UK Patent Application .,GB ..,2487800

(13)A

(21) Application No: 1103492.3
(22) Date of Filing: 01.03.2011
(30) Priority Data:

(31) 1101875 (32) 03.02.2011 (33) GB

(43)Date of A Publication 08.08.2012
(51) INT CL:

HO04L 12/26 (2006.01) HO04L 1/00 (2006.01)

HO4L 29/06 (2006.01)

(56) Documents Cited:
GB 2422997 A
EP 1420548 A2

EP 2084854 A2
WO 2011/143817 A1

(71) Applicant(s):
Roke Manor Research Limited
(Incorporated in the United Kingdom)
Roke Manor, Old Salisbury Lane, ROMSEY,
Hampshire, SO51 0ZN, United Kingdom

(72) Inventor(s):
Neil Duxbury
David Findlay

(74) Agent and/or Address for Service:
Withers & Rogers LLP
4 More London Riverside, LONDON, SE1 2AU,
United Kingdom

WO 2011/114060 A2
US 20030135667 A1

US 20060248200 A1

(58) Field of Search:
INT CL HO4L
Other: WPI, EPODOC, INSPEC, TXTE

(54) Title of the Invention: A method and apparatus for communications analysis

Abstract Title: Communication analysis

(57) A method of grouping communication sessions, the method comprising: selecting a plurality of communications

sessions from a data stream; determining which data structures or sequences of characters, of said communication
sessions, occur more frequently than chance; and sorting the communication sessions into groups, wherein
communication sessions which have similar data structures or similar sequences/strings of characters, determined
to occur more frequently than chance, are sorted into the same group. A clustering algorithm may be used to sort
the sessions into groups. The data structures may relate to particular communication protocols so that sessions
using the same or similar protocol are grouped together. A further method is described relating to configuring a
sensor to extract data from a communication data stream by using templates, the templates being formed by a
plurality of data records which represent data structures of a particular protocol. Detection of a session with an
unknown protocol is also mentioned i.e. protocol analysis. The methods may be performed by an intermediary node
107 between source and destination terminals 111, 112, 113, 114, 115, 116.

111 110 114
A D
112 115
C F
113—") \116
Fig. 2

vV 008.8%¢ 99

1/7

Fig. 1

—
N

111 110 114

112
T B 1

J
\ 4

Fig. 2

120

2/7

121

SAMPLER

122

DATA
EXTRACTOR

123

NAME
STORE

CONTEXT
PROCESSOR

126

VECTOR
PROCESSOR

125

[L]]

CLUSTER
PROCESSOR

Fig. 3

3/7

)]
o

N
—

N
O
[\

)]
w
A 4
N
SN

N
(6}

N
»

)]
()
~

Fig. 4

4/7

Frequency

|

| X

| X

| X

| XX

| XX

| XXX

| XXXX

| XXXXX

| XXXXKKX

e | —————— = > Session

C Frequency
Fig. 5

Frequency

|

| X

| X

| X

| xx [1]

| XX / [2]

| XXX / /\

| XXXX X / N\

| XXXX X / \

| | XXXXXX XX XX

ey [-————————— > Session

C Frequency

Fig. 6

5/7

w
o
w

w
o
w

Fig. 7

6/7

401 NGRAM
| EXTRACTOR
|
02— | PACKET
EXTRACTOR
408—_| PATTERN
GENERATOR
404—___| RECORD
CLUSTER
PROCESSOR
405
T~ TEMPLATE
GENERATOR
406
T SENSOR

Fig. 8

77

a0
(]
—h

[6)
(]
[\

(&)
()
w

&
o
~

(o))
()
(6}

(6
o
(@)

(&)
()
~

a1
(@)
[ee}

(8
(@)
O

Fig. 9

10

15

20

30

1

A method and apparatus for communications analysis

The present invention relates to a method and apparatus for communications
analysis. In particular, it relates to a method and apparatus for determining

communications sessions having the same protocol structure.

Background to the Invention

It is possible to extract information from a data stream with knowledge of the
communications protocols being used to send data. There is a need to be
able to establish when communication sessions have similar structure which

may be indicative of an unknown protocol.

Summary of the Invention

In a first aspect, the present invention provides a method of grouping
communication sessions, the method comprising: selecting a plurality of
communications sessions from a data stream; determining which data
structures, of said communication sessions, occur more frequently than
chance; and sorting the communication sessions into groups, wherein
communication sessions which have similar data structures, determined to

occur more frequently than chance, are sorted into the same group.

In a second aspect, the present invention provides a method of grouping
communications sessions, the method comprising: extracting a plurality of
communication sessions from a data stream, each communication session
comprising a sequence of characters; analysing the communication sessions
to determine sequences of characters which exhibit repeatable behaviour; and
sorting communications sessions having similar sequences of characters into

groups.

