoperate with PKI. The existing systems thus use PKI-based
technology or non-PKI technology, but are unable to practically interoperate with both .and
yet not require either. The existing technologies also offer only a single level of strength for

.nonrepudiation, when varying degrees are usually appropriate for varying situations. For.
example, in PKI the strength of nonrepudiation is equivalent to the assurance level of the
underlying certificate. The transacting party can only change the strength by using a different
certificate, having a different level of assurance. Existing technologies also provide rigid trust
rules for nonrepudiation and audit. For example, in a PKI system the party that verifies the
transaction must trust the certificate of the signer. In a non-PKI system, the verifier must trust
the system that keeps the transaction logs.

Accordingly, prior art crypto and PKI systems have not adequately solved the

problems of nonrepudiation and auditing in digital message communications.
DISCLOSURE OF INVENTION

Accordingly, it is an object of the present invention to provide security for messages
communicated in networks such as the Internet.
Briefly one preferred embodiment of the present invention is a system for securely

communicating a message between multiple participants when the message has a message

WO 2004/049137 PCT/US2003/037954
7

header and a message content. In this system, a message router connects the participahts via a
network and delivers the message between the participants based on the message header. A
key server creates, stores, and releases conversation keys to the participants, wherein the
conversation keys are used to encrypt or decrypt the message content of the message.

Briefly another preferred embodiment of the present invention is a method for
securely communicating a message between multiple participants in a network. The
participant sending the message is a source participant and the participants receiving the
message are destination participants. The message has a message header and a message
content. In this method, the source participant obtains a conversation key from a key server
also in the network. The source participant then encrypts the message content of the message
based on the conversation key. And the source participant sends the message to the
destination participants via the network. The destination participants then receive the message
from the source participant via the network. The destination participants obtain the
conversation key from said key server. And finally, the destination participants decrypt the
message content of the message based on the conversation key.

Briefly another preferred embodiment of the present invention is a system for
determining communications events. A key server is provided to release keys to
communicating parties, wherein the keys are encryption keys to encrypt or decryption keys to-
- decrypt the communications and the communicating parties include originators seeking to
create and recipients seeking to view the communications. For each of the communications,
the key server also assign an identifier, stores a record in a database that includes the
identifier, a respective decryption key, and respective controlling events. For each of the
communications, the key server also receives zero, one, or more requests for the decryption
key, wherein these requests include the identifier. And for each of the communications, the
key server also determines at least one member of the set consisting of positive events and
negative events based on the controlling events and how many requests are received or when
any requests are received.

Briefly another preferred embodiment of the present invention is a method for
determining communication events. A first request for a resource ID to identify the
communication is received, wherein this first request includes at least one identity of an
intended recipient of the communication. At least one controlling event is defined, wherein
the controlling events include the at least one identity. The resource ID is provided in reply to
the first request. The resource ID, the controlling events, and a decryption key to decrypt the

communication are stored. A second request for the decryption key is monitored for, wherein

WO 2004/049137 PCT/US2003/037954
8

this second request includes the resource ID and identifying information for a putative
intended recipient. If a second request is received, then it is determined whether it conforms
with the controlling events. If so, the decryption key is provided in reply to the second
request and the identifying information and a positive event are stored in association with the
resource ID. If a second request is received that does not conform, a negative event is stored
in association with the resource ID. Alternately, if no second request is received for an
intended recipient, a negative event is stored in association with the resource ID.

Briefly another preferred embodiment of the present invention is a method for a
transaction source and a transaction target to exchange a transaction that cannot be
repudiated. A first request for a transaction identifier to identify the transaction is received,
wherein this request includes a source authentication assertion. The source authentication
assertion is then verified. The transaction identifier and information from the source
authentication assertion are stored, thereby establishing information making the transaction
source unable to plausibly repudiate once it encrypts and sends the transaction. The
transaction identifier is provided in reply to the first request so that the transaction and the
transaction identifier can be sent to the transaction target. A second request for a decryption
key to decrypt the transaction is received, once it has been received by the transaction target,
wherein the second request includes the transaction identifier and a target authentication
assertion. The target authentication assertion is then verified. Information from the target
authentication assertion is-also stored with the transaction identifier. And the decryption key
is then provided in reply to the second request so that the transaction can be decrypted, and
thereby establishing information making the transaction target unable to plausibly repudiate
being a recipient of the transaction.

Briefly another preferred embodiment of the present invention is a method for
establishing a transaction as nonrepudiate able by a transaction source that is the origin of the
transaction. A request for a transaction identifier to identify the transaction is received,
wherein this request includes a source authentication assertion. The source authentication
assertion is then verified. The transaction identifier and information from the source
authentication assertion are stored. And the transaction identifier is provided in reply to the
request, thereby establishing information making the transaction source unable to plausibly
repudiate being the origin of the transaction.

Briefly another preferred embodiment of the present invention is a method for
establishing a transaction as nonrepudiate able by a transaction target that is a recipient of the

transaction, wherein a transaction identifier identifying the transaction and a decryption key

WO 2004/049137 PCT/US2003/037954
9

usable to decrypt the transaction have been pre-stored. A request for the decryption key is
received, wherein this request includes the transaction identifier and a target authentication
assertion. The target authentication assertion is then verified. Information from the target
authentication assertion is stored with the transaction identifier. And the decryption key is
provided in reply to the request, thereby establishing information making the transaction
target unable to plausibly repudiate being a recipient of the transaction.

Briefly another preferred embodiment of the present invention is system for a
transaction source and a transaction target to exchange a transaction that cannot be
repudiated. A computerized key server is provided. The key server is suitable for receiving a
first request, via a network, for a transaction identifier to identify the transaction, wherein this
first request includes a source authentication assertion. The key server is also suitable for
receiving a second request, via the network, for a decryption key usable to decrypt the
transaction, wherein this second request includes the transaction identifier and a target
authentication assertion. The key server is also suitable for verifying the source
authentication assertion and the target authentication assertion. The key server is also suitable
for storing the transaction identifier, information from the source authentication assertion,
and information from the target authentication in association in a database. The key server is
also suitable for providing a first reply to the first request, via the network, that includes the
transaction identifier. And the key server is also suitable for providing a second reply to the
second request, via the network, that includes the decryption key, thereby establishing
information making the transaction source unable to plausibly repudiate once it encrypts and
sends the transaction and also making the transaction target unable to plausibly repudiate
once it is provided the decryption key.

Briefly another preferred embodiment of the present invention is a system for
establishing a transaction as nonrepudiate able by a transaction source that is the origin of the
transaction. A computerized key server is provided. The key server is suitable for receiving a
request, via a network, for a transaction identifier to identify the transaction, wherein this
request includes a source authentication assertion. The key server is also suitable for
verifying the source authentication assertion. The key server is also suitable for storing the
transaction identifier and information from the source authentication assertion in a database.
And the key server is also suitable for providing a reply, via the network, that includes the
transaction identifier, thereby establishing information making the transaction source unable
to plausibly repudiate once it encrypts and sends the transaction.

Briefly another preferred embodiment of the present invention is a system for

WO 2004/049137 PCT/US2003/037954
10

establishing a transaction as nonrepudiate able by a transaction target that is a recipient of the
transaction, wherein a transaction identifier identifying the transaction and a decryption key
usable to decrypt the transaction have been pre-stored in a database. A computerized key
server is provided. The key server is suitable for receiving a request, via a network, for the
decryption key, wherein this request includes the transaction identifier and a target
authentication assertion. The key server is also suitable for verifying the target authentication
assertion. The key server is also suitable for storing information from the target
authentication assertion with the transaction identifier in the database. And the key server is
also suitable for providing a reply, via the network, that includes the decryption key, thereby
establishing information making the transaction target unable to plausibly repudiate.

An advantage of the present invention is that it provides for highly secure message
communications. The invention protects messages between senders and receivers, or
collaboration participants, by using a robust key management technique. It further permits a
high degree of message tamper detection and message non-repudiation by senders. The
invention, however, provides all of its function without ever needing to inspect the actual
secured content of messages.

Another advantage of the invention is that it minimally burdens those using it. It does
not require complicated installation and configuration by its users, being either pre-installed
or rapidly user-installable with defaults provided for all configuration options. In particular,
the invention is easily implemented by enterprises and other orgénizations to protect
member's messages and to facilitate collaborative work.

Another advantage of the invention is that it may employ a simple registration scheme
which permits prompt use after any registration and installation are complete. Because of
these and other features, the target recipients of secure messages created using the invention
need not be pre-registered. A sender may create and send a secure message, and the invention
can then detect which intended receivers are not registered and facilitate registration.

Another advantage of the invention is that it particularly facilitates secure
collaborative communications. It can secure conversation for large groups of senders and
receivers, or collaboration participants, and it can easily change security whenever a new user
joins or an existing user leaves a conversation, thereby implementing backward and forward
secrecy of the conversation.

Another advantage of the invention is that it is event based, supporting both action
and inaction events (i.e., positive and negative events). Other than opening and viewing

communications in largely the manner already used, voluntary action by recipients is not

WO 2004/049137 PCT/US2003/037954
11

required.

Another advantage of the invention is that it enhances control, and this control is
originator-end based, being set by actual originators or authorities over originators of
communications. In particular, this control can set when first viewing, when last viewing, and
how many times a communication can be viewed again.

Another advantage of the invention is that it permits decoupled communication. The
technology used by the invention does not require the originator of a communication to be
directly connect with the recipient. As noted above, an originator can send a communication
now that a recipient is not allowed to view until later. When a recipient triggers a viewing
related event (by viewing or failing in some manner to view the communication), this is
logged or affirmatively reported to the originator or another appropriate party so that they can
take appropriate action.

Another advantage of the invention is that it is largely transparent to users. Its core
functionality does not rely on public-private key encryption schemes, although such may be
incorporated in some elements of the invention to make it convenient and also more secure in
some ancillary respects. The technology used by the invention does not require users to setup
and employ, such as Public Key Infrastructure (PKI) with:all of its attendant burdens (but this
is still usable if desired), and it does not require user participation.in acknowledging receipt
of communications.

Another advantage of the invention is that, unlike a public/private key system, the key
to the message need not be encrypted once for every recipient. Similarly, the secured content
of the messages is not decrypted once for every recipient when messages pass through routers
and hubs. Thus, the number of encryptions and decryptions performed are independent of the
number of receivers and of the resources used for communications.

Another advantage of the invention is that, unlike public/private key system, it is not
dependent on the location where the private key resides. A user can, from any location,
participate in a secure collaboration with other parties.

Another advantage of the invention is that it is able to handle large data without
heavily burdening the memory and processing power of the underlying hardware, yet
providing security equaling or exceeding that of prior art approaches.

Another advantage of the invention is that it provides a single service for both
nonrepudiation and audit.

Another advantage of the invention is that it permits multiple levels of strength for

nonrepudiation, to use when varying degrees are appropriate for varying situations.

WO 2004/049137 PCT/US2003/037954
12

And, another advantage of the invention is that it is non-burdensome to users, not
relying on the need for pre-obtained keys, digital certificates, directories to look up such data
in beforehand for all transaction targets, and all transacting parties having to use a rigid
uniform scheme for such.

These and other objects and advantages of the present invention will become clear to
those skilled in the art in view of the description of the best presently known mode of
carrying out the invention and the industrial applicability of the preferred embodiment as

described herein and as illustrated in the several figures of the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The purposes and advantages of the present invention will be apparent from the
following detailed description in conjunction with the appended drawings and table in which:

TABLE 1 shows the schema for the content of a database maintained by a key server.

FIG. 1 is a schematic overview diagram generally depicting information flow in the
context of an example secure e-mail system;

FIG. 2a-c depict e-mail forms which may be used by the embodiment in FIG. 1,
wherein FIG. 2a is a conventional send form, FIG. 2b is a:send form which is modified to
work with the embodiment in FIG. 1, and FIG. 2c is a conventional receive form;

FIG. 3 is a block diagram depicting software modules which may be used in the
sending and receiving units of FIG. 1;

FIG. 4 is a block diagram stylistically depicting an approach for the software modules
to determine whether a secure e-mail is being either sent or received;

FIG. 5 is a diagram of a relational database including tables useable by the security
server of FIG. 1;

FIG. 6a-¢ are the tables in FIG. 5 with descriptions for the fields used therein, wherein
FIG. 6a is of user data, FIG. 6b is of message data, FIG. 6c¢ is of destination data, FIG. 6d is
of alias data for users, FIG. 6e is of optional distribution list data, and FIG. 6f is of member
data for such distribution lists;

FIG. 7 is a flow chart depicting an encryption process that is usable in the
embodiment of FIG. 1;

FIG. 8 is a flow chart depicting a decryption process usable in the embodiment of
FIG. 1;

FIG. 9 is a schematic block diagram depicting the major components of a generic

WO 2004/049137 PCT/US2003/037954
13

embodiment for secure collaboration and key exchange;

FIG. 10 is a schematic block diagram depicting the typical flow of a message in the
generic form in FIG. 9;

FIG. 11 is a block diagram depicting a communication system able to determine
process events that may use four basic components;

FIG. 12 is a block diagram showing the flow of information related to controlling
events;

FIG. 13 is a block diagram showing the flow of information related to positive events;

FIG. 14 is a block diagram showing the flow of information related to negative
events;

FIG. 15 is a block diagram depicting how another embodiment of a communication
system may use four basic components;

FIG. 16 is a flow chart depicting a suitable process by which the communication
system of FIG. 15 can establish data in a database for later nonrepudiation and audit
purposes;

FIG. 17 is a flow chart depicting a suitable process by which data established in the
database can be used to counter attempted repudiation by the source; and

FIG. 18 is a flow chart depicting a suitable process by which data established in the

database can be used to counter attempted repudiation by the target.
BEST MODE FOR CARRYING OUT THE INVENTION

Preferred embodiments of the present invention are a system for key exchange and
secure collaborative communication based thereon, a system for implémenting business
processes using key server events, a system for implementing nonrepudiation and audit using
authentication assertions and key servers. As illustrated in the various drawings herein, and
particularly in the views of FIG. 9, 11, and 15, embodiments of the invention are depicted by
the general reference characters 210, 310, and 410. Before discussing the present invention,
we first discuss the background of key servers for secure messaging.

FIG. 1 is a schematic overview diagram generally depicting information flow in a
secure e-mail system 10. A sender 12 uses the secure e-mail system 10 to send a secure e-
mail 14 to one or more receivers 16. To accomplish this the sender 12 employs a suitable
sending unit 18 to create and send the secure e-mail 14, and the receivers 16 then employ

suitable receiving units 20 to receive and view the secure e-mail 14. The secure e-mail system

WO 2004/049137 PCT/US2003/037954
14

10 further includes an e-mail server 22, which is essentially conventional, and a security
server 24 (a form of key server, as discussed presently), that along with software modules 26
(FIG. 3) in the sending units 18 and the receiving units 20 constitute the primary new
elements in the secure e-mail system 10.

The sending units 18 and the receiving units 20 are suitable combinations of hardware
and software. They may be either similar or different hardware, and in FIG. 1 this is
emphasized by depicting the sending unit 18 and a first receiving unit 20a as being personal
computers (PCs), and the second receiving unit 20b as being an Internet appliance.

The sending unit 18 must have sending capability, and in many cases it will also be
utilized to compose the secure e-mail 14. However, composition capability is not necessarily
a requirement and, for example, an Internet appliance such as a cell-phone with pre-stored
standard messages may also be used. The receiving units 20 must be capable of receiving the
secure e-mail 14 and they may, optionally, also have message composition and other
capabilities.

With respect to the software required, each sending unit 18 and receiving unit 20 will
need suitable e-mail type applications and suitable instances of the software modules 26. The
e-mail type applications may be conventional e-mail applications, or they may be browsers
- having integrated e-mail capability, or they may be e-mail applets operating in conventional
browsers. The software modules 26 will be described in more detail presently, but it can be
noted here that these can be installed almost contemporaneously with their first use in a
sending unit 18 or a receiving unit 20.

