(54) Titre : FORMULATION A BASE DE TROpane MARQUE A L'IODE
(54) Title: LABELED IODINATED TROPANE FORMULATION

(57) Abrégé/Abstract:
A diagnostic formulation is provided comprising a tropane having a radioactive concentration of at least 1.6 mCi/mL at least about 51 hours post creation. The diagnostic formulation optionally comprises a radiolabeled dopamine transporter (DAT) ligand useful in the diagnosis of Parkinson's disease (PD). One example of a radiolabeled dopamine transporter (DAT) ligand is [123-Iodine]-2β-carboxmethoxy-3-β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane.
(1) International Application Number
WO 2009/055922 A8

(5) International Classification:
C07D 451/02 (2006.01)
A61K 5/00 (2006.01)

(21) International Application Number:
PCT/CA2008/001916

(22) International Filing Date:
31 October 2008 (31.10.2008)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
60/984,163 31 October 2007 (31.10.2007) US

(71) Applicant (for all designated States except US):
ALSERES PHARMACEUTICALS, INC. [CA/US]; 85 Main Street, Hopkinton, MA 01748 (US).

(72) Inventors;

(75) Inventors/Applicants (for US only): STERZINGER, Chris [CA/CA]; c/o MDS Nordion, 4004 Westbrook Mall, Vancouver, British Columbia V6T2A3 (CA). FERREIRA, Carla [CA/CA]; c/o MDS Nordion, 4004 Westbrook Mall, Vancouver, British Columbia V6T2A3 (CA). LEYHL, David [CA/CA]; c/o MDS Nordion, 4004 Westbrook Mall, Vancouver, British Columbia V6T 2A3 (CA).

(74) Agent: RIDOUT & MAYBEE LLP; 4th Floor, 100 Murray Street, Ottawa, Ontario K1N 0A1 (CA).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): AR IPO (BW, GH, GM, KE, LS, MW, NZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(48) Date of publication of this corrected version:
9 July 2009

(54) Title: LABELED IODINATED TROPANE FORMULATION

(57) Abstract: A diagnostic formulation is provided comprising a tropane having a radioactive concentration of at least 1.6 mCi/mL at least about 51 hours post creation. The diagnostic formulation optionally comprises a radioabeled dopamine transporter (DAT) ligand useful in the diagnosis of Parkinson's disease (PD). One example of a radiolabeled dopamine transporter (DAT) ligand is [123-Iodine]-28-carbomethoxy-3-B-(4-fluorophenyl))-N-(3-iodo-B-allyl) nor tropane.
LABELED IODINATED TROPANE FORMULATION

RELATED APPLICATIONS

This Application claims the benefit of U.S. Provisional Application No. 60/984,163, filed October 31, 2007. The teachings of the above application are incorporated in their entirety herein by reference.

FIELD OF THE INVENTION

This invention is in the field of medicine and in particular diagnostics of neurological disorders. This invention includes a formulation comprising an aqueous solution comprising $[^{231}]\text{-}2\beta\text{-carbomethoxy-3}\beta\text{-}(4\text{-fluorophenyl})\text{-}N\text{-}(3\text{-iodo-E-allyl)}$ nortropane, wherein the solution comprises a radioactive concentration of at least about 18 mCi/mL, and particularly about 20 mCi/mL or more.

BACKGROUND OF THE INVENTION

Parkinson's Disease (PD) is a neurodegenerative movement disorder. Without being bound by any particular theory, PD is believed to be characterized by the loss of dopamine-producing neurons in the brain. The loss of dopamine-producing neurons is believed to begin long before symptoms of the disease actually present. Symptoms of PD are often similar to many other movement disorders. Consequently, misdiagnosis rates are high, with some reports of up to 50% misdiagnosis in the early stages. There is currently no available test that can clearly identify Parkinson's Disease, especially in early cases. A diagnostic for early stage PD has long been sought.