In a third aspect, the present invention provides a method of configuring a

sensor to extract data from a communication stream, using a group of

10

15

20

30

2

communication sessions representing a particular communications protocol,
the group comprising data structures representative of that protocol, the
method comprising: generating a plurality of records representing said data
structures, each record having a particular pattern; grouping said records
based on the similarity of said patterns, such that each group includes records
having the same pattern; generating a template based on the pattern of each

group; and configuring said sensor using said template.

Further features of the invention are defined in the appended dependent

claims.

Brief Description of the Drawings

By way of example only, the present invention will now be described with

reference to the drawings, in which:

Figure 1 is a flow diagram showing the operation of the present invention in a

first embodiment;

Figure 2 shows a computer network in accordance with an embodiment of the

present invention;

Figure 3 shows a system in accordance with an embodiment of the present

invention;

Figure 4 shows a flow diagram showing the operation of the present invention

in a further embodiment;

Figure 5 is a histogram showing a plot of session frequency in the absence of
any protocols;

Figure 6 is a histogram showing a plot of session frequency in the presence of

communication protocols;

10

15

20

30

Figure 7 is a flow diagram showing the operation of the present invention in a

further embodiment;

Figure 8 shows a system in accordance with an embodiment of the present

invention; and

Figure 9 is a flow diagram showing the operation of the present invention in a

further embodiment.

Detail Description of Preferred Embodiments

The first embodiment includes an apparatus and method for determining, from
a raw data stream, communication sessions which have a common structure.
Common structure in communication sessions may be taken to be indicative
of use of a common communication protocol. Hence, using this method, it is
possible to establish that unrelated communication sessions utilise common,
but unknown, communication protocols. In the context of this description, a
communication session is a unidirectional stream of data that is travelling from
a single source to a single destination. It is therefore possible, using this
method, to determine that communication protocols exist, without prior

knowledge of those protocols.

Figure 1 is a flow diagram showing the method of this embodiment. A plurality
of communication sessions, contained within a raw data stream, are extracted
(block 100). These communication sessions are then analysed to extract data
structures which occur more frequently than would be expected by chance
(block 101). Finally, communication sessions having similar extracted data
structures are clustered together (block 102). Those communications
sessions which have similar extracted data structures may be considered to
be utilising the same communication protocols. The output of this process is

at least one group of communication sessions considered to use the same

10

15

20

30

4

communication protocol. Further details of how each of these steps is

undertaken are provided below.

Figure 2 shows a computer network 110 which includes several computer
terminals. These computer terminals are referred to as endpoints. The Figure
shows endpoints A 111, B 112, C 113, D 114, E 115 and F 116. The network
100 also includes a node 117. Data may be sent between the endpoints via
node 107. This network is shown as an example of the kind of network which
the present method may be used with in order to extract communication
sessions. The network may be the Internet, for example. A simple network is
shown here in order to demonstrate the principles of operation of the method.
It will be appreciated that the network may be more complex than shown, as
would be the case for the Internet.

Data may be sent between the endpoints. Typically data would be sent in the
form of a series of data packets from one endpoint to another. For example,
the data may be sent in accordance with TCP/IP. For the purposes of this
example, the data sent across network 110 is done so using TCP/IP. Data is
routed via node 117. In this respect, node 107 acts as a router. In practice, a
network may contain many hundreds of nodes. For the purposes of explaining
the present method, only one is required. The various endpoints all
communicate with each other using one or more protocols (sub-protocols of
the TCP/IP network protocols).

Further details of the components of the apparatus used to carry out the
method will now be described. In this example, the apparatus is located within
node 117. For the purposes of this example, the apparatus shall be referred
to as a common data structure determination system 120. The system 120 is
shown in Figure 3. The system 120 includes the various components which
are required to carry out the method. It will be appreciated that in practise,
some of these components may be combined, or alternatively, that the
functionality of some components is provided by two or more further
components. It will also be appreciated that the components may be provided

10

15

20

30

5

in hardware or software, the actual implementation not being relevant to the
function of the method. Figure 4 is a flow diagram showing the operation of

the system 120.

The system includes a sampler 121. The sampler 121 is used to exiract
communication sessions from the raw data stream flowing through the node
117. The process of extracting a plurality of communications sessions is
represented by block 200 in Figure 4. The sampler 121 takes a sample of
TCP/IP packets from the raw data stream (referred to hereinafter as the
‘bearer”). The sampler 121 randomly selects a packet. It then looks at the
address information in that packet (IP/TCP/UDP) and then further selects all
packets in the same session.

The sampler 121 may select the initial packet used to select the subsequent
session data in a number of ways. For example, the sampler 121 may
randomly select packets from the bearer. This may be done by selecting every
nth packet from the bearer. Alternatively, this may be done by searching for a
particular sequence of characters in the TCP sequence number field or by
searching for a randomly generated pattern in the packet payload. Rather
than randomly selecting packets, the sampler 121 may select all packets
containing a particular data type; for example, HTTP or certain types of
compressed data. As a further alternative, packets may be exiracted by
searching for randomly selected addresses in the Network and Transport
Layer protocols. Regardless of the process chosen, the sampler extracts a

large number of packets from a number of communication sessions.

