Title: RXR AGONISTS COMPOUNDS AND METHODS

Abstract:

A61K 31/4406 (2006.01) A61P 25/24 (2006.01)
A61K 31/19 (2006.01) A61P 25/00 (2006.01)

International Application Number:
PCT/US20 12/060262

International Filing Date:
15 October 2012 (15.10.2012)

Filing Language:
English

Publication Language:
English

Priority Data:
61/546,777 13 October 2011 (13.10.2011) US

Applicant: CASE WESTERN RESERVE UNIVERSITY [US/US]; 10900 Euclid Avenue, Cleveland, OH 44106 (US).

Inventor: LANDRETH, Gary E.; 2829 Southington Road, Shaker Heights, OH 44120 (US).

Agent: SUTKUS, Richard A.; TaroUi, Sundheim, Coveil & Tummino LLP, 1300 E. 9th Street, Suite 1700, Cleveland, OH 44114 (US).

Published:
with declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority

Title: RXR AGONISTS COMPOUNDS AND METHODS

Abstract:
RXR AGONIST COMPOUNDS AND METHODS

RELATED APPLICATION

[0001] This application claims priority from U.S. Provisional Application Nos. 61/546,777, filed October 13, 2011, the subject matter of which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] This application relates to the use RXR agonist compounds to treat neurological disorders, cognitive disorders, psychiatric disorders, dermatological disorders and other diseases or disorders associated with an inflammatory component.

BACKGROUND

[0003] Alzheimer's disease (AD) is a complex multi-genic neurodegenerative disorder characterized by progressive impairments in memory, behavior, language, and visuo-spatial skills, ending ultimately in death. Hallmark pathologies within vulnerable regions include extracellular β-amyloid deposits, intracellular neurofibrillary tangles, synaptic loss, and extensive neuronal cell death. Research on the causes and treatments of Alzheimer's disease has led investigators down numerous avenues. Although many models have been proposed, no single model of AD satisfactorily accounts for all neuropathologic findings as well as the requirement of aging for disease onset. The mechanisms of disease progression are equally unclear. Considerable human genetic evidence has implicated alterations in production or processing of the human amyloid precursor protein (APP) in the etiology of the disease. However, intensive research has proven that AD is a multifactorial disease with many different, perhaps overlapping, etiologies.

[0004] To date, Alzheimer's disease is the third most expensive disease in the United States, costing society approximately $100 billion each year. It is one of the most prevalent illnesses in the elderly population, and with the aging of society, will become even more significant. Costs associated with AD include direct medical costs such as nursing home care, direct nonmedical costs such as in-home day care, and indirect costs such as lost patient and care giver productivity. Medical treatment may have economic benefits by slowing the rate of cognitive decline, delaying institutionalization, reducing care giver hours, and improving quality of life. Pharmacoeconomic evaluations have shown positive results.
regarding the effect of drug therapy on nursing home placement, cognition, and caregiver time.

[0005] Thus far, the therapeutic strategies attempted have targeted neurotransmitter replacement, or the preservation of normal brain structures, which potentially provide short-time relief, but do not prevent neuronal degeneration and death. Thus, there is a need for therapies that prevent neuronal degeneration and death associated with Alzheimer's disease and provide long-term relief.

SUMMARY

[0006] This application relates to compositions and methods of treating PPARy and/or RXR related diseases and disorders in a subject. The PPARy and/or RXR related diseases and disorders can include neurological disorders, cognitive developmental disorders, psychiatric disorders and diseases or disorders with an inflammatory component associated with PPARy/RXR function. The method can include administering to a subject a therapeutically effective amount of at least one RXR agonist.

[0007] In some embodiments, the RXR agonist can include:

\[
\text{\includegraphics[width=0.5\textwidth]{image1.png}}
\]

an analogue or derivative thereof, or a pharmaceutically acceptable salt thereof. In other embodiments, the RXR agonist, analogue or derivative thereof, or a pharmaceutically acceptable salt thereof is in micronized form.

[0008] In other embodiments, the psychiatric or cognitive developmental disorder is selected from the group consisting of autism spectrum disorder, psychosis, schizophrenia,
anxiety, mood disorders, attention deficit/hyperactivity disorders, conduct disorders, and Down's syndrome.

DESCRIPTION OF DRAWINGS

[0009] Fig. 1 is a schematic diagram illustrating the regulation of lipid metabolism by nuclear receptors.

[0010] Fig. 2 is a schematic diagram illustrating the RXR agonist Bexarotene's ability to induce the expression of LXR target genes, ABCA1 and ApoE and promoting Aβ degradation.

[0011] Fig. 3 illustrates an immunoassay and graphs showing RXR activation drives expression of LXR target genes. Primary microglia were treated with increasing concentrations of Bexarotene for 24 hours. Cell lysates were subjected to Western analysis for ABCA1, ABCG1, ApoE, and GAPDH as a loading control.

[0012] Fig. 4 illustrates an immunoassay showing ApoE lipidation status is increased after RXR agonist treatment. Primary astrocytes were treated with increasing concentrations of Bexarotene for 48 hours. Conditioned media was subjected to native gel electrophoresis followed by Western analysis for ApoE.

[0013] Fig. 5 illustrates graphs showing RXR agonists stimulate Aβ degradation. Primary microglia were treated with the RXR agonist, 9cisRA or B. Bexarotene for 24 hours followed by 18 hours with 2 μg/mL soluble Aβ.

[0014] Fig. 6 illustrates graphs showing Bexarotene crosses the blood brain barrier (BBB) and drives gene expression. Four mice (2 transgenic APP/PS1 and 2 WT littermates) were orally gavaged with 100 mg/kg Bexarotene or vehicle for 7 days. Gene expression in brain homogenates was monitored by Western analysis for ABCA1, ABCG1, ApoE and GAPDH as a loading control.

[0015] Fig. 7 illustrates graphs showing oral RXR agonist treatment reduces both soluble and insoluble Aβ1-40 and 1-42. ELISA data of serial extractions of brain homogenates of AD mouse models (n>4) orally gavaged for 7 days with 100 mg/kg/day of Bexarotene or vehicle (water). Soluble Aβ was extracted using diethylamine, followed by a formic acid extraction to yield the insoluble Aβ. Detection antibodies directed at either Aβ-40 or 1-42 were used to determine the reduction of different species of Aβ.
Fig. 8 illustrates photographs and a graph showing oral RXR agonist treatment reduces plaque burden in an AD mouse model. Cryostat sections of brain (10 um) stained for 6E10, marking amyloid beta and amyloid precursor protein. Animals were orally gavaged for 7 days with 100 mg/kg/day of Bexarotene (B) or vehicle (A). Five animals per treatment were analyzed. 6 sections per animal throughout the brain from about 10 µm prior to about 100 µm beyond the hippocampus and at least 4 images of the cortex were analyzed per section for plaque area (C). (IOx)

Fig. 9 illustrates oral RXR agonist treatment improves the behavior of an AD animal model. 6 month old transgenic positive (Tg pos) AD animals were orally gavaged for 7 days with Bexarotene (100 mg/kg/day) or water. Wildtype littermates were used as a control and were orally gavaged with water for 7 days (n=5). Following treatment, animals underwent contextual fear conditioning. The number of times the animals froze over a two minute period was assessed after training.

Fig. 10 illustrates an immunoassay and graphs showing RXR activation of primary astrocytes drives expression of LXR target genes. Primary astrocytes were treated with increasing concentrations of Bexarotene for 24 hours. Cell lysates were subjected to Western analysis for ABCA1, ABCG1 and ApoE. Actin served as a load control.

Fig. 11 illustrates a graph showing RXR activation drives expression of PPARy target gene, CD36. Primary murine astrocytes were treated with 10 nM Bexarotene for a defined time. Cell lysates were subjected to quantitative RT-PCR. GAPDH served as a control.

Fig. 12 illustrates a graph showing RXR agonist stimulate Aβ degradation in astrocytes. Primary astrocytes were treated with Bexarotene for 24 hours followed by 18 hours with 2 µg/mL soluble Aβ.

Fig. 13 illustrates graphs showing degradation by RXR agonist requires ApoE. Murine ApoE knock out microglia (A) and astrocytes (B) treated with Bexarotene and/or exogenous 1 µg/mL ApoE for 24 hours followed by 18 hours with 2 µg/mL soluble Aβ and drug.

Fig. 14 illustrates graphs showing RXR mediated intracellular Aβ degradation is prevented by inhibiting PPARy or LXR. Microglia (A) and astrocytes (B) were pretreated with inhibitor for 1.5 hrs and then Bexarotene for 24 hours followed by another 1.5 hours of pretreatment with inhibitors and 18 hours with 2µg/mL soluble Aβ and Bexarotene.
Fig. 15 illustrates photographs showing Cryostat sections of brain (10 um) stained for GFAP. Animals were orally gavaged for 7 days with 100 mg/kg/day of Bexarotene (B) or vehicle (A). Hemi brain homogenates were subjected to Western analysis for GFAP. Actin served as a load control (not shown). The average optical density of GFAP in 4 animals per treatment group is significantly lower in the Bexarotene treated mice than in the vehicle (water) treated mice.

Fig. 16 illustrates photographs showing microglia in the brains of Bexarotene treated mice are able to phagocytose Aβ. Cryostat sections (10 um) were stained with 6E10 (plaque pathology) and Ibal, a marker for microglia. Using Z-stack, Aβ, marked by 6E10, is found within an Ibal-positive microglia (A). (100 x).

DETAILED DESCRIPTION

As used herein "agent" or "drug" is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials, such as bacteria, plants, fungi, or animal particularly mammalian cells or tissues that are suspected of having therapeutic properties. The agent or drug may be purified, substantially purified or partially purified.

As used herein, the term "purified" or "to purify" refers to the removal of one or more contaminants from a sample. The present invention contemplates purified compositions.

As used herein, the term "partially purified" refers to the removal of a moderate portion of the contaminants of a sample to the extent that the substance of interest is recognizable by techniques known to those skilled in the art as accounting for a measurable amount of the mixture. Preferably, the compound of interest is at least 5% of the total preparation and up to 50% of the total preparation. As used herein, the term "substantially purified" refers to the removal of a significant portion of the contaminants of a sample to the extent that the substance of interest is recognizable by techniques known to those skilled in the art as the most abundant substance in the mixture.

As used herein "agonist" refers to a molecule which, when interacting with a biologically active molecule, causes a change (e.g., enhancement) in the biologically active molecule, which modulates the activity of the biologically active molecule. Agonists include, but are not limited to proteins, nucleic acids, carbohydrates, lipids or any other molecules.
which bind or interact with biologically active molecules. For example, agonists can alter the activity of gene transcription by interacting with RNA polymerase directly or through a transcription factor or signal transduction pathway. Agonists can mimic the action of a "native" or "natural" compound. Agonists may be homologous to these natural compounds in respect to conformation, charge or other characteristics. Thus, agonists may be recognized by, e.g., nuclear receptors. This recognition may result in physiologic and/or biochemical changes within the cell, such that the cell reacts to the presence of the agonist in the same manner as if the natural compound was present.

The term "RXR agonist" refers to a compound or composition which, when combined with a Retinoid X Receptor (RXR), increases the transcriptional regulation activity of RXR homodimers and heterodimers.

As used herein, the term "therapeutically effective amount" refers to that amount of a composition that results in amelioration of symptoms or a prolongation of survival in a patient. A therapeutically relevant effect relieves to some extent one or more symptoms of a disease or condition or returns to normal either partially or completely one or more physiological or biochemical parameters associated with or causative of the disease or condition.

As used herein, the term "PPARy agonist" refers to a compound or composition, which when combined with PPARy, directly or indirectly stimulates or increases an in vivo or in vitro reaction typical for the receptor (e.g., transcriptional regulation activity). The increased reaction can be measured by any of a variety of assays known to those skilled in the art. An example of a PPARy agonist is a thiazolidinedione compound, such as troglitazone, rosiglitazone, pioglitazone, ciglitazone, WAY-120,744, englitazone, AD 5075, darglitazone, and congeners, analogs, derivatives, and pharmaceutically acceptable salts thereof.

As used herein, the term "subject" refers to any animal, including, but not limited to, humans and non-human animals (e.g., rodents, arthropods, insects, fish (e.g., zebrafish), non-human primates, ovines, bovines, ruminants, lagomorphs, porcines, caprines, equines, canines, felines, aves, etc.), which is to be the recipient of a particular treatment. Typically, the terms "patient" and "subject" are used interchangeably herein in reference to a human subject.

"ABCA1" is used herein to mean "ATP-binding cassette transporter Al", and is also referred to in the art as "ABC1".
"Activate", when used in connection with a receptor, means to change the receptor's conformation so as to promote transcriptional activity.

"LXR" is used herein to mean "liver X receptors."

As used herein, the term "in vitro" refers to an artificial environment and to processes or reactions that occur within an artificial environment. *In vitro* environments consist of, but are not limited to, test tubes and cell culture. The term "in vivo" refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.

"Treating" or "treatment" of a condition or disease includes: (1) preventing at least one symptom of the conditions, *i.e.*, causing a clinical symptom to not significantly develop in a subject that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease, (2) inhibiting the disease, *i.e.*, arresting or reducing the development of the disease or its symptoms, or (3) relieving the disease, *i.e.*, causing regression of the disease or its clinical symptoms. Treatment, prevention and ameliorating a condition, as used herein, can include, for example decreasing or eradicating a deleterious or harmful condition associated with a PPARy/RXR related disease(s) or disorder(s).

For the purposes of this application, the terms "PPARy/RXR related disease(s) or disorder(s)" includes diseases and/or conditions related to the transcription of LXR target genes (*e.g.*, ApoE, ABCA1, and ABCG1).

As used herein, the term "dermatological disorder" refers to any disorder of skin, hair, or glands. A dermatological disorder can be manifest in the form of visible lesions, pre-emergent lesions, pain, sensitivity to touch, irritation, inflammation, or the like. Dermatological disorders include disorders of the cutaneous and pilosebaceous unit or the process of keratogenesis. For example, a dermatological disorder can be a disorder of the epidermis or dermis, or within and surrounding a pilosebaceous unit, which is located within the epidermis, dermis, subcutaneous layer, or a combination thereof. Examples of dermatological disorders include, but are not limited to, acne, alopecia, psoriasis, seborrhea, ingrown hairs and pseudofolliculitis barbae, hyperpigmented skin, cutaneous infections, lichen planus, Graham Little Syndrome, periorificial dermatitis, rosacea, hidradenitis suppurativa, dissecting cellulitis, systemic lupus erythematosus, discoid lupus erythematosus, and the like.
[0040] As used herein, the term "alopecia" refers to partial or full baldness, hair loss, and/or hair thinning.

[0041] As used herein, the term "primary cicatricial alopecia" refers to a group of hair disorders that cause permanent destruction of the hair follicle. The term includes hair disorders in which the hair follicles are the primary target of a destructive inflammatory process. Cicatricial alopecias (CA) can be classified as lymphocytic, neutrophilic, and combinations thereof (i.e., "mixed"). Examples of lymphocytic CAs include lichen planopilaris, frontal fibrosing alopecia, chronic cutaneous lupus, erythematous, pseudopelade, central centrifugal alopecia, alopecia mucinosa, and keratitis follicularis spinulosadecalvans. Examples of neutrophilic CAs include folliculitis decalvans, tufted folliculitis, and dissecting cellulitis. Examples of mixed CAs include folliculitis keloidalis and erosive dermatosis.