Without being bound by any particular theory, the dopamine transporter (DAT) is believed to play a significant rôle in physiological, pharmacological and pathological processes in the brain. The transport system is a primary mechanism for terminating the

The brain grouping formed by the caudate nucleus and the putamen is called the striatum. It constitutes the major target for the cortical afferents of the basal ganglia. The striatum reportedly has the highest levels of dopamine terminals in the brain. A high density of DAT is localized on dopamine neurons in the striatum and appears to be a marker for a number of physiological and pathological states. For example, in Parkinson's Disease, dopamine is severely reduced and the depletion of DAT in the striatum has been an indicator for Parkinson's disease (Schoemaker et al., *Naunyn-Schmeideberg's Arch. Pharmacol.* 1985, 329, 227-235; Kaufman and Madras, *Synapse* 1991, 9, 43-49). Consequently, early or pre-symptomatic diagnosis of Parkinson's Disease can be achieved by the quantitative measurement of DAT depletion in the striatum. (Kaufman and Madras, *Synapse* 1991, 9, 43-49). Simple and noninvasive methods of monitoring the DAT are quite important. Depletion could be measured by a noninvasive means such as brain imaging using a scintillation camera system and a suitable imaging agent (Frost et al., *Ann. Neurology* 1993, 34, 423 431; Hantraye et al., *Neuroreport* 1992, 3, 265-268). If possible, imaging of the dopamine transporter would also enable the monitoring of progression of the disease and of reversal of the disease such as with therapies consisting of implants of dopamine neurons or drugs that retard progression of the disease. We believe that a radiopharmaceutical that binds to the DAT might provide important clinical information to assist in the diagnosis and treatment of these various disease states.

An effective imaging agent for the disorders described above will exhibit a specific binding affinity and selectivity for the transporter being targeted. In addition, for
imaging agents based on radioactive emission, a high level of radioactivity is also pertinent. In this regard, iodine isotopes may be useful if they can be produced in sufficiently high concentrations such that they will still be emitting at suitable levels for a useful period of time. Periods for detectable emissions of one or two days, or longer, after creation are noted.

Naturally occurring iodine is predominantly in the form of 127I which is stable. There are 36 identified isotopes of iodine (I) which are unstable. Particular note is made of 123I. Iodine-123 is often used as a radioactive substance in whole-body nuclear scanning. It emits gamma radiation and has a half-life of 13.2 hours. Additional note is made of 124I, 125I, 131I. Given the 13.2 hour half-life of 123I, one challenge is to produce a radiopharmaceutical that retains sufficient activity longer than one-day after creation.

The decay of the $[^{123}\text{I}]$ associated with the compound results in the release of a photon with an energy of 159 KeV. This photon easily (and relatively safely) passes through human tissues and bones and can be detected, often by using a radiation detector array in a Single Photon Emission Computed Tomography (SPECT) camera. With appropriate software an image of the site from which the radiation is emerging can be constructed. The image can be compared to images obtained from subjects without signs of Parkinson’s Disease. A decrease in emission is presumptive evidence of a loss of dopamine transporter neurons, and potentially a diagnosis of Parkinson’s Disease.

SUMMARY OF THE INVENTION

In one aspect, the invention features a diagnostic formulation comprising an aqueous solution comprising $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane.

In one embodiment the formulation comprises a radioactive concentration of at least about 18-20 mCi/mL. In another embodiment, the formulation exhibits radioactive concentration of at least about 1.6 mCi/mL at least about 51 hours post-creation. In yet another embodiment the formulation comprises a pH of less than about 7. In another
embodiment the formulation comprises a radiochemical purity of at least about 95%. In another embodiment the formulation comprises a concentration of ethanol in a percentage of less than about 10%. In another embodiment the formulation is substantially carrier free. In another embodiment the formulation is substantially ascorbic acid free.

In another aspect, the invention features a method of preparing $[^{123}]$-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane comprising the steps of:

a) Preparing a precursor solution comprising 2β-Carbomethoxy-3β-(4-fluorophenyl)-N-(3-tributyltin-E-allyl) nortropane, ethanol, hydrogen peroxide, and phosphate buffer;

b) Preparing a sodium $[^{123}]$-iodide solution comprising sodium $[^{123}]$-iodide and trifluoroacetic acid having a pH of less than about 2; and c) Heating a mixture of precursor solution and sodium $[^{123}]$-iodide solution at a temperature of about 80°C for about 15 minutes.

In another aspect, the invention features a method of preparing an aqueous solution of $[^{123}]$-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane comprising the steps of: eluting the $[^{123}]$-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane through a C18 preparative HPLC column with an eluent, wherein the eluent comprises about 15% (v/v) ethanol; and Collecting the product peak in sodium chloride in an acetic acid buffer; wherein the radioactive concentration of the resulting solution is at least about 23 mCi/mL.