Once the sampler 121 has extracted enough packets, the packets must be
sorted into respective communication sessions. In other words, the packets
are sorted into unidirectional streams of data between two endpoints, each
endpoint being identified by an IP address. Such a stream is a
communication session. This is achieved by sorting the packets into sets
according to IP source address, |IP destination address, |P source address, 1P
destination address, TCP source port number and TCP destination port

10

15

20

30

6

number, |IP source address, |IP destination address, UDP source port number

and UDP destination port number or permutations thereof.

For TCP, each set of packets is then put in a queue in TCP sequence number
order and duplicated TCP data is removed. For any sets of packets that are
carrying HTTP protocol data, the HTTP headers are analysed and the
associated data encodings are determined. |If required, the HTTP data
payloads are decoded, so that the original, un-encoded data is recovered. A
similar technique may be applied to UDP packets. Following the above
process, reconstructed, un-encoded data streams are recovered. These are
the communication sessions. For a typical analysis, several hundred
megabytes may be sampled, resulting in several thousand sessions.

The system 120 further includes a data extractor 122. The purpose of the data
extractor 122 is to locate strings of data which may be representative of
protocol structure. In order to do this, the extractor 122 searches for entities
located within each communication session. The idea behind this is that a
message sent between two entities typically includes an identifier. For the
purposes of this description, we shall call the identifier an entity. For example,
the entity may be a real name, such as John or Sarah. Alternatively, the entity
may be an email address, a username, a numeric identifier, a random string of
characters, a pre-defined string of characters, or a media filename. In general,
a protocol will contain data structures which define the operations of that
protocol. For messaging protocols there will be data structures that contain
addressee information. The addressee information is information designed
into the protocol that is used to identify logical entities within that protocol,
such as a user. Thus, for messaging protocols one might expect an entity to
appear in close proximity to these protocol data structures. Therefore, if we
can locate an entity this provides a means of identifying a potential protocol
and of estimating where the data structures containing the addressee
information might be found within a session carrying said protocol.

10

15

20

30

7

The data extractor 122 includes an entity store 123 which stores entities used
as the basis for searches for the communications sessions. The data extractor
122 also contains a number of bespoke entity identifier methods. These
methods include an email address identification method, a username
identification method, a real name identification method, a numeric identifier
identification method and a generalised search method. In the following, only
the method utilising the generalised search approach is described. However,
any of the above methods may be used in isolation or combination to provide
the raw triple records described subsequently. In the context of this example,
an entity is simply a string of characters which the data extractor 122 must
search for in the communication sessions. In this case, the entity store
includes a number of “real” names. In the present case, real names are used.
In this example, the entity store 123 includes the name “Neil”. The system
120 will therefore attempt to locate data in the communications streams which
includes the name “Neil” and which may therefore relate to a message sent

using a particular protocol.

The data extractor 122 searches through all of the communication sessions
for the name “Neil” (block 201). Any communication sessions which include
zero or one instance of the name “Neil” are excluded from further analysis. If
the communication session includes two or more instances of the name “Neil”,

then it is used for further analysis.

When the data extractor 122 locates the name “Neil” it extracts the entity from
the communication session, together with data in the immediate vicinity of the
entity (block 202). As noted above, the data in the vicinity of an entity may be
expected to include the structure of the protocol used to send any message
associated with the entity. The data extractor 122 extracts a fore-string and an
aft-sting. The fore-string is the set of characters immediately before the entity,
and the aft-string is the set of characters immediately after the entity. The
data extractor 122 therefore produces a triple associated with the entity (fore-
string, entity, aft-string). The fore-string and aft-string are referred to as the

entity’s context.

10

15

20

30

In this case, the data extractor 122 locates all triples, across all
communication sessions, including the name “Neil”. In this case, the fore-
string and aft-strong are chosen to be 12 characters each, in order that the
principle of operation may be clearly shown. However, in practice the fore-
string and aft-string may be any length. 128 characters has been found to be
particularly suitable. One example of a triple may be:

123From_456:Neil;<T0:>123456

Each triple is then associated with the communication session from which it
came from. Following this process, it can be expected that a large number of
triples include contexts which include protocol structure. However, some of
the triples may contain no protocol structure. For example, if the name “Neil”
is located in the middle of some message text, the context may well only be
other parts of the body of the message. In the next stage, the system must
differentiate between contexts with protocol structure, and contexts without

such structure.

The system 120 includes a context processor 124. The context processor is
responsible for processing all of the triples extracted by data extractor 122 in
order to determine which contexts are associated with protocol structure. The
context processor operates on the principle that protocol structure is likely to
repeat itself across a number of contexts. Therefore, there is a requirement to
distinguish between contexts which exhibit similarities with other contexts, and

those that do not.