In FIG. 1 both a first receiver 16a and a second receiver 16b are depicted to
emphasize that the secure e-mail system 10 may be used to send to multiple receivers 16.
Thus, common e-mail addressing conventions such as "To...," "Cc...," "Bcee...," etc. may be
used, and the secure e-mail system 10 may also be used to concurrently send to lists of
multiple receivers 16. ‘

For the following overview discussion it is presumed that the sender 12 and the first
receiver 16a are registered within the secure e-mail system 10 and that the sending unit 18
and the first receiving unit 20a have been suitably provisioned with appropriate instances of
the software modules 26 to operate in their respective roles in the secure e-mail system 10. It
is further presumed that the second receiver 16b has not yet registered within the secure e-
mail system 10 and that the second receiving unit 20b has not yet been provisioned to operate
with the secure e-mail system 10.

The overview of FIG. 1 also depicts the major stages of sending a secure e-mail 14 in

WO 2004/049137 PCT/US2003/037954
15

.a network environment 30, such as the current Internet. In a stage 32 the sender 12 decides to
send the secure e-mail 14. An e-mail message is therefore composed in some manner,
conventional or otherwise.

In a stage 34, rather than use a "Send" command the sender 12 instead uses a "Send
Securely" command to request transmission of the secure e-mail 14. However, rather than
transmit the unsecured e-mail message immediately to the e-mail server 22, the sending unit
18 first contacts the security server 24 and provides it with various data items (the respective
data items used in this stage and others are described presently). The security server 24 then
authenticates the sender 12 and replies to the sending unit 18 with a unique message key and
id for the present secure e-mail 14. The security server 24 also logs various data items for this
transaction which may be used later. Using the message key, the sending unit 18 now
encrypts the secure e-mail 14. The message body, encrypted or otherwise, is never sent to the
security server 24.

In a stage 36 the security server 24 determines whether the receivers 16 are registered.
If so, as is the case here only for the first receiver 16a, this stage is finished for such receivers
16. However, if a receiver 16 is not registered, as is the case here for the second receiver 16b,
registration is then attempted. For this the security server 24 sends an e-mail message to the
second receiver.16b, informing him or her that an encrypted message will be arriving soon .
and that he or she will need to register in order to read it. The second receiver 16b can then
follow a universal resource locator (URL), which is included in the e-mail sent by the
security server 24, to a routine for registering with the security server 24. The second
receiving unit 20b may already have the necessary software module 26 for receiving and
decrypting the secure e-mail 14, or such may be provided as part of the registration process.
Once the second receiver 16b is registered and the second receiving unit 20b has the
necessary software module 26 installed, this stage is complete.

Alternately, stage 36 can be skipped in the secure e-mail 14. The secure e-mail 14 can
itself include a universal resource locator (URL), in plain form, that the receivers 16 can
follow. The security server 24 thus need not be concerned with whether the receivers 16 are
registered. The sender 12 can prepare and send the secure e-mail 14, as already described,
and the receivers 16 can deal with whether or not they are registered and can read the secure
e-mail 14 upon its arrival.

In a stage 38 the sending unit 18 sends the now encrypted secure e-mail 14. This can
be essentially transparent or seamless to the sender 12, being handled in the software module

26 of the sending unit 18 by passing the now encrypted secure e-mail 14 to a conventional e-

WO 2004/049137 PCT/US2003/037954
16

mail type application and automatically providing a suitable "Send" command. The secure e-
mail 14 then proceeds in conventional manner to the e-mail server 22, arriving in the inbox of
each of the target receivers 16. Notably, the body of the secure e-mail 14 is encrypted during
the entire time that it is passing between the sending unit 18 and the receiving units 20.
Optionally, the subject may also be encrypted during this time.

In a stage 40 the secure e-mail 14 arrives in the inbox of each receiver 16. When a
receiver 16 opens the secure e-mail 14, using their receiving unit 20, the software module 26
for the receiving unit 20 detects that the secure e-mail 14 is encrypted. Depending upon its
configuration, the software module 26 can then prbmpt the receiver 16 for a password or use
one already known to it.

Finally, in a stage 42 the receiving unit 20 contacts the security server 24 and provides
it with the message id and data for the receiver 16 (including their password). Assuming that
the receiver 16 is an authorized recipient (as determined by the list of recipients in the
original message), the security server 24 provides the message key to the receiving unit 20.
Optionally, the security server 24 can also provide an indication of whether the secure e-mail
14 was altered in any way. With the message key the receiving unit 20 decrypts the secure e-
mail 14 and the receiver 16 is able to read it.

FIG. 2a-c depict e-mail forms 50 which the secure e-mail system 10 may use. FIG. 2a
is a conventional send form 52a. FIG. 2b is a send form 52b that is essentially the same as
send form 52a, but that is modified to work with the secure e-mail system 10. And FIG. 2¢ is "
a conventional receive form 54 that can be used with the secure e-mail system 10.

The send forms 52a-b both include receiver id fields 56, subject fields 58, and body
fields 60. They also both include a conventional send button 62. The only difference between
the send form 52a of FIG. 2a (conventional) and the send form 52b of FIG. 2b (modified) is
that the latter also includes a send securely button 64. While it may be desirable in some
embodiments to entirely replace the send button 62 with the send securely button 64, that is
not anticipated to become common. The receive form 54 of FIG. 2¢ includes receiver id
fields 56 (To: and Cc:), a subject field 58, a body field 60, and also a sender id field 66.
Understanding the various fields in these forms will be helpful for the following discussion.

FIG. 3 is a block diagram depicting the software modules 26 used in the sending unit
18 and receiving unit 20. In many embodiments of the secure e-mail system 10 the software
modules 26 can be the same in both the sending unit 18 and the receiving unit 20, but this is
not a requirement and different modules may also be used. The software modules 26 can be

viewed as "client" side components of the secure e-mail system 10.

WO 2004/049137 PCT/US2003/037954
17

This figure also depicts various possible manners of installing the software modules
26 into the sending units 18 and receiving units 20. A pre-installed option 44 may be used
whereby the underlying e-mail type application which is loaded onto a sending unit 18 or a
receiving unit 20 comes with the software module 26 already included. Conventional e-mail
specific applications or web-based e-mail applications may advantageously employ this pre-
installed option 44.

Since a key goal of the secure e-mail system 10 is ease of use, employing it with web-
based e-mail applications particularly facilitates operation by new users and simplifies
operation by existing, sophisticated Internet users. Many Internet service providers (ISPs)
today supply browser application software to their users. One example is America Online
(AOL, TM), which provides its users with a pre-configured "private label" browser
application. The pre-installed option 44 permits including the secure e-mail system 10 in the
private label browser, and minimizes any set-up burden. Default settings can be set for any
configuration options, and the senders 12 and receivers 16 can then optionally tailor the
software modules 26 as desired.

Alternately, a user-installed option 46 may be used wherein the software modules 26
are installed by the senders 12 and receivers 16, i.e., the end users, into their respective
sending units 18 and receiving units 20. This user-installed option 46 permits use of the
secure e-mail system 10 by the large body of Internet users which do not use private label
applications.

The user-installed option 46 may be implemented in many variations. One variation
46a is permanent installation of the software module 26 as a plug-in. Another variation 46b is
transitory "installation" of the software module 26 as an applet upon each use of the secure e-
mail system 10, e.g., a Java applet obtained by using a particular web portal such as Yahoo!
(TM). Still another variation 46¢ is a script driven installation, i.e., essentially a conventional
full blown software application installation rather than a compartmentalized plug-in type
installation. And yet other variations 46d are possible, say, combinations of those described
or even new approaches to installation entirely.

These variations 46a-d may employ downloading from a closely controlled server,
such as the security server 24 (FIG. 1). Alternately, some of these may involve distribution by
other means, such as loading the software module 26 from a compact disc (CD). CDs are a
common way that private label applications are distributed, particularly private label
browsers. Rather than distribute an application with the software module 26 already installed

according to the pre-installed option 44, an application distribution CD can simply include

WO 2004/049137 PCT/US2003/037954
18

the software module 26 as an option which the user can decide to install via the user-installed
option 46.

Obtaining the software module 26 online provides some peripheral advantages,
however. The senders 12 and receivers 16 can formally become registered with the secure e-
mail system 10 at the same time and they can comply with any other formalities, such as
certifying that they are able to accept and use encryption technology.

The variations 46a-d, to different degrees, also may facilitate upgrade options. For
example, every time a software module 26 contacts the security server 24 it can include
version information as part of its communication. In sophisticated embodiments the software
modules 26 may self-upgrade, from the security server 24 or elsewhere, as upgrades become
available. In less sophisticated embodiments or where re-certification may be required,
information can be sent regarding how to upgrade. For instance, an e-mail message including
an upgrade site URL can be send to a sender 12 or receiver 16.

FIG. 3 also depicts some possible configuration options 48 which the senders 12 and
receivers 16 may change in the software modules 26. Suitable defaults can be provided in
most, if not all situations, but sophisticated users or particular situations may merit changing
these settings. While such configuration options 48 generally should persist from session to
session, consistent with good security practice they should be associated with a user and not
merely with a machine. Thus, where multiple senders 12 or receivers 16 may use the same
sending units 18 or receiving units 20, the users may be allowed to set independent personal
configurations.

Particular examples of settings in the configuration options 48 may include: an
encrypt subject setting 48a, a cache password setting 48b, a cache time setting 48¢, an
expiration setting 48d, a maximum reads setting 48e, and others 48f.

The encrypt subject setting 48a controls whether a software module 26 encrypts the
subject field 58 (FIG. 2a-c) as well as the body field 60 of the secure e-mail 14. The default
typically will be to not encrypt the subject.

The cache password setting 48b permits specifying whether a password is required
once per application session (e.g., per browser session), or whether a prompt requires the
password every time it is needed. The default will generally be to cache the password but, as
described next, this can work with a cache time setting 48¢ in a more secure manner. The
password can also be cached only in memory and never to disk, for added security.

The cache time setting 48¢ works with the cache password setting 48b to control a

maximum time which a password can be cached. Default and permitted maximum values for

WO 2004/049137 PCT/US2003/037954
19

this might be 8 hours. A sender 12 could then shorten the cache time setting 48¢, but not be
allowed to lapse into poor security practices by specifying too high a time.

The expiration setting 48d allows a sender 12 to specify when the security server 24
(FIG. 1) should discard a message key, and thus make the secure e-mail 14 unreadable. The
default will generally be to not explicitly force expiration, but after some substantially long
period of time (perhaps years) the security servers 24 in most embodiments of the secure e-
mail system 10 will probably need to do so.

The maximum reads setting 48e specifies the number of times that each receiver 16
can open and read a secure e-mail 14, i.e., the number of times that the message key will be
sent to a single receiver 16. A default may be zero, meaning that there is no limit.

Of course, still other configuration options 48 may be provided, hence an others 48f
element is present in FIG. 3 to emphasize this.

Once the software module 26 is installed in a sending unit 18 it is ready for use in
message composition and send scenarios. A private label browser where the software module
26 is a plug-in type variation 46a will be used in the following discussion, but those skilled in
the art will appreciate that the underlying principles are extendable, as well, to other systems
which may use the secure e-mail system 10.

FIG. 4 is a block diagram stylistically depicting a preferred approach for the software
modules 26 to determine whether a secure e-mail 14 is being sent (or received). The software
module 26 in the sending unit 18 examines a stream 70 of pages 72 looking for any which
allow a sender 12 to compose a secure e-mail 14. One way to examine the stream 70 is for the
software module 26 to see if the URL of a page 72 has a certain structure, e.g.,
"*mail.privatelabel.com*/Compose*" where * can match any pattern. Another way for the
software module 26 to examine is to determine if the HTML content of a page 72 has a
certain recognizable (static) pattern, e.g., the name of the form tag is "Compose." The
software module 26 may also use MIME types to identify possible pages 72 to intercept. If an
actual candidate page 72a is found it is removed from the stream 70, processed as now
discussed, and replaced into the stream 70 as a processed page 72b.

Once the software module 26 determines that a page 72 about to be rendered is a
composition type candidate page 72a, it needs to modify that candidate page 72a to include at
least one new control, the send securely button 64 (FIG. 2b). Other controls in addition to this
one button may be added if desired, but they are optional.

The send securely button 64 is "pressed" (operated, say, by a mouse click) by the

sender 12 rather than their operating the conventional send button 62 when it is desired to

WO 2004/049137 PCT/US2003/037954
20

send a secure e-mail 14. When the send securely button 64 is operated the software module
26 intercepts the page 72 (or form) containing the various fields of the e-mail which was
about to be posted to the e-mail server 22, and modifies some of those fields. After this
modification is complete the software module 26 executes the desired operation (post or
send) exactly as would have happened had the sender 12 pressed the send button 62 in the
first place. The only difference is that the values in some of the fields in the secure e-mail 14
will now be different, i.e., encrypted.

In the inventor's presently preferred embodiment only two fields are typically
modified. The body field 60 is always modified by encrypting it. And depending on the
configuration settings, specifically the encrypt subject setting 48a described above, the
subject field 58 may also be changed.

Before examining the processes of encryption and decryption, some discussion of the
various data items used by the secure e-mail system 10 is appropriate. FIG. 5 is a diagram of
a database 100 including tables used by the secure e-mail system 10. The primary component
of the security server 24 (FIG. 1) is this database 100. The registered senders 12 and receivers
16 are collectively treated within the database 100 as users, and data for them is stored in a
users table 102.

The users table 102 includes records each having fields for: a'userld 102a, a password
. 102b (actually a hashed version of the actual password in the preferred embodiment, as
presently described), a salt 102¢, and a status 102d. -

Closely related to the users table 102 is a user aliases table 103, which includes
records each having fields for: an emailAddress 103a and a userId 103b (relationally linked
to the userld 102a in the users table 102).

The database 100 also includes a sentMail table 104. This includes records each
having fields for: a messageld 104a, a senderld 104b, a dateSent 104¢, a numRecipients
104d, a messageKey 104e, a maxDeliveries 104f, an expiration 104g, a sealSalt 104h, a
subject 1044, a lastRead 104j, and a deliverAfter 104k.

A receivers table 106 is provided as well. As can be seen in FIG. 5, the messageld
104a in the sentMail table 104 is relationally linked to a messageld 106a in the receivers
table 106. Thus, this receivers table 106 contains data for the receivers 16 specified in
respective secure e-mails 14. The receivers table 106 further includes records each having
fields for: a receiverAddr 106b, a firstRequest 106¢, and a numRequests 106d.

FIG. 6a-f are tables of the data fields used by the preferred embodiment. The tables in

FIG. 6a-d are important to the core operation of the secure e-mail system 10, while the tables

WO 2004/049137 PCT/US2003/037954
21

of FIG. 6e-f relate to optional features of the secure e-mail system 10.

The text in the tables of FIG. 6a-d describes some of the particular fields, with the
primary fields discussed further presently. FIG. 6a is the users table 102 of FIG. 5. This
contains data records for each user, sender 12 or receiver 16, which is registered with the
secure e-mail system 10. As each user registers, they are assigned a Userld (userld 102a) and
they choose a Password (password 102b) that are stored here. The preferred value of the
Password (password 102b) is H(p + s) where p is the cleartext password and s is a salt (salt
102c) concatenated with the cleartext password. FIG. 6b is the sentMail table 104 of FIG. 5.
This contains data records for each secure e-mail 14 in the secure e-mail system 10. FIG. 6¢
is the receivers table 106 of FIG. 5. This contains destination data for each secure e-mail 14
which is to be deliverable by the secure e-mail system 10. Since a record gets generated in
this table for each receiver 16 (individual or list group) of each secure e-mail 14 that is sent, it
is expected that this table will be the largest by far in the secure e-mail system 10. A null
value in the FirstRequest field (firstRequest 106¢) implies that the receiver 16 has not
requested to read the secure e-mail 14. FIG. 6d is the user aliases table 103 of FIG. 5. This
contains data for all known e-mail addresses (emailAddress 103a) for each given user (userld
103D, relationally linked to userId 102a in the users table 102). Thus single users may be
known by multiple e-mail addresses, or aliases.

- The fields of FIG. 6e-f are not discussed further beyond the following. These tables
are used by optional features, and the text in them provides sufficient detail such that one
-skilled in the art can appreciate the uses of these fields. FIG. 6e¢ is a table of the data used to
permit the use of e-mail distribution lists. This table allows the users to create distribution
lists. An owner can always update the list, but the owner need not actually be a member of
the list. This latter feature is particularly useful for list administrators. And FIG. 6fis a table
of the data used to permit the use of the distribution lists. This table contains data about the
members of each distribution list.