[0042] This application relates to compositions and methods of treating PPARy and/or RXR related diseases and disorders. PPARy and/or RXR related diseases and disorders that can be treated by compositions and method described herein include, but are not limited to, neurodegenerative diseases and disorders, psychiatric diseases and disorders cognitive disease and disorders, diseases and disorder resulting from trauma and injury, and/or an inflammatory component as well as dermatological diseases and disorders with or without an inflammatory component and metabolic diseases and disorders, such as diabetes.

[0043] In some embodiments, the compositions and methods can be used to treat a variety of neurological, psychiatric, and/or cognitive developmental disorders associated with PPARy and/or RXR function and/or dysfunction including acute neurological and psychiatric disorders, such as cerebral deficits subsequent to cardiac bypass surgery and grafting, stroke, cerebral ischemia, spinal cord trauma, head trauma, perinatal hypoxia, cardiac arrest, hypoglycemic neuronal damage, dementia (including AIDS-induced dementia), Alzheimer's disease, Huntington's, multiple sclerosis and other demyelinating disorders, amyotrophic lateral sclerosis, ocular damage, retinopathy, cognitive disorders, cognitive impairment, impaired memory, idiopathic and drug-induced Parkinson's disease, muscular spasms and disorders associated with muscular spasticity including tremors, epilepsy, convulsions, migraine (including migraine headache), urinary incontinence, disorders associated with substance tolerance, disorders associated with substance withdrawal (including substances such as opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives,
hypnotics, etc.), psychosis, schizophrenia, anxiety (including generalized anxiety disorder, panic disorder, and obsessive compulsive disorder), mood disorders (including depression, mania, bipolar disorders), trigeminal neuralgia, hearing loss, tinnitus, macular degeneration of the eye, such as age related macular degeneration, emesis, brain edema, pain (including acute and chronic pain states, severe pain, intractable pain, neuropathic pain, and post-traumatic pain), tardive dyskinesia, sleep disorders (including narcolepsy), attention deficit/hyperactivity disorders, conduct disorders, autism spectrum disorder, and Down’s syndrome, as well as neural diseases and conditions with an inflammatory components, including, but not limited to, central nervous system injuries, ischemic damage to the nervous system, neural trauma (e.g., percussive brain damage, spinal cord injury, and traumatic damage to the nervous system), other immune-mediated neuropathies (e.g., Guillain-Barre syndrome and its variants, acute motor axonal neuropathy, acute inflammatory demyelinating polyneuropathy, and Fisher Syndrome), and bacterial, parasitic, fungal, and viral meningitis and encephalitis.

[0044] In other aspects, the compositions and methods described herein can be administered to a subject to treat cystic fibrosis (CF) and CF-related disease(s) and disorder(s) (e.g., variant cystic fibrosis and non-CF bronchiectasis inflammatory responses), and inflammatory responses associated with associated with cystic fibrosis-related disease(s) or disorder(s). In still further aspects, the composition and methods described herein can be used to treat dermatological diseases and/or disorders where lipid PPARy-regulated gene expression is decreased (e.g., LPP).

[0045] The compositions and methods can include the use of RXR agonist alone or in combination with a PPARy agonist (and optionally an LXR agonist) to suppress, inhibit, or mitigate a diverse range of PPARy and/or RXR related diseases as described above and/or inflammatory responses associated with the PPARy and/or RXR related diseases.

[0046] It was found that RXR nuclear receptors act in concert with other nuclear receptors (PPARy and LXR) to facilitate the primary actions of the PPARy and LXR receptors in a cell. PPARy and LXRs are type II nuclear receptors, which form obligate heterodimers with RXR and form a functionally active transcription factor that is then competent to bind DNA and stimulate gene expression. It has been previously shown that PPARy and LXRs act in concert to regulate lipid metabolism and ApoE expression (Fig. 1). It was also found that administration of RXR agonists, such as Bexarotene, to a subject can
drive expression of LXR target genes (ABCA1, ABCG1, ApoE) and PPARγ target genes, which can promote the proteolytic degradation of beta amyloid (Aβ) in neuronal cells. Moreover, it was found that RXR agonists, such as Bexarotene, act additively or synergistically to enhance the actions of LXR agonists or PPARγ agonists in treating cognitive developmental disorders, psychiatric disorders, and neurodegenerative disorders or injuries. For example, ligation of both LXR and RXR results in a synergistic increase in the expression of ApoE and Aβ clearance from cells as well as ameliorates the behavioral impairments in in vivo models of Alzheimer’s disease.

[0047] An aspect of the invention relates to a method of treating PPARγ and/or RXR related diseases and disorders by administering to a subject with the disorder a therapeutically effective amount of RXR agonist. Administration of RXR agonists can increase LXR target gene expression in the subject, improve the therapeutic efficacy of PPARγ agonist and LXR agonist agents in the treatment of PPARγ/RXR related diseases and disorders. Advantageously, the RXR agonist can be administered in combination with a PPARγ agonist and optionally an LXR agonist to synergistically treat the PPARγ and/or RXR related diseases and disorders. It is contemplated by the present invention that the administration of RXR agonists, by increasing LXR target gene expression in the subject, can improve the therapeutic efficacy of PPARγ agonist and LXR agonist agents in the treatment of PPARγ/RXR related diseases and disorders. The present invention therefore relates to therapies that utilize the synergistic properties of two or more therapeutic agents for the treatment of PPARγ/RXR related diseases and disorders.

[0048] The RXR agonist can include known RXR agonists that are described in, for example, the following U.S. patents and patent applications, which are incorporated by reference herein: U.S. Pat. Nos. 5,399,586, 5,466,861, 5,780,676, and 5,801,253; U.S. patent application Ser. Nos. 07/809,980, 08/003,223, 08/027,747, 08/045,807, 08/052,050, 08/052,051, 08/179,750, 08/366,613, 08/480,127, 08/481,877, 08/872,707, and 08/944,783. See also, WO 93/11755, WO 93/21146, WO 94/15902, WO94/23068, WO 95/04036, and WO 96/20913.

[0050] In some aspects of the invention, the RXR agonists can include LGD1069 (also known as Bexarotene), LGD100268, and LGD100324. The structures of RXR agonists designated LGD1069, LGD100268, and LGD100324 are shown below, and the synthesis of these compounds is described in U.S. Patent Nos. 7,655,699 and 5,780,676. The synthesis of compounds LGD1069, LGD100268, and LGD100324 is also described in, e.g., WO 94/15902 and Boehm et al., J. Med.Chem. 38(16):3146 (1994).

[0051] In some aspects of the invention, a RXR agonist can include compounds of the following general formulas:
wherein R_1 and R_2, each independently, represent hydrogen or lower alkyl or acyl having 1-4 carbon atoms;

Y represents C, O, S, N, $CHOH$, CO, SO, SO_2, or a pharmaceutically acceptable salt;

R_3 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C or N;

R_4 represents hydrogen or lower alkyl having 1-4 carbon atoms where Y is C, but R_4 does not exist if Y is N, and neither R_3, or R_4 exist if Y is S, O, $CHOH$, CO, SO, or SO_2;

R' and R'' represent hydrogen, lower alkyl or acyl having 1-4 carbon atoms, OH, alkoxy having 1-4 carbon atoms, thiol or thio ether, or amino, or R' or R'' taken together form an oxo (keto), methano, thioketo, $HO-N=, NC-N=, (R_1R_2)N=N=, R_1'0-N=, R_1'N=, R_1'N=, epoxy$, cyclopropyl, or cycloalkyl group and wherein the epoxy, cyclopropyl, and cycloalkyl groups can be substituted with lower alkyl having 1-4 carbons or halogen;

R''' and R'''' represent hydrogen, halogen, lower alkyl or acyl having 1-4 carbon atoms, alkyl amino, or R''' and R'''' taken together form a cycloalkyl group having 3-
10 carbons, and wherein the cycloalkyl group can be substituted with lower alkyl having 1-4 carbons or halogen;

R₅ represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR⁷, SR⁷, NR⁷R₈, or (CF)nCF₃, but R₅ cannot be hydrogen if together R₆, R₉, R₁₁, R₁₂, and R₁₃ are all hydrogen, Z, Z', Z'', and Z''' are all carbon, and R' and R'' represent H, OH, C₁-C₄ alkoxy or C₁-C₄ acyloxy or R' and R'' taken together form an oxo, methano, or hydroxyimino group;

R₆, R₉, R₁₁, R₁₂, R₁₃, each independently represent hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR⁷, SR⁷, NR⁷R₈ or (CF)nCF₃, and exist only if the Z, Z', Z'', and Z'''' from which it originates is C, or each independently represent hydrogen or a lower alkyl having 1-4 carbons if the Z, Z', Z'', and Z'''' from which it originates is N, and where one of R₆, R₉, R₁₁, R₁₂, or R₁₃ is X;

R₇ represents hydrogen or a lower alkyl having 1-6 carbons;

R₈ represents hydrogen or a lower alkyl having 1-6 carbons;

R₉ represents a lower alkyl having 1-4 carbons, phenyl, aromatic alkyl, or q-hydroxyphenyl, q-bromophenyl, q-chlorophenyl, q-florophenyl, or q-iodophenyl, where q=2-4;

R₁₄ represents hydrogen, a lower alkyl having 1-4 carbons, oxo, hydroxy, acyl having 1-4 carbons, halogen, thiol, or thioketone;

R₁₅ represents a lower or branched alkyl having 1-12 carbons and can be methyl only if R₁₆ is a halogen or a lower alkyl having 1-8 carbons;

R₁₆ represents hydrogen, a lower alkyl having 1-8 carbons, or halogen, or R₁₅ and R₁₂ taken together form a phenyl, cyclohexyl, or cyclopental ring, or one of the following:

R₁₇ represents hydrogen, lower alkyl having 1-8 carbons, alkenyl (including halogen, acyl, OR⁷ and SR⁷ substituted alkenes), R₉, alkyl carboxylic acid (including halogen, acyl, OR⁷ and SR⁷ substituted alkyls), alkenyl carboxylic acid (including halogen,
acyl, OR$_7$ and SR$_7$ substituted alkenes), alkyl amines (including halogen, acyl, OR$_7$ and SR$_7$ substituted alkyls), and alkenyl amines (including halogen, acyl, OR7 and SR7 substituted alkenes);

R$_{i8}$ represents hydrogen, a lower alkyl having 1-4 carbons, halogen, nitro, OR$_7$, SR$_7$, NR$_7$R$_8$ or (CF)$_n$CF$_3$;

R$_{i9}$ represents hydrogen, a lower alkyl having 1-8 carbons, halogen, OR$_7$, SR$_7$, or (CF)$_n$CF$_3$;

X is COOH, tetrazole, P$_0$H, S$_0$H, CHO, CH$_2$OH, CONH$_2$, COSH, COOR$_9$, COSR$_9$, CONHR$_9$, or COOW where W is a pharmaceutically acceptable salt, and where X can originate from any C or N on the ring;

Z, Z', Z'', and Z''', each independently, represent C, S, O, N, or a pharmaceutically acceptable salt, but is not O or S if attached by a double bond to another such Z or if attached to another such Z which is O or S, and is not N if attached by a single bond to another such Z which is N;

n=0-3; and the dashed lines depict optional double bonds.

[0052] In addition, thiophene, furanyl, pyridine, pyrazole, pyridazine, thiazole, and pyrrole groups function as isosteres for phenyl groups, and may be substituted for the phenyl group of the above bicyclic benzyl derivatives.

[0053] Specific examples of RXR agonist compounds of the present invention are given in the following list:

- p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-methyl-TTNCBN";
- p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-isopropyl-2-naphthyl(2-carbonyl)]-benzoic acid, also known as 4-[(3-isopropyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-XPRTTNCB";
- p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-isopropyl-2-naphthyl(2-methano)]-benzoic acid, also known as 4-[(3-isopropyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzoic acid, and designated "3-IPRTTNEB";
- p[5,5,8,8 -tetramethyl 1-1,2,3,4-tetrahydro-3-ethyl-2-naphthyl(2-methano)]-benzoic acid, also known as 4-[(3-ethyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzoic acid, and designated "3-ethyl-TTNEB";
p[(5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-bromo-2-naphthyl-(2-methano)]-benzoic acid, also known as 4-[l-(3-bromo-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzoic acid, and designated "3-bromo-TTNEB";

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3]-chboro-2-naphthyl-(2-methano)-benzoic acid, also known as 4-[l(3-chloro-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzoic acid, and designated "3-chloro-TTNEB";

p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-methano)]-benzoic acid, also known as 4-[l (3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzoic acid, and designated "3-methyl-TTNEB";

p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-hydroxymethyl)]-benzoic acid, also known as 4-[l(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)hydroxymethyl]benzoic acid, and designated "3-methyl-TTNHMB";

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-bromo-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[l(3-bromo-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-bromo-TTNCHBP";

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-chloro-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[l(3-chloro-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-chloro-TTNCHBP";

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-hydroxy-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[l(3-hydroxy-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-hydroxy-TTNCHBP";

p[5,5,8,8-tetramethyl-1,2,3,4-tetrahydro-3-ethyl-2-naphthyl-(2-carbonyl)]-benzoic acid, also known as 4-[l(3-ethyl-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]benzoic acid, and designated "3-ethyl-TTNCHBP";

p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-thioketo)]-benzoic acid, also known as 4-[l(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)thioketo]benzoic acid, and designated "thioketone";

p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-carbonyl)]-N-(4-hydroxyphenyl)benzamide, also known as 4-[l(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl]-N-(4-hydroxyphenyl)benzamide, and designated "3-methyl-TTNCHBP";
p[3,5,5,8,8-pentamethyl-1,2,3,4-tetrahydro-2-naphthyl-(2-methano)]-N-(4-hydroxyphenyl)benzamide, also known as 4-[l-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]N-(4-hydroxyphenyl)benzamide, and designated "3-methyl-TTNEHBP";
2-[l-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]pyridine-5-carboxylic acid, designated "TPNEP";
ethyl 2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]pyridine-5-carboxylate, designated "TPNEPE";
2-[1-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]pyridine-5-carboxylic acid, designated "TTNEP";
4-[l-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)epoxy]benzoic acid, designated "TPNEB";
4-[l-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl]benzoic acid, designated "TPNCB";
4-[l-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]benzenetetrazole, designated "3-methylTTNEBT";
5-[l-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl]pyridine-2-carboxylic acid, designated "TPNEPC";
2-[l-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl]pyridine-5-carboxylic acid, designated "TPNCP";
methyl 2-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl]pyridine-5-carboxylate;
3-methyl-7-propyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2E,4E,6Z,8E-nonatetraenoic acid;
3-methyl-7-isopropyl-9-(2,6,6-trimethyl-1-cyclohexen-yl)-2E,4E,6Z,8E-nonatetraenoic acid;
3-methyl-7-t-butyl-9-(2,6,6-trimethyl-1-cyclohexen-yl)-2E,4E,6Z,8E-nonatetraenoic acid;
3-methyl-5-{2-\{2-(2,6,6-trimethylcyclohexen-1-yl)ethenyl\\}cyclohexyl\}-2E,4E-pentadienoic acid;
(2E,4E)-3-methyl-5-[l-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl]penta-2,4-dienoic acid;
(2E,4E)-3-methyl-6-(1-[2,6,6-trimethyl-1-cyclohexenyl]ethenyl)cyclopropyl)-2,4-hexadienoic acid;
(2E,4E,6Z)-7-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)-3,8-dimethyl-nona-2,4,6-trienoic acid;
(2E,4E,6Z)-7-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-3-methyl-octa-2,4,6-trienoic acid;
2-[1-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl)cyclopropyl] pyridine-5-carboxylic acid;
4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid oxime;
4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] benzoic acid methyl oxime;
4-[1-(2-methyl-4-t-butylphenyl)ethenyl] benzoic acid;
4-[1-(2-methyl-4-t-butylphenyl)cyclopropyl] benzoic acid;
4-[(2-methyl-4-t-butylphenyl)carbonyl] benzoic acid;
4-[(2-methyl-4-t-butylphenyl)carbonyl] benzoic acid oxime; and
4-[1-(2-methyl-4-t-butylphenyl)carbonyl] benzoic acid methyl oxime,
designated Compound 144.