The context processor 124 is arranged to generate a plurality of ngrams from
the context of each entity (block 203). An ngram is a sequence of n
characters taken from the context. The context processor 124 is arranged to
generate ngrams that overlap by n-1. In this example, n=4. However, n may

be any number less than the length of the fore-string and aft-string. Ideally, n

10

15

20

30

9

should be a low number, relative to the context length. Using the above

example, the ngram sets would be as follows:

fore-string set: 123F, 23Fr, 3Fro, From, rom_, om_4, m_45, _456, 456:

aft-string set: ;<To, <To:, To:>, 0:>1, :>12, >123, 1234, 2345, 3456

For each communication session, all of the ngrams are formed into a set
which represents that session. Accordingly, a large number of sets of ngrams
are produced, each set being associated with a particular communication

session.

As noted above, the system 120 needs to establish which ngrams are likely to
be part of a protocol structure, and which ngrams are not likely to be part of
protocol structure. Protocols, by their design, consist of fixed syntax blocks
carrying fixed or variable data. For communications traffic, those ngrams
which form part of a protocol structure may be expected to occur more
frequently than those that do not. For all ngrams across all communication
session sets, the context processor 124 determines the session frequency for
each ngram. This is simply the number of sessions in which the ngram occurs.

The context processor 124 generates a histogram of the session frequencies.

Figure 5 is a histogram which shows the expected plot where the distribution
of ngrams is random, i.e. where no communications protocols are present. A
large number of ngrams with low session frequency would be expected, with
smoothly decreasing numbers as the session frequency increases. At a
certain value of session frequency, the expected number of ngrams drops to
zero. In Figure 5, C represents the maximum expected observed session
frequency. A typical value of C will be between 20 and 30.

When a communication protocol is present, non-randomness will be expected
in the distribution. This gives rise to two features, as shown in Figure 6.
Firstly, there will be significant departure from the smooth decrease.

10

15

20

30

10

Secondly, session frequencies significantly above C are observed. These
features are labelled as [1] and [2] respectively in Figure 6. The ngrams which
give rise to these anomalies are labelled as ‘“interesting” ngrams. These
ngrams are those which are expected to relate to part of a protocol structure.
If, following this process, zero or very few “interesting” ngrams are located, the

process terminates without producing any outputs (block 204).

Now that the interesting ngrams have been identified, each session is
represented by a set of those interesting ngrams. The system 120 also
includes a session cluster processor 125. The session cluster processor 125
is arranged to group communication sessions which include similar ngrams,
and which may therefore be assumed to include the same communications

structure.

The session cluster processor 125 contains a vector processor 126. The
vector processor 126 is arranged to allow the similarity of different sessions to
be measured. To achieve this, the set of ngrams associated with each
session are represented as a vector and vector analysis is used to establish
how similar the sessions ngrams are to each other. The vector processor 126
is arranged to generate a vector to represent each session (block 205). Each
interesting ngram in a session is designated a separate dimension of a vector.

For example, using the fore-string noted above:

123F =i
23Fr =j
3Fro =k
etc

The session can then be represented by a vector V:

V=i+j+k+l+m+n+0+p+qQ

10

15

20

30

11

Those ngrams which occur with a higher frequency will result in a large vector
component. Each session is represented by it's own vector. Accordingly,
following vector processing, the cluster processor 125 holds a large number of

vectors, each representing a session.

In order to determine which sessions are likely to include similar protocols, a
distance measure is used. For example, a cosine similarity measure may be
used to determine the angle between each vector. For each session in the
collection the vector processor 126 calculates the distance between said
session and each other session in the collection. These distances are then

stored.

The set of distances and references to the sessions to which they belong are
then provided to the cluster processor 125. The cluster processor then
clusters (block 207) the sessions by using the distance between the sessions
as a clustering metric. This establishes which sessions have similar
properties. For example, an algorithm such as the ‘Density-Based Spatial
Clustering of Applications with Noise’ (DBSCAN) may be used. An advantage
of this algorithm is that it is fast and can locate arbitrarily-shaped clusters.
When applying this algorithm in the present context, clusters range in size

from a few to a few hundred sessions.

Following the clustering operation, each cluster is considered to include only
sessions which use the same underlying communications protocols. The
cluster processor does not determine what the protocol is, rather it determines
the fact that a particular group of sessions have common structure which, with
a high degree of certainty, can be assumed to represent a particular protocol.

The information relating to ngrams in each cluster may then be stored for
further analysis. This may be in the form of human intervention, to visually
inspect the ngrams to establish what protocols are being used. Alternatively,
the interesting ngrams may be used to program a sensor to detect data in the

raw data stream which contains those ngrams. This allows for the extraction

10

15

20

30

12

of further sessions which contain protocol structure which is the same as that
identified by the above process. This allows the identified protocols to be
filtered out of the data stream without needing to record all of the traffic i.e. we
only record the bit we are interested in which is the protocol data that fits the

described model. The remaining data is discarded.