Of course, other tables and other fields for other data than this shown in FIG. 5 and
FIG. 6a-f are also possible, and some of the above fields may be optional and can be omitted
in some embodiments of the secure e-mail system 10.

Before encryption of a message can take place the software module 26 must obtain a
password for the sender 12. If the password is cached, and if the cache time setting 48¢ has
not been exceeded, this step is satisfied. Otherwise, the software module 26 can display a
dialog box which prompts the sender 12 to enter their password. Conventional password

handling features can be provided, such as displaying the password only as asterisks and

WO 2004/049137 PCT/US2003/037954
22

permitting the sender 12 to cancel to abort sending. ‘

In the preferred embodiment the passwords of the senders 12 and the receivers 16 are
not the passwords 102b stored in the users table 102. Instead, as a heightened security option,
the user picks a password, and this and the salt 102¢ are hashed by the security server 24 to
obtain the password 102b. The user's chosen password is communicated to the security server
24, where a hash of it and the salt 102¢ takes place and is stored as the password 102b in the
database 100. The cleartext of the user’s password is not stored at the security server 24, only
a computed hash which cannot be computed without the original password.

In this manner the security server 24 never need know, or be able to know, the actual
user's password. This option is discussed further, presently.

Once the password 102b is obtained, the software module 26 can perform the
operations of encryption and actual sending. In general, the software module 26 sends a
request to the security server 24 via secure socket layer (SSL) protocol to authenticate the
sender 12 and to obtain back a messageKey 104e for use to encrypt the secure e-mail 14. The
software module 26 then encrypts the body field 60 (and optionally also the subject field 58)
of the message and the result is then separately encoded to create the secure e-mail 14.

The use of secure socket layer (SSL) was mentioned above. Since a goal of the

-present secure e-mail system 10 is ease of use, the inventor's present preferred embodiment -
employs SSL. It is currently considered secure in the industry, being widely used in common
browsers, with the average Internet user today using it and not even being aware that they are : -
doing so. It should be appreciated, however, that the use of SSL is not a requirement. Other
security protocols may alternately be used.

These notations are now used in the following discussion:

Kn = One-time, unique key associated with an e-mail;
P = Sender’s password;

P; = Receiver’s password;

{p}x = p encrypted with key k;

{Ptss1 = p encrypted with the SSL session key; and

Hp) = One-way hash of p.

FIG. 7 is a flow chart depicting the presently preferred encryption process 120. At the
time the sender 12 is ready to send a secure e-mail 14, an HTML send form 52b (FIG. 2b) is
present with plaintext in the body field 60. It is assumed here that the sender 12 has already
registered with the security server 24 and that an appropriate software module 26 has been

installed into their browser. It is also assumed that the sender 12 is using only a browser to

WO 2004/049137 PCT/US2003/037954
23

send the secure e-mail 14. The security aspects should be the same regardless of the actual
mail client used, and this is used to keep the following explanation simple.

As described previously, the sender 12 selects the send securely button 64 on the send
form 52b when they are ready to post. This constitutes a step 122, the start of the encryption
process 120.

In a step 124, a script runs which passes the following information to the software
module 26 in the sending unit 18:

the e-mail address of the sender 12 (emailAddress 103a);

the contents of the To:, CC:, and BCC: fields (instances of receiverAddr
106b);

the contents of the subject field 58; and

the contents of the body field 60.

In a step 126, if the software module 26 did not already know the password for the
sender 12 it prompts for it. It is a matter of security policy choice whether to require the
password to be entered on each send, since this could be unduly cumbersome in some cases.
Caching the user's password, and thus also the password 102b, in the software module 26
may be insecure if the sender 12 leaves the browser session open. While the policy will often
be to allow the sender 12 to choose how to configure this option, there will also be some
cases; €.g:; at-public kiosks, where.it should always be required that a password be entered for
each secure e-mail 14.

In a step 128 the software module 26 creates an XML document in the following
format, which will be the one encrypted:

<?xml version="1.0" encoding="ASCII"’/>

<emailPart random="randomNum” length="numChars"
mic="messagelntegrityCode">

<subject>subject</subject>

<body>body</body>

</emailPart>.

Here the random element is an anti-cracking feature, it is a large random number used
to ensure that even e-mails that are the same in content are not the same when secured; the
length element is the number of characters in the body field 60; the mic element is a message
integrity code created by taking a hash of the body field 60; the subject element is the
contents of the subject field 58; and the body element is the contents of the body field 60.

In a step 130 the software module 26 opens an SSL HTTP (HTTPS) connection to the

WO 2004/049137 PCT/US2003/037954
24

security server 24, and sends it the following information:

the emailAddress 103a of the sender 12;

the password 102b for the sender 12;

a list of target receivers 16 (receiverAddr 106b, and implicitly numRecipients
104d);

the subject field 58 of the message (subject 104i);

a list of computed hashes, one for the body, H(b), and one for each attachment,
H(a;), H(ay) ... H(a,); and

optional configuration information such as an expiration time or maximum
number of deliveries allowed per recipient.

In a step 132 the security server 24 proceeds depending on the result of an
authentication sub-process.

1) If the emailAddress 103a for the sender 12 is unknown, the encryption process 120
can determine a known emailAddress 103a or stop. The emailAddress 103a might be
unknown for various reasons. One common example will be that the sender 12 is new to the
security server 24. In this case the software module 26 can be directed to open a separate
browsing window which allows the sender 12 to register on the spot. Another reason that the
emailAddress 103a can be unknown is due to a user error. One simple source of such errors
can be that multiple users share the same browser. A sender 12 can then be requested to
clarify their identity.

2) If the password 102b of the sender 12 is incorrect, the software module 26 can be
instructed to prompt for the password 102b again (perhaps only a limited number of times),
or let the sender 12 abort their sending operation (which returns them back to the original
HTML send form 52b).

3) If the sender 12 is not allowed to send secure e-mails 14 the encryption process 120
can also stop. This can be for administrative reasons. For example, if the sender 12 has not
paid a fee or if there is a court order preventing a user from using this encryption service, etc.
The reason for a denial can then be stated in a dialog box that, when acknowledged, can
return the user to the original HTML send form 52b (perhaps to instead use the send button
62, and to send the message as a conventional e-mail).

Otherwise, the sender 12 is considered to be authenticated and is allowed to send the
presently contemplated secure e-mail 14, and this step 132 is successfully complete.

In a step 134 the security server 24 then creates and populates a record in the sentMail

table 104. In particular, unique values are generated here for a messageld 104a (m), a

WO 2004/049137 PCT/US2003/037954
25

messageKey 104e (K.,), and a list of computed seals (sList) for each part of the secure e-mail
14 being sent. The security server 24 computes the seals in sList as HH(H(x) +s+t+m +
Np) + Ni). The element s is userld 102a of the sender 12; t is the date and time (also stored
as dateSent 104c in the sentMail table 104); m is the messageld 104a; Ny, is the sealSalt 104h
(a random number generated for this particular secure e-mail 14, but separate from the
messageKey 104e); and H(x) is from the set of hashes H(b), H(a;), H(az) ... H(a,) received
from the software module 26. Note, the contents of sList need not be stored, since they
should be re-computable.

In a step 136 the security server 24 responds back to the software module 26 of the
sending unit 18 with an SSL packet of information in the form {m, K,, sList}ssr.

In a step 138 the software module 26 extracts the messageld 104a (m), the
messageKey 104e (Ky,), and the seals from sList, and proceeds to encrypt the above XML
document and each attachment with the messageKey 104e. The software module 26 then
destroys that key from memory in the sending unit 18. Specifically, the software module 26
creates a message form having the following general format:

<securecorp:messagePart id = “m’>
<encryptedPart>encrypted body</encryptedPart>
<seal>seal</seal> .

</securecorp:messagePart>

If this part of the secure e-mail 14 includes an encrypted body, this is converted from
a raw bit stream (post encryption) to an encoded stream so that the encrypted body element is
composed of rows of printable (ASCII) characters. If this is an attachment, that is not
necessary.

Finally, in a step 140 the software module 26 performs the same action as if the
sender 12 had pressed the send button 62 in the send form 52b in the first place. It posts to
the e-mail server 22 (perhaps via an e-mail capable web server, e.g., Yahoo! (TM), Hotmail
(TM), etc.). The difference is that the value in the body field 60 of the form being posted is
now encrypted and encoded as described above. Similarly, any attachments are encrypted as
described above. From the point of view of a conventional e-mail server 22 or a web server,
the result looks like a normal e-mail message whose body is just a bunch of gibberish. The
secure e-mail 14 can then travel through the normal Internet mail system to arrive at its

various destinations.

WO 2004/049137 PCT/US2003/037954
26

Attachments were not covered in much detail in the above discussion, but they can
easily be handled as well. In the preferred embodiment attachments are each treated much
like a body field 60, except that they are not wrapped in XML or encoded (turned into
ASCII). Instead a binary header is added which includes protocol version information; a new
length element, like that for the body; a copy of the same messageld 104a used for the body
of the secure e-mail 14; a new mic element created by taking a hash of the attachment body;
and a seal (as discussed for sList, above). The attachment is then encrypted using the same
messageKey 104e as was used for the body of the secure e-mail 14 the header is added to it,
and the result is uploaded to the e-mail server 22 in the usual manner.

This approach for attachments has a number of advantages. The database 100 of the
security server 24 need not be disturbed by this approach to handling attachments, since the
verification mechanism for them is thus carried within the secure e-mail 14 and is protected
by the security features applicable there. This can also support any number of attachments.
Each attachment is added to the object which will be passed into the software module 26 that
does the encryption. Each attachment is encrypted using the same messageKey 104e as the
body of a message, and the hash of each attachment can be computed using the same
algorithm. By giving each attachment a full header it can be decrypted separately from any
other attachment or even from the body. By separating the attachments it can also be
determined if any particular attachment has been altered. The normal operations on the rest of
a secure e-mail 14 can be performed even if the attachments are purposely not included, e.g.,
when replying to a secure e-mail 14 having attachments.

As noted above, the secure e-mail 14 travels through the normal e-mail system to the
inbox of each receiver 16. The receivers 16 can typically go to a screen in their browsers
where a summary of all messages that have been received is presented. By clicking on a
message summary the browser can then deliver a page formatted with the message in it. This,
however, requires that a suitable software module 26 is present.

Once a software module 26 is installed in the receiving unit 20 it is ready for use in
message receive and read scenarios. A private label browser where the software module 26 is
a plug-in variation 46a is also used in the following discussion, but those skilled in the art
will here also readily recognize that the underlying principles are extendable to other systems
using the secure e-mail system 10.

Returning briefly to FIG. 4, this also stylistically depicts the preferred approach for
the software modules 26 to determine whether a secure e-mail 14 is being received. The

software module 26 in the receiving unit 20 examines the stream 70 of pages 72 looking for

WO 2004/049137 PCT/US2003/037954
27

any that contain a secure e-mail 14. The software module 26 can determine whether a page
72 contains a secure e-mail 14 by scanning for "---------- BEGIN SECURECORP SECURED
EMAIL --—----" type tags. This can be done quickly, permitting minimal latency in
delivering pages which should not be processed further. If an actual candidate page 72a is
found it is removed from the stream 70, processed as now discussed, and replaced into the
stream 70 as a processed page 72b, and thus made available for reading by the receiver 16.
FIG. 8 is a flow chart depicting the presently preferred decryption process 150. It is
here also assumed that the software module 26 has already been installed within a browser
running on the receiving unit 20 of a receiver 16, and that the receiver 16 has registered with
the security server 24 (the security server 24 perhaps having already generated an e-mail to
any receivers 16 not previously registered). Once a secure e-mail 14 (i.e., a secured and
sealed XML document created according to the encryption process 120) is selected by the
receiver 16, the software module 26 performs the operations of decryption to permit reading
of the secure e-mail 14 by its receiver 16. This constitutes a step 152, the start of the
decryption process 150.
In a step 154 the password for the receiver 16 is obtained. Recall that both the senders
12 and the receivers 16 are treated as users by the security server 24, and both have
equivalent entries in the users table 102 (FIG. 5). If the password 102b is not already cached,
the receiver 16 is prompted to enter their password..The rules for password caching,
prompting, etc. may be the same as for sending.
In a step 156 the software module 26 extracts the messageld 104a, decodes (if
encoded) the received message and extracts the body field 60 (still encrypted).
In a step 158 the following information is then sent to the security server 24 (via
SSL):
the e-mail address of the receiver 16 (emailAddress 103a);
the password 102b of the receiver 16; and
the messageld 104a.
In a step 160 the security server 24 proceeds depending on the result of an
authentication sub-process.
1) The security server 24 hashes the receiver's password with the salt 102¢ to
determine the password 102b.
2) The password 102b is verified, based in part on association with the emailAddress
103a of the receiver 16. If this part of the authentication fails, the response to the software

module 26 results in the receiver 16 being prompted for the correct password 102b or the

WO 2004/049137 PCT/US2003/037954
28

decryption process 150 aborting.

3) It is determined whether the receiver 16 is authorized to read the present secure e-
mail 14. For this, the e-mail address of the receiver 16 must match the receiverAddr 106b in
the receivers table 106 for the particular messageld 106a, the numRequests 106d must be less
than the maxDeliveries 104f for this secure e-mail 14, and the expiration 104g must not
indicate that the message has already expired. If this authorization fails, the response to the
software module 26 results in notifying the receiver 16 and then exiting the decryption
process 150 without decrypting the secure e-mail 14.

Note, if either of these tests fail, the browser page can simply display as if it does not
contain encrypted material, i.e., as unintelligible gibberish where the body field 60 would
normally be. The sender id field 66, the various receiver id fields 56, and possibly also the
subject field 58 (depending upon configuration) can still be intelligible, however. The
receiver 16 may thus be able to contact the sender 12 or any other receivers 16 to determine if
the secure e-mail 14 was important and if measures outside the secure e-mail system 10 are
appropriate. If these tests are successful, the receiver 16 is considered to be authenticated and
this step 160 is complete.

In a step 162 the security server 24 sends the messageKey'104e back to the software
module 26 of the receiver 16 via SSL.

In a step 164 the software module 26 decrypts the secure e-mail 14, using this same
messageKey 104e and the reverse of the basic process as was used to encrypt it.

In a step 166 the software module 26 validates the secure e-mail 14. This involves a
second round of communications with the security server 24. The software module 26
generates new hashes of each part of the secure e-mail 14 and sends these and the seals
included in each message part to the security server 24. The security server 24 then computes
new seals, based on the passed in hashes, which it compares with the passed in seals. If there
are any differences, this is an indication that the secure e-mail 14 is not authentic. The
security server 24 then sends an indication about the authenticity of the secure e-mail 14 back
to the software module 26.

Finally, in a step 168 an HTML receive form 54 is presented to the receiver 16
showing the plaintext body field 60 of the secure e-mail 14 where the encrypted message
used to be. Further, if the indication about authenticity from the security server 24 was
negative, the software module 26 presents a message advising the receiver 16 in this regard as
well.

Also in the preferred embodiment, as an optimization of in the decryption process

WO 2004/049137 PCT/US2003/037954
29

150, the software module 26 caches the messageKey 104e so that the same message can be
read again within the same session without accessing the security server 24. However, this is
only for read operations and the messageKey 104e is never stored on disk.

Decryption of any attachment is simply performed using the same messageKey 104¢
and the same basic process. The only differences are that a binary header is used, as described
earlier, and the information in an attachment is not encoded.

In summary, the software modules 26 of the preferred embodiment should: intercept
and parse HTML pages before they are rendered; selectively modify HTML pages before
they are rendered; extract data from HTML forms and pages; send data to a security server
via a secure means (e.g., secure HTTP, SSL); perform symmetric key encryption and
decryption using the same algorithm for both actions (e.g., Blowfish symmetric key
encryption/decryption); perform hashing (e.g., secured hash algorithm one, SHA-1); display
dialog boxes (for password entry, configuration, error messages, and seal verification results);
and, preferably, be able to self-upgrade.