[0054] Representative structures for such compounds are as follows:

3-methyl-TTNCB

3-methyl-TTNHMB

3-methyl-TTNEB, LGD1069

thioketone
3-methyl-TTNEBT

TTNEP

2-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)carbonyl] pyridine-5-carboxylic acid

TPNEP

Ethyl-2-[(1-3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethenyl] pyridine-5-carboxylate

TTNCP

TPNEPC

3TTNEPE
3-Me-n-TTNEHB

3-Me-o-TTNCHBP

3-Me-m-TTNECBP

4-[1-(3,5,5,7,7-pentamethyl-2-indanyl)ethenyl] benzoic acid;

4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)
- [1-(3,5,5,6,7,7-hexamethyl-2-indanyl)ethenyl] benzoic acid.

4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)
- [1-(3,5,5,6,7,7-hexamethyl-2-indanyl)ethenyl] benzoic acid.

methyl benzoic acid;
Et-3-methyl-TTNEB

4-[1-(2-methyl-4-t-butylphenyl)cyclopropyl] benzoic acid

4-[1-(2-methyl-4-t-butylphenyl)cyclopropyl] benzoic acid

4-[1-(2-methyl-4-t-butylphenyl)cyclopropyl] benzoic acid oxime

4-[1-(2-methyl-4-t-butylphenyl)cyclopropyl] benzoic acid methylxime
4-[(3-bromo-5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] benzoic acid oxane

2-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] pyridine-5-carboxylic acid oxane

4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] benzoic acid methyl oxane

Ethyl-4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] benzoate methyl oxane

2-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] pyridine-8-carboxylic acid methyl oxane

4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] benzoic acid butyloxane

4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] benzoic acid propyloxane

4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] benzoic acid cyanoxane
4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] benzoic acid allyloxane

4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] benzoic acid 4-(3-methyl but-2-enolic acid)oxane

4-[(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl) carbonyl] benzoic acid 1-amino ethyloxane

In addition, derivatives of the above compounds can be prepared according to U.S. Pat. No’s: 5,780,676; 5,962,731; 6,043,279; and 6,320,074 which are incorporated herein by reference.

In some aspects of the present invention, the RXR agonist can comprise compounds having the structure selected from the following formulas:

(LGD100268) (LGD100324)
In certain aspects of the present invention, the RXR agonist can comprise a compound having the following structure:

Bexarotene (LGD1069)

In some embodiments, the RXR agonist can comprise at least one bexarotene analog identified below:
In another aspect of the present invention, the RXR agonist can include an agent disclosed in U.S. Pat. No. 7,348,359, having the following general formula (i):

$$\text{R}_1 \text{R}_2 \text{R}_3 \text{R}_4 \text{A} \text{R}_5 \text{R}_6$$

[0059] In formula (i), R is selected from the group of H, F, Cl, Br, I, C1-C3 alkyl, C1-C3 haloalkyl, C2-C3 alkenyl, C2-C3 haloalkenyl, C2-C3 alkynyl, C2-C3 haloalkynyl, and C1-C3 alkoxy, wherein said alkyl, haloalkyl, alkenyl, haloalkenyl, alkynyl, haloalkynyl, and alkoxy groups may be optionally substituted.

R1 and R2 are each, independently, H, a halo, a C1-C10 alkyl, a C3-C10 cycloalkyl, a C5-C10 cycloalkenyl, a 6 to 10 membered aryl, a 5 to 10 membered heteroaryl, an aryl-C1-C6-alkyl, or an amino group represented by the formula NRi₄Ri₅, wherein the alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and arylalkyl are optionally substituted with one or
more halo, C1-C3 alky, C1-C3 haloalkyl or C1-C3 alkoxy; or R₁ and R₂ taken together with the
carbon atoms to which they are attached form a five or six membered carbocyclic ring which
is optionally substituted with one or more halo or C₁-C₆ alkyl groups. R₁₄ and R₁₅ are each,
independently, H, a C₁-C₆ alkyl, or taken together with the nitrogen they are attached to form
a 5 to 8 heterocycle.

Alternatively, R and R₁ taken together with the carbon atoms to which they are
attached form an aryl, a heteroaryl, a Cs-Cs cycloalkyl or Cs-Cs cycloalkenyl ring in which
the aryl, heteroaryl, Cs-Cs cycloalkyl or Cs-Cs cycloalkenyl are optionally substituted with one
or more halo, C₁-C₃ allyl, C₁-C₃ haloalkyl or C₁-C₃ alkoxy substituents. Preferably, when R
and R₁ together with the carbon atoms to which they are attached form an aryl or a heteroaryl,
the aryl and heteroaryl have from five to six atoms.

R₃ is H, a halo, a C₁-C₆ alkyl, a C₁-C₆ cycloalkyl, Cs-C₆ cycloalkenyl, a 6 to
10 membered aryl, a 5 to 10 membered heteroaryl, an aryl-C₁-C₆ alkyl, or an amino group
represented by the formula NR₁₄R₁₅, wherein the alkyl, cycloalkyl, cycloalkenyl, aryl,
heteroaryl and arylalkyl are optionally substituted with one or more halo, C₁-C₃ alkyl, C₁-C₃
haloalkyl or C₁-C₃ alkoxy.

R₄ is H, a halo, an aryl-C₁-C₆ alkyl, a C₁-C₆ alkyl or a C₁-C₆ alkoxy group
wherein the arylalkyl, alkyl, and alkoxy are optionally substituted with one or more
substituents selected from halo, C₁-C₆ alkyl, aryl, heteroaryl, a C₁-C₆ alkoxy, an amino group
represented by the formula NR₁₄R₁₅. Preferably, the aryl and the heteroaryl substituents each,
independently, have from five to ten atoms.

Alternatively, R₃ and R₄ taken together with the carbon atoms to which they are
attached form an aryl, a heteroaryl, a Cs-Cs cycloalkyl or Cs-Cs cycloalkenyl ring wherein the
aryl, heteroaryl, cycloalkyl and cycloalkenyl are optionally substituted with one or more halo,
C₁-C₃ alkyl, C₁-C₃ haloalkyl or C₁-C₃ alkoxy substituents. Preferably, when R₃ and R₄
together with the carbon atoms to which they are attached form an aryl or a heteroaryl, the
aryl and heteroaryl have from five to ten atoms.

R₅ is H, a halo, or a C₁-C₃ alkyl group, which is optionally substituted with one
or more halo.

R₆ is H or halo.

R₁₆ is OR₁₇, OCH(R₁₇)OC(0)R₁₈, -NR₁₉R₂₀, or an aminoalkyl.

R₁₇, R₁₉ and R₂₀ are each, independently, H or a C₁-C₆ alkyl.
[0069] Rig is a C_{6} alkyl.

[0070] Ring A is a heteroaryl group represented by the following structural formula:

![Structural formula]

[0071] In ring A, X_1 and X_2 are each, independently, O, S, N, NH, or CH.

[0072] X_3 is N or C.

[0073] X_4 is CH or N.

[0074] P is O or 1.

[0075] However, when X_i is O or S, then X_2 is CH or N and P is 0.

[0076] Ring A is optionally substituted with one or more substituents selected from a halo, a C_{6} alkyl, or a C_{6} alkoxy.

[0077] This group of compounds can be represented by the following formula (ii):

![Second structural formula]

[0078] In this formula, R_5, R_6, and R_{12}, are as defined in formula (i).

[0079] R_{i}^{'} and R_{i}^{''} are each, independently, H, a halo, a C_{1-10} alkyl, a C_{3-10} cycloalkyl, a C_{5-10} cycloalkenyl, a 6 to 10 membered aryl, a 5 to 10 membered heteroaryl, an aryl-C_{1-6} alkyl or an amino group represented by the formula NR_{14}R_{15} wherein the alkyl, cycloalkyl, cycloalkenyl, aryl, heteroaryl and arylalkyl are optionally substituted with one or more halo, C_{1-3} alkyl, C_{1-3} haloalkyl or C_{1-3} alkoxy.

[0080] R_{4}^{'} is H, a halo, an aryl-C_{6}-alkyl, a C_{1-10} alkyl or a C_{1-10} alkoxy group wherein the arylalkyl, alkyl and alkoxy groups are optionally substituted with one or more substituents selected from halo, C_{6} alkyl, aryl, heteroaryl, a C_{1-6} alkoxy, an amino group represented by the formula NR_{i}R_{i}.

Each R_7 is, independently, a halo or a C1-C6 alkyl group.

R_i is H, a halo or a C1-C6 alkyl group.

k is 0, 1, 2 or 3.

In a second preferred embodiment, compounds of the present invention and pharmaceutically acceptable salts, solvates and hydrates thereof, separately or with their respective pharmaceutical compositions, have a benzo[b] thienyl ring A. This group of compounds can be represented by formula (iii):

In formula (iii), R_5, R_6, and R_{i_1}, R_{i_2}, and R_{i_3}, are defined as in Structural Formula i and $R_{i'}$, $R_{i_2'}$, and $R_{i_3'}$ are defined as in Structural Formula ii.

Each R_9 is, independently, a halo or a C1-C6 alkyl group;

R_{i_0} is H, a halo or a C1-C6 alkyl group; and

m is 0, 1, 2 or 3.

In one aspect, compounds of the present invention and pharmaceutically acceptable salts, solvates and hydrates thereof, separately or with their respective pharmaceutical compositions, have an indolyl ring A. This group of compounds can be represented by formula (iv):
In formula (iv), R₅, R₆, and R₇ are as defined for Structural Formula i and Rᵢ', Rᵢ', and Rᵢᵢ' are defined as in Structural Formula ii.

R₁₁ is H, a halo or a C₆ alkyl.

R₁₂ is H or a C₆ alkyl.

Each R₁ᵢ is, independently, a halo or a C₆ alkyl group.

q is 0, 1, 2 or 3.

Specific examples of RXR agonist agents disclosed in U.S. Pat. No. 7,348,359 for use in the present invention are given in the following list:

3-[5-(2-hydroxy-3-tert-butyl-5-ethylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;

2-fluoro-3-[5-(2-methoxy-3,5-di-iso-propylphenyl)benzo[b]furan-2-yl] -but-2-enoic acid;

2-fluoro-3-[7-(2-propoxy-3-tert-butyl-5-ethylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid ethyl ester;

3-[7-(2-ethoxy-3,5-di-iso-propylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;

3-[7-(2-propoxy-3,5-di-iso-propylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;

3-[7-(2-ethoxy-3,5-di-iso-propylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;

3-[7-(2-propoxy-3,5-di-iso-propylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;

3-[7-(2-ethoxy-3,5-di-iso-propylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;

3-[7-(2-propoxy-3,5-di-iso-propylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;

3-[7-(2-propoxy-3,5-di-iso-propylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;

(E)-2-fluoro-3-[7-(2,2-difluoroethoxy)-3,5-di-iso-propylphenyl]-benzo[b]furan-2-yl]-but-2-enoic acid;

(E)-3-[7-[5,5,8,8,-tetramethyl-3-ethoxy-5,6,7,8-tetrahydronaphth-2-yl] -benzo[b]furan-2-yl]-but-2-enoic acid;

3-[7-(2-ethoxy-3,5-di-iso-propylphenyl)-benzo [b]thien2-yl] -but-2-enoic acid;

2-carboxy-4-(2-propoxy-3,5-di-tert-butylphenyl)-benzo [b]thiophene;

3-[4-(2,2-difluoroethoxy)-3,5-di-tert-butylphenyl]benzo[b]thien-2-yl] -but-2-enoic acid;
(E)-3-{4-[2-(2,2-difluoroethoxy)-3-propyl-5-phenylphenyl]benzo[b]thien-2-yl}-but-2-enoic acid;

(E)-3-{4-[2-(2,2-difluoroethoxy)-3-propyl-5-phenylphenyl]benzo[b]thien-2-yl]-but-2-enoic acid;

(E)-3-{4-[2-(2,2-difluoroethoxy)-3-propyl-5-phenylphenyl]benzo[b]thien-2-yl]-but-2-enoic acid;

(E)-3-{4-[2-(2,2-difluoroethoxy)-3-propyl-5-phenylphenyl]benzo[b]thien-2-yl]-but-2-enoic acid;

(E)-3-{4-[2-(3,3-difluoropropoxy)-3-propyl-5-phenylphenyl]benzo[b]thien-2-yl]-but-2-enoic acid;