The above described embodiments relate to the identification of sessions
which relate to the same communication protocols. The next stage focuses
on whether the information associated with a cluster of sessions (abstract
representation of a protocol) can be used to identify templates for the
extraction of all instances of an entity from a protocol of interest. A template is
defined that describes the expected use case of an entity (e.g. a user’s
identifier) within communications data. As described above, a triple defined
by fore-string; entity; aft-string describes the entity and the surrounding
protocol structure. This triple can be used to define a template having the

form:

PATTERN ENTITY PATTERN

The purpose of the following embodiments is to automatically work out the
format of this template given the session vector discovered above, and to do
this in an unsupervised manner. Once a template has been established it will
subsequently be used to extract every instance of an ENTITY from an
arbitrary data stream. Here the ENTITY has the same definition as its did for

the above-embodiments.

The PATTERN parts shown above are the fore-string and aft-string described
previously. The PATTERN part may consist of a mixture of fixed and changing
components. For example, the patterns:

From_123456; and
From_743

10

15

20

30

13

both have the characters ‘From ' in common. The characters 123456 and
743 are dissimilar. The fact that we have already decomposing the fore-string
and aft-strings into ngrams essentially allows the constant parts to be
identified. Once the ngram is small enough, only the constant part will remain.
For example, when the ngram length reaches 5 then, for the above example.

the ngram components are:

From_,rom_1,om_12, m_123, 1234, 12345, 23456 and
From_, rom_7,om_74, m_743

We see here the only common component is ‘From_". It is the repeated
appearance of this ngram that allows the protocol to be detected. If the whole
string were used then we would find that the contexts described previously
would not cluster together. Similarly if the ngrams were too small they would

be indistinguishable from general characters.

In order to successfully extract the ENTITY part of the template the left and
right hand edges of the fore-string and aft-string must be identified. In
addition, the signatures that strongly define a protocol may not be the same as
the signatures that define the content of interest. For example, the signature
‘From_’" may occur in many protocols and hence will be discarded by the first
embodiments as it occurs in many sessions. However, the signature ‘From_’
could represent the sender of a message and is consequently of interest.
Moreover in order to find the ‘From_’ part of the signature, we must know
which bit of it is common to all instances as well as the parts of the signature
that vary from instance to instance. This latter steps allows the variable bits to
be ignored. However, we do need to know where the variable bit finishes in

order to distinguish it from the ENTITY part.

In terms of the aft-string it is only necessary to identify a single character as it
is simply used as a means to terminate the template. Thus the template can
be slightly modified as:

10

15

20

30

14

PATTERN ENTITY TERMINAL_CHARACTER

A single record consisting of: “PATTERN TERMINAL_CHARACTER?” can then
be composed. The method and apparatus for establishing templates will now

be described.

Figure 7 is a flow diagram showing the method of this embodiment. The
ngrams from all sessions within a session cluster are extracted using the
centroid vector for that cluster (block 300). The ngrams are then used to
extract packets or sessions including those ngrams from the data stream
(block 301). The extracted records are then clustered (block 302). The
records in a particular record cluster can then be used to determine templates
for extraction of additional records (block 303). Finally, the templates are used
to configure a sensor (block 304) Further details of each of these steps will be

provided below.

The node 117 also includes a sensor configuration system 400. The system
400 is shown in Figure 8. The system 400 includes the various components
for carrying out the method. It will be appreciated that in practise, some of
these components may be combined, or alternatively, that the functionality of
some components is provided by two or more further components. It will also
be appreciated that the components may be provided in hardware or software,
the actual implementation not being relevant to the function of the method.
Figure 9 is a flow diagram showing the operation of the system 400.

The configuration system 400 includes an ngram extractor 401. The ngram
extractor 401 extracts all ngrams from all sessions in a particular session
cluster (block 501). This is done using the centroid vector of that session
cluster. Accordingly, the system 400 generates a collection of all ngrams

which appear in the contexts of the sessions from a particular cluster.

The extracted ngrams are then used to extract new sessions from the raw

data stream flowing through node 117. The system 400 includes a packet

10

15

20

30

15

extractor 402. The extractor 402 is configured conduct a string search of the
raw data (block 502) for any of the ngrams identified above. The extractor
402 is programmed to extract any packet or session associated with a packet
which includes one of the ngrams. The extractor 402 checks each hit within
each packet to see if an entity is within 128 bytes of the located ngram (block
503). If so, the packet is kept and the associated session is captured. If not,
the packet is discarded. Accordingly, a collection of packets/sessions is
established, each of which has at least one ngram within 128 bytes of an
entity. As an alternative to searching the raw data stream, the data extracted
in the first embodiment can be searched instead. Similarly, data could also
just be randomly sampled using the same techniques used in the first phase.
The processing described above can then be applied to the captured data.