The security features underlying the preceding encryption process 120 and decryption
process 150 bear some further analysis. For authentication purposes, the operator of the
security server 24 knows the sender 12 because their emailAddress 103a should associate
with their password 102b. If the password 102b is treated the way it is supposed to be, i.e.,
only the holder should know it, then the operator of the security server 24 can be sure that -
only the sender 12 could have sent a particular secure e-mail 14. But the sender 12 does not

:necessarily even have to be trusted. By storing the sealSalt 104h initially, it is also possible
for the operator of the security server 24 to be sure that no one, including the sender 12, can
alter a secure e-mail 14 after it is sent. As an added security feature the sealSalt 104h may be
stored encrypted in the database 100, and then never shared and never allowed to leave the
security server 24. By encrypting the hashes of the body and attachments (H(b), H(a)) with
the SSL key after the sender 12 has been authenticated (by providing the password 102b) it is
possible to determine that it is the sender 12 who is signing their secure e-mail 14. Because
the security server 24 stores only a hash of the actual password of the sender 12 as the
password 102b, there is no way even the operator of the security server 24 can falsely sign a
secure e-mail 14 on behalf of the sender 12.

Because the messageKey 104e is symmetric and because an outside entity is storing
it, i.e., the security server 24, it is possible for someone to decrypt a secure e-mail 14 if they
have intercepted both the secure e-mail 14 and also obtained its messageKey 104e, say, by

breaking into the database 100. Interestingly, just having one or the other here does not do

WO 2004/049137 PCT/US2003/037954
30

any good. This approach can be even further strengthened by encrypting the messageKey
104e with a public key. Then, breaking into the database 100 still does not help, since one
would need thé appropriate private key to be able to obtain the messageKey 104e needed to
crack any given secure e-mail 14. A brute force attack on the database 100 therefore becomes
infeasible. Also, to the extent possible, the operators of the security server 24 can put the
necessary private key into actual hardware, making it virtually impossible to break into the
database 100 without physical access to the actual machines being employed.

Reading a secure e-mail 14 is simpler than sending it. The only concern here is that
there is a single key per message (messageKey 104e) used for decryption. Therefore there is a
moment within the software module 26 where that key is in the clear on the receiver’s
machine and it is possible to access it. However, all that permits is reading the current secure
e-mail 14 which the receiver 16 is allowed to read anyway. Hence, there is only a risk here if
an unauthorized person can gain access to the key for the brief time that it is in memory. This
would be extremely difficult, and it follows that, if the key could be stolen in this fashion, the
decrypted message could just as easily (if not more so) also be stolen. So why bother with the
key? In sum, this is not much, if any, of a security risk.

. The use of the seal provides for non-repudiation via the operator of the security server.
.24 acting as a trusted third-party notary. In particular, a judge can determine whethera: . .
message was actually sent from a sender 12 by giving the operator of the security server 24
the seal, the hash of the message and the name (to map to the userld 102a) of the sender 12. -
As was described for the preferred embodiment, a receiver 16 can verify that a seal is genuine
(which proves that the sender 12 actually wrote and sent a particular secure e-mail 14), by
sending the seal and a hash of the body of the received message to the security server 24. The
security server 24 can then provide an assurance in this regard. The seal is used at the security
server 24 to determine whether it is genuine by re-computing it based on the three known
quantities. This technique is known as “non-repudiation with secret keys” and is taught by
Kaufman et al. in "Network Security: Private Communication in a Public World," Prentice-
Hall, 1995, pp. 343-44.

Obviously, much of the security in the embodiments described here is also based on
the strength of SSL. Currently, this seems to be an accepted standard, so we will not concern
ourselves here with the fact that both the password 102b of the sender 12 and the
messageKey 104e are sent over it. However, the strength of the security of the secure e-mail
system 10 is not dependent on SSL. As more secure protocols for protecting a

communications channel become available (e.g., Transport Layer Security or TLS), the

WO 2004/049137 PCT/US2003/037954
31

secure e-mail system 10 can easily use such a protocol.

Up to this point the discussion has been primarily presentation of the secure e-mail
system 10. The concept of a key server can, however, be used much more generally to build
and deploy a variety of solutions that address the problem of secure communication. For
example, this approach can also particularly facilitate enterprise instant messaging (EIM),
video-conferencing, and secure real-time document editing. These are just additional
examples of communication schemes employing message headers to deliver or route message
content, and the a key server can be used with effectively any such communication scheme.

The solutions key servers provide are also particularly suitable for collaborative use
by organizations. By using key servers, organizations can satisfy the most stringent security
requirements while enabling their constituents to freely and easily collaborate via a rich set of
techniques and media.

The following terms are used frequently throughout the rest of this document and are
defined here for convenience:

Confidentiality protection -- Ensuring that data can only be viewed by
authorized recipients, irrespective of the data location (i.e., in transit or in storage).
- Conversation key -- A symmetric key that protects conversation data.

Conversation data flows from a single source to one or more destinations.

‘Hub -- The network server that processes messages and relays them to -
appropriate destinations.

Integrity protection -- Ensuring detection of unauthorized modification to data
in transit or in storage.

Join -- To start participating in a collaboration.

Key server -- A network server that holds protection keys and releases them to
authorized users.

Leave -- To stop participating in a collaboration.

Header key -- A symmetric key that protects the header of a message. Heacier
keys are individually established between the hub and each spoke.

Message -- The basic unit of data exchanged between collaborating parties. A
message has two parts, a "header" and "content."

Message content -- Data that is produced by a collaborating party and is
destined for one or more other parties.

Message header -- Data that helps the message router deliver the contents to

its destinations.

WO 2004/049137 PCT/US2003/037954
32

Protection -- Confidentiality and integrity protection.
Spoke -- Senderé or receivers of data; spokes do not relay data.
Transcript -- A record of some part of the collaboration.

FIG. 9 is a schematic block diagram depicting the major components of a security
server system 210. Although mostly generalized, this embodiment is particularly suitable for
collaborative communication in an enterprise. The major components here include
collaboration participants 212, one or more message routers 214, and one or more key servers
216. Accordingly, the collaboration participants 212 here are equivalent to the sending unit
18 and receiving units 20 in FIG. 1. The message router 214 is equivalent to the e-mail server
22 in FIG. 1 (or conventional routers). As described presently, however, the message routers
214 here may particularly be under the control of an enterprise using the security server
system 210. The key server 216 in FIG. 9 is equivalent to the security server 24 in FIG. 1.

The collaboration participants 212 are the source (source participant 212a) and/or the
destination (destination participant 212b) for the messages 218. As described presently,
conversation keys 220 are used to protect the contents of the messages 218.

The message routers 214 deliver the messages 218 to the intended collaboration
participants 212. Although the messages 218 may actually pass through multiple message
routers 214, this is illustrated in the figures conceptually with just one message router 214 (or
the e-mail server 22 and the possible routers through which a secure e-mail 14 might pass).
When multiple message routers 214 are present, each "sees" the others much like it sees a
collaboration participant 212. The collaboration participants 212 each maintain at least one
persistent connection with the message router 214 (or the "closest" message router 214).

The key server 216 creates the conversation keys 220 or it can receive them from
source participants 212a. The key server 216 then stores and releases the conversation keys
220 to the parties that are the collaboration participants 212 (presumably after authentication
and authorization, but various schemes can be used for that and it is not a topic that is
germane here). The key server 216 can also create or store conversation keys 220 in bulk,
releasing an arbitrarty number upon request. A client that is a server-class device (e.g., an
email gateway) can thus get a bulk set of conversation keys 220 and protect each message
218 with a unique one, without needing to ask the key server 216 for a unique conversation
key 220 every time.

To simplify the following discussion, encryption and decryption is used as the
primary example of protection. Encryption/decryption with a key protects the confidentiality

of a message. It should be appreciated, however, that this is only one possible example of

WO 2004/049137 PCT/US2003/037954
33

protection. The integrity of a message can be protected using a keyed message digest (also
known as Hashed Message Authentication Code, or HMAC), or both types of protection can
be applied. For example, the key server 216 can create a 256-bit key and release it to a source
participant 212a. The source participant 212a can then use the first 128 bits for encryption
and the second 128 bits for HMACing.

Since the conversation keys 220 are used for encryption or hashing and later need to
be retrieved for use in decryption or hash analysis, the key server 216 associates a unique ID
with every conversation key 220. The unique ID, or something from which it can be derived,
is then sent in the clear with each protected message 218. Thus, a collaboration participant
212 submits a request for a conversation key 220 to the key server 216 and the key server 216
responds with a reply back to the collaboration participant 212 containing the requested
conversation key 220. The key server 216 is generic and can be used to manage the
conversation key 220 for any type of application. The session between the collaboration
participant 212 and the key server 216 thus is a secure session.

FIG. 1 and FIG. 9 differ in a major respect that illustrates an optional but highly
useful feature. In FIG. 1 the e-mail server 22 and the security server 24 are depicted as having
no direct communication. This scheme works well, for example, if the e-mail server 22 (or
message hub used in its stead) is conventional. In contrast, in FIG. 9 the message router 214
and the key server 216 are depicted as having direct communication. This scheme works well
if the message router 214 is designed to work in the security server system 210. The message
router 214 can then be the entity that instructs the key server 216 to create new conversation
keys 220 when a collaboration participant joins or leaves a conversation.

FIG. 10 is a schematic block diagram depicting the typical flow of a message 218 in
the security server system 210. The message 218 includes a message header 222 and a
message content 224,

The message header 222 includes data that helps the message router 214 deliver the
message 218 to its destinations, i.e., one or more destination participant 212b. Some
examples of elements in the message header 222 are:

To -- The destinations of the message.

From -- The origin of the message.

Date -- The date and time of message creation.
Message ID -- A unique identification for the message.
Content length -- The length of the content.

Content type -- The MIME type of the content.

WO 2004/049137 PCT/US2003/037954
34

Priority -- The priority of the message.

The message content 224 includes data that is produced by a source participant 212a
and destined to one or more destination participants 212b. Of course, the collaboration
participants 212 can and often do change roles as source participant 212a and destination
participant 212b if multiple messages 218 are exchanged during the course of a collaboration.
The message routers 214 do not inspect the message content 224. [Special services such as
content filtering and virus scanning can examine the message content before forwarding it to
its destinations. However, this is an optional service and is independent of message routing.]

FIG. 10 also shows how the depicted embodiment of the security server system 210
actually uses two types of keys for protecting data. Again with protection being with respect
to confidentiality, integrity, or both. Firstly, the message router 214 establishes a header key
226 with each collaboration participant 212. The header key 226 protects the message header
222 of a message 218. Every connection between a message router 214 and a collaboration
participant 212 uses a different header key 226. The key server 216 does not create, store, or
manage the header keys 226. Moreover, the header keys 226 are ephemeral and do not last
beyond the life of the session between the message router 214 and the collaboration
participant 212. Secondly, a conversation key 220 protects the content of a message 218. It is
possible for any process (collaboration participant 212 or message router 214) to create
(request and be granted) a conversation key 220. Using this two key approach enables
efficient, yet highly secure distribution of messages 218 from their source to their
destinations.

This use of two keys is also different than the scheme depicted in FIG. 1, where only
one key equivalent to the a conversation key 220 is used. The use of the header key 226 is
optional, but adds additional security. An enterprise that controls the message router 214, for
instance, may wish to impose this added level of security and keep even the information in
the message header 222 secure.

The message router 214 only needs to process the message header 222 of a message
218 to perform its tasks. In FIG. 10, it uses the header keys 226 (Ky1, Ku, Kus, or Kuy),
depending on the collaboration participant 212 with which it communicates. The message
content 224 of the message 218 simply flows through the message router 214 unmodified,
and the destination participants 212b then request and use the same conversation key 220
(Kc) to decrypt and to verify the integrity of the message content 224 of the message 218.
Separating the header key 226 from the conversation key 220 in this manner is advantageous

in that each message router 214 can "stream" messages 218 to the next, without needing to

WO 2004/049137 PCT/US2003/037954
35

verify the integrity of the entire message content 224. This is in contrast to SSL and IPSec,
that must artificially break messages into manageable blocks and encrypt each block
individually.

In order to provide forward and backward secrecy, the message router 214 can change
or "roll over" the conversation key 220 when any of the following events occur. When a new
collaboration participant 212 joins a conversation, the message router 214 can see that the
conversation key 220 is changed. All of the messages 218 communicated prior to this event
remain encrypted using the old conversation key 220 and, by default, are not made available
to the new collaboration participant 212. Similarly, when an existing collaboration participant
212 leaves the conversation (e.g., disconnects from the message router 214), all of the
messages 218 communicated subsequent to this event are encrypted using a new conversation
key 220. This new conversation key 220 is not, by default, available to the departing
collaboration participant 212. Under the preferred embodiment of the security server system
210, transcripts remain encrypted while in storage. Therefore, depending on the sequence of
events during a collaboration (i.e., join and leave operations), there may be multiple
conversation keys 220 that encrypt different parts of a conversation.

The conversation key 220 roll over process can be optimized, say, when there may be
large numbers of collaboration participants 212, in keeping with the enterprise collaboration
theme of this embodiment in FIG. 9 and 10. Even though the message router 214 generally
should not be able to access the actual (encrypted) message content 224, it can determine
when the message content 224 is substantive. For example, information in the message
header 222 may indicate this or the message content 224 may be absent. With this
information the message router 214 can defer rolling over the conversation key 220 until the
next substantive message 218 is encountered. Thus, multiple collaboration participants 212
may join a new conversation and the conversation key 220 is not automatically rolled over as
each joins. Instead, the conversation key 220 is rolled over when a substantive message 218
is sent. Similarly, multiple collaboration participants 212 may leave an existing conversation
and the conversation key 220 is not rolled over until the next substantive message 218 is sent.

The following discussion summarizes, without limitation, some of the novel ideas the
security server system 210 implements. It can assign and use a single conversation key 220 to
protect data throughout its life. By use of this single conversation key 220, the message router
214 need not decrypt and re-encrypt the messages 218. This enables highly efficient routing
of the messages 218 and permits scalable, enterprise-class collaboration systems.

In contrast, existing technologies use multiple keys for protecting data (with respect to

WO 2004/049137 PCT/US2003/037954
36

confidentiality and integrity) as it is transmitted from its origin to multiple destinations.
Typical implementations employ the secure socket layer/transport layer security (SSL/TLS)
or IPSEC protocols. Using SSL/TLS every message must be encrypted at its origin,
decrypted at the server that routes it (i.e., the hub), re-encrypted again at the hub, and finally
decrypted at the final destinaﬁon.

The security server system 210 can also easily maintain forward and backward
secrecy. When a new collaboration participant 212 joins or when an existing collaboration
participant 212 leaves a collaboration, the conversation key 220 can be changed. This assures
all the collaboration participants 212 that new users do not have access to any part of the
collaboration data prior to joining and, similarly, that users who have left the conversation do
not have access to the collaboration data after leaving. Even if an attacker can remain
connected to the security server system 210 and receive messages 218, the conversation key
220 to decrypt that message content 224 of those messages 218 will not be available to them.

In contrast, existing technologies rely on the state of the connection to maintain
secrecy. That is, a user who is not connected to the hub cannot receive collaboration data.
While this works for unsophisticated users, it is not a secure technique for protecting
collaboration data from more sophisticated attackers.

The security server system 210 also permits efficient multi-user participation. It
minimizes the number of encryptions and decryptions at the message router 214:by not-
performing encryptions or decryptions with the conversation key 220 at the message router
214. In fact, the number of encryptions and decryptions applied to the collaboration data at
the message router 214 is independent of the number of collaboration participants 212.

In contrast, existing technologies degrade in performance when the number of users
increases. There are many factors that contribute to such performance degradation, but a
major one is the number of protection operations performed at each component of the system.
Existing technologies use a session key for protecting the collaboration data. This is
inefficient because the number of sessions is proportional to the number of users, and the
number of required protection operations increases with the number of users.

The security server system 210 also permits multiple, secure threads in the same
collaboration or session. This is because collaboration data (message content 224) is
protected using the conversation key 220 rather than a session key. Thus, a session may use
multiple conversation keys 220 depending on the set of authorized collaboration participants
212.

Existing technologies use a session key to protect the collaboration data. Protection of

WO 2004/049137 PCT/US2003/037954
37

multiple threads of conversations within the same collaboration therefore requires multiple
sessions. This in turn results in rigid and inefficient systems.