In another aspect, the invention features a product formed by the process for producing $[^{123}]$-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane.

DETAILED DESCRIPTION OF THE INVENTION

All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be
used in the practice or testing of the present invention, suitable methods and materials are described below.

For commercial production, it is important to maximize radiolabel (e.g. 123I) incorporation into a final product as well as minimize the reaction time. It is also required for safety of use that the final product has radiochemical and chemical purity acceptable to national regulatory agencies. Furthermore, since neither of the initial reactants is stable at low pH but the iodination reaction is optimal at low pH, care is taken to employ a process whereby the reaction period under acidic conditions is minimized.

The successful commercialization of the product is further enhanced if the shelf life/stability can be lengthened. One method by which this can be accomplished is by increasing the final product's radioactive concentration. Since a radiolabel such as 123I has a half life of only 13.2 hours, extending the shelf life by an additional day suggests that the initial level of radioactivity should be increased about four-fold. Increased concentrations of radioactivity potentially reduce the stability of the product because of direct effects of radiation on the compound and by indirect effects caused by the generation of highly reactive compounds, including highly reactive compounds, from water. A more useful compound is one with the highest concentration of radioactive compound(s) that maintains sufficient stability for the duration of use.

Definitions

For convenience, certain terms employed in the specification, examples, and appended claims are collected here. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The initial definition provided for a group or term herein applies to that group or term throughout the present specification individually or as part of another group, unless otherwise indicated.

The articles “a” and “an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
The term “or” is used herein to mean, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise.

The term “carrier” is used herein to mean a non-radioactive version of a compound.

The term “radiochemical yield” is the percentage of radioactive compound incorporated into a final product.

Tropane is a bicyclic tertiary amine compound C₉H₁₅N that is the parent compound of atropine, cocaine, and related alkaloid small organic molecules, some of which have high affinity and selectivity for the dopamine transporter (DAT), and are useful in the diagnosis of Parkinson’s disease (PD).

In one embodiment the tropane compound as disclosed in U.S. Patent No. 5,493,026. In one embodiment, the tropane compound is [¹²³I]-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane. It is believed that, when given intravenously, [¹²³I]-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane (ALTROPANE®, Alseres Pharmaceuticals, Inc. Hopkinton, MA) is able to penetrate the brain and bind to dopamine transport receptors.

![Chemical Structure]

[¹²³I]-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane

Other examples of imaging agents that target the dopamine transporter include [¹²³I] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane or Ioflupane (¹²³I) (DaTSCAN™, Nycomed-Amersham, Piscataway, NJ), PE2I (11C or 11F), (-)-2-β-Carbomethoxy-3-β-(4-fluorophenyl)tropane (β-CFT, WIN 35,428), (99Tc) 0-1505, and (99Tc)-Technepine. The above agents and other examples of useful

In one aspect, the invention features a diagnostic formulation comprising an aqueous solution comprising $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane, optionally wherein the aqueous solution is substantially carrier-free and substantially ascorbic acid-free.

In another embodiment, the aqueous solution is substantially radioprotectant-free.

In one embodiment, the aqueous solution comprises a radioactive concentration of at least about 15 and 18, and about 20 mCi/mL or more. In another embodiment, the aqueous solution comprises a radioactive concentration of at least about 23 mCi/mL.

In another embodiment, the aqueous solution comprises a radioactive concentration of at least about 1.6 mCi/mL at least about 50 hours post creation.

In one embodiment, the aqueous solution has a radiochemical purity of at least about 95%, and particularly at least about 97%.

In another embodiment, the aqueous solution comprises a concentration of ethanol in a percentage of less than about 10%, and less than about 5%, and further less than about 1%. In another embodiment, the aqueous solution is substantially ethanol-free.

In another embodiment, the aqueous solution comprises a pH of less than about 7.

In another embodiment, the aqueous solution comprises a pH of less than about 6. In another embodiment, the aqueous solution comprises a pH ranging from about 2.5 to about 4.5.