(E)-3-{4-[2-(3,3-difluoropropoxy)-3-propyl-5-phenylphenyl]benzo[b]thien-2-yl]-but-2-enoic acid;
(E) 3-[4-(2-(2,2,2-trifluoroethoxy)-3-phenyl-5-methylphenyl)benzo[b]thienyl]but-2-enoic acid;
(E) 3-[4-[2-(2-methylpropoxy)-3-tert-butyl-5-ethylphenyl]-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-[2-(2,2,2-trifluoroethoxy)-4-tert-butylphenyl]benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-(5-(2,2,2-trifluoroethoxy)-6-tert-butylindan-4yl)-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-(5,5-di-tert-butylphenyl)-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-(3,3,3-difluoropropoxy)-5-fluoro-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-[2-(3-methylbutoxy)-3,5-di-tert-butylphenyl]benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-[2-(2,2,2-trifluoroethoxy)-3,5-di-(l,l-dimethylpropyl)phenyl]-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-[2-(2-methylpropoxy)-3,5-di-(l,l-dimethylpropyl)phenyl]-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-[2-(3-fluoropropoxy)-3,5-di-(l,l-dimethylpropyl)phenyl]-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-[2-(3,3-difluoropropoxy)-3,5-di-(l,l-dimethylpropyl)-phenyl]-thiophene]but-2-enoic acid;
(E) 3-[4-[2-(2,2-difluoroethoxy)-3-tert-butyl-5-phenylphenyl]-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3- {5-[2-(2,2-difluoroethoxy)-3-phenyl-5-tert-butylphenyl]-benzo[b]thien-
2-yl}but-2-enoic acid;
3-[3-(2-butoxy-3,5-di-iso-propylphenyl)-lH-indol-5-yl]but-2-enoic acid;
3-[3-(2-butoxy-3,5-di-iso-propylphenyl)-1-methyl-1 Hindol-5-yl]-but-2-enoic acid;
3-[3-(2-ethoxy-3,5-di-iso-propylphenyl)-lH-indol-5-yl]but-2-enoic acid;
3-[4-(2-butoxy-3,5-di-iso-propylphenyl)-lH-indol-2-yl]but-2-enoic acid;
3-[1-(2-butoxy-3,5-di-iso-propylphenyl)-isoquinolin-7yl]-but-2(E)-enoic acid;
3-[4-(2-butoxy-3,5-di-iso-propylphenyl)-quinolin-6-yl]but-2(E)-enoic acid;
3- {3-[2-(3-fluoroproproxy)-3,5-di-iso-propylphenyl]benzo[b]thien-5-yl]-but-2-
enoic acid;
3-[3-(2-hydroxy-3,5-di-iso-propylphenyl)-benzo[b]thien5-yl]-but-2-enoic acid;
3-[3-(3,5-di-iso-propyl-2-methoxyphenyl)-benzo[b]thien-5-yl]-but-2-enoic acid;
3-[3-(2-ethoxy-3,5-di-iso-propylphenyl)-thieno[2,3-c]pyridin-5-yl]-but-2-
enoic acid;
3-[3-(2-ethoxy-3,5-di-iso-propylphenyl)-benzo[2,1-d]isoxazol-5-yl]-but-2-
enoic acid;
3-[3-(2-ethoxy-3,5-di-iso-propylphenyl)-IH-indazol-5yl]-but-2-enoic acid;
3-[3-(2-ethoxy-3,5-di-iso-propylphenyl)-imidazo[1,2-a]pyridin-6-yl]-but-2-
enoic acid;
3-[3-(2-ethoxy-3,5-di-iso-propylphenyl)-imidazo[1,2-a]pyridin-6-yl]-acrylic acid;
3-[3-[3,5-di-tert-butyl-2-propoxy-phenyl]-IH-indol-5yl]-but-2-enoic acid;
3- {3-[3,5-di-tert-butyl-2-(2,2-difluoro-ethoxy)-phenyl]IH-indol-5-yl]-but-2-
enoic acid;
3- {3-[3,5 -di-tert-butyl-2-(2,2,2-trifluoro-ethoxy)-phenyl]-IH-indol-5-yl} but-2-enoic acid, and pharmaceutically acceptable salts, solvates and hydrates thereof.
In one aspect, ring A of the agents disclosed in U.S. Pat. No. 7,348,359 for use in the present invention is a benzo[b]furanyl. These compounds include, but are not limited to, the following compounds:

- 3-[5-(2-hydroxy-3-tert-butyl-5-ethylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;
- 2-fluoro-3-[5-(2-methoxy-3,5-diisopropylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;
- 2-fluoro-3-[7-(2-propoxy-3-tert-butyl-5-ethylphenyl)benzo[b]furan-2-yl]-but-2-enoic acid ethyl ester;
- 3-[7-(2-ethoxy-3,5-di-tert-butylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;
- 3-[7-(2-ethoxy-3,5-diisopropylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;
- 3-[7-(2-propoxy-3,5-diisopropylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;
- 3-[7-(2-propoxy-3,5-diisopropylphenyl)-benzo[b]furan-2-yl]-but-2-enoic acid;
- 3-[7-(3-fluoropropoxy)-3,5-diisopropylphenyl]benzo[b]furan-2-yl]-but-2-enoic acid;
- 3-[7-(2,2-difluoroethoxy)-3,5-diisopropylphenyl]benzo[b]furan-2-yl]-but-2-enoic acid;
- (E)-2-fluoro-3-[7-(2,2-difluoroethoxy)-3,5-diisopropylphenyl]benzo[b]furan-2-yl]-but-2-enoic acid;
- (E)-3-[7-[5,5,8,8,-tetramethyl-3-ethoxy-5,6,7,8-tetrahydronaphth-2-yl]-benzo[b]furan-2-yl]-but-2-enoic acid;
- 3-[4-(2,2,2-trifluoroethoxy)-3,5-di-isopropylphenyl]benzo[b]furan-2-yl]-but-2-enoic acid; and pharmaceutically acceptable salts, solvates and hydrates thereof.

In another embodiment, ring A of compounds of the present invention is a benzo[b]thienyl. These compounds include but are not limited to the following group of compounds:

- ethyl-2-carboxylate-7-(2-ethoxy-3,5-di-isopropylbenzene)benzo[b]thiophene;
- 3-[7-(2-ethoxy-3,5-di-isopropylphenyl)benzo[b]thien-2-yl]-but-2-enoic acid;
- 2-carboxy-4-(2-propoxy-3,5-di-tert-butylphenyl)benzo[b]thiophene;
- (E)-3-[4-(2-propoxy-3,5-di-isopropylphenyl)benzo[b]thien-2-yl]-but-2-enoic acid;
(E)-3-[4-(2-ethoxy-3,5-di-iso-propylphenyl)-benzo[b]thien-2-yl]-but-2-enoic acid;
(E)-3-[4-(2-n-butoxy-3,5-di-iso-propylphenyl)-benzo[b]thien-2-yl]-but-2-enoic acid;
(E)-3-[4-(2-n-butoxy-3,5-di-iso-propylphenyl)-5-fluorobenzo[b]thien-2-yl]-but-2-enoic acid;
2-fluoro-3-[4-(3,5-di-iso-propyl-2-propyloxyphenyl)benzo[b]thien-2-yl]but-2-enoic acid;
3-[4-(3,5-di-iso-propyl-2-propyloxyphenyl)-benzo[b]thien-2-yl]but-2-enoic acid;
3-[4-[2-(2,2,2-trifluoroethoxy)-3,5-di-iso-propylphenyl]benzo[b]thien-2-yl]-but-2-enoic acid;
(E) 2-[4-[2-(2,2,2-trifluoroethoxy)-3-tert-butyl-5-methylphenyl]-benzo[b]thien-2-yl]but-2-enoic acid;
(3-[4-[2-(2,2,2-trifluoroethoxy)-3,5-di-tert-butylphenyl]-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-[4-[2-(2,2,2-trifluoroethoxy)-3-tert-butyl-5-ethylphenyl]-benzo[b]thien-2-yl]but-2-enoic acid;
(E) 3-{4-[2-(2,2,2-trifluoroethoxy)-3,5-di-tert-butylphenyl]-benzo[b]thien-2-yl}but-2-enoic acid;
(E) 3-{4-[2-(2,2,2-trifluoroethoxy)-3,5-di-tert-butylphenyl]-benzo[b]thien-2-yl}but-2-enoic acid;
(E) 3-[4-[2-(2,2,2-trifluoroethoxy)-3,5-di-tert-butylphenyl]-benzo[b]thien-2-yl]but-2-enoic acid;
In another aspect, ring A of the agents disclosed in U.S. Pat. No. 7,348,359 for use in the present invention is an indolyl. These compounds include, but are not limited to, the following:

3-[3-(2-butoxy-3,5-di-iso-propyl-phenyl)-lH-indol-5-yl]but-2-enoic acid;
3-[3-(2-butoxy-3,5-di-iso-propylphenyl)-l-methyl-lH-indol-5-yl]but-2-enoic acid;
3-[3-(2-ethoxy-3,5-di-iso-propyl-phenyl)-lH-indol-5-yl]but-2-enoic acid;
3-[3-(2-butoxy-3,5-tert-butyl-phenyl)-lH-indol-5-yl]but-2-enoic acid;
3-[4-(2-butoxy-3,5-di-iso-propylphenyl)-lH-indol-2-yl]but-2-enoic acid;
3-[3-(3, 5-di-tert-butyl-2-propoxy-phenyl)-lH-indol-5yl]but-2-enoic acid;
3-[3-[3,5 -di-tert-butyl-2-(2,2-difluro-ethoxy)-phenyl]lH-indol-5-yl] -but-2-enoic acid;
3-{3-[3,5 -di-tert-butyl-2-(2,2,2-trifluoro-ethoxy)-phenyl]-lH-indol-5-yl] -but-2-enoic acid; and pharmaceutically acceptable salts, solvates and hydrates thereof.

In some aspects, compounds represented by Structural Formula i have a ring A that is selected from the group consisting of an optionally substituted benzofuranyl, an optionally substituted benzo[b]thiophenyl, an optionally substituted indolyl, an optionally substituted thieno[2,3-c]pyridinyl, an optionally substituted benzold] isoxazolyl, an optionally substituted indazolyl, an optionally substituted imidazo[1,2-alpyridinyl, an optionally substituted isoquinolinyl, or an optionally substituted quinolinyl.

In some aspects, compounds represented by formula (i) have a ring A that is selected from the following groups:
The symbol "U" indicates a single bond connecting ring A to the phenyl group, and the symbol "T" indicates a single bond connecting ring A to the αβ-unsaturated carbonyl group.

In another aspect, R₄ of formula (i) or R₄ of preferred embodiments four and five is a C₂₋₅ alkoxy group, which is optionally substituted with one or more fluoro.

In another aspect, R₄' of preferred embodiments one, two and three is a C₂₋₅ alkoxy group which is optionally substituted with one or more fluoro.

In another aspect, R₅ is methyl and R₆ is H in anyone of the previous embodiments.

In another aspect, R₅ is methyl and R₆ is fluoro in anyone of the previous embodiments.

In another aspect, Ri and R₃ in anyone of the previous embodiments in which they occur are the same.
In another aspect, \(R_i \) and \(R_3 \) in anyone of the previous embodiments in which they occur are the same and are iso-propyl or tert-butyl.

In another aspect, \(R_i' \) and \(R_3' \) in anyone of the previous embodiments in which they occur are the same.

In another embodiment, \(R_i' \) and \(R_3' \) in anyone of the previous embodiments in which they occur are the same.

Optionally, a PPARy agonist can be administered in combination with the RXR agonist to treat the PPARy and/or RXR related diseases and disorders. PPARy agonists for use in the present invention can include, for example, prostaglandin J2 (PGJ2) and analogs thereof (e.g., A2 -prostaglandin J2 and 15-deoxy-2,4-prostaglandin J2), members of the prostaglandin D2 family of compounds, docosahexaenoic acid (DHA), and thiazolidinediones (e.g., ciglitazone, troglitazone, pioglitazone and rosiglitazone).

In addition, such PPARy agonists can include, but are not limited to, L-tyrosine-based compounds, farglitazar, GW7845, indole-derived compounds, indole 5-carboxylic acid derivatives and 2,3-disubstituted indole 5-phenylacetic acid derivatives. It is appreciated that most of the PPARy agonists exhibit substantial bioavailability following oral administration and have little or no toxicity associated with their use (See, e.g., Saltiel and Olefsky, Diabetes 45:1661 (1996); Wang et al., Br. J. Pharmacol. 122:1405 (1997); and Oakes et al., Metabolism 46:935 (1997)). It will be appreciated that the present invention is not limited to above-identified PPARy agonists and that other identified PPARy agonists can also be used.

PPARy agonists that can be used for practicing the present invention, and methods of making these compounds, are disclosed in WO 91/07107; WO 92/02520; WO 94/01433; WO 89/08651; WO 96/33724; WO 97/31907; U.S. Pat. Nos. 4,827,200; 4,340,605; 4,438,141; 4,444,779; 4,461,902; 4,572,912; 4,687,777; 4,703,052; 4,725,610; 4,873,255; 4,897,393; 4,897,405; 4,918,091; 4,948,900; 5,002,953; 5,061,717; 5,120,754; 5,132,317; 5,194,443; 5,223,522; 5,232,925; 5,260,445; 5,814,647; 5,902,726; 5,994,554; 6,294,580; 6,306,854; 6,498, 174; 6,506,781; 6,541,492; 6,552,055; 6,579,893; 6,586,455, 6,660,716, 6,673,823; 6,680,387; 6,768,008; 6,787,551; 6,849,741; 6,878,749; 6,958,355; 6,960,604; 7,022,722; and U.S. Applications 20030130306, 20030134885, 20030109579, 20030109560, 20030088103, 20030087902, 20030096846, 20030092697, 20030088103, 20030073862, 20030055265, 20030045553, 120020169192,
The disclosures of these publications are incorporated herein by reference in their entirety, especially with respect to the PPARγ agonists disclosed therein, which may be employed in the methods described herein.

In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula I:

\[
\text{R}_1 \text{R}_2 \text{O} \text{(CH}_2\text{n)O} \text{CH}_2\text{C} = \text{C} \text{Y} \\
\text{Z} \text{N} \text{I}
\]

wherein \(\text{R}_1 \) and \(\text{R}_2 \) are the same or different, and each represents a hydrogen atom or a C1-C5 alkyl group; \(\text{R}_3 \) represents a hydrogen atom, a C1-C6 aliphatic acyl group, an alicyclic acyl group, an aromatic acyl group, a heterocyclic acyl group, an araliphatic acyl group, a (C1-C6 alkoxy)carbonyl group, or an aralkyloxycarbonyl group; \(\text{R}_4 \) and \(\text{R}_5 \) are the same or different, and each represents a hydrogen atom, a C1-C5 alkyl group or a C1-C5 alkoxy group, or \(\text{R}_4 \) and \(\text{R}_5 \) together represent a C1-C5 alkenedioxy group; \(\text{n} \) is 1, 2, or 3; \(\text{W} \) represents the CH\(_2\), CO, or CHOR\(_6\) group (in which \(\text{R}_6 \) represents any one of the atoms or groups defined for \(\text{R}_3 \) and may be the same as or different, from \(\text{R}_3 \)); and \(\text{Y} \) and \(\text{Z} \) are the same or different and each represents an oxygen atom or an imino (-NH) group; and pharmaceutically acceptable salts thereof.

In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula II:

\[
\text{L}_{1} \text{C} = \text{O} \text{CH}_2\text{C} = \text{C} \text{N} \\
\text{L}_{2} \text{R}_{11} \text{O}
\]

wherein \(\text{R}_{11} \) is a substituted or unsubstituted alkyl, alkoxy, cycloalkyl, phenylalkyl, phenyl, aromatic acyl group, a 5- or 6-membered heterocyclic group including 1 or 2 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, or a group of the formula indicated in:
wherein R13 and R14 are the same or different and each is a lower alkyl
(alternately, R13 and R14 are combined to each other either directly or as interrupted by a
heteroatom comprising nitrogen, oxygen, and sulfur to form a 5- or 6-membered ring); and
wherein L1 and L2 are the same or different and each is hydrogen or lower alkyl or L1 and L2
are combined to form an alkylene group; or a pharmaceutically acceptable salt thereof.

In some aspects of the present invention, the PPARy agonists can comprise
compounds of Formula III:

wherein R15 and R16 are independently hydrogen, lower alkyl containing 1 to 6
carbon atoms, alkoxy containing 1 to 6 carbon atoms, halogen, ethyl, nitrite, methylthio,
trifluoromethyl, vinyl, nitro, or halogen substituted benzyloxy; n is 0 to 4; or a
pharmaceutically acceptable salt thereof.