The system 400 also includes a pattern generator 403. The pattern generator
403 is arranged to formulate a pattern record from each of the ngrams hit
within a session (block 504). Each of the above-noted ngrams is followed by
an entity which in turn is followed by a string of characters. A pattern record is
generated by taking the 128 bytes that proceed the entity (called the
PATTERN) and a single byte following the entity (called the TERMINAL
STRING). Accordingly, a collection of pattern records having the format
PATTERN + TERMINAL STRING are generated.

The configuration system 400 also includes a record cluster processor 404.
The record cluster processor 404 selects two records and matches them using
the Needleman-Wunsch algorithm (block 505). This algorithm aligns two
strings of characters using a similarity matrix. Accordingly, the pattern records
are aligned with respects to similar groups of characters. For example, take

the following four records (and entities):

123From_457:another@hotmail.com;
124From_458:another@gmail.com;
125From_459:another@gmail.com;
126From_460:another@gmail.com;

10

15

20

30

16

The algorithm would align the records so that the common characters “From_
are aligned. Effectively, the algorithm identifies where the records are similar
and where they are different. This is applied to all pairs of records which have

been extracted from a session.

The record cluster processor 404 then applies the output of the Needleman-
Wunsch algorithm to a similarity measure (block 506). For example, a cosine-

like similarity measure may be used.

However, a problem with the standard cosine measure is that it discards the
information associated with the sequence of the characters within a record.
For example, the string abcdabced can be represented as the vector 2i + 2j +
2k + 2l (@ ->1i, b ->j, ¢c-> k, d ->). However the information that b follows a
and c follows b has been lost. In the current case the order of the characters
as well as their value is important. In addition, the standard cosine approach
doesn’t naturally handle misaligned sections of data. Vector components that
are not shared by the vectors are ignored when a dot product is formed.
Consequently, an alternative distance measure is used. Notionally, this
measure constructs a right-angled triangle with sides having length x and y on
either side of the right-angle. Regions where the two records are the same
contribute to an increase in the length of side x and regions where the two
records are different contribute to an increase in the length of side y. The
angle which represents the similarity between the two records can then be

identified by tan™ (y/x).

The operation of this function is also weighted to prevent unwanted skews in
the distance measure. In particular:
e For runs of matching characters the x axis is not increased indefinitely,
here the x axis extension produced falls off exponentially for each
additional character within the run. This presents long runs of positively

aligned characters from dominating the distance measure.

10

15

20

30

17

e For sequences that are mismatching there are a couple of possibilities:

o Wildcard matches can contribute to the x axis extension e.g.
wildcard numeric will match any number but not as strongly as
an exact match e.g. 8 matches 8 exactly but 9 is still a wildcard
numeric match thus an alignment such as this still extends the x
axis; and

o Where there is a run of mismatches/partial matches the
approach will calculate what the highest extension score is for
the whole run. This will then be used to extend the y axis for the
run of mismatching characters. Thus, the extension of the y axis
for a run of characters is capped.

e The sequence information is essentially provided by a combination of
the extension calculations and the alignment provided by the
Needleman-Wunsch algorithm:

o If a number of character runs are aligned successfully then the
contribution to the x axis extension will be higher; and
o If the number of character runs is low and the alignment is bad
this will lead to a higher contribution to the y axis extension.
Thus, the character sequencing will become evident through the angle

between the candidate records.

The output of this part of the process is data concerning the similarity of all the
aligned records with respect to each other.

The record cluster processor 404 then applies a cluster algorithm to the
similarity data produced by the similarity measure (block 507). The aim of this
process is to identify common sections of the records which can be used to
derive sensor configuration patterns. Accordingly, fairly “compact” clusters
are required. It has been found that a “k-means-like” algorithm gives good

results. It can then be assumed, with a high degree of certainty, that each

10

15

20

30

18

record cluster includes records having the same protocol structure. The four

records noted above may be an example of this.

In order to use a k-means-like algorithm, a representation of a cluster is
required that is compatible with an individual record. To meet this requirement,
a cluster is represented as a wild-carded record. This is just like a regular
record, except that some of the characters are replaced by “wild cards” that
can represent either single instances or extended sequences of numeric,
alphabetic, or arbitrary characters. Use of this representation has required a
small extension to the usual Needleman-Wunsch algorithm so that it can
operate with the wild-carded records. However, once two records are
matched, it does become fairly clear how to construct an appropriate wild-
carded record: where the two individual records match, the common text is
simply selected. Where there is a difference, the nature of the difference

determines the kind of “wild card” that is substituted.

The Needleman-Wunsch algorithm has been extended so that the class of
items in the strings has expanded. Instead of being restricted to literal
characters, the class of items now includes a number of wild cards or
character classes, such as <digit> (numbers), <space> (whitespace),
<alphanumeric> (letter or numbers), etc. The comparison weight function is
extended to handle the wild cards so that, for example, matching a literal ‘1’
with <digit> gives a reasonable match weight; matching <digit> and <space>
gives a mismatch. The insert cost function is modified slightly to favour
extending wildcards so that it's good to insert a digit immediately next to a

match against <digit>, for example.

