发明名称
球形内螺纹中径测量方法

摘要
本发明涉及精密丝杠螺母球形内螺纹中径测量方法，其通过分析滚珠丝杠副结构原理，建立球形内螺纹中径计算公式，并通过尺寸转化计算的方式得到了目标尺寸。不需要专门测量工具的设计、购置降低了生产成本且缩短了生产周期，测量工具简单、可操作性强，实际应用效果好。
1. 球形内螺纹中径测量方法，其特征在于包括如下步骤：
步骤1，通过千分尺测量螺母实际外径尺寸W，并记录；
步骤2，螺母外圆精磨后作为磨削内螺纹基准进行加工，开始进行球形螺纹磨削加工，
加工过程中通过千分尺测量滚珠与螺母的组合厚度尺寸H，并记录；
步骤3，建立球形内螺纹中径计算公式，并通过尺寸转化计算的方式得到中径Φ目标尺寸；
 中间转换尺寸L：L=W-H×2
 内螺纹中径尺寸Φ：Φ=L+1.75×2
式中，L为中间转换尺寸，W为螺母实际外径尺寸，H为滚珠与螺母的组合厚度尺寸，Φ为中径尺寸。
2. 根据权利要求1所述的球形内螺纹中径测量方法，其特征在于所述步骤2中，磨削加工
 球形螺纹前，需要保证螺母外圆、螺母内孔及螺母内螺纹同轴度一致，且互为基准。
3. 根据权利要求1或2所述的球形内螺纹中径测量方法，其特征在于所述步骤2中，磨
 削加工球形螺纹时，以螺母外圆为基准，找正螺母外圆全跳动量不大于0.008。
球形内螺纹中径测量方法

技术领域
[0001] 本发明涉及一种球形内螺纹中径测量方法，该方法适用于精密滚珠丝杠副生产加工过程中的测量、检验。

背景技术
[0002] 随着现代工业的快速发展和需求，航空航天、武器装备、精密机床对精密滚珠丝杠副的市场需求更加明显。而影响精密滚珠丝杠副的关键是滚珠丝杠和丝杠螺母的螺纹中径尺寸 D，即钢球在丝杠副内部循环运动时的轨道圆弧直径。螺纹的中径尺寸精度影响着精密滚珠丝杠副的回转运动、直线运动的精度。

[0003] 而以前采用带表内卡钳测量螺母球形内螺纹的方法具有以下几点问题。
[0004] （1）带表内卡钳应用具有局限性。带表内卡钳加工完成后结构无法调整或更换钢球，一种内卡钳只能测量一种导程的内螺纹中径。且带表内卡钳使用时可能与螺母内径产生干涉，无法测量得到所有的内螺纹中径实际尺寸。因此带表内卡钳测量内螺纹中径具有局限性。

[0005] （2）测量数值不稳定性。在内螺纹磨削过程中，不同加工人员使用带表内卡钳工具方式不同，水平不一，得到的测量结果有时可能不一致，存在人员测量误差。当内螺纹中径尺寸公差严格时此种方法难以保证。

[0006] （3）不同规格的带表内卡钳测具，需要专门的量具设计人员进行设计。加工后的卡钳头处采用焊接或粘接方式将钢球固定，使用一段时间后钢球表面存在磨损，带表内卡钳需定期更换，带表内卡钳量具生产加工需要周期。

发明内容
[0007] 本发明针对上述现有技术中存在的问题，提出了一种球形内螺纹中径测量方法，解决了现有技术测量用具局限性大、测量数值不稳定的问题。
[0008] 本发明的技术方案包括如下步骤：
步骤1，通过千分尺测量螺母实际外径尺寸 W，并记录；
步骤2，螺母外圆精磨后作为磨削内螺纹基准进行加工，然后进行球形螺纹磨削加工，加工过程中通过千分尺测量滚珠与螺母的组合厚度尺寸 H，并记录；
步骤3，建立球形内螺纹中径计算公式，并通过尺寸转化计算的方式得到中径 D 目标尺寸；
中间转换尺寸 L：
内螺纹中径尺寸 D：

$$L = W - H \times 2$$

$$D = L + R \times 2$$

式中，L 为中间转换尺寸，W 为螺母实际外径尺寸，H 为滚珠与螺母的组合厚度尺寸，D 为中径尺寸，R 为滚珠半径尺寸。

[0009] 所述步骤2中，磨削加工球形螺纹前，需要保证螺母外圆、螺母内孔及螺母内螺纹同轴度一致，且互为基准。
所述步骤2中，磨削加工球形螺纹时，以螺母外圆为基准，找正螺母外圆全跳动量不大于0.008。

【0011】本发明的优点效果如下：
本发明在加工过程中即可精测的测量滚珠在丝杠副内部循环运动时的轨道圆弧直径，不需要专门测工具具的设计、购置降场了生产成本且缩短了生产周期，测量工具简单，可操作性强，实际应用效果好。

附图说明
【0012】图1为本发明的原理分析示意图。【0013】图中，1.中间转换尺寸，W、螺母实际外径尺寸，H、滚珠与螺母的组合厚度尺寸，Φ、中径尺寸，Φ珠、滚珠直径，R、滚珠半径。

具体实施方式

实施例
【0014】采用滚珠直径Φ珠3.5，中径为Φ17的滚珠丝杠副进行举例分析。
【0015】步骤1.通过千分尺测量精磨后最终状态的螺母实际外径尺寸W，W=30，并记录。
【0016】步骤2，螺母外圆精磨后作为磨削内螺纹基准进行加工，装夹时找正外圆全跳动不大于0.008。开始进行球形螺纹磨削加工，加工过程中通过千分尺在机床上测量滚珠与螺母的组合厚度尺寸H，H=8.25，并记录。
【0017】带入实际测量值W=30，H=8.25进行计算，
\[L=W-H×2=30-8.25×2=13.5 \]
\[\Phi=L+1.75×2=13.5+3.5=17 \]

得出球形内螺纹中径数值为Φ17。
【0018】所述步骤2中，磨削加工球形螺纹前，需要保证螺母外圆、螺母内孔及螺母内螺纹同轴度一致，且互为基准。
【0019】所述步骤2中，磨削加工球形螺纹时，以螺母外圆为基准，找正螺母外圆全跳动量不大于0.008。
【0020】通过实际实验及加工生产实践，本发明能够保证丝杠螺母球形螺纹中径加工精度。以上所述是本发明的具体实施例及所运用的技术原理，任何基于本发明技术方案基础上的等效变换，均属于本发明的保护范围之内。