In some aspects of the present invention, the PPARy agonists can comprise
compounds of Formula IV:

wherein the dotted line represents a bond or no bond; V is HCH-, -NCH-, ~CH=N—, or S; D is CH2, CHOH, CO, C=NO Ri 7, or CH=CH; X is S, SO, NRI 8, -CH=N, or
-N=CH; Y is CH or N; Z is hydrogen, (C1-C 7)alkyl, (C1-C 7)cycloalkyl, phenyl, naphthyl,
pyridyl, furyl, thienyl, or phenyl mono- or di-substituted with the same or different groups
which are (C1-C 7)alkyl, trifluoromethyl, (C1-C 7)alkoxy, fluoro, chloro, orbromo; Z1 is
hydrogen or (C1-C 7)alkyl; R17 and R18 are each independently hydrogen or methyl; and n is 1,
2, or 3; the pharmaceutically acceptable cationic salts thereof; and the pharmaceutically
acceptable acid addition salts thereof when the compound contains a basic nitrogen.
[00116] In some aspects of the present invention, the PPARy agonists can comprise compounds of Formula V:

wherein the dotted line represents a bond or no bond; A and B are each independently CH or N, with the proviso that when A or B is N, the other is CH; X is S, SO, S0_2, CH_2, CHOH, or CO; n is 0 or 1; Y is CHR_2, or R_21, with the proviso that when n is 1 and Y is NR_2, X is S0_2 or CO; Z is CHR_2. CH_2.CH_2, cyclic C_2.H_2.0, CH=CH, OCH_2, SCH_2, SOCH_2, or SO2CH_2; R_19, R_20, R_21, and R_22 are each independently hydrogen or methyl; and X_2 and X_3 are each independently hydrogen, methyl, trifluoromethyl, phenyl, benzyl, hydroxy, methoxy, phenoxy, benzyloxy, bromo, chloro, or fluoro; a pharmaceutically acceptable cationic salt thereof; or a pharmaceutically acceptable acid addition salt thereof when A or B is N.

[00117] In other aspects of the present invention, the PPARy agonists can comprise compounds of Formula VI:

or a pharmaceutically acceptable salt thereof, wherein R_2 is alkyl of 1 to 6 carbon atoms, cycloalkyl of 3 to 7 carbon atoms, phenyl or mono- or all-substituted phenyl wherein said substituents are independently alkyl of 1 to 6 carbon atoms, alkoxy of 1 to 3 carbon atoms, halogen, or trifluoromethyl.

[00118] In some aspects of the present invention, the PPARy agonists can comprise compounds of Formula VII:
or a tautomeric form thereof and/or a pharmaceutically acceptable salt thereof,
and/or a pharmaceutically acceptable solvate thereof, wherein: A_2 represents an alkyl group, a
substituted or unsubstituted aryl group, or an aralkyl group wherein the alkylene or the aryl
moiety may be substituted or unsubstituted; A_3 represents a benzene ring having in total up to
3 optional substituents; R_{24} represents a hydrogen atom, an alkyl group, an acyl group, an
aralkyl group wherein the alkyl or the aryl moiety may be substituted or unsubstituted, or a
substituted or unsubstituted aryl group; or A_2 together with R_{24} represents substituted or
unsubstituted C_{2-3} polymethylene group, optional substituents for the polymethylene group
being selected from alkyl or aryl or adjacent substituents together with the methylene carbon
atoms to which they are attached form a substituted or unsubstituted phenylene group; R_{34}
and R_{36} each represent hydrogen, or R_{34} and R_{36} together represent a bond; X_4 represents O or
S; and n represents an integer in the range from 2 to 6.

In some aspects of the present invention, the PPARy agonists can comprise
compounds of Formula VIII:

or a tautomeric form thereof and/or a pharmaceutically acceptable salt thereof,
and/or a pharmaceutically acceptable solvate thereof, wherein: R_{27} and R_{34} each
independently represent an alkyl group, a substituted or unsubstituted aryl group, or an
aralkyl group being substituted or unsubstituted in the aryl or alkyl moiety; or R_{27} together
with R_{38} represents a linking group, the linking group consisting or an optionally substituted
methylene group or an O or S atom, optional substituents for the methylene groups including
alkyl, aryl, or aralkyl, or substituents of adjacent methylene groups together with the carbon
atoms to which they are attached form a substituted or unsubstituted phenylene group; R_{34}
and R_{30} each represent hydrogen, or R_{34} and R_{30} together represent a bond; A_4 represents a
benzene ring having in total up to 3 optional substituents; X_5 represents O or S; and n
represents an integer in the range of 2 to 6.

In some aspects of the present invention, the PPARy agonists can comprise
compounds of Formula IX:
or a tautomeric form thereof and/or a pharmaceutically acceptable salt thereof, and/or a pharmaceutically acceptable solvate thereof, wherein: A₅ represents a substituted or unsubstituted aromatic heterocyclyl group; A₆ represents a benzene ring having in total up to 5 substituents; X₆ represents O, S, or NR₂ wherein R₂ represents a hydrogen atom, an alkyl group, an acyl group, an aralkyl group, wherein the aryl moiety may be substituted or unsubstituted, or a substituted or unsubstituted aryl group; Y₂ represents O or S; R₃₁ represents an alkyl, aralkyl, or aryl group; and n represents an integer in the range from 2 to 6. Aromatic heterocyclyl groups include substituted or unsubstituted, single or fused ring aromatic heterocyclyl groups comprising up to 4 hetero atoms in each ring selected from oxygen, sulfur, or nitrogen. Aromatic heterocyclyl groups include substituted or unsubstituted single ring aromatic heterocyclyl groups having 4 to 7 ring atoms, preferably 5 or 6 ring atoms.

[00121] In particular, the aromatic heterocyclyl group comprises 1, 2, or 3 heteroatoms, especially 1 or 2, selected from oxygen, sulfur, or nitrogen. Values for A₅ when it represents a 5-membered aromatic heterocyclyl group include thiazolyl and oxazoyl, especially oxazoyl. Values for A₆ when it represents a 6-membered aromatic heterocyclyl group include pyridyl or pyrimidinyl. R₃₁ represents an alkyl group, in particular a C-6 alkyl group (e.g., a methyl group).

[00122] A₅ can represent a moiety of formula (a), (b), or (c), under Formula IX:

wherein, R₃₃ and R₃₄ each independently represents a hydrogen atom, an alkyl group, or a substituted or unsubstituted aryl group or when R₃₃ and R₃₄ are each attached to adjacent carbon atoms, then R₃₃ and R₃₄ together with the carbon atoms to which they are attached form a benzene ring wherein each carbon atom represented by R₃₃ and R₃₄ together
may be substituted or unsubstituted; and in the moiety of Formula (a), X_γ represents oxygen or sulfur.

In one aspect of the present invention, R_{33} and R_{34} together present a moiety of Formula (d), under Formula IX:

![Diagram of Formula IX](image)

wherein R_{35} and R_{36} each independently represent hydrogen, halogen, substituted or unsubstituted alkyl, or alkoxy.

In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula X:

![Diagram of Formula X](image)

or a tautomeric form thereof and/or a pharmaceutically acceptable salt thereof, and/or a pharmaceutically acceptable solvate thereof, wherein: A_γ represents a substituted or unsubstituted aromatic heterocyclyl group; A_8 represents a benzene ring having in total up to 5 substituents; X_s represents O, S, or NR_9, wherein R_9 represents a hydrogen atom, an alkyl group, an acyl group, an aralkyl group, wherein the aryl moiety may be substituted or unsubstituted, or a substituted or unsubstituted aryl group; Y_3 represents O or S; R_{37} represents hydrogen; R_{38} represents hydrogen or an alkyl, aralkyl, or aryl group or R_{37} together with R_{38} represents a bond; and n represents an integer in the range from 2 to 6.

In some aspects of the present invention, the PPARγ agonists can comprise compounds of Formula XI:

![Diagram of Formula XI](image)

or a tautomeric form thereof and/or a pharmaceutically acceptable salt thereof, and/or a pharmaceutically acceptable solvate thereof, wherein: A_i represents a substituted or unsubstituted aromatic heterocyclyl group; R_i represents a hydrogen atom, an alkyl group, an
acyl group, an aralkyl group, wherein the aryl moiety may be substituted or unsubstituted, or a substituted or unsubstituted aryl group; A₂ represents a benzene ring having in total up to 5 substituents; and n represents an integer in the range of from to 6. Suitable aromatic heterocyclyl groups include substituted or unsubstituted, single or fused ring aromatic heterocyclyl groups comprising up to 4 hetero atoms in each ring selected from oxygen, sulfur, or nitrogen. Favored aromatic heterocyclyl groups include substituted or unsubstituted single ring aromatic heterocyclyl groups having 4 to 7 ring atoms, preferably 5 or 6 ring atoms. In particular, the aromatic heterocyclyl group comprises 1, 2, or 3 heteroatoms, especially 1 or 2, selected from oxygen, sulfur, or nitrogen. Values for Aᵢ when it represents a 5-membered aromatic heterocyclyl group can include thiazolyl and oxazolyl, especially oxazoyl. Values for A₁ when it represents a 6-membered aromatic heterocyclyl group can include pyridyl or pyrimidinyl.

In some aspects of the present invention, the PPARγ agonists can comprise a compound of Formulas XII and XIII:

![Chemical Structures](image)

or pharmaceutically acceptable salts thereof wherein the dotted line represents a bond or no bond; R is cycloalkyl of three to seven carbon atoms, naphthyl, thieryl, furyl, phenyl, or substituted phenyl wherein the substituent is alkyl of one to three carbon atoms, alkoxy of one to three carbon atoms, trifluoromethyl, chloro, fluoro, or bis(trifluoromethyl); Rᵢ is an alkyl of one to three carbon atoms; X is O or C=O; A is O or S; and B is N or CH.

Some embodiments of the present invention include the use of the compounds of Formulas I through XIII are referred to as thiazolidine derivatives. Where appropriate, the specific names of thiazolidine derivatives may be used, including, for example, troglitazone, ciglitazone, pioglitazone, and rosiglitazone.
[00128] In certain aspects, an activator of a PPARγ agonist may be used as described in U.S. Pat. No. 5,994,554, e.g., having a structure selected from the group consisting of formulas (XIV)-(XXVI):
wherein: R^1 is selected from the group consisting of hydrogen, C_1-C_8 alkyl, aminoC_1-C_8, alkyl, C_1-C_8 alkylamino C_1-C_8 alkyl, heteroarylamino C_1-C_6 alkyl, (heteroaryl)(C_1-C_8 alkyl)aminoC_1-C_6 alkyl, (C_1-C_8 cycloalkyl) C_1-C_8 alkyl, C_1-C_8 alkylheteroaryl C_1-C_8 alkyl, 9- or 10-membered heterobicycle, which is partially aromatic or substituted 9- or 10-membered heterobicycle, which is partially aromatic; X is selected from the group consisting of S, NH, or O; R^2 is selected from the group consisting of hydrogen, C_1-C_8 alkyll or C_1-C_8 alkenyl; R^3 and R^4 are independently selected from the group consisting of hydrogen, hydroxy, oxo C_1-C_8 alkyl, C_1-C_8 alkoxy or amino; R^5 is selected from the group consisting of hydrogen, C_1-C_8 alkyl, C_1-C_8 alkenyl, (carbonyl)alkenyl, (hydroxy)alkenyl, phenyl, C_1-C_8 alkyl; R^6, (hydroxy) C_1-C_8 alkyl; R^6, C_1-C_8 alkyl C_1-C_8 cycloalkyl; R^6, (hydroxy) C_1-C_8 cycloalkyl; R^6 or C_1-C_8 cycloalkylthioR^6; R^6 is selected from the group consisting of phenyl or phenyl substituted with hydroxy, C_1-C_8 alkyl or C_1-C_8 alkoxy substituents; R^7 is selected from the group consisting of hydrogen, hydroxy, carboxy or carboxy C_1-C_8 alkyl; R^8 is selected from the group consisting of hydrogen, C_1-C_8 alkyl, phenyl, phenyl C_1-C_8 alkyl, phenyl mono- or all-substituted with halo, hydroxy, and/or C_1-C_8 alkoxy (e.g., methoxy) substituents or phenyl C_1-C_8 alkyl wherein the phenyl is mono- or di-substituted with halo, hydroxy, and/or C_1-C_8 alkoxy (e.g., methoxy) substituents; R^9 is selected from the group consisting of hydrogen, C_1-C_8 alkyl, carboxy C_1-C_8 alkenyl mono- or dis-substituted...
with hydroxy, and/or Ci-salkoxy (e.g., methoxy), phenyl or phenyl mono- or di-substituted with halo, hydroxy, and/or Ci^alkoxy (e.g., methoxy); R^10 is hydrogen or Ci-salkyl; R^11 is selected from the group consisting of hydrogen, Ci^alkyl or cycloCi-salkyl Ci^alkyl; R^12 is selected from the group consisting of hydrogen, halo or fluorinated Ci^alkyl; R^13 is selected from the group consisting of hydrogen, Ci-salkoxycarbonyl or Ci-salkoxycarbonyl Ci_ salkylaminocarbonyl; a dashed line (- - -) is none or one double bond between two of the carbon atoms; fluorinated alkyl can be an alkyl wherein one or more of the hydrogen atoms is replaced by a fluorine atom; heteroaryl can be 5-, 6- or 7-membered aromatic ring optionally interrupted by 1, 2, 3 or 4 N, S, or O heteroatoms, with the proviso that any two O or S atoms are not bonded to each other; substituted heteroaryl can be a 9- or 10-membered heterobicycle mono-, di-, or tri-substituted independently with hydroxy, oxo, Ci_6 alkyl, Ci_6 alkoxy or 9- or 10-membered heterobicycle, which is partially aromatic in more detail is a heterobicycle interrupted by 1, 2, 3, or 4 N heteroatoms; substituted 9- or 10-membered heterobicycle, which is partially aromatic in more detail is a 9- or 10-membered heterobicycle mono-, di-, tri- or tetra-substituted independently with hydroxy, oxo, Ci_8 alkyl, Ci_8 alkoxy, phenyl, phenyl Ci_8 alkyl; or a pharmaceutically acceptable acid-addition or base-addition salt thereof.

[00129] In yet other aspects, the PPARγ agonists can comprise a compound as disclosed in U.S. Pat. No. 6,306,854, e.g., a compound having a structure of Formula (XXVII):

![Formula (XXVII)](XXVII)

and esters, salts, and physiologically functional derivatives thereof; wherein m is from 0 to 20, R^6 is selected from the group consisting of hydrogen and

![Image of structural formulas](XXVII)

and R^8 is selected from the group consisting of:
where \(y \) is 0, 1, or 2, each \(\text{alk} \) is independently hydrogen or alkyl group containing 1 to 6 carbon atoms, each \(R \) group is independently hydrogen, halogen, cyano, \(\text{N}0_2 \), phenyl, straight or branched alkyl or fluoroalkyl containing 1 to 6 carbon atoms and which can contain hetero atoms such as nitrogen, oxygen, or sulfur and which can contain functional groups such as ketone or ester, cycloalkyl containing 3 to 7 carbon atoms, or two \(R \) groups bonded to adjacent carbon atoms can, together with the carbon atoms to which they are bonded, form an aliphatic or aromatic ring or multi ring system, and where each depicted ring has no more than 3 \(\text{alk} \) groups or \(R \) groups that are not hydrogen.