Once the best alignment has been found, the whole is encoded as a new wild
carded string (if this is required — e.g. to follow a cluster centre). New or
modified wildcards are added where the two sequences do not align perfectly.
Simple examples include:

food match ford -> fo<alphanumeric>d

10

15

20

30

19

freda match fred1a -> fred<digit>a
fred2a match fred<digit>a -> fred<digit>a
fred<digit>a match fren2a -> fre<alphanumeric>a

fre<alphanumeric>a match fo<alphanumeric>d -> f<alphanumeric>

So, if you'd decided that food, ford, freda, fred1a, fred2a and fren2a were all in
the same cluster, you'd get the cluster centre f<alphanumeric>. At some
point, the character counts are restored so that it's known there are between 3
and 5 characters in the match against <alphanumeric>; the appropriate

regular expression is then easily formed as f<3 — 5 alphanumeric>.

This representation of a cluster also helps in construction of the associated
sensor configuration pattern (block 508). The wild carded record corresponds
naturally to a regular expression that can be used to match the text that
surrounds the occurrence of a entity. The configuration system 400 also
includes a template generator 405. The template generator 405 generates
sensor configuration templates, based on the clustered records (block 509).
The sensor configuration pattern consists of this expression combined with an
additional expression to match and output the entity itself. For example, a
cluster containing the above-noted contexts may have a representation such

as:

xxxFrom_xxx:entity;

This is then used to program a sensor 406 to extract all data containing this

structure. This data may then be stored for further analysis.

Features of the present invention are defined in the appended claims. While
particular combinations of features have been presented in the claims, it will
be appreciated that other combinations, such as those provided above, may
be used.

20

The above embodiments describe one way of implementing the present
invention. It will be appreciated that modifications of the features of the above

embodiments are possible within the scope of the independent claims.

10

15

20

30

21

Claims

1. A method of grouping communication sessions, the method comprising:
selecting a plurality of communications sessions from a data stream;
determining which data structures, of said communication sessions,
occur more frequently than chance; and
sorting the communication sessions into groups, wherein
communication sessions which have similar data structures, determined to

occur more frequently than chance, are sorted into the same group.

2. A method according to claim 1, further comprising: searching each
communication session for at least one entity, after said sessions have been
selected; and extracting each occurrence of an entity and a context of the
entity; wherein said step of determining is done based on data structures

within said contexts.

3. A method according to claim 2, wherein a context is a predetermined

number of characters before and/or after each entity.

4. A method according to claim 1, further comprising generating a plurality

of data structures from each context.

5. The method of claim 4, further comprising generating a vector to
represent each communication session, wherein the data structures are the

vector components.

6. The method of claim 5, further comprising using a similarity measure to

determine the distance between session vectors.

7. The method of claim 6, wherein said sessions are sorted into groups
using a clustering algorithm.

10

15

20

30

22

8. The method of any preceding claim, wherein a data structure of a

context is a sub-sequence of characters within a context.

9. The method of claim 8, wherein said data structures are a plurality of

overlapping ngrams.

10. The method of claim 9, wherein an ngram is n consecutive characters,

and each ngram overlaps by n-1.

11. The method of claims 9 or 10, further comprising plotting a histogram of

ngram session frequencies.

12. The method of claim 11, further comprising identifying ngrams which

occur more frequently than chance.

13. The method of any preceding claim, wherein the step of selecting
sessions includes sampling packets of data from the data stream and

reconstructing sessions from the packets.

14. An apparatus for performing the method of any of claims 1 to 13.

15. A computer program comprising code which, when run on a computer,
would cause the computer to perform the method of any of claims 1 to 13.

16. A computer readable medium having code stored thereon which, when
run on a computer, causes the computer to perform the method of any of

claims 1 to 13.

17. A method of grouping communications sessions, the method
comprising:
extracting a plurality of communication sessions from a data stream,

each communication session comprising a sequence of characters;

10

15

20

30

23

analysing the communication sessions to determine sequences of
characters which exhibit repeatable behaviour; and
sorting communications sessions having similar sequences of

characters into groups.

18. A method of grouping communication sessions, the method comprising:
extracting a plurality of communications sessions from a data stream;
searching the sessions for at least one entity, the entity being a string
of characters;
selecting the entities and the associated entity contexts, a context
being a string of characters of a predetermined length before and/or after an
entity;

dividing the contexts into a plurality of context elements, a context
element being a string of characters which is shorter than the context;

determining which context elements occur more frequently than
chance;

representing each communications session using the context elements
determined to occur more frequently than chance;

expressing the representation as a vector, where each context element
is a component of the vector;

comparing each session using a similarity measure; and

clustering the sessions based on vector similarity.