In one embodiment, the $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane is stable for at least 48 hours. In another embodiment, the $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane is stable for at least about 60 hours.
In another aspect, the invention features a process for producing \([^{123}\text{I}]-2\beta\)carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane. In one embodiment the process comprises the reaction of 2\(\beta\)-Carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-

tributyltin-E-allyl) nortropane and sodium \([^{123}\text{I}]-\)iodide. In another embodiment the process produces \([^{123}\text{I}]-2\beta\)-carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-iodo-E-allyl)
nortropane in less than about 60 minutes, with greater than 95% radiochemical purity, a concentration of at least about 20 mCi/mL, a radiochemical yield of at least about 45% (and particularly at least about 65%, and at least about 75%), without added carrier, and having a radiochemical and chemical stability sufficient for over about 50 hours, and particularly at least about 51 hours.

In another aspect, the invention features a process for producing an aqueous solution of \([^{123}\text{I}]-2\beta\)-carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane. In one embodiment, the solution is produced using a process comprising purification using hydrophobic media that allows separation and concentration. In another embodiment, a Preparative HPLC purification. In one embodiment, the purification step is substantially free of a radiolysis inhibitor. In another embodiment, the purification step comprises the addition of a radiolysis inhibitor. In another embodiment, the purification step of the target compound is performed within 30 minutes.

Any suitable preparative HPLC system may be used but note is made of an HPLC column comprising packing material particles having an 18 carbon chain (C18). Examples of C18 columns include but are not limited to XTerra® C18 Column, (Waters Corp., Milford, MA, See U.S. Patent No. 6,686,035), and µBondpak C18 Column (Waters Corp., Milford, MA).

In one embodiment the process for producing \([^{123}\text{I}]-2\beta\)-carbomethoxy-3\(\beta\)-(4-

fluorophenyl)-N-(3-iodo-E-allyl) nortropane comprises the steps of:

a) Heating a basic solution (pH at least about 11) of sodium \([^{123}\text{I}]-\)iodide to a range of about 70°C to about 150°C

b) Separately combining 2\(\beta\)-Carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-tributyltin-E-

allyl) nortropane in great molar excess (about 0.05 to about 0.5 mg) in ethanol, an oxidizing agent (e.g., \(\text{H}_2\text{O}_2\)), and a buffer (e.g. sodium phosphate) at about pH 2.5 to 3.0
c) Acidifying the heated sodium $[^{123}\text{I}]-\text{i}

o
d) Heating the mixture from (c) for about 20 minutes or less at a temperature ranging from about 70°C to about 150°C.

e) Neutralizing the pH (e.g., by adding base such as NaOH) and an oxidizing agent (e.g., sodium metabisulfite)

f) Purifying the $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane reaction product using hydrophobic media that allows separation and concentration (with or without radiolysis inhibitors) of the target compound within about 30 min, and

g) Diluting into an isotonic saline solution with acidic (less than about pH 7) buffer (e.g., phosphate) with or without radiolysis inhibitors (e.g., ascorbic acid) to a concentration of about 23 mCi/mL.

h) Sterilizing by autoclaving if the formulation buffer is less than about pH 6 (optionally pH about 2.5 to about 4.5). Optionally the solution at pH about 2.5 to about 7.0 may be sterilized by filtration (note: any lower limitation on useful pH is a function of degree of injection discomfort and not due to chemical instability).

In another aspect, the invention features a product formed by the process for producing $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane. In one embodiment the product formed by the process of preparing a precursor solution comprising 2β-Carbomethoxy-3β-(4-fluorophenyl)-N-(3-tributyltin-E-allyl) nortropane, ethanol, hydrogen peroxide, and phosphate buffer; preparing a sodium $[^{123}\text{I}]-\text{i}

o
d) Heating the mixture from (c) for about 20 minutes or less at a temperature of about 80°C for about 15 minutes; eluting the $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane through a C18 preparative HPLC column with an eluent, wherein the eluent comprises about 15% (v/v) ethanol; and collecting the product peak in sodium chloride in an acetic acid buffer.
EXAMPLES

Example 1

Synthesis of $[^{123}\text{I}]-2\beta$-carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane

Sodium $[^{123}\text{I}]-\text{iodide}$ (4 Ci) in 0.1N NaOH was dispensed in a 10 mL vial and heated to about 80°C. Phosphate buffer, 0.80 mL 0.1 M, pH 2.5-3.0, was combined with 0.20 mL 30% hydrogen peroxide, and 0.50 mL of 1 mg/mL (in ethanol) 2\(\beta\)-Carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-tributylin-E-allyl) nortropane) to form a precursor containing mixture. The sodium $[^{123}\text{I}]-\text{iodide}$ solution was acidified (final pH <2) by the addition of Trifluoroacetic acid. The precursor-containing mixture was added to the acidified sodium $[^{123}\text{I}]-\text{iodide}$ solution. The mixture was heated at 80°C for 15 minutes.