In yet other aspects of the present invention, a PPAR\(\gamma \) agonist can comprise a compound such as those disclosed in U.S. Pat. No. 6,294,580 and/or Liu et al., Biorg. Med. Chem. Lett. 11 (2001) 3111-3113, e.g., having a structure within Formula XXVIII:

![Formula XXVIII](image)

wherein \(A \) is selected from the group consisting of: (i) phenyl, wherein said phenyl is optionally substituted by one or more of the following groups; halogen atoms, \(\text{C}_i_6 \) alkyl, \(\text{C}_{1,3} \) alkoxy, \(\text{C}_{1,3} \) fluoroalkoxy, nitrite, or \(-\text{NR}^7\text{R}^8 \) where \(\text{R}^7 \) and \(\text{R}^8 \) are independently hydrogen or \(\text{C}_{1,3} \) alkyl; (ii) a 5- or 6-membered heterocyclic group containing at least one heteroatom selected from oxygen, nitrogen and sulfur; and (iii) a fused bicyclic ring:

![Cyclic Structure](image)

wherein ring \(C \) represents a heterocyclic group as defined in point (ii) above, which bicyclic ring is attached to group \(B \) via a ring atom of ring \(C \); \(B \) is selected from the group consisting of: (iv) \(\text{C}_i_6 \) alkylene; (v) \(-\text{M} \) \(\text{C}_i_6 \) alkylene or \(\text{C}_i_6 \) alkylenem \(\text{C}_i_6 \) alkylene, wherein \(M \) is \(O, S \), or \(-\text{NR}^2 \) wherein \(R^2 \) represents hydrogen or \(\text{C}_{1,3} \) alkyl; (vi) a 5- or 6-membered heterocyclic group containing at least one nitrogen heteroatom and optionally at least one further heteroatom selected from oxygen, nitrogen and sulfur and optionally substituted by \(\text{C}_{1,3} \) alkyl; and (vii) Het- \(\text{C}_i_6 \) alkylene, wherein Het represents a heterocyclic group as defined in point (vi) above; \(\text{Alk} \) represents \(\text{C}_{1,3} \) alkylene; Het represents hydrogen or
Ci-3 alkyl; Z is selected from the group consisting of: (viii) nitrogen-containing heterocyclyl or heteroaryl, e.g., N-pyrrolyl, N-piperidinyl, N-piperazinyl, N-morpholinyl, or N-imidazolyl, optionally substituted with 1-4 Ci-6 alkyl or halogen substituents; (ix) —(Ci-1 alkylene) phenyl, which phenyl is optionally substituted by one or more halogen atoms; and (x) —NR^3R^4, wherein R^3 represents hydrogen or Ci-1 alkyl, and R^4 represents Ci-6 alkyl, aryl or heteroaryl (e.g., phenyl, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, piperidinyl, piperazinyl, morpholinyl, imidazolyl), optionally substituted by 1-4 Ci-6 alkyl, halogen, Ci-6 alkoxy, hydroxyl, nitro, cyano, or amino substituents, or —Y—(C=O)—T—R^5—Y—S0_2—R^5, or —Y—(CH(OH))—T—R^5, wherein: (a) Y represents a bond, Ci-6 alkyne, C_{2-6} alkenylene, C_{4-6} cycloalkylene or cycloalkenylene, a heterocyclic group as defined in point (vi) above, or phenyl optionally substituted by one or more Ci-3 alkyl groups and/or one or more halogen atoms; (b) T represents a bond, Ci-1 alkyleneoxy, —O— or —N(R^6)—, wherein R^5 represents hydrogen or Ci-1 alkyl; (c) R^5 represents Ci-6 alkyl, C_{4-6} cycloalkyl or cycloalkenyl, phenyl (optionally substituted by one or more of the following groups; halogen atoms, Ci-3 alkyl, Ci-3 alkoxy groups, Ci-3 alkyneNR^9R^{10} (where each R^9 and R^{10} is independently hydrogen, Ci-3 alkyl, —S0_2 Ci-3 alkyl, or —C0_2 Ci-3 alkyl, -S0_2 NH Ci-3 alkyl), Ci-3 alkyneC0_2 H, Ci-3 alkyneC0_2 Ci-3 alkyl, or —OCH_2 C(0)NH_2), a 5- or 6-membered heterocyclic group as defined in point (ii) above, a bicyclic fused ring:

wherein ring D represents a 5- or 6-membered heterocyclic group containing at least one heteroatom selected from oxygen, nitrogen and sulfur and optionally substituted by (=0), which bicyclic ring is attached to T via a ring atom of ring D: or - Ci-6 alkyneMR^{11} M is O, S, or —NR^{12} wherein R^{11} and R^{12} are independently hydrogen or Ci-1 alkyl, or a tautomeric form thereof, and/or a pharmaceutically acceptable salt or solvate thereof.

[00131] One specific group of compounds are those of Formula XI, wherein the dotted line represents no bond, R^1 is methyl, X is O and A is O. Examples of compounds in this group are those compounds where R is phenyl, 2-naphthyl and 3, 5-bis(trifluoronethyl)phenyl. Another specific group of compounds are those of Formula XIII, wherein the dotted line represents no bond, R^1 is methyl and A is O. Particularly preferred
compounds within this group are compounds where B is CH and R is phenol, p-tolyl, m-tolyl, cyclohexyl, and 2-naphthyl. In alternative embodiments of the present invention, the B is N and R is phenyl.

[00132] Specific examples of PPARγ agonist compounds of the present invention are given in the following list: (+)-5-[4-{2-[3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl]m ethoxy]phenyl}m ethyl]-2,4thiazolidinedione; (troglitazone); 5-[4-[2-(5-ethylpyridin-2-yl)ethoxy]benzyl]thiazolidine-2,4-dione; (pioglitazone); 5-[4-[1-methylcyclohexyl] methoxy]benzyl]thiazolidine-2,4-dione; (ciglitazone); 4-(2-naphthylmethyl)-1,2,3,5-oxathiazole-2-oxide; 5-[4-[2-((N-(benzoxazol-2-yl)-N-methylamino)ethoxy]benzyl]5-methylthiazolidine-2,4-dione; 5-[4-[2,4-dioxo-5-phenylthiazolidine-3-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-[(N-methyl-N(phenoxycarbonyl)amino] ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-phenoxethtoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(4-chlorophenyl)ethylsulfonyl] benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenoxyazol-4-yI)propionyl]benzyl]thiazolidine-2,4-dione; 5-[4-(3-hydroxy-methylcyclohexyl)methoxy]benzyl thiazolidine-2,4-dione; 5-[4-[2-(5-methyl-2-phenoxyazol-4-yI)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[2-benzyl-2,3-dihydrobenzopyran]-5-ylmethyl]thiazolidine-2,4-dione; (englitazone); 5-[2-(2-naphthylmethyl)benzoazol]-5-ylmethyl]thiazolidine-2,4-dione; 5-[4-[2-(3-phenylureido)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(N-benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenoxyazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[2-(5-methyl-2-phenoxyazol-4-ylmethyl)benzofuran-5-ylmethyl]oxazolidine-2,4-dione; 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (rosiglitazone); and 5-[4-[2-(N-benzoxazol-2-yl)-N-methylamino]ethoxy]benzyl]oxazolidine-2,4-dione.

[00133] In yet other aspects of the present invention, the PPARγ agonists can comprise compounds having the structure shown in Formula XXIX:
wherein: A is selected from hydrogen or a leaving group at the α- or β-position of the ring, or A is absent when there is a double bond between the Ca and Cn of the ring; X is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl group having in the range of 2 up to 15 carbon atoms; and Y is an alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, or substituted alkynyl group having in the range of 2 up to 15 carbon atoms. As used herein, the term "leaving group" refers to functional groups which can readily be removed from the precursor compound, for example, by nucleophilic displacement, under E2 elimination conditions, and the like. Examples include, but are limited to, hydroxy groups, alkoxy groups, tosylates, brosylates, halogens, and the like.

[00134] Optionally, an LXR agonist can be administered in combination with a PPARγ agonist and a RXR agonist as described above. LXR agonists that can be used for practicing the present invention, and methods of making these compounds, are disclosed in PCT WO/03082 198A2. In one aspect of the invention, the LXR agonists are selected from those disclosed in International Patent Applications WO 01154759 (Tularik Inc. US), PCT/US0 1127622 (SmithKline Beecham pic UK), WO 01141704 (Merck & CO., INC) and W097/28137 (Merck & CO., INC).

[00135] In some aspects, the LXR agonist comprises a compound disclosed in International Patent Application WO 00/54759 having the following general formula (XXX):

![Chemical Structure](image-url)

wherein:
Ar represents an aryl group;

- R¹ is -OH, -O-(Ci-Cγ)alkyl, -OC(0)-(Ci-Cγ)alkyl, -O-(Ci-Cγ)heteroalkyl, -OC(O)- (C1-C7) heteroalkyl, -CO₂H, -NH₂, -NH(Ci-Cγ)alkyl, -N((CI-Cγ)alkylh or -NH-S(O)- (Ci-CS)alkyl;

- R² is (Ci-C₂)alkyl, (Ci-Cγ)heteroalkyl, aryl and aryl(Ci-Cγ)alkyl;

- X¹, X², X³, X⁴, X⁵ and X⁶ are each independently H, (CI-C₅)alkyl, (C₁-C₅)heteroalkyl, F or Cl, with the proviso that no more than three of X¹ through X⁶ are H, (CI-C₂)alkyl or (CI-C₃)heteroalkyl; and Y is -N(R¹₂)S(0)m-, -N(R¹₂)S(0)mN(R¹¹)-, -N(R¹₂)C(0),...
-N(R^{12})C(0)N(R^{11})- or -N(R^{12})C(S)- or -N(R^{12})C(0)0-, wherein R^{12} and R^{11} are each independently hydrogen, (Ci-C7)aryl, (Ci-C7)heteroalkyl, aryl and aryl(Ci-C7)alkyl, and optionally when Y is -N(R^{12})S(0)m- or -N(R^{12})S(0)mN(R^{11})-, R^{12} forms a five, six or seven-membered ring fused to Ar or to R2 through covalent attachment to Ar or R2, respectively. In the above Y groups, the subscript m is an integer of from 1 to 2, as being useful as agonists of LXR and their use in pharmaceutical formulations of the present invention.

[00136] In some aspects the LXR agonist can include a compound with the following structure:

![Chemical Structure](image)

International Patent Application PCT/US2012/27622 (SmithKline Beecham) discloses compounds of formula (XXXI):

![Chemical Structure](image)

wherein:

X is OH or NH$_2$;

p is 0-6;

each R' and R2 are the same or different and are each independently selected from the group consisting of H, Cl-8alkyl, Cl-8alkoxy and Cl-8thioalkyl;

Z is CH or N; when Z is CH, k is 0-4; when Z is N, k is 0-3;

each R3 is the same or different and is independently selected from the group consisting of halo, -OH, Cl-8alkyl, C2-8alkenyl, Cl-8alkoxy, C2-8alkenloxy, -S(0)aR6, -NR7Rs, COR6, COOR6, R10COOR6, OR10COOR6, CONR7R8, -OC(0)R9, -R10NR7R8, -OR10NR7R8, 5-6 membered heterocycle, nitro, and cyano; a is 0, 1 or 2;
R6 is selected from the group consisting of H, Cl-8 alkyl, Cl-8 alkoxy and C2-8 alkenyl; each R7 and R8 are the same or different and are each independently selected from the group consisting of H, Cl-8 alkyl, C2-8 alkenyl, C3-8 alkynyl;

R9 is selected from the group consisting of H, Cl-8 alkyl and -NR\textsubscript{7}R\textsubscript{8};

R30 is Cl-6 alkyl;

n is 2-8;

q is 0 or 1;

R4 is selected from the group consisting of H, Cl-8 alkyl, Cl-8 alkenyl, and alkenyloxy;

Ring A is selected from the group consisting of C3-8 cycloalkyl, aryl, 4-8 membered heterocycle, and 5-6 membered heteroaryl;

each ring B is the same or different and is independently selected from the group consisting of C3-8 cycloalkyl and aryl.

[00138] In some aspects of the present invention, the LXR agonists can comprise 2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)aminol propoxy]-phenyl)acetic acid, having the following structure:

![Chemical Structure Image]

[00139] In some aspects of the present invention, the LXR agonists can comprise compounds of formula (XXXII), described in U.S. Provisional Application Nos. 09/368,427, 60/368,425 and 60/368,426, each filed March 27, 2002:
wherein: X is selected from Ci-Cs alkyl, halo, -OR_{10}, -NR_{15} R_{15}, nitro, cyano, -
COOR_{10}, -COR_{13}, -OCOR_{13}, -CONR_{14} R_{15}, -N(R^{17}) COR_{13}, -N(R^{17}) CONR_{14} R_{15}, -
N(R^{17}) COOR_{13}, -S0_{3} R, -S0_{2} NR_{2} R_{15}, -C(=NR_{17}) NR_{15} R_{15}, -N(R^{17}) SO_{2} R_{16}, and a 5 or 6-
membered heterocyclic group;

or X and an adjacent R_{3}, taken together with the atoms to which they are
bonded, form an alkylenedioxy moiety;

Z is CH, CH3 or N, wherein when Z is CH or CH3, k is 0-4 and t is 0 or 1, and
when;

Z is N, k is 0-3 and t is 0;

Y is selected from -0-, -S-, -N(R20)-, and -C(R4)(R5)-;

W1 is selected from C^*-Ce alkyl, C_{3}-C_{8} cycloalkyl, aryl and Ret, wherein said
Ci-C_{6} alkyl, C_{3}-C_{8} cycloalkyl, Ar and Ret are optionally unsubstituted or substituted with one
or more groups independently selected from halo, cyano, nitro, Ci-C_{6} alkyl, C_{3}-C_{6} alkenyl,
C_{3}-C_{6} alkynyl, -C_{0} C_{6} alkyl-C_{0} R_{2} R_{10}, -C_{0} C_{6} alkyl-C(O)SR_{0}, -C_{0} C_{6} alkyl-COR_{13}, -C_{0} C_{6} alkyl-CONR_{n} R_{i}, -C_{0} C_{6}
alkyl-CORI_{3}, -C_{0} C_{6} alkyl-NR_{n} R_{i}, -C_{0} C_{6} alkyl-SR_{0}, -C_{0} C_{6} alkyl-OR_{n}, -C_{0} C_{6} alkyl-
SO_{3} H, -C_{0} C_{6} alkyl S0_{2} NR_{i} R_{2}, -C_{0} C_{6} alkyl-SO_{2} R_{i}, -C_{0} C_{6} alkyl-CONR_{n} R_{i}, -C_{0} C_{6} alkyl-
OCOR_{i}, -C_{0} C_{6} alkyl-OC(0)NHR_{i} R_{2}, -C_{0} C_{6} alkyl-OC(0)OR_{i} R_{i}, -C_{0} C_{6} alkyl-
NR_{n} R_{i} R_{j} (0) OR_{i} R_{j}, -C_{0} C_{6} alkyl-NR_{n} C(0) NR_{i} i R_{i} R_{j} 2, and -C_{0} C_{6} alkyl-NRnCOR_{i} R_{j}, where said
Ci-C_{6}alkyl, is optionally unsubstituted or substituted by one or more halo substituents;