19. A method of configuring a sensor to extract data from a communication
data stream, using a group of communication sessions representing a
particular communications protocol, the group comprising data structures
representative of that protocol, the method comprising:

generating a plurality of records representing said data structures, each
record having a particular pattern;

grouping said records based on the similarity of said patterns, such that
each group includes records having the same pattern;

generating a template based on the pattern of each group; and

configuring said sensor using said template.

10

15

20

30

24

20. A method according to claim 19, wherein, each record includes an

entity and the context of that entity.

21. A method according to claim 19, further comprising:
extracting said data structures from a group of communication
sessions, prior to generating said records;
searching for occurrences of those structures in a data stream;
extracting packets containing those occurrences; and

generating said records on the basis of the extracted packets.

22. A method according to claim 21, further comprising aligning the records
which have been generated.

23. A method according to claim 22, further comprising determining the

similarity of the records after aligning the records.

24. A method according to claims 19 to 23, wherein the group of

communication sessions are derived in accordance with any of claims 1 to 13.

25. A method according to claim 24, wherein the alignment is performed

using the Needleman-Wunsch algorithm.

26. A method according to claim 23, wherein the step of determining

similarity is performed using a similarity measure.

27. A method according to claim 26, wherein the similarity measure is a

cosine-like similarity measure.

28. An apparatus for performing the method of any of claims 18 to 27.

29. A computer program comprising code which, when run on a computer,

would cause the computer to perform the method of any of claims 18 to 27.

10

15

25

30. A computer readable medium having code stored thereon which, when
run on a computer, causes the computer to perform the method of any of

claims 18 to 27.

31. A method substantially as hereinbefore described and as shown in the

drawings.

32. An apparatus substantially as hereinbefore described and as shown in

the drawings.

33. A computer program substantially as hereinbefore described and as

shown in the drawings.

34. A computer-readable medium substantially as hereinbefore described

and as shown in the drawings.

° 26
“eis’e INTELLECTUAL

eeee® PROPERTY OFFICE

GB1103492.3

Claims searched: 1-18

Application No: Examiner:

Date of search:

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Mr Adam Tucker
1 July 2011

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
X 17 EP 2084854 A2
(I-spade Technologies) See the whole document
A - GB 2422997 A
(Intel Corp.) See the whole document and in particular claims 1-8
A - EP 1420548 A2
(Texas Instruments) See the whole document and in particular
paragraphs 10-13 and claims 1-3
A - US 2003/0135667 Al
(Mann et al.) See in particular the claims
A - US 2006/0248200 A1l
(Stanev) See in particular the claims
Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™ :

-

Worldwide search of patent documents classified in the following areas of the IPC

| HO4L

The following online and other databases have been used in the preparation of this search report

| WPL, EPODOC, INSPEC, TXTE

Intellectual Property Office is an operating name of the Patent Office

Www.ipo.gov.uk

° 27
“eis’e INTELLECTUAL

eeee® PROPERTY OFFICE

International Classification:

Subclass Subgroup Valid From
HO4L 0012/26 01/01/2006
HO4L 0001/00 01/01/2006
HO4L 0029/06 01/01/2006

Intellectual Property Office is an operating name of the Patent Office

Www.ipo.gov.uk

28

INTELLECTUAL

PROPERTY OFFICE

Application No: GB1103492.3 Examiner: Mr Adam Tucker
Claims searched: 19-30 Date of search: 17 January 2012
Patents Act 1977

Further Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance

to claims
A - EP 2084854 A2
(I-spade Technologies) See the whole document
A - US 2003/0135667 A1l
(Mann et al.) See in particular the claims
A - EP 1420548 A2

(Texas Instruments) See the whole document and in particular
paragraphs 10-13 and claims 1-3

A.E - WO 2011/143817 Al
(Alcatel Lucent) See supplied WPI English abstract

A - GB 2422997 A
(Intel Corp.) See the whole document and in particular claims 1-8

A.E - WO 2011/114060 A2
(Thales SA) See in particular the claims

Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but

combined with one or more other documents of
same category.

before the filing date of this invention.

earlier than, the filing date of this application.

& Member of the same patent family E Patent document published on or after, but with priority date

Field of Search:
Search of GB. EP, WO & US patent documents classified in the following areas of the UKC® :

-

Worldwide search of patent documents classified in the following areas of the IPC

| HO4L

The following online and other databases have been used in the preparation of this search report

| WPI, EPODOC, INSPEC, TXTE

Intellectual Property Office is an operating name of the Patent Office

Www.ipo.gov.uk

° 29
“eis’e INTELLECTUAL

eeee® PROPERTY OFFICE

International Classification:

Subclass Subgroup Valid From
HO4L 0012/26 01/01/2006
HO4L 0001/00 01/01/2006
HO4L 0029/06 01/01/2006

Intellectual Property Office is an operating name of the Patent Office

Www.ipo.gov.uk

	BIBLIOGRAPHY
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