After 15 minutes, 2 mL of sodium metabisulfite solution was added to stop the reaction (100 mg/mL in Sterile Water for Injection). One mL of a 100 mg/mL solution of Ascorbic Acid was added to the reaction mixture as a radioprotectant. The acidic reaction mixture is optionally neutralized with 500 \(\mu\)L of 5 N Sodium Hydroxide. After neutralization, the pH is >6. Neutralization may be optional if the subsequent HPLC system is not degraded too quickly by the low pH and oxidant.
Example 2

Chromatography of $[^{123}]$-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane

The reaction mixture of Example 1 was transferred to a preparative HPLC system (XTerra® C18 Column from Waters Corp., Milford, MA, See US Patent No. 6,686,035).

XTerra® column

- Packing Material: C-18
- Particle Size: 5 μm
- Length: 50mm
- Diameter: 10mm
- Column Volume: 4mL

$[^{123}]$-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane was eluted using the following eluent system: isocratic elution buffer, 15% (v/v) ethanol, 85% 10mM glacial acetic acid in sterile water for injection. The product peak was collected into a vessel containing sodium chloride injection (USP) in an acetic acid buffer pH 2.5 to 3.5, and, due to carry over, the final solution has about 1.8% ethanol. The resulting radioactive concentration of $[^{123}]$-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane was about 23 mCi/mL.
Example 3

Chromatography of \([^{123}\text{I}]-2\beta\text{-carbomethoxy-3\beta-(4-fluorophenyl)-N-(3-iodo-E-allyl)}\) nortropane

The reaction mixture of Example 1 was transferred to a preparative HPLC system (µBondpak® C18 Column from Waters Corp., Milford, MA).

µBondpak column
Packing Material: C-18
Particle Size: 10 µm
Length: 300mm
Diameter: 19mm
Column Volume: 85mL

\([^{123}\text{I}]-2\beta\text{-carbomethoxy-3\beta-(4-fluorophenyl)-N-(3-iodo-E-allyl)}\) nortropane was eluted using the following eluent system: isocratic elution buffer, 80% (v/v) ethanol, 20% ascorbic acid in sterile water for injection 20g/L. The product peak was collected into a vessel containing sodium chloride injection (USP) in an acetic acid buffer pH 2.5 to 3.5. Due to carry over the final solution has 3.8 to 6.3% ethanol and 0.2 to 0.4 g/L ascorbic acid. The resulting radioactive concentration of \([^{123}\text{I}]-2\beta\text{-carbomethoxy-3\beta-(4-fluorophenyl)-N-(3-iodo-E-allyl)}\) nortropane was about 20 mCi/mL of solution.

Example 4

Dilution of \([^{123}\text{I}]-2\beta\text{-carbomethoxy-3\beta-(4-fluorophenyl)-N-(3-iodo-E-allyl)}\) nortropane

The chromatographed mixture of Example 2 is adjusted by dilution with acetic acid buffer, pH 2.5 to 4.5, to produce an aqueous solution comprising 16 mCi/mL, (at the time of production), \([^{123}\text{I}]-2\beta\text{-carbomethoxy-3\beta-(4-fluorophenyl)-N-(3-iodo-E-allyl)}\) nortropane, 4% ethanol, 10 µM glacial acetic acid, sodium hydroxide buffer, pH 2.5-3.5, and 0.9% sodium chloride.
Example 5

Dilution of $[^{123}]$-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane

The chromatographed mixture of Example 3 is adjusted by dilution with acetic acid buffer, pH 2.5 to 4.5, to produce an aqueous solution comprising 4 mCi/mL (at the time of production), $[^{123}]$-2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane, 4% ethanol, 0.3 mg/mL ascorbic acid, 10 μM glacial acetic acid, sodium hydroxide buffer, pH 2.5-3.5, and 0.9% sodium chloride.

EQUIVALENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
1. A formulation comprising an aqueous solution comprising \([^{123}I]-2\beta\)-carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane, wherein the solution comprises a radioactive concentration of at least about 18 mCi/mL.

5 2. The formulation of Claim 1, wherein the radioactive concentration is at least about 23 mCi/mL.

3. A formulation comprising an aqueous solution comprising \([^{123}I]-2\beta\)-carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane, wherein the solution comprises a radioactive concentration of at least about 4 mCi/mL.

10 4. A formulation comprising an aqueous solution comprising \([^{123}I]-2\beta\)-carbomethoxy-3\(\beta\)-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane, wherein the solution comprises a radioactive concentration of at least about 16 mCi/mL.

5. The formulation of Claim 1, wherein the formulation exhibits radioactive concentration of at least about 1.6 mCi/mL at least about 51 hours post creation.

15 6. The formulation of Claim 1, wherein the aqueous solution comprises a pH of less than about 7.

7. The formulation of Claim 1, wherein the aqueous solution comprises a pH of less than about 6.

8. The formulation of Claim 1, wherein the aqueous solution comprises a pH ranging from about 2.5 to about 4.5.

9. The formulation of Claim 1, wherein the aqueous solution comprises a radiochemical purity of at least about 95%.

10. The formulation of Claim 1, wherein the aqueous solution comprises a concentration of ethanol of less than about 10%.
11. The formulation of Claim 1, wherein the aqueous solution comprises a concentration of ethanol of less than about 5%.

12. The formulation of Claim 1, wherein the aqueous solution comprises a concentration of ethanol of less than about 1%.

13. The formulation of Claim 1, wherein the aqueous solution is substantially free of ethanol.

14. The formulation of Claim 1, wherein the aqueous solution is substantially carrier free.

15. The formulation of Claim 1, wherein the aqueous solution is substantially ascorbic acid free.

16. A method of preparing $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane, comprising the steps of:

 a. preparing a precursor solution comprising 2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-tributyltin-E-allyl) nortropane, ethanol, hydrogen peroxide, and phosphate buffer;

 b. preparing a sodium $[^{123}\text{I}]$-iodide solution comprising sodium $[^{123}\text{I}]$-iodide and trifluoroacetic acid having a pH of less than about 2; and

 c. heating a mixture of precursor solution and sodium $[^{123}\text{I}]$-iodide solution at a temperature of about 80°C for about 15 minutes.

17. A method of preparing an aqueous solution of $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane, comprising the steps of:

 a. eluting the $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane through a C18 preparative HPLC column with an eluent, wherein the eluent comprises about 15% (v/v) ethanol; and
b. collecting the product peak in sodium chloride in an acetic acid buffer, wherein the radioactive concentration of the resulting solution is at least about 23 mCi/mL.

18. A method of preparing an aqueous solution of $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane, comprising the steps of:
 a. eluting a solution of $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane through a C18 preparative HPLC column with an eluent, wherein the eluent comprises about 80% (v/v) ethanol, and about 20% ascorbic acid (20g/L) in sterile water for injection; and
 b. collecting the product peak in sodium chloride in an acetic acid buffer, wherein the radioactive concentration of the resulting solution is at least about 20 mCi/mL.

19. The product of the process comprising the steps of:
 a. preparing a precursor solution comprising 2β-carbomethoxy-3β-(4-fluorophenyl)-N-(3-tributyltin-E-allyl) nortropane, ethanol, hydrogen peroxide, and phosphate buffer;
 b. preparing a sodium $[^{123}\text{I}]-\text{iodide}$ solution comprising sodium $[^{123}\text{I}]-\text{iodide}$ and trifluoroacetic acid having a pH of less than about 2;
 c. heating a mixture of precursor solution and sodium $[^{123}\text{I}]-\text{iodide}$ solution at a temperature of about 80°C for about 15 minutes;
 d. eluting the $[^{123}\text{I}]-2\beta$-carbomethoxy-3β-(4-fluorophenyl)-N-(3-iodo-E-allyl) nortropane through a C18 preparative HPLC column with an eluent, wherein the eluent comprises about 15% (v/v) ethanol; and
 e. collecting the product peak in sodium chloride in an acetic acid buffer.