The security server system 210 also handles transcripts more elegantly. It uses the
same set of conversation keys 220 for protecting the message content 224 during and after the
collaboration. This results in more flexible, yet highly secure collaboration systems.

Technologies that use session keys have rigid techniques for protecting a transcript of
the collaboration data, because session keys are ephemeral and do not last beyond the end of
a collaboration.

The security server system 210 also improves on other existing security technologies
as now described. A collaboration technology that uses public key infrastructure (PKI) for all
of its security function results in inefficient and rigid systems. Protecting collaboration data
using PKI requires all participants to have PKI digital certificates. In contrast, the security
server system 210 can use PKI certificates to authenticate any collaboration participant 212.
However, owning a PKI certificate is not required. Thus, collaboration participants 212 who
can prove their authenticity at a sufficiently strong level can engage in the collaboration.

A collaboration technology that is based on IPSec must use individual Security
Associations (SA). First, an SA is ephemeral and SA keys can practically only protect

‘collaboration data while in transit. Second, an SA is specific to a source/destination pair. -
Therefore, collaboration applications (e.g., Instant Messaging) that work based on a hub-and-
spoke model require protection of data as information travels through multiple SAs. In
contrast, the security server system 210 can protect collaboration data (message content 224) -
while in transit and in storage using the same base technology.

A collaboration technology that uses SSL/TLS requires multiple SSL/TLS sessions.
First, a session is ephemeral and session keys can practically only protect the collaboration
data while in transit. Second, a session is specific to a client/server pair. Therefore,
collaboration applications (e.g., Instant Messaging) that work based on a hub-and-spoke
model will require protection of data as information travels through multiple sessions. In
contrast, the security server system 210 can protect collaboration data while in transit and in
storage (i.e., a transcript) using the same base technology.

FIG. 11 is a block diagram depicting how a communication system 310 can consists
of four basic components: a communicating party 312 (an originator 314 or a recipient 316),
an authentication authority 318, and a key server 320.

Typically, both the originator 314 and the recipient 316 will contact the authentication

authority 318 and authenticate themselves. However, the authentication authority 318 for the

WO 2004/049137 PCT/US2003/037954
38

originator 314 may or may not be the same as the authentication authority 318 for the
recipient 316. The communicating party 312 uses a protocol that is specific to the
authentication authority 318 (e.g., user ID and password over TLS, two factor authentication,
challenge/response protocol using PKI certificates, etc.). As a result of successful
authentication, the authentication authority 318 issues the communicating party 312 an
authentication assertion 322. The authentication authority 318 signs this assertion 322
(typically, using a PKI private key). Every assertion 322 is different.

Subsequently, the originator 314 has data for a communication 324 that it wants to
sent to one or more recipients 316. The originator 314 then contacts the key server 320 and
provides it with its assertion 322 and with attributes 326 for the intended communication 324.
The attributes 326 are described in more detail below, but include a list of the intended
recipients 316 for the communication 324.

The key server 320 confirms the assertion 322 from the originator 314. Then it
assigns a resource ID 328 to the prospective communication 324, creates a key 330 suitable
to encrypt the communication 324, and provides the resource ID 328 and the key 330 back to
the originator 314. Optionally, the originator 314 can instead send the key 330 to the key
server 320 and ask it to associate that key 330 with a resource ID 328. In the course of all

" this; the key server 320 records the resource ID 328, the key 330, the assertion:322, and the - -
-attributes 326 in a database 332 that it maintains.

The originator 314 next constructs the communication 324, by encrypting the data
using the key 330 and adding the resource ID 328 in the clear. The originator 314 then
transmits the communication 324 to all of the recipients 316 using conventional means. Note,
the originator 314 need not, and in most embodiments will not, ever send the communication
324 to either the key server 320 or the authentication authority 318.

Each recipient 316 must retrieve a key 330 from the key server 320 that is suitable for
decrypting the encrypted communication 324. Since the communication 324 includes the
resource ID 328 in the clear, the recipient 316 provides its assertion 322 and the resource ID
328 to the key server 320. The key server 320 then confirms the assertion 322 from the
recipient 316. It also checks that the recipient 316 is an intended one for the communication
324 that the resource ID 328 specifies, using the list of intended recipients 316 that the
originator 314 previously provided in the attributes 326. If the attributes 326 also included
other criteria, described presently, for making a key 330 available, the key server 320 also
checks that those criteria are met. Then the key server 320 provides the key 330 to the
recipient 316.

WO 2004/049137 PCT/US2003/037954
39

Finally, the recipient 316 decrypts the communication 324 with the key 330.
Coincidental with this, the integrity of the content of the communication 324 is validated by
whether decryption is successful and, optionally, by comparing a cryptographic checksum
that has been included in the communication 324. Such a checksum can be in the clear part of
the communication 324, along with the resource ID 328, but more typically will be included
in the encrypted part along with the content of the communication 324. Such a checksum can
also encompass different parts of the overall communication 324. For instance, it may be
derived from only the content part of the communication 324, or it may be derived from other
parts of the communication 324. An example when the communication 324 is in email form
might be to include the subject and the encryption time in the checksum. In this manner, the
recipient 316 can tell if a subject portion sent in the clear has been altered or if the
communication 324 has been unduly delayed.

TABLE 1 shows a schema for the content of the database 332 maintained by the key
server 320. The ResourcelD field is straightforward, it is the resource ID 328 we have already
discussed. The ResourceType field provides the scope of the application type for which the
key 330 is created. For example, Email and Instant Messaging could use different resource
types. This will relieve different applications from needing to coordinate resource ID 328
uniqueness. The combination of the ResourcelD and ResourceType fields is always unique. .
‘The ResourceKey is simply-the key 330, also already discussed. Only one ResourceKey is
needed if the key 330 is a symmetric key, i.e., the same key 330 is used by both the originator
314 and the recipient 316. Embodiments of the communication system 310 may also use
asymmetric keys. In this case, if the key server 320 provides the encryption key 330 to the
originator 314, it will have a ResourceEncryptKey field for that as well as a
ResourceDecryptKey field to store the decryption key 330 that should be provided to the
recipient 316. If the originator 314 handles key generation, it may send both the encryption
and decryption keys 330 to the key server 320, or just the decryption key 330.

Continuing with the schema, the KeySize field is optional. One size key may be used
exclusively, but there is no limitation that this be the case. Some users may want the very
strong encryption that a bigger key can provide, while others may want the reduced
processing burden that a smaller key can provide. Another consideration is that keys have
tended to become bigger as cracking resources have become more powerful. This trend will
likely continue, and embodiments may thus need to handle different key sizes just to deal
with legacy key size and upgrade key size issues.

The KeyCreator field may also be optional. Embodiments are possible where only the

WO 2004/049137 PCT/US2003/037954
40

key server 320 creates the keys 330, or where the originators 314 always create the keys 330.
Having this field permits either of these, or a mixed arrangement where the keys 330 are
sometimes created by the key server 320 and other times created by the originators 314.
Having such capability present in an embodiment, of course, does not limit policies being
used to specify which arrangement is used or to specify arrangements that must be used for
particular originators 314.

It is anticipated that the KeyOwner field will be present in the vast majority of
embodiments. The originators 314 are the “owners” of the keys 330 and one use of this field
is to facilitate the key server 320 changing the contents of the schema in useful ways. For
example, in a corporate context an originator 314 may want to prevent a key 330 from being
released to a recipient 316 who has just now been discharged. Alternately, an originator 314
may want to now permit release of the key 330 for a longer period of time than that initially
specified, say, because the originator 314 has discovered that the recipient 316 is on vacation.
The KeyOwner field also permits the key server 320 to respond to requests from other
parties, but presumably only when appropriate. For instance, a government agency may
request the key server 320 to freeze all keys 330 already issued to a particular originator 314
and to not issue additional ones..Or a court may order the release of a key 330 to decrypt a
communication 324 to check for evidence of a conspiracy between an originator 314 and a
recipient 316.

Intentionally not having or having and simply not using the KeyOwner field is still
possible. A key server 320 might provide keys 330 to “anonymous” originators 314, and even
to “anonymous” recipients 316. In a simplest form of this, a key server 320 could provide a
key 330 and a resource ID 328 when any originator 314 simply asks; and the key server 320
can then provide that key 330 (or a corresponding one if asymmetric encryption is used) to
any recipient 316 who simply asks and provides the resource ID 328. Alternately, an
anonymous originator 314 could specify an intended recipient 316, so that the key server 320
would only release the key 330 to that non-anonymous recipient 316. A key server 320 also
might or might not require an assertion 322 from either or both of the originator 314 and the
recipient 316. For instance, the key server 320 might provide or release a key 330 to a
communicating party 312 merely on the strength of having been provided a valid assertion
322.

Continuing again with the schema, the DateCreated field is theoretically optional, but
has clear uses and typically will be provided and used. The rest of the fields in the schema are

ones set in response to the attributes provided by the originator 314, and should be clear from

WO 2004/049137 PCT/US2003/037954
41

the description in TABLE 1 and the following discussion of how these relate to events.

The communication system 310 enables the construction of three sets of business
events. Controlling events 340 (FIG. 12) consist of a set of actions taken by an originator 314
to control when and how many times a recipient 316 can view a communication 324. Positive
events 342 (FIG. 13) consist of a set of actions taken by a recipient 316. And negative events
344 (FIG. 14) consist of a set of actions that were expected from a recipient 316 but have not
yet been initiated.

The key server 320 sets the controlling events 340 based on the attributes 326
provided by originators 314. The key server 320 can then determine both the positive events
342 and the negative events 344 based on the information in its database 332 and its
communications or lack thereof with the recipients 316.

Recall that in order for the recipients 316 to view the communication 324 they
authenticate and retrieve the decryption key 330 from the key server 320. The originator 314
of the communication 324 is the “owner” of this key 330 and can set the attributes 326 to
create the controlling events 340 for when, and how many times each recipient 316 can
retrieve the decryption key 330. The attributes that enable this functionality are the fields
ReleaseAfier, ExpireOn, and NumReleases in the database 332 that the key server 320
maintains.

FIG. 12 is a block diagram showing the flow of information related to the controlling
events 340. An arrowed line 352 shows how the attributes 326 flow from the originator 314
to the key server 320 and into its database 332.

FIG. 13 is a block diagram showing the flow of information related to the positive
events 342. An arrowed line 354 shows how a request for the key 330 (including the
ResourcelD and the recipient’s assertion 322) flows from the recipient 316 to the key server
320 and information about this flows into the database 332 of the key server 320. The key
server 320 records when, and how many times a given recipient 316 retrieves the key 330.
This serves as the underpinning for creating the positive events 342 that signal the actions
taken by a specific recipient 316 at a specific time. The attributes that enable this
functionality are the fields LastReleased and NumReleased in the database 332 of the key
server 320.

Another arrowed line 356 shows how the key server 320 can signal a notification
server 346 (shown separate from the key server 320, but not necessarily so) when a recipient
316 retrieves the decryption key 330. The notification server 346 can then signal a follow up

action, depicted by multiple arrowed line 358 going to multiple possible destinations. For

WO 2004/049137 PCT/US2003/037954
42

example, the notification server 346 can notify a system in a marketing department, which in
turn alerts a marketing representative to call the prospect (recipient 316) and follow up.

FIG. 14 is a block diagram showing the flow of information related to the negative
events 344. Signaling the negative events 344 uses the attributes in the fields LastReleased
and ExpectedRequest in the database 332 of the key server 320. A phantom arrowed line 360
(dashed) here shows the flow of information from the recipient 316 to the key server 320 that
has not occurred, and the arrowed line 356 and the multiple arrowed line 358 again show the
flow of information from the key server 320 to the notification server 346 that occurs due to
this. If a recipient 316 fails to request the key 330 by a given time, then the key server 320
sends a signal to the notification server 346, and the notification server 346 can then signal a
follow up action. For example, the notification server 346 can notify a system in a customer
call center, which in turn alerts a customer service representative to call the customer
(recipient 316) and verbally communicate the content of the communication 324.

FIG. 15 is a block diagram depicting how an embodiment of the present inventive
communication system 410 may use four basic components: a transacting party 412 (a source
414 or a target 416), an authentication authority 418, and a key server 420.

The transacting party 412 communicates with the authentication authority 418 to
authenticate itself. The transacting party 412 uses a protocol that is specific to the
authentication authority 418 (e.g., user ID and password over Transport Layer Security, two
factor authentication, challenge/response protocol using PKI certificates, etc.). As a result of
successful authentication, the authentication authority 418 issues the transacting party 412 an
authentication assertion 422. The authentication authority 418 signs this assertion 422
(typically, using a PKI private key). The assertion 422 includes the identity of the transacting
party 412; the identity of the authentication authority 418; the validity period of the
authentication assertion 422; and optional confirmation data, used by the key server 420 to
prove that the transacting party 412 is the rightful owner of the assertion 422. One example of
such confirmation data may be a temporary public key whose private key is known to the
transacting party 412. The transacting party 412 may create this private key and, via the
authentication protocol, ask the authentication authority 418 to assert that the corresponding
public key belongs to the transacting party 412. Alternatively, the authentication authority
418 can create the key pair, securely deliver the private key to the transacting party 412, and
assert that the corresponding public key belongs to the transacting party 412. The former
method is generally preferable because the authentication authority 418 will then not have

knowledge of the private key.

WO 2004/049137 PCT/US2003/037954
43

As mentioned before, the source 414 authenticates with the authentication authority
418 and receives an assertion 422. Subsequently, typically just before when the source 414
wishes to communicate a transaction 424 to one or more of the targets 416, the source 414
communicates with the key server 420. The key server 420 assigns a transaction ID 428 to
the transaction 424 and creates an encryption key 430 for the transaction 424. (The
encryption key 430 may or may not be the same key 430 that is usable for decryption.)
Optionally, the source 414 can send the key 430 to the key server 420 and ask it to associate
the key 430 with the transaction 424. The key server 420 records the key 430, the transaction
ID 428 and the assertion 422 of the source 414 all in a database 432 which the key server 420
maintains. Finally, the source 414 protects the confidentiality and integrity of the data in the
transaction 424 using the key 430 and transmits the transaction 424 to the target 416. This
transmission may be via entirely conventional means, not traveling via either of the
authentication authority 418 or the key server 420.

The communication system 410 achieves nonrepudiation of origin by associating the
assertion 422 of the source 414 with the transaction ID 428 and the key 430 that protects the
transaction 424. The key 430 thus “cryptographically” binds the transaction 424 and the
source 414. For example, in an embodiment where the transaction 424 is embodied in an
email, the communication system 410 can be used to prove that the source 414 originated the
email and was authenticated via a specific authentication method at a specific authentication
authority 418.

If the source 414 later attempts to repudiate the transaction 424, a party seeking to
contest this can proceed in various ways. If the party is the target 416, this can be as simple as
providing the transaction ID 428 and the identity of the putative source 414 to the key server
420 and asking it for confirmation that the putative source 414 provided the assertion 422
associated with the transaction ID 428. Alternately, the target 416 can provide just the
transaction ID 428 and ask the key server 420 who the source 414 was that received the
transaction ID 428.

Of course, the source 420 or others may still not be willing to simply concede that the
target 416 has adequately confirmed the origin of the transaction 424. However, the party
resolving matters can also be one other than a transacting party 412 (source 414 or target
416), say, an arbitrator, a court, or a bank. The party here can then provide the transaction ID
428 to the key server 420 and be advised who the source 414 is that provided the assertion
422 that resulted in issuance of that transaction ID 428 and what the key 430 is that should
decrypt the transaction 424 and verify its integrity. If that key 430 does decrypt the

WO 2004/049137 PCT/US2003/037954
44

transaction 424 and verifies its integrity, the question of origin is settled. Alternately, possibly
even more typically, the party can provide both the transaction 424 and the transaction ID
428 to the key server 420, the key server 420 can determine if the key 430 it has decrypts the
transaction 424 and verifies its integrity, and the key server 420 can then advise accordingly.
Note, here also the identity of the putative source 414 can be provided to the key server 420
and it can confirm (i.e., provide a yes or no answer) whether the putative source 414 provided
the assertion 422 associated with the transaction ID 428.