W2 is selected from R, halo, Ci- C_{6} alkyl, C_{2}- C_{6} alkenyl, C_{2}-C_{6} alkynyl, -C_{0} C_{6}
alkyl-NR_{n} R_{i} R_{j}, -C_{0} C_{6} alkyl-SR_{10}, -C_{0} C_{6} alkyl-OR_{10}, -C_{0} C_{6} alkyl-CO_{2} R_{10}, -C_{0} C_{6} alkyl-
C(0) SR_{0}, -C_{0} C_{6} alkyl-CONR_{n} R_{i} R_{i}, -C_{0} C_{6} alkyl-COR_{i} R_{j}, -C_{0} C_{6} alkyl-OCOR_{i} R_{j}, -C_{0} C_{6}
alkyl-OCONR_{i} R_{j}, -C_{0} C_{6} alkyl-NR_{n} CONR_{j} R_{i}, -C_{0} C_{6} alkyl-NR_{n} CO_{2} R_{i}, -C_{0} C_{6} alkyl-
Ret, -C_{0} C_{6} alkyl-Ar and -C_{0} C_{6} alkyl-C_{3}-C_{7} cycloalkyl, wherein said Ci-C_{6} alkyl is
optionally unsubstituted or substituted by one or more halo substituents, and wherein the C_{3}-
C₇ cycloalkyl, Ar and Ret moieties of said -CO-C₆ alkyl-Ret, -CO-C₆ alkyl-Ar and -CO-C₆ alkyl-C₃-C₇ cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -Co-C₆ alkyl-COzRio, -C₀-C₆ alkyl-(O)SRi, -C₀-C₆ alkyl-CONRnRi, -C₀-C₆ alkyl-CORi, -C₀-C₆ alkyl-SRi, -C₀-C₆ alkyl-ORi, -Co-C₆ alkyl-Ar and -Co-C₆ alkyl-C₃-C₇ cycloalkyl, or R₁ and R₂ together with the unsubstituted cycloalkyl, O-CO-C, O-CO-C, Ci-C₆ alkyl-NR, Ci-C₆ alkyl-OC, Ci-C₆ alkyl-CSO₂NR, Ci-C₆ alkyl-C₃-C₇ alkyl-NRi, Ci-C₆ alkyl-C₃-C₇ alkyl-OR, Ci-C₆ alkyl-OCORi, more halo substituents; W₃ is selected from the group consisting of: R, halo, Ci-C₆ alkyl, -Co-C₆ alkyl-NR, -Co-C₆ alkyl-SR, -Co-C₆ alkyl-OR, -Co-C₆ alkyl-COzRio, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-SRi, -Co-C₆ alkyl-ORi, -Co-C₆ alkyl-Ar, and -Co-C₆ alkyl-C₃-C₇ cycloalkyl, wherein said Ci-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents; Q is selected from C₃-C₈ cycloalkyl, Ar and Het; wherein said C₃-C₈ cycloalkyl, Ar and Ret are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, Ci-C₆ alkyl, Ci-C₆ alkenyl, Ci-C₆ alkynyl, -Co-C₆ alkyl-COzRio, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-SRi, -Co-C₆ alkyl-ORi, -Co-C₆ alkyl-Ar, and -Co-C₆ alkyl-C₃-C₇ cycloalkyl, or R₁ and R₂ together with the unsubstituted cycloalkyl, p is 0-8; n is 2-8; m is 0 or 1; q is 0 or 1; t is 0 or 1; each R₁ and R₂ are independently selected from R, halo, Ci-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -Co-C₆ alkyl-NRnRi, -Co-C₆ alkyl-ORi, -Co-C₆ alkyl-SRi, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-Ar and -Co-C₆ alkyl-C₃-C₇ cycloalkyl, or R₁ and R₂ together with the unsubstituted cycloalkyl.
carbons to which they are attached form a 3-5 membered carbo cyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where any of said Ci-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents; each R₃ is the same or different and is independently selected from halo, cyano, nitro, Ci-C₆ alkyl, C₃-C₆ alkenyl, Cr C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, -CO-C₆ alkyl-C0₂R₁₀, -C₀-C₆ alkyl-C(O)SR₁₀, -C₀-C₆ alkyl-CONR₁₁R₁₂, -Co-C₆ alkyl-COR₁₃, -Co-C₆ alkyl-NRNri₂, -Co-C₆ alkyl-OR₁₀, -Co-C₆ alkyl-S₀₂H, -Co-C₆ alkyl-S₀₂RNri₂, -C₀-C₆ alkyl-S₀₂Ri₆, -Co-C₆ alkyl-SOR₁₃, -Co-C₆ alkyl-OCOR₁₃, -C₀-C₆ alkyl-(O)NRi₂Ri₂, -C₀-C₆ alkyl-OC(0)ORi₃, -CO-C₆ alkyl-NRN(0)ORi₃, and -CO-C₆ alkyl-NRN CORi₃, wherein said Ci-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents; each R₄ and R₅ is independently selected from H, halo, Ci-C₆ alkyl, -Co-C₆ alkyl-Het, -Co-C₆ alkyl-Ar and -Co-C₆ alkyl-C₃-C₇ cycloalkyl; R₆ and R₇ are each independently selected from H, halo, Ci-C₆ alkyl, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; R₈ and R₉ are each independently selected from H, halo, Ci-C₆ alkyl, -Co-C₆ alkyl-Het, -Co-C₆ alkyl-Ar and -Co-C₆ alkyl-C₃-C₇ cycloalkyl; R₀ is selected from H, Ci-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; each R₁₁ and each R₁₂ are independently selected from H, Ci-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; Ri₄ and Ri₅ are each independently selected from H, Ci-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, -Co-C₆ alkyl-O-Ar, -Co-C₆ alkyl-O-Het, -C₀-C₆ alkyl-0-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-S(0)x-Ci-C₆ alkyl, -C₀-C₆ alkyl-S(0)x-Ar, -C₀-C₆ alkyl-S(0)xC₃-C₇ cycloalkyl, -C₀-C₆ alkyl-NH-Het, -C₀-C₆ alkyl-NH-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-N(Ci-C₄ alkyl)-Ar, -C₀-C₆ alkyl-N(Ci-C₄ alkyl)-Het, -C₀-C₆ alkyl-N(Ci-C₄ alkyl)-C₃-C₇ cycloalkyl, -Co-C₆ alkyl-Ar, -Co-C₆ alkyl-Het and -Co-C₆ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or Ri₄ and Ri₅, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S.
N, O, and S, wherein said Ci-C\textsubscript{6} alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH\textsubscript{2}, -NH(unsubstituted Ci-C\textsubscript{6} alkyl), -N(unsubstituted Ci-C\textsubscript{6} alkyl)(unsubstituted Ci-C\textsubscript{6} alkyl), unsubstituted -OCi-C\textsubscript{6} alkyl, -C\textsubscript{0}-H, -C\textsubscript{0}-H(unsubstituted Ci-C\textsubscript{6} alkyl), -CONH\textsubscript{2}, CONH(unsubstituted Ci-C\textsubscript{6} alkyl), -CON(unsubstituted Ci-C\textsubscript{6} alkyl)(unsubstituted Ci-C\textsubscript{6} alkyl), -SO\textsubscript{3}H, -SO\textsubscript{2}NH\textsubscript{2}, -SO\textsubscript{2}NH(unsubstituted Ci-C\textsubscript{6} alkyl) and -SO\textsubscript{2}N(unsubstituted Ci-C\textsubscript{6} alkyl)(unsubstituted Ci-C\textsubscript{6} alkyl);

R\textsubscript{i6} is Ci-C\textsubscript{6} alkyl, -C\textsubscript{1}-C\textsubscript{6} alkyl-Ar or -C\textsubscript{0}-C\textsubscript{6} alkyl-Het; and

R\textsubscript{i7} is H, Ci-C\textsubscript{6} alkyl, -C\textsubscript{0}-C\textsubscript{6} alkyl-Ar or -C\textsubscript{0}-C\textsubscript{6} alkyl-Het; or a pharmaceutically acceptable salt or solvate thereof.

[00140] In some aspects of the present invention, the LXR agonist can include N-(2,2,2-trifluoroethyl)-N-[4-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl)phenyl]-benzenesulfonyamide (also known as T0901317) having the following chemical structure:

![Chemical structure of N-(2,2,2-trifluoroethyl)-N-[4-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl)phenyl]-benzenesulfonyamide]

[00141] Other examples of suitable LXR agonists for use in the present invention include: (R)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl) amino]-1-methyl-propoxy}-phenyl)acetic acid methyl ester

![Chemical structure of (R)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl) amino]-1-methyl-propoxy}-phenyl)acetic acid methyl ester]
Additional LXR agonists useful in the methods of the present invention include those of Formula (XXXIII), which are described in U.S. Provisional Application No. 60/368,415, filed March 27, 2002:
wherein:

X is CH or N;

Y is N(R^t), O, or S, wherein t is 0 or 1 when Y is N(R^t) or O, and t is 0 when Y is S;

U is selected from halo, -OR^t, -NR^tR^-15, nitro, cyano, -COOR^t, -COR^-t, -OCOR^-t, -CONR^-tR^-15, -N(R^-t)COR^-15, -S0^-2H, -S0^-2NR^-tR^-15, -C(=NR^-17)NR^-tR^-15, N(R^-t)S0^-2R^-16, and a 5 or 6-membered heterocyclic group;

A is a phenyl fused ring moiety or a pyridyl fused ring moiety, wherein when A is a phenyl ring moiety, k is 0-3 and t is 0 or 1 and when A is a pyridyl ring moiety, k is 0-2 and t is 0;

optionally unsubstituted or substituted by one or more halo substituents, and wherein the C₇ cycloalkyl, Ar and Het moieties of said -Co-C₆ alkyl-Het, -Co-C₆ alkyl-Ar and -Co-C₆ alkyl-C₃-C₇ cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, Cl-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -Co-C₆ alkyl-CO₂Ri, -C₀-C₆ alkyl-(O)SRi, -C₀-C₆ alkyl-CONRnRi, -C₀-C₆ alkyl-CORi, -C₀-C₆ alkyl-ORi, -C₀-C₆ alkyl-SORi, -C₀-C₆ alkyl-C(O)SRi, -C₀-C₆ alkyl-CONRnCORi, -C₀-C₆ alkyl-CORi, -C₀-C₆ alkyl-ORi, and -C₀-C₆ alkyl-OC(O)NRiiRi, where said Ci-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

w is selected from the group consisting of: H, halo, Cl-C₆ alkyl, -Co-C₆ alkyl-NRnRi, -Co-C₆ alkyl-SRi, -Co-C₆ alkyl-ORi, -Co-C₆ alkyl-CO₂Ri, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-CONRnRi, -Co-C₆ alkyl-CONRnCORi, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-ORi, -Co-C₆ alkyl-SORi, -Co-C₆ alkyl-C(O)SRi, -Co-C₆ alkyl-CONRnCORi, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-ORi, -Co-C₆ alkyl-SORi, -Co-C₆ alkyl-C(O)SRi, -Co-C₆ alkyl-CONRnCORi, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-ORi, and -Co-C₆ alkyl-SORi, where said Cl-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

Q is selected from C₃-C₈ cycloalkyl, Ar and Het; wherein said C₃-C₈ cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, Cl-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -Co-C₆ alkyl-C₀-C₀Ri, -C₀-C₆ alkyl-(O)SRi, -C₀-C₆ alkyl-CONRnRi, -C₀-C₆ alkyl-CORi, -Co-C₆ alkyl-NRnRi, -Co-C₆ alkyl-SRi, -Co-C₆ alkyl-ORi, -Co-C₆ alkyl-SORi, -Co-C₆ alkyl-CONRnCORi, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-ORi, -Co-C₆ alkyl-SORi, -Co-C₆ alkyl-C(O)SRi, -Co-C₆ alkyl-CONRnCORi, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-ORi, -Co-C₆ alkyl-SORi, -Co-C₆ alkyl-C(O)SRi, -Co-C₆ alkyl-CONRnCORi, -Co-C₆ alkyl-CORi, -Co-C₆ alkyl-ORi, and -Co-C₆ alkyl-SORi, where said Ci-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

p is 0-8;

n is 2-8;

m is 0 or 1;

q is 0 or 1;

t is 0 or 1;

each R₁ and R₂ are independently selected from R, halo, Cl-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-NRnRi, -C₀-C₆ alkyl-ORi, -C₀-C₆ alkyl-SRi, -Cl-C₆.
alkyl-Het, -C6 alkyl-Ar and -C6 alkyl-C7 cycloalkyl, or R1 and R2 together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where said C6 alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R3 is the same or different and is independently selected from halo, cyano, nitro, C6 alkyl, C6 alkenyl, C6 alkynyl, C6 alkyl-Ar, C6 alkyl-Het, C6 alkyl-C3-C7 cycloalkyl, alkyl-C6 alkyl-C0 2Ri, C6 alkyl-C(O)SRi, C6 alkyl-CONRnRi, C6 alkyl-CORi 3, C6 alkyl-NRnRi, C6 alkyl-S(0)x-, each R4 and R5 is independently selected from R, halo, C6 alkyl, C6 alkyl-Het, C6 alkyl-Ar and -C6 alkyl-C7 cycloalkyl;

R6 and R7 are each independently selected from R, halo, C6 alkyl, C6 alkyl-Het, C6 alkyl-Ar and -C6 alkyl-C3-C7 cycloalkyl; R8 and R9 are each independently selected from R, halo, C6 alkyl, C6 alkyl-Het, C6 alkyl-Ar and -C6 alkyl-C3-C7 cycloalkyl;

Rio is selected from R, C6 alkyl, C6 alkenyl, C6 alkynyl, C6 alkyl-Ar, -C6 alkyl-Het and -C6 alkyl-C3-C7 cycloalkyl;

each R11 and each R12 are independently selected from H, C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, C6 alkyl-Ar, -C6 alkyl-Het and -C6 alkyl-C3-C7 cycloalkyl, or Ri and Rj together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O and S;

Ri3 is selected from C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, C6 alkyl-Ar, C6 alkyl-Het and -C6 alkyl-C3-C7 cycloalkyl;