As also mentioned before, the transaction target 416 also authenticates with an
authentication authority 418 (not necessarily the same one used by the source 414, however)
and also receives an assertion 422. The target 416 then must retrieve a decryption key 330
from the key server 420 in order to decipher the data in the transaction 424 and validate its
integrity. Prior to releasing the key 330 for this, the key server 420 records the assertion 422
of the target 416 and also associates it with the transaction ID 428.

The communication system 410 thus achieves nonrepudiation of receipt by
associating the assertion 422 of the target 416 with the transaction ID 428 and the key 330
that protected the transaction 424. For example, in an embodiment where the transaction 424
is embodied in an email, the communication system 410 can be used to prove that the target
416 received and opened the email and was authenticated via a specific-authentication
method at a specific authentication authority 418.

If the target 416 later attempts to repudiate receipt of the transaction 424, matters can
be simply determined by providing the transaction ID 428 and the 1dentity of the target 416 to
the key server 420 and asking it for confirmation that the target 416 requested the key 430,
that the target 416 proffered a valid assertion 422 as part of its request, and that the target 416
was only then provided the key 430. This leaves only the question of whether the target 416
in fact used the key 430 to open the transaction 424. As described above, however, the
requests by transacting parties 412 will typically be handled by software (e.g., software
modules 26, FIG. 3). Thus, for at least the targets 416, receiving the key 430 and using it can
easily be made automatic and essentially contemporaneous. This provides a very difficult to
overcome presumption that targets 416 who have received keys 430 have also used them to
open transactions 424.

The key server 420 can permanently record the assertions 422 of the source 414 and
all of the targets 416 in its database 432. Since the communication system 410 associates
these assertions 422 with the transaction ID 428, the database 432 can be used to reconstruct

the events of originating the transaction 424 and each receipt of the transaction 424. This

WO 2004/049137 PCT/US2003/037954
45

serves as the basis of a comprehensive audit system.

FIG. 16 is a flow chart depicting a suitable process 450 by which the communication
system 410 can establish data in the database 432 for later nonrepudiation and audit purposes.
The process 450 starts in a step 452, wherein the existence of the authentication authority 418
and key server 420 is presumed and the source 414 has already obtained an assertion 422
from the authentication authority 418. |

In a step 454, a request is sent to the key server 420. It is expected that in most
embodiments this request will be made directly by the source 414, but there is no technical
reason that it cannot also be made by an intermediary acting on behalf of the source 414 (of
course, there can be excellent policy reasons to not allow this). The request will include the
assertion 422 of the source 414 and information about the contemplated transaction 424 (see
e.g., TABLE 1). As discussed previously, such information will at least identify the targets
416, and may also set times and quantities of permitted releases of the decryption key 430 for
the transaction 424. The request will also include the decryption key 430, if the source 414 is
providing that.

In a step 456, the key server 420 determines if the assertion 422 of the source 414 is
valid (and if at least minimal other information is provided, e.g., at least one target 416 is .
identified). If not, in a step 458 the key server 420 can take what is deemed appropriate action
for the particular embodiment. Since the failed determination may be due to innocent error, it

- is expected that most embodiments will allow at least one corrected request. The key server
‘420 can, of course, log all attempted requests in the database 432.

If step 456 determines that the process 450 should continue, in a step 460 the key
server 420 assigns a transaction ID 428 (“t-id” in the figures) and stores it along with the
assertion 422 of the source 414 and a decryption key 430 in the database 432. Recall, as a
matter of design or configuration, the encryption key 430 and the decryption key 430 may or
may not be the same. If they are different, the key server 420 can store both if desired.

In a step 462, the key server 420 replies to the request by providing the transaction ID
428, and the encryption key 430 if it is providing that.

No steps are shown in FIG. 16 for the encrypting, sending, and receiving of the
transaction 424. To keep things simple here these are treated generally as their labels imply,
and more details are provided, below.

In a step 464, it is presumed that the target 416 has received the transaction 424 and
already obtained an assertion 422 from the authentication authority 418. What this step then

includes is receipt of another request by the key server 420. It is expected that in most

WO 2004/049137 PCT/US2003/037954
46

embodiments this request will also be made directly by the target 416, but there is no
technical reason that a request cannot be made by an intermediary. This request includes the
transaction ID 428 that came with the transaction 424 and the assertion 422 of the target 416.

In a step 466, the key server 420 determines if the assertion 422 of the target 416 is
valid (and if the transaction ID 428 is for a transaction 424 that the target 416 is presently
authorized to view). If not, in a step 468 the key server 420 can take what is deemed
appropriate action. Since a failed determination may here also be due to innocent error, it is
expected that most embodiments will allow at least one corrected request. The key server 420
can, however, here also, log all attempt requests in the database 432.

If step 466 determines that the process 450 should continue, in a step 470 the key
server 420 stores the assertion 422 of the target 416 in the database 432, associated with the
transaction ID 428 and the identity of the target 416.

In a step 472, the key server 420 retrieves the decryption key 430, which was
previously stored in association with the transaction ID 428, and replies to the present request
by providing the decryption key 430.

Finally, in a step 474, the process 450 ends. Data is now established in the database
432 for nonrepudiation and audit purposes. Presumably, but with very high likelihood if the
communication system 410 uses software that automates request-reply handling for the target

.416+(e.g., the software module 26, FIG. 3), the transaction 424 is decrypted and viewed. .

‘ Asnoted in passing above, the act of using the encryption key 430
“cryptographically” binds the transaction 424 and the source 414. There are, however,
different approaches and variations of those approaches that are suitable for this, and some
representative examples are now presented.

If a public/private key system is employed, the source 414 can include the public key
(the decryption key 430) in the assertion 422 it provides to the key server 420. The source
414 then effectively “signs” the transaction 424 by encrypting it using the corresponding
private key (the encryption key 430) and cannot repudiate the transaction 424. This is
conceptually similar to how PKI systems achieve non-repudiation, but this approach employs
the key server 420 and permits additional benefits to be obtained.

If a single key is used for both encryption and decryption, the source 414 and the key
server 420 can cooperate to create a “seal” that will prove that the transaction 424 originated
from the source 414. There can be many variations on this approach, and the following
describes the inventor’s presently preferred one. Many features in this are optional.

Here the source 414 requests the transaction ID 428 and encryption key 430 from the

WO 2004/049137 PCT/US2003/037954
47

key server 420, as described previously, and the key server 420 provides these as well as a
key-creation timestamp and an identity of the source 414. [Typically the identity will be an
email address, but this is not necessarily the case. For instance, the key server 420 may use its
customer number for identifying the source 414. Often the source 414, will full well know
“its” identity, but “parroting” it back from the key server 420 and using that exact bit-for-bit
copy in the next stage avoids possible errors.] The source 414 then combines the data for the
transaction 424, the transaction ID 428, the timestamp, and the identity together and
generates a hash. The source 414 encrypts the hash with a “salt,” say, a randomly generated
number, and this encrypted hash becomes the seal.

Next, the source 414 encrypts the data for the transaction 424, and this becomes what
is actually sent to the targets 416. Note, here the source 414 creates the seal and the salt. Tt
sends the key server 420 the seal, but not the transaction or the salt. The source 414 sends
each target 416 the transaction 424, which is encrypted and includes the salt but (preferably)
not the seal.

Upon receiving the transaction 424, the target 416 sends the transaction ID 428 and its
assertion 422 to the key server 420. If all is in order, the key server 420 replies with the
decryption key 430, the key-creation timestamp, the identity of the source 414, and the seal.:
With the decryption key 430, the target 416 decrypts the transaction 424, accesses the salt,
and now recreates the process the source 414 used to create the seal. It combines the data for -
the transaction 424, the transaction ID 428, the timestamp, and the identity together and
generates a hash. Then it then encrypts this hash with the salt. If the result matches the seal
created by the source 414 and now provided from the key server 420, the source 414 cannot
repudiate the transaction 424. This also prevents the target 416 from concocting a transaction
424, encrypting it with the decryption key 430, and later claiming that the transaction 424
originated from the source 414.

FIG. 17 is a flow chart depicting a suitable process 480 by which data established in
the database 432 can be used to counter attempted repudiation by the source 414.

In a step 482, the process 480 starts. Presumably, data already has been established in
the database 432 for a transaction 424.

In a step 484, a request to verify the source 414 is made to the key server 420, or to
another system having at least read access to the database 432. Such a request can potentially
come from a target 416 or any other party that can identify the subject transaction 424 in
some manner (of course, a policy can impose limitations on this if desired). Most typically,

identification will be by the transaction ID 428, but other data can potentially also be used to

WO 2004/049137 PCT/US2003/037954
48

search the database 432 and determine the transaction ID 428 (e.g., a key 430, an assertion
422, actual transacting party 412 identity information, transaction 424 send or received times,
etc.).

In a step 486, the identify of the source 414 is determined by inspecting the assertion
422 it imitially provided, which has been stored all along in association with the transaction
1D 428.

In a step 488, the present request is replied to by verifying the source 414. The reply
and the nature of verification can, however, take many forms. For instance, the reply can
simply identify the source 414. Alternately, if the request included a suspected source 414,
the reply can merely include a “Yes” or “No” answer and not provide an actual identify. The
reply can even include the decryption key 430 for the transaction 424, presumably only in
appropriate circumstances (e.g., when a court has so ordered). Or the request can include the
encrypted transaction 424 and the reply can include the decrypted transaction 424, again
presumably only in appropriate circumstances.

Finally, in a step 490, the process 480 ends. The source 414 is now unable to
plausibly repudiate the transaction 424.

FIG. 18 is a flow chart depicting a suitable process 500 by which data established in
the database 432 can be used to counter attempted repudiation by the target 416.

In a step 502, the process 500 starts. Presumably, data has already been established in
the database 432 for a transaction 424.

In a step 504, a request-to verify that the target 416 received the transaction 424 is
made to the key server 420 or another system having at least read access to the database 432.
Such a request may come from the source 414 or any other party (subject to policy
considerations) that can identify the subject transaction 424 and a suspected target 416 in
some way. Most typically, identification will be by the transaction ID 428, but here as well,
other data can potentially also be used to search the database 432.

In a step 506, whether the target 416 received the transaction 424, received it a
specific number of times, or received it at one or more specific times is determined by
inspecting the target assertions 422 and other data (see e.g., TABLE 1) that has been stored in
association with the transaction ID 428. If this does not include an assertion 422 of the target
416, or includes one but other criteria are not met, in a step 508 an appropriate reply is made
to the request.

Alternately, if the database 432 reflects that an assertion 422 of the target 416 is

present in association with the transaction ID 428, and also that any optional criteria are met,

WO 2004/049137 PCT/US2003/037954
49

in a step 510 an appropriate reply for this case is made to the request.

Note, the replies and the nature of verification can also take many forms here. For
instance, the reply can simply verify that the target 416 asked for and was provided the
decryption key 430 for the subject transaction 424. Alternately, if the request asks and the
embodiment permits, the reply can inform how often and when the target 416 was provided
the decryption key 430. The reply can also include the decryption key 430, presumably only
in appropriate circumstances. Or the request can include the encrypted transaction 424 and
the reply can include the decrypted transaction 424, again presumably only in appropriate
circumstances.

Finally, in a step 512, the process 500 ends. The target 416 is now unable to plausibly
repudiate the transaction 424.

As for auditing the passage of transactions 424 between sources 414 and targets 416,
the database 432 will contain extensive data suitable for this. As long as such data is stored
with timestamps and remains in the database 432, responding to audit requests should be a
straightforward task of lookup and report generation.

While various embodiments have been described above, it should be understood that
they have been presented by way of example only, and not limitation. Thus, the breadth and
scope of a preferred embodiment shouldnot be limited by any of the above described
exemplary embodiments, but should be defined only in accordance with the following claims

and their equivalents.
INDUSTRIAL APPLICABILITY

The present invention, which has been illustrated herein with the the security server
system 210, the communication system 310, and the communication system 410 as examples,
is well suited for application in current network environments such as the Internet.

The Internet, in particular, has been widely regarded as a wild frontier, largely
untamed and unregulated, and where one should proceed with caution. It is also widely
considered to be an environment where rapid change, limited understanding, and poor
implementations of technology have left even the presumably best prepared at risk.
Regardless of the extent to which these concerns are actually true, it is incontestable that
there is an existing and growing crises of confidence when it comes to the security of

communications via the Internet.

WO 2004/049137 PCT/US2003/037954
50

The present invention provides message protection to achieve confidentiality,
integrity, or both; to implement business processes using key server events; and to implement
nonrepudiation and audit using authentication assertions and key servers.

The invention is easy to use by parties sending communications (e.g., messages and
transactions) as well as parties receiving such communications. These communicating parties
may run a simple software module on whatever hardware they may be using, e.g., personal
computer, Internet appliance, etc.

The present invention notably overcomes user complexities of prior art systems. The
major security element is making conversation keys available to any user who has
authenticated by any means sufficient to the key server. This could be a simple password,
digital certificates, biometric, etc. This simplicity is in marked contrast to the predominant
current public-private key scheme, wherein senders and receivers must resort to directories of
one another's certified public keys, and all parties must be pre-registered and present in such
directories (plural, because there are a number of competing operators of such systems). The
currently predominant scheme is also not well liked because of reasons beyond its initial set-
up burden. It uses complex keys, often having hundreds of digits, and thus not able to be
memorized and usable away from a system which has some means to access such complex
pre-stored keys. For example, the only practical way to-use a public-private key system at
public kiosks is for users to employ a hardware:aid for key storage, such as a smart card. The
embodiments of the invention do not require hardware aids (although they may optionally use
such), and they do not necessarily "tether" users to only a few pre-set systems.

The present invention is also easily and economically implement able in the currently
existing Internet environment. It employs little or no additional materials. The security server
or key server may even be incorporated onto other server hardware. Constructing
embodiments of the invention is also within the range of skills of many currently practicing
in the software and communications arts. The invention also, notably, requires no changes in
the underlying Internet environment in which it may work. Between senders and receivers,
communications appear and are handled essentially as conventional ones, traveling via
conventional routes and using essentially standard equipment.

The present invention also particularly addresses the growing needs of enterprises and
other organizations to provide collaborative communications. Using the security server
system 210 to illustrate this, we have shown how e-mail, instant messaging, video-
conferencing, multi-party document editing and, for that matter, virtually any message 218

having a message header 222 and a message content 224 can be secured. Conversations can

WO 2004/049137 PCT/US2003/037954
51

be carried out by, potentially, large numbers collaboration participants 212, in which many
messages 218 on a related topic are securely and efficiently exchanged. The collaboration
participants 212, alternatingly, can be the source and destination of the messages 218 from
one another in such collaborative conversations. The security server system 210 maintains a
high level of security during the conversations, securing the message contents 224 and,
optionally, also the message headers 222. It can also efficiently handle collaboration
participants 212 joining and departing the conversations, thus providing an ability to scale
that prior art systems cannot match.

The present invention has also been illustrated herein with the communication system
310 as an example of how well suited it is for implementing business processes using key
server events. As has been described, the invention uses controlling events 340 set by an
originator 314 of a communication 324, or by another party setting these on behalf of the
actual originator 314. The communication 324 is then sent encrypted to one or more
recipients 316. As the recipients 316 seck to view the communication 324, subject to the
controlling events 340, positive events 342 are noted. Alternately, if one or more of the
recipients 316 fails to view the communication 324, due to a failure to even try or due to a
failure to conform with the controlling events 340 allowing then to view, negative events 344
are noted.

The ability to review the positive events 342 and the negative events 344, or to trigger
actions based on them, has considerable utility. For example, originators 314 representing
businesses and other entities desiring to communicate with recipients 316 can now specify
with controlling events 340 when the communication 324 can first be viewed, how often it
can be viewed, and when it can no longer be viewed. Based on the positive events 342,
originators 314 and other appropriate parties can determine if, when, and how many times
each recipient 316 has viewed the communication 324. Alternately, based on the negative
events 342, originators 314 and other appropriate parties can determine the absence of any
attempt by a given recipient 316 to view the communication 324, or any failed attempts by
recipients 316 to view the communication 324.

Revisiting the example in the Background Art section of a financial brokerage
company needing to determine whether a customer has received notice of a margin call, we
can now see how easily the present invention can serve where prior art systems fail. By virtue
of a customer (recipient 316) creating a positive event 342 automatically when they view the
notice (the communication 324, say, an e-mail), the customer is not burdened with having to

affirmatively acknowledging receipt. Also, the brokerage company (originator 314) can

WO 2004/049137 PCT/US2003/037954
52

immediately be appraised that the notice has been viewed, and not be burdened by taking
unnecessary additional action. Alternaitely; be virtue of a customer creating a negative event
342 automatically when they fail to view the notice within a set period (a controlling event
340), the brokerage company can take appropriate action.

The present invention has also been illustrated herein with the communication system
410 as an example of how well suited it is for implementing nonrepudiation and audit using
authentication assertions and key servers. As has been described, prior art approaches have
still not addressed all concerns with the use digital communications. In particular, it has not
addressed the two particularly vexing problems of transaction nonrepudiation and auditing.

The present invention is largely transparent to transacting parties, transaction sources
and targets. The authenticated identities of transacting parties are used to implement
nonrepudiation by either party. Additionally, by persistently storing information from or the
complete authentication assertion of the transacting party at a key server, both nonrepudiation
and audit may be provided using the same system. In contrast, existing technologies (e.g.,
Public Key Infrastructure, PKT) burden their users with maintaining a private key and actively
using it for producing a signature. Additionally, a party needing to verify a transaction must
have a copy of, or otherwise retrieve the digital certificate of the transaction signer.
Moreover, such existing technologies do not provide a single service for both nonrepudiation
and audit.

The present invention may still interoperate with PKI, but it does not require it. A
transaction source, target, or both can use any method, including PKI, to provide
nonrepudiation of origin and receipt. Furthermore, the method the transaction source uses
may be the same or different than the method the transaction target uses. In contrast, PKI-
based technologies require the use of an infrastmcture that is trusted by all parties
(transaction source and target). Also, non-PKI technologies (e.g., storing a transaction log in
a database) use a completely different mechanism and do not interoperate with PKI.

The present invention is able to provide varying degree of strengths. It associates the
degree of strength with the authentication of the transacting party. By increasing the strength
of authentication (e.g., from a user ID/password to a two factor authentication), the
transacting party dynamically and automatically increases the strength of nonrepudiation. In
contrast, most prior art technologies only offer a single level of strength for nonrepudiation.
For example, in PKI the strength of nonrepudiation is equivalent to the assurance level of the
underlying certificate. Here a party can only change the strength by using a different

certificate, having a different level of assurance.

WO 2004/049137 PCT/US2003/037954
53

The present invention is also able to enforce specific trust rules. It enables flexible
trust rules that follow business relationships. For example, an organization can enforce the
rule of authenticating each transacting party, thereby enforcing a rule of only trusting its own
authentication assertions. Or, an organization can enforce a rule of owning and maintaining
its own key server, thereby enforcing a rule of only trusting its own audit server. In contrast,
most prior art technologies provide rigid trust rules for nonrepudiation and audit. Using PKI
again as an example, in a system based on it the party that verifies the transaction must trust
the certificate of the signer. In prior art non-PK1I based systems, the verifier must trust the
system that keeps the transaction logs.

For the above, and other, reasons, it is expected that the present invention will have
widespread industrial applicability and it is expected that the commercial utility of the present

invention will be extensive and long lasting.

WO 2004/049137 PCT/US2003/037954

54
N THE CLAIMS
What is claimed is:
1. A system for securely communicating a message between a plurality of participants,

wherein the message has a message header and a message content, the system comprising:
a message router that connects the participants via a network and delivers the message
between the participants based on the message header; and
a key server that stores and releases conversation keys to the participants, wherein
said conversation keys are used to apply protection to the message content of

the message.

2. The system of claim 1, wherein said protection includes at least one member of the set

consisting of encrypting and hashing.

3. The system of claim 1, wherein:
the participant sending the message is a source participant;
the participants receiving the message are destination participants; and
- said key server releases a new said conversation key to said source participant based..
. on request by said source participant, thereby permitting said source
participant to protect the message content of the message with said new said

conversation key.

4. The system of claim 3, wherein said key server releases a plurality of said new said
conversation keys based on a single said request, thereby avoiding having to ask said key

server to release a said conversation key every time one is desired.

5. The system of claim 1, wherein:
the participant sending the message is a source participant;
the participants receiving the message are destination participants; and
said key server accepts a new said conversation key from the said source parﬁcipant
based on request by said source participant, thereby providing said key server
with said conversation key for storage and later release to a said destination

participant.

WO 2004/049137 PCT/US2003/037954
55

6. The system of claim 5, wherein said key server accepts a plurality of said new said
conversation keys based on a single said request, thereby avoiding having to ask said key

server to provide a said conversation key every time one is desired.

7. The system of claim 1, wherein said key server releases an existing said conversation
key to a said destination participant based on request by said destination participant and
authorization by said source participant, thereby permitting said destination participant to

process the message content of the message with said existing said conversation key.

8. The system of claim 1, wherein a unique identifier is associated with said
conversation key, thereby permitting said destination participants to provide said identifier to
said key server when requesting a particular said conversation key to process the message

content of the message.

9. The system of claim 1, wherein said message router creates, stores, and releases
header keys to the participants, wherein said header keys are used to protect the message

header of the message.

10.. The system of claim 9, wherein said header keys are based on a member of the set

consisting of secure socket layer and transport layer security.

11. The system of claim 9, wherein said header keys are different for each of the
participants.
12. The system of claim 11, wherein:

a conversation is an exchange of a plurality of topically related instances of the
messages;

a conversation participant is a member of the set of the participants participating in
said conversation;

said conversation participants maintain at least one persistent connection with the
message router for the duration of a session in which they participate in a said
conversation; and

said header keys are different for each said session.

WO 2004/049137 PCT/US2003/037954
56

13. The system of claim 1, wherein said message router is able to receive from one of the
participants and communicate to said key server an instance of the message requesting a said
conversation key and said message router is further able to receive from said key server and
communicate to one of the participants an instance of the message that contains a said
conversation key, thereby facilitating said key server releasing said conversation keys to the

participants.

14. The system of claim 13, wherein:
an instance of the message requesting a said conversation key is a key request
message; and
said message router makes a determination whether to communicate said key request
message to said key server based on the message header of said key request

message.

15. The system of claim 13, wherein:

a conversation is an exchange of a plurality of topically related instances of the
messages;

a conversation participant is a member of the set the participants participating in said

- - conversation;

a joining participant is a potential said conversation participant seeking to participate
in said conversation;

a departing participant is an existing said conversation participant seeking to no
longer participate in said conversation;

said key server can create, store, and release one or more said conversation keys that
protect the message content of subsets of the messages in said conversation;
and

said message router instructs said key server to henceforth release a new said
conversation key based on whether said conversation has a said joining

participant or a said departing participant.

WO 2004/049137 PCT/US2003/037954
57

16. A method for securely communicating a message between a plurality of participants
in a network, wherein the participant sending the message is a source participant and the
participants receiving the message are destination participants and the message has a message
header and a message content, the method comprising:

(a) at the source participant:

(1) obtaining a conversation key;

(2) applying protection to the message content of the message based on said
conversation key, wherein said protection includes at least one member
of the set consisting of encrypting and hashing; and

(3) sending the message to the destination participants via the network; and

(b) at the destination participants:

(1) receiving the message from the source participant via the network;

(2) obtaining said conversation key from a key server also in the network; and

(3) processing the message content of the message based on said conversation
key, wherein said processing includes at least one of decrypting and

hash analysis. -

17. The method of claim 16, wherein said conversation key is created at said key server,

and communicated to the source participant in said step (a)(1).

18. The method of claim 17, wherein a plurality of said conversation keys are created at
said key server and communicated to the source participant concurrently, thereby avoiding

having to ask said key server to release a said conversation key every time one is desired.

19. The method of claim 16, wherein said conversation key is created at the source

participant, and communicated to said key server before said step (b)(2).

20. The method of claim 19, wherein a plurality of said conversation keys are created at
the source participant and communicated to said key server concurrently, thereby avoiding
having to ask the source participant to provide a said conversation key every time one is

desired.

WO 2004/049137 PCT/US2003/037954
58

21. The method of claim 19, further comprising:
before said step (a)(1), associating a unique identifier with said conversation key at
said key server; and
contemporaneous with said step (b)(2) for each of the destination participants,
releasing said conversation key to the respective destination participant based

on said unique identifier.

22. The method of claim 19, further comprising:

before said step (a)(3), protecting the message header of the message based on a
header key;

after said step (a)(3), before said step (b)(1), and at a message router also in the
network:
receiving the message;
processing the message header based on said header key;
protecting the message header based on a different said header key; and
sending the message onward to the destination participants via the network;

and
after said step (b)(1), processing the message header of the message based on said

different said header key: ..

23. The method of claim 22, wherein at least one of said header keys are based on a

member of the set consisting of secure socket layer and transport layer security.

24. The method of claim 22, wherein all said header keys are different for each of the
participants.

25. The method of claim 24, wherein a conversation is an exchange of a plurality of
topically related instances of the messages and a conversation participant is a member of the
set of the participants participating in said conversation, and the method further comprising:
maintaining at least one persistent connection with said message router for the
duration of each session in which a said conversation participant participates
in a said conversation; and

employing a different said header key for each said session.

WO 2004/049137 PCT/US2003/037954
59

26. The method of claim 19, wherein:
said step (a)(1) and said step (b)(2) include the participants requesting said
conversation key from said key server via a message router also in the

network.

27. The method of claim 26, wherein an instance of the message requesting a said
conversation key is a key request message, and the method further comprising:
said message router determining whether to communicate said key request message to

said key server based on the message header of said key request message.

28. The method of claim 26, wherein a conversation is an exchange of a plurality of
topically related instances of the messages and a conversation participant is 2 member of the
set of the participants participating in said conversation, a joining participant is a potential
said conversation participant seeking to participate in said conversation, and a departing
participant is an existing said conversation participant seeking to no longer participate in said
conversation, and the method further comprising:

said message router instructing said key server to henceforth release a new said

conversation key based on whether said conversation has a said joining

participant or a said departing participant.

29. A system for determining communications events, comprising:
a key server to release keys to communicating parties, wherein said keys are
encryption keys to encrypt or decryption keys to decrypt the communications
and said communicating parties include originators seeking to create and
recipients seeking to view the communications; and
for each of the communications, said key server also to:
assign an identifier;
store a record in a database that includes said identifier, a respective said
decryption key, and respective controlling events;

receive zero, one, or more requests for said decryption key, wherein said
requests include said identifier; and

determine at least one member of the set consisting of positive events and
negative events based on said controlling events and how many said

requests are received or when any said requests are received.

WO 2004/049137 PCT/US2003/037954
60

30. The system of claim 29, wherein said encryption key and said decryption key are the

same.

31. The system of claim 29, wherein said encryption key and said decryption key are

different.
32. The system of claim 29, wherein said key server is able to generate said keys.

33. The system of claim 29, wherein said key server is able to receive said keys from an ’

outside source.
34. The system of claim 33, wherein said outside source is a said originator.

35. The system of claim 29, wherein said key server requires an assertion before releasing

said keys.

36. . The system of claim 29, wherein at least:some of said controlling events are defined

based on attributes provided by said originator.

37. The system of claim 29, wherein at least some of said controlling events are pre-

stored in said database in anticipation of use in later said communications.

38. The system of claim 37, wherein at least some of said controlling events are

determined based on attributes received from a party other than a said originator.

39. The system of claim 29, wherein a said controlling event specifies a time after which
a said decryption key is made releasable, thereby specifying a delay before a said recipient

can decrypt a said communication.

40. The system of claim 29, wherein a said controlling event specifies a time after which
a said decryption key is made un-releasable, thereby specifying an expiration after which a

said recipient can no longer decrypt a said communication.

WO 2004/049137 PCT/US2003/037954
61

41. The system of claim 29, wherein a said controlling event specifies how many times a
said decryption key should be released to a said recipient, thereby limiting the times said

recipient can decrypt a said communication.

42. The system of claim 29, wherein:
said key server requires an assertion for a said recipient; and
said controlling events specify at least one condition that must be met before releasing

a said decryption key to said recipient.

43. The system of claim 29, wherein said key server communicates data about at least one
of said positive events or said negative events to at least one of said originator and another

entity.

44. The system of claim 43, wherein said another entity is a notification server.

45. A method for determining communication events, the method comprising:

(a) receiving a first request for a resource ID to identify the communication, wherein
said first request includes at least one identity of an intended recipient of the
communication;

(b) defining at least one controlling event, wherein said controlling events include
said at least one identity;

(c) providing said resource ID in reply to said first request;

(d) storing said resource ID, said controlling events, and a decryption key to decrypt
the communication;

(e) monitoring for a second request for said decryption key, wherein said second
request includes said resource ID and identifying information for a putative
said intended recipient;

(f) if a said second request is received, then determining whether it conforms with
said controlling events, and
(1) if so:

(1) providing said decryption key in reply to said second request; and
(i1) storing said identifying information and a positive event in
association with said resource ID;

(2) else, storing a negative event in association with said resource ID; and

WO 2004/049137 PCT/US2003/037954
62

(g) alternately, if no said second request is received for a said intended recipient, then

storing a negative event in association with said resource ID.

46. The method of claim 45, wherein said step (c) includes providing an encryption key.

47. The method of claim 46, wherein said encryption key and said decryption key are the

same.

48. The method of claim 46, wherein said encryption key and said decryption key are
different.

49. The method of claim 45, wherein said first request includes an authentication
assertion and said step (a) includes verifying said authentication assertion before providing

said resource ID in said step (c).

50. - The method of claim 45, wherein at least some of said controlling events are defined

. based on attributes provided by an originator of the communication.

51. . The method of claim 45, wherein at least some of said controlling events are pre-

stored before said step (a) in anticipation of later use in the communication.

52. The method of claim 51, wherein at least some of said controlling events are

determined based on attributes received from a party other than said originator.

53. The method of claim 45, wherein a said controlling event specifies a time after which

said decryption key is made releasable to a said recipient.

54. The method of claim 45, wherein a said controlling event specifies a time after which

said decryption key is made un-releasable to a said recipient.

55. The method of claim 45, wherein a said controlling event specifies how many times

said decryption key should be released to a said recipient.

WO 2004/049137 PCT/US2003/037954
63

56. The method of claim 45, wherein said second request includes an authentication
assertion including said identifying information and step (f) includes verifying said

authentication assertion before providing said decryption key.

57. The method of claim 45, further comprising a step (h) communicating data about at
least one of said positive events or said negative events to at least one of an originator of the

communication and another entity.
58. The method of claim 57, wherein said another entity is a notification server.

59. A method for a transaction source and a transaction target to exchange a transaction
that cannot be repudiated, the method comprising:
(a) receiving a first request for a transaction identifier to identify the transaction,
wherein said request includes a source authentication assertion;
(b) verifying said source authentication assertion;
(c) storing said transaction identifier and information from said source authentication
assertion, thereby establishing information making the transaction source
- unable to plausibly repudiate once it encrypts and sends the transaction;
(d) providing said transaction identifier in reply to said first request so that the
. transaction and said transaction identifier can be sent to the transaction target;
(e) receiving a second request for a decryption key to decrypt the transaction once it
has been received by the transaction target, wherein said second request
includes said transaction identifier and a target authentication assertion;
(f) verifying said target authentication assertion;
(g) storing information from said target authentication assertion with the transaction
1dentifier; and
(h) providing said decryption key in reply to said second request so that the
transaction can be decrypted, thereby establishing information making the
transaction target unable to plausibly repudiate being a recipient of the

transaction.

60. The method of claim 59, wherein said step (d) includes also providing an encryption

key to encrypt the transaction.

61.

62.

63.

WO 2004/049137 PCT/US2003/037954

64
The method of claim 59, the method further comprising:

(i) receiving an information request for source information about the transaction
source, wherein said information request includes said transaction identifier;

() retrieving at least some of said information from said source authentication
assertion stored in said step (c) with said transaction identifier and determining
said sourcé information therefrom; and

(k) providing said source information in reply to said information request.

The method of claim 59, the method further comprising:

(1) receiving an information request for target information, wherein said information
request includes said transaction identifier and information identifying the
transaction target;

() determining if said information identifying the transaction target matches with any
said information from said target authentication assertion stored with the
transaction identifier stored in said step (g) and determining said target
information therefrom; and

(k) providing said target information in reply to said information request.

A method for establishing a transaction as nonrepudiate able by a transaction source

that is the origin of the transaction, the method comprising:

64.

(a) receiving a request for a transaction identifier to identify the transaction, wherein
said request includes a source authentication assertion;

(b) verifying said source authentication assertion;

(¢) storing said transaction identifier and information from said source authentication
assertion; and

(d) providing said transaction identifier in reply to said request, thereby establishing
information making the transaction source unable to plausibly repudiate being

the origin of the transaction.

The method of claim 63, wherein said step (d) includes also providing an encryption

key to encrypt the transaction.

WO 2004/049137 PCT/US2003/037954
65

65. The method of claim 63, the method further comprising:
(e) receiving an information request for source information about the transaction
source, wherein said information request includes said transaction identifier;
(f) retrieving at least some of said information from said source authentication
assertion stored in said step (c) with said transaction identifier and determining
said source information therefrom; and

(&) providing said source information in reply to said information request.

66. The method of claim 65, wherein said source information indicates who the

transaction source actually is.

67. The method of claim 65, wherein:
said information request received in said step (e) also includes information identifying
a party believed to be the transaction source; and
said source information provided in said step (g) indicates merely whether said party
is the transaction source, thereby responding to said information request

without specifically identifying the transaction source.

68. The method of claim 65, wherein:
said step (c) includes also storing a decryption key usable to decrypt the transaction;
and
said step (g) includes also providing said decryption key, thereby facilitating
decryption of the transaction by a party making said information request even

when said party is not the transaction source or a target of the transaction.

69. The method of claim 65, wherein:
said information request received in said step () also includes the transaction; and
said step (g) includes decrypting the transaction before providing said source

information in reply to said information request.

70. The method of claim 69, wherein:
said information request received in said step (e) also includes information identifying

a party believed to be the transaction source; and

WO 2004/049137 PCT/US2003/037954
66

said source information provided in said step (g) indicates merely whether said party
is the transaction source, thereby responding to the second request without

specifically identifying the transaction source.

70. The method of claim 69, wherein said step (g) includes also providing the transaction
in decrypted form in said reply to said information request, thereby facilitating a party
making said information request being able to confirm the content of the transaction even

when said party is not the transaction source or a target of the transaction.

71. A method for establishing a transaction as nonrepudiate able by a transaction target
that is a recipient of the transaction, wherein a transaction identifier identifying the
transaction and a decryption key usable to decrypt the transaction have been pre-stored, the
method comprising:
(a) receiving a request for the decryption key, wherein said request includes the
transaction identifier and a target authentication assertion;
(b) verifying said target authentication-assertion;
(c) storing information from said target authentication assertion with the transaction
identifier; and
(d) providing the decryption key in reply to said request, thereby establishing
information making the transaction target unable to plausibly repudiate being a

recipient of the transaction.

72. The method of claim 71, the method further comprising:

(e) receiving an information request for target information, wherein said information
request includes said transaction identifier and information identifying the
transaction target;

() retrieving at least some of said information from said target authentication
assertion stored in said step (c) with said transaction identifier and determining
said target information therefrom; and

(g) providing said target information in reply to said information request.

73.

74.

75.

WO 2004/049137 PCT/US2003/037954

67

The method of claim 72, wherein:
said step (g) includes also providing said decryption key, thereby facilitating
decryption of the transaction by a party making said information request even

when said party is not the transaction source or a transaction target.

The method of claim 72, wherein:
said information request received in said step (e) also includes the transaction; and
said step (g) includes decrypting the transaction before providing said identity

information.

The method of claim 74, wherein said step (g) includes also providing the transaction

in decrypted form in said reply to said information request, thereby facilitating a party

making said information request being able to confirm the content of the transaction even

when said party is not the transaction source or a transaction target. -

76.

A system for a transaction source and a transaction target to exchange a transaction

that cannot be repudiated, comprising:

a computerized key server;

said key server suitable for receiving a first request via a network for a transaction
identifier to identify the transaction, wherein said first réquest includes a
source authentication assertion;

said key server suitable for receiving a second request via said network for a
decryption key usable to decrypt the transaction, wherein said second request
includes said transaction identifier and a target authentication assertion;

said key server suitable for verifying said source authentication assertion and said
target authentication assertion;

said key server suitable for storing said transaction identifier, information from said
source authentication assertion, and information from said target
authentication in association in a database;

said key server suitable for providing a first reply to said first request via said network
that includes said transaction identifier; and

said key server suitable for providing a second reply to said second request via said
network that includes said decryption key, thereby establishing information

making the transaction source unable to plausibly repudiate once it encrypts

WO 2004/049137 PCT/US2003/037954
68

and sends the transaction and also making the transaction target unable to

plausibly repudiate once it is provided said decryption key.

77. The system of claim 76, wherein said key server is further suitable for providing an

encryption key to encrypt the transaction in said first reply.

78. The system of claim 76, wherein:

said key server is further suitable for receiving an information request for source
information about the transactioil source, wherein said information request
includes said transaction identifier;

said key server is further suitable for retrieving said information from said source
authentication assertion stored with said transaction identifier from said
database and determining said source information therefrom; and

said key server is further suitable for providing said source information in reply to

said information request.

79. The system of claim 76, wherein:

said key server is further suitable for receiving an information request for target,
wherein said information request includes said transaction identifier and
information identifying the transaction target;

said key server is further suitable for determining if said information identifying the
transaction target matches with any said information from said target
authentication assertion stored with the transaction identifier and determining
said target information therefrom; and

said key server is further suitable for providing said target information in reply to said

information request.

80. A system for establishing a transaction as nonrepudiate able by a transaction source
that is the origin of the transaction, comprising:
a computerized key server;
said key server suitable for receiving a request via a network for a transaction
identifier to identify the transaction, wherein said request includes a source
authentication assertion;

said key server suitable for verifying said source authentication assertion;

WO 2004/049137 PCT/US2003/037954
69

said key server suitable for storing said transaction identifier and information from
said source authentication assertion in a database; and

said key server suitable for providing a reply via said network that includes said
transaction identifier, thereby establishing information making the transaction

source unable to plausibly repudiate once it encrypts and sends the transaction.

81. The system of claim 80, wherein said key server is further suitable for providing an

encryption key to encrypt the transaction in said reply.

82. The system of claim 80, wherein:

said key server is further suitable for receiving an information request for source
information about the transaction source, wherein said information request
includes said transaction identifier;

said key server is further suitable for retrieving information from said source
authentication assertion stored with said transaction identifier from said
database, and determining said source information therefrom; and

said key server is further suitable for providing said source information in reply to

said information request.

83. A system for establishing a transaction as nonrepudiate able by a transaction target
that is a recipient of the transaction, wherein a transaction identifier identifying the
transaction and a decryption key usable to decrypt the transaction have been pre-stored in a
database, comprising:
a computerized key server;
said key server suitable for receiving a request via a network for the decryption key,
wherein said request includes the transaction identifier and a target
authentication assertion;
said key server suitable for verifying said target authentication assertion;
said key server suitable for storing information from said target authentication
assertion with the transaction identifier in the database; and
said key server suitable for providing a reply via said network that includes the
decryption key, thereby establishing information making the transaction target

unable to plausibly repudiate.

WO 2004/049137 PCT/US2003/037954
70

84. The system of claim 83, wherein:
said key server is further suitable for receiving an information request for target
information, wherein said information request includes said transaction
identifier and information identifying the transaction target;
said key server is further suitable for retrieving at least some of said information from
said target authentication assertion stored with said transaction identifier and
determining said target information therefrom; and

said key server is further suitable for providing said target information in reply to said

information request.

WO 2004/049137 PCT/US2003/037954
1/17

Receiver

16, 16b

Security Server

FIG. 1

PCT/US2003/037954

WO 2004/049137

2/17

omlﬂ

ec Old

/r Becg

~HICH ¥ Py

BT HATPUDEND (OGT TOWy IBDUDE D unop

%

-

09 Ap0gd

ac i0as uAln G| Rtgng

% =]

i Y Y

G JUG R TR e 'r__ et} “

P
=F S TN B OE

_
-

c9

Q.L w PATLL AR _wj
- A AR I
- e W o ML H

IR ==

digd FONOF S0l PuWBg wesul ws)

3 Ed |

i

Eﬂl , - ‘ ~ N BxWhno.mH;mmw«mMmm\ wmh e hWWWW.M

PCT/US2003/037954

WO 2004/049137

317

QN O_u_

[

&

D BT SR ASPUBEGT f GAT 100, JRPUSE 0 UYop

ipog

|Oas pesep 5@_ sypatens

: S

G VRN =R au:__ﬁmnaa”}_ u

L acs

79

=1

v

Fy

, Z.mcaw.wlmwﬂw @

ik

mw.wm “,&« ,....ﬁm.,mm _umz“w - h“ H N@

- | = ™| anssg umm@\ - Mu\\

Sl B pesul MeR rE s [

{ika | yoiy) abestay - WwI0as g o

PCT/US2003/037954

WO 2004/049137

4/17

0g

¢ Old

kil

<HIB5E " BA T Eploe P Ao U RenD : DA TEUD: 2BPUDS) uyop

09 Apog|

Vid 2058 OOURIGH DRa s

REE A i g

8G — >

93 A MO SEENRIRIEUSIeIRENE, Hejd
QQ - NOJ*IATSPUBIJASPUSIEDL wold

- 12l

& |8 mfﬁ; ?m@ﬁm%&w du oy Hdeddgy | &0

disd suoIny Sedl puly pesul wsl 1w

[3x=] ymyl &mmawww.« iswss ang ,)

" vg

WO 2004/049137 PCT/US2003/037954
517

18
26 Pre-installed <« 44
or or

User-installed <« 46
20 Plug-in <« 46a
Applet <« 46b

26 é Script <« 46c
Other <« 46d

Configuration 4—/_ 48
Encrypt Subject <« 48a
Cache Password <+ 48b
FIG. 3 Cache Time <« 48
' Expiration <« 48
Maximum Reads <« 48e

Other <« A8

WO 2004/049137

6/17

PCT/US2003/037954

AN
72

2 2
[\
72a
v
FIG. 7

124 _| Obtain msg
data
126 Optain pwd
128 Gen XML doc
130™_| Commto
server
1827 Authentication
184 Store DB data
136 | Reply to client
138 __| Gen secure
msg
140 Send

|8<—><>

FIG. 4

FIG. 8

70

Obtain pwd

| 154

Y

Extractions

| — 156

v

Pwd to server

| 158

v

Authentication

| 160

Y

Key from
server

| —162

Y

Decryption

| 164

Verification

| 166

Y

Presentation

| 168

WO 2004/049137
717

PCT/US2003/037954

103

i

(UserAliases

4 ‘Ex:mﬂafs&iresa;

Distibtions

i

e r—"

[103a-b

TListembess

FIG. 5

IMercheraddress
Administrabe

t]
i

104

[100

WO 2004/049137

PCT/US2003/037954

8/17

FIG. 6a: Basic user information table (Users)

Column Name [Type ﬂ)escription

Userld integer |Internal user identifier

Password raw Hash of user’s password

Salt integer |Salt added to password before hash
Status varchar | User’s current registration/usage status

FIG. 6b: Sent messages table (SentMail)

Column Name [Type Description
Messageld integer | Unique email identifier
Senderld integer | Internal sender identifier (ref to Users)
DateSent date Time and date record entered
NumRecipients [integer |Number of users message was sent to
MessageKey raw Key used to encrypt/decrypt message
MaxDeliveries |integer |Maximum times key is delivered to each user
Expiration date Time after which message should

not be delivered
SealSalt integer | Secret salt added to hash to form seal
Subject varchar | The subject of the message
LastRead date The date the message was last read
DeliverAfter date The date after which the message may be read

FIG. 6¢: Email destinations (Receivers)

Column Name Type Description

Messageld integer | Email message’s identifier (ref to SentMail)
ReceiverAddr integer | Receiver’s e-mail address

FirstRequest date Time the receiver first attempts to read
NumRequests integer | Number of times receiver requested to read

WO 2004/049137 PCT/US2003/037954
9/17

FIG. 6d: Alternate user identities (UserAliases)

Column Name IType IDescription

EmailAddress varchar | Alternate email address
Userld integer |Reference to Users table.

FIG. 6e: Distribution list master (Distributions)

Column Name |Type Il)escription

Distributionld integer | Unique list identifier
Ownerld integer | User who owns list (ref to Users).
ListName varchar | Email address of this list

FIG. 6f: Distribution list members (ListMembers)

Column Name |Type l])escription

Distributionld integer | Reference to Distributions
MemberAddress |varchar |Name of alias on the list
Administrate char Y=member can update list, N=cannot

WO 2004/049137 PCT/US2003/037954
10/17

210
Key Server 216 f

Participant Participant

220
Conversation Key
" Request/Reply

Message Router (Hub)

Participant

Participant

FIG. 9

PCT/US2003/037954

WO 2004/049137

11/17

acie

0ce 9¢c
vce J \| ¥H \l — ¢c¢
A A \I

uoyeulseq

jusjuo)n lspesH

»Iw_‘m 8L¢
vee

uopeunseq

0¢ce

Nad

My

jusjuo) l2pesH

(anH)

0l ©Old

oce
¢ce

Je)noy abessapy

8L —> Jusuoy | Jepesy

uoneunsaqg usjuon JopesH

vzZ Mo Py 22z
aziz s1z.3 vfomm rfomm

20IN0g

ecle

WO 2004/049137 PCT/US2003/037954
12/17

——
Database
332

Key Server
320

Originator —— N Recipient
312 314 { Communication 324 J —P 312 316

Authentication
Authority

318

FIG. 11

Database
332

Controlling
Events
352

Key Server
320

Originator

312, 314

FIG. 12

WO 2004/049137 PCT/US2003/037954
13/17

Database

332 Positive

Events

),— 354

d

Notification
Server

346

Key Server
320

Recipient
FIG. 13 312, 316
———
Negative
Notification 332
Server A Events
346 ~
~ \j’ 358
~
~
~
~
~
~
~
Recipient

FIG. 14 312, 316

WO 2004/049137 PCT/US2003/037954
‘ 14/17

II
Database
432

Key Server
420

Source (o) Target .
412, 414 \ Trans 424 412, 416

Authentication
Authority

418

FIG. 15

WO 2004/049137

15/17
452
Receive 18t
req with
assertion [454
Respond,
IOg, etc. L= 458
Y 456
Store t-id, ¢
encrypt key, s
& assert info 460 464 Receive 2nd
"\ req with t-id
L & assertion
Reply to req |
with t-id & 2l
462
encrypt key 466
Store assert
470 info
with t-id
Reply to re
FIG. 16 ply q
4727 with decrypt
key

PCT/US2003/037954

[450

r 468

Respond,
log, etc.

WO 2004/049137 PCT/US2003/037954
16/17

f 480 500 ‘1

502

482
Receive req Recsive req
; for receipt
or source 504 info with
info with L transaction
transaction 484
. I & target
identification . O
identification
* 508
Retreive 506 N_ |Reply to req

. Delivered
source info | \— 486

!

accordingly

Reply to req
' 510 —| Reply to req
W'this%urce [488 accordingly ?

FIG. 17 FIG. 18

WO 2004/049137 PCT/US2003/037954
17/17

No | Field Type | Description

1. | ResourcelD String | A unique ID assigned to this communication

2. ResourceType Integer | The application type (e.g., email, instant messaging, etc.)

3. ResourceKey Binary | The encryption key

4. KeySize Integer | The size of the key

5. KeyCreator String | The ID of the key creator

6. KeyOwner String | The ID of the key owner

7. DateCreated Date The date and time when the key was created

8. | ReleaseAfter Date | The date and time before which the key should not be
released (per recipient)

9. | ExpireOn Date | The date and time after which the key should not be
released (per recipient)

10. | LastRelease Date The last date time the key was released (per recipient)

11. | ExpectedRequest | Date | The date and time by which the key is expected to be
requested (per recipient)

12. | NumReleased Integer | The number of times the key was released (per
recipient)

13. | NumReleases Integer | The number of times the key should be released (per

recipient)

TABLE 1

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