Ri4 and Ri5 are each independently selected from H, C6 alkyl, C3-C6 alkenyl, C3-C6 alkynyl, C6 alkyl-Ar, C6 alkyl-Het, C6 alkyl-C3-C7 cycloalkyl, C6 alkyl-O-Ar, C6 alkyl-O-Het, C6 alkyl-0-C3-C7 cycloalkyl, C6 alkyl-S(0)x-
Ci-C₆ alkyl, -C₀-C₆ alkyl-S(0)xAr, -C₀-C₆ alkyl-S(0)xHet, -C₀-C₆ alkyl-S(0)xC₃-C₇ cycloalkyl, -C₀-C₆ alkyl-NH-Ar, -C₀-C₆ alkyl-NH-Het, -C₀-C₆ alkyl-NH-C₃-C₇ cycloalkyl, -Co-C₆ alkyl-N(Cl-C₄ alkyl)-Ar, -Co-C₆ alkyl-N(Cl-C₄ alkyl)-Het, -Co-C₆ alkyl-N(N(C-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -Ci-C₆ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or R₁₄ and R₁₅ are each independently selected from H, Ci-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-o-Ar, -Co-C₆ alkyl-o-Ret, -Co-C₆ alkyl-o-C₃-C₇ cycloalkyl, -Co-C₆ alkyl-S(0)x-Ci-C₆ alkyl, -CO-C₆ alkyl-S(OkAr, -CO-C₆ alkyl-S(OkRet, -CO-C₆ alkyl-S(OkC₃-C₇ cycloalkyl, -CO-C₆ alkyl-NR-Ar, -CO-C₆ alkyl-NR-Ret, -CO-C₆ alkyl-NR-C₃-C₇ cycloalkyl, -CO-C₆ alkyl-N(Cl-C₄ alkyl)-Ar, -CO-C₆ alkyl-N(N(C-C₄ alkyl)-Ret, -CO-C₆ alkyl-N(C-C₄ alkyl)-C₃-C₇ cycloalkyl, -CO-C₆ alkyl-Ar, -CO-C₆ alkyl-Ret and -CO-C₆ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or R₁₄ and R₁₅, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said Ci-C₆ alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH2, NH(unsubstituted Ci-C₆ alkyl), -N(unsubstituted Ci-C₆ alkyl)(unsubstituted Ci-C₆ alkyl), unsubstituted -O(Ci-C₆ alkyl, -C₀₂H, -C₀₂(unsubstituted Ci-C₆ alkyl), -CONH₂, -CONH(unsubstituted Ci-C₆ alkyl), -CON(unsubstituted Ci-C₆ alkyl)(unsubstituted Ci-C₆ alkyl), -S0₂H, -S0₂NH₂, -S0₂NH(unsubstituted Ci-C₆ alkyl) and -S0₂N(unsubstituted Ci-C₆ alkyl)(unsubstituted Ci-C₆ alkyl)(unsubstituted Ci-C₆ alkyl);

R₁₆ is Ci-C₆ alkyl, -C₀-C₆ alkyl-Ar or -C₀-C₆ alkyl-Het; and

R₁₇ is H, Ci-C₆ alkyl, -C₀-C₆ alkyl-Ar or -C₀-C₆ alkyl-Het; or a pharmaceutically acceptable salt or solvate thereof.

[00143] Unless otherwise provided, each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, aryl or Het (including any 3-5-membered, 4-7-membered or 5-7-membered carbocyclic or heterocyclic rings or ring moieties) in the compounds of formula (2 generics above with W groups) is independently unsubstituted or substituted with one or more substituents defined herein below.

[00144] In the compounds of formula (2 generics directly above), group A is defined as a phenyl or a pyridyl fused ring moiety and is exemplified by the following:
International Patent Application WO 01/41704 (Merck & Co., Inc.) discloses a compound of formula (XXXIV) and (XXXV):

![Chemical structures](image)

and related compounds alongside methods for their production as described in International Patent Application W097/28137 (Merck & Co.), along with methods for making them.

The RXR agonists, PPARy agonists, and the LXR agonists described herein can be administered to the subject as pharmaceutically acceptable salts. Pharmaceutically acceptable acid addition salts of the present invention can include, but are not limited to, salts derived from nontoxic inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, hydrofluoric, phosphorous, and the like, as well as the salts derived forth nontoxic organic acids, such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids,
aliphatic and aromatic sulfonic acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monoLhydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, trifluoracetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, maleate, tartrate, methanesulfonate, and the like. Also contemplated are salts of amino acids such as arginate and the like, as well as gluconate, galacturonate, and n-methyl glucamine.

The acid addition salts of the basic compounds are prepared by contacting the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner. The free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner or as described above. The free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but are otherwise equivalent to their respective free base for purposes of the present invention.

Pharmaceutically acceptable base addition salts are formed with metals or amides, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations include, but are not limited to, sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines include, but are not limited to, N2-N'-dibenzylethlenediamine, chlorprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine.

The base addition salts of the acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner or as described above. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention.

Certain of the compounds of the present invention can exist in unsolvated forms as well as solvated forms, including, but not limited to, hydrated forms. In general, the solvated forms, including hydrated forms, are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention. Certain of the
compounds of the present invention possess one or more chiral centers and each center may exist in different configurations. The compounds can, therefore, form stereoisomers. Although these are all represented herein by a limited number of molecular formulas, the present invention includes the use of both the individual, isolated isomers and mixtures, including racemates, thereof. Where stereo-specific synthesis techniques are employed or optically active compounds are employed as starting materials in the preparation of the compounds, individual isomers may be prepared directly. However, if a mixture of isomers is prepared, the individual isomers may be obtained by conventional resolution techniques, or the mixture may be used as is, with resolution.

In some embodiments, the RXR agonists, PPARy agonists, and the LXR agonists described herein can be administered to the subject using standard methods including, for example, topical, parenteral, subcutaneous, intravenous, intraarticular, intrathecal, intramuscular, intraperitoneal, intradermal injections, or by transdermal, buccal, oromucosal, oral routes or via inhalation. The particular approach and dosage used for a particular subject depends on several factors including, for example, the general health, weight, and age of the subject. Based on factors such as these, a medical practitioner can select an appropriate approach to treatment.

In some embodiments, the RXR agonists, PPARy agonists, and the LXR agonists described herein can be micronized for therapeutic applications. Micronized RXR agonists, such as Bexarotene, can include particles in which at least 90% of the particles have an average or nominal diameter below 20 microns. Surprisingly, it has been found that particle size of the Bexarotene is important for its therapeutic efficacy in treating RXR related disorders. In particular it has been found that Bexarotene in micronized form was found to be
substantially more effective in treating RXR related disorders, such as Alzheimer's, that non-micronized forms.

[00154] The RXR agonists, PPARy agonists, and the LXR agonists described herein can be micronized by any suitable method known in the art. For example, all milling, grinding, micro-pulverization, controlled precipitation, jet-milling or cryo-milling. In some embodiments, the RXR agonists, PPARy agonists, and the LXR agonists are jet-milled or cryo-milled. For example, the average or nominal particle size of the micronized Bexarotene or analogue or derivative thereof can be less than 20 microns, less than 15 microns, less than 10 microns, or less than 5 microns.

[00155] The dose, amount, and/or quantity of the pharmaceutical compositions described above, which are administered to the subject can depend on the specific RXR agonists, PPARy agonists, or optionally LXR agonists selected. It will be appreciated that the dosage amounts used will depend on the potency of the specific RXR agonists, PPARy agonists, or the LXR agonists and the therapeutic regimen employed.

[00156] In another aspect, the PPARy agonist and RXR agonist when administered in combination to subject can be administered at an amount or dosage to achieve a therapeutic effect that is substantially less (i.e., subtherapeutic dose or amount) than the amount or dose that would be required to achieve a therapeutic effect if each compound was administered alone. Co-administration of a PPARy agonist and RXR agonist to the subject can also mitigate resistance to one single agent. Such resistance results either in the requirement for higher dosages of the drug and/or the renewed symptoms.

[00157] Moreover, co-administration of a PPARy agonist and RXR agonist to the subject can mitigate toxicity and side effects associated with potentially administering a single agent at an amount effective to achieve a therapeutic effect. For example, according to an FDA alert issued on May 21, 2007, therapeutic doses of the PPARy agonist rosiglitazone, are associated with a significantly increased risk of heart attack, and even higher risk of death from all cardiovascular diseases. In addition, both rosiglitazone and pioglitazone have been suspected of causing macular edema. Therefore, there is a practical upper limit to the amount that a subject can receive. However, if two or more agents are used in concert, the dosage of any single drug can be lowered. This is beneficial to the patient since using lower levels of therapeutic agents is generally safer for the patient. Additionally, cells are less likely to generate resistance to the combination of drugs as they are to a single drug. Thus in some
aspects of the present invention, the compositions described herein can be administered to a subject at a subtherapeutic level.

[00158] The present invention is not limited by the order in which the agents are administered. In one embodiment, the agents are administered sequentially. In another embodiment, the agents are administered as a combined formulation (e.g., a formulation comprising a PPARγ agonist and an RXR agonist).

[00159] The PPARγ agonists, RXR agonists, and optionally LXR agonists can be formulated for systemic administration and/or topical administration. The PPARγ agonists, RXR agonists, and optionally LXR agonists of the present invention are not limited by the route of administration. Pharmaceutical compositions comprising the PPARγ agonists, RXR agonists, and optionally LXR agonists may be administered orally, intravenously, intraperitoneally. In some aspects of the present invention, pharmaceutical compositions may be administered directly to a lesion or injury site by injection or, in the case of dermatological disorders, for example, by direct application of creams or ointments. In certain aspects, one agent is administered by one route, while the second agent is administered by a second route.

[00160] Advantageously, the PPARγ agonists, RXR agonists, and optionally LXR agonists can be administered by local topical administration to the site of the dermatological disorder. Topical administration is desirable because a lower dosage can be administered to the subject being treated to provide a therapeutically effective benefit. Additionally, administration of a lower topical dosage can mitigate adverse side-effects that may be associated with systemic administration.

[00161] Topical formulations include those for delivery via the mouth (buccal) and through the skin such that at least one layer of skin (i.e., the epidermis, dermis, and/or subcutaneous layer) is contacted with a PPARγ agonists, RXR agonists, and optionally LXR agonists or derivative thereof. Topical delivery systems may be used to administer topical formulations of the present invention. Topical delivery systems can include, for example, transdermal patches containing a PPARγ agonists, an RXR agonists, and optionally an LXR agonists or derivative thereof to be administered. Delivery through the skin can further be achieved by iontophoresis or electrot Transport, if desired.

[00162] Formulations for topical administration in the mouth can include any one or combination of: lozenges comprising a PPARγ agonists, RXR agonists, and optionally LXR agonists or derivative thereof in a flavored basis, usually sucrose and acacia or tragacanth;
pastilles comprising a PPARγ agonists, RXR agonists, and optionally LXR agonists or
derivative thereof in an inert basis such as gelatin and glycerin or sucrose and acacia; and
mouthwashes comprising a PPARγ agonists, RXR agonists, and optionally LXR agonists or
derivative thereof to be administered in a suitable liquid carrier.

Formulations for topical administration to the skin can include ointments, creams, gels, and pastes comprising PPARγ agonists, RXR agonists, and optionally LXR agonists or derivatives thereof to be administered in a pharmaceutically acceptable carrier. Topical formulations for administration to the skin can include creams, ointments, and gels, for example, and can be prepared using oleaginous or water-soluble ointment bases, as is well known to those in the art. For example, these formulations may include vegetable oils, animal fats, and more preferably, semisolid hydrocarbons obtained from petroleum. Particular components used may include white ointment, yellow ointment, cetyl esters wax, oleic acid, olive oil, paraffin, petrolatum, white petrolatum, spermaceti, starch glycerite, white wax, yellow wax, lanolin, anhydrous lanolin, and glyceryl monostearate. Various water-soluble ointment bases may also be used including, for example, glycol ethers and derivatives, polyethylene glycols, polyoxyl 40 stearate, and polysorbates.

In some aspects of the invention, the PPARγ agonist, RXR agonist, and optionally LXR agonist described above find use in the treatment neurological, psychiatric, and/or cognitive developmental disorders associated with PPARγ and/or RXR function and/or dysfunction including acute neurological and psychiatric disorders, such as cerebral deficits subsequent to cardiac bypass surgery and grafting, stroke, cerebral ischemia, spinal cord trauma, head trauma, perinatal hypoxia, cardiac arrest, hypoglycemic neuronal damage, dementia (including AIDS-induced dementia), Alzheimer's disease, Huntington's, multiple sclerosis and other demyelinating disorders, amytrophic lateral sclerosis, ocular damage, retinopathy, cognitive disorders, cognitive impairment, impaired memory, idiopathic and drug-induced Parkinson's disease, muscular spasms and disorders associated with muscular spasticity including tremors, epilepsy, convulsions, migraine (including migraine headache), urinary incontinence, disorders associated with substance tolerance, disorders associated with substance withdrawal (including substances such as opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.), psychosis, schizophrenia, anxiety (including generalized anxiety disorder, panic disorder, and obsessive compulsive disorder), mood disorders (including depression, mania, bipolar disorders), trigeminal
neuralgia, hearing loss, tinnitus, macular degeneration of the eye, such as age related macular degeneration, emesis, brain edema, pain (including acute and chronic pain states, severe pain, intractable pain, neuropathic pain, and post-traumatic pain), tardive dyskinesia, sleep disorders (including narcolepsy), attention deficit/hyperactivity disorders, conduct disorders, autism spectrum disease, and Down's syndrome, as well as neural diseases and conditions with an inflammatory component, including, but not limited to, central nervous system injuries, ischemic damage to the nervous system, neural trauma (e.g., percussive brain damage, spinal cord injury, and traumatic damage to the nervous system), other immune-mediated neuropathies (e.g., Guillain-Barre syndrome and its variants, acute motor axonal neuropathy, acute inflammatory demyelinating polyneuropathy, and Fisher Syndrome), and bacterial, parasitic, fungal, and viral meningitis and encephalitis.

Experiments conducted during development of the present invention demonstrate that RXR agonists stimulate the proteolytic degradation of \(\alpha \beta \) by astrocytes, reduce pathology in an animal model of Alzheimer's Disease, reduce plaque burden in an animal model of Alzheimer's Disease, reduce \(\alpha \beta \) in the brains in an animal model of Alzheimer's Disease, and reduce inflammation in an animal model of Alzheimer's Disease. Moreover, RXR agonists administered to a subject can inhibit the heterodimer partners to RXR, LXR and PPARy and reduce the effects of RXR activation to promote intracellular \(\alpha \beta \) degradation. Thus, the present invention provides methods and compositions for attenuating the progressive neurodegenerative processes in Alzheimer's disease and other diseases and conditions with an inflammatory component. However, it is not intended that the present invention be limited to any particular mechanism. Indeed, an understanding of the mechanisms is not necessary in order to practice the present invention.

In another aspect of the present invention, a variety of dermatological disorders can be treated by topically administering at least one PPARy agonist, RXR agonist, and optionally LXR agonist or derivative thereof to a subject. A dermatological disorder can include any disorder of skin, hair or glands. A dermatological disorder can be manifest in the form of visible lesions, pre-emergent lesions, pain, sensitivity to touch, irritation, inflammation, or the like. Dermatological disorders can also include disorders of the cutaneous and pilosebaceous unit or the process of keratogenesis. For example, a dermatological disorder can be a disorder of the epidermis, dermis, subcutaneous layer, or combination thereof within and surrounding a pilosebaceous unit. Examples of
dermatological disorders can include, but are not limited to, acne, alopecia, psoriasis, seborrhea, ingrown hairs and pseudofolliculitis barbae, hyperpigmented skin, cutaneous infections, lichen planus, Graham Little Syndrome, periorificial dermatitis, rosacea, hidradenitis suppurativa, dissecting cellulitis, systemic lupus erythematosus, discoid lupus erythematosus, and the like.

In another aspect of the present invention, at least one primary Cicatricial alopecia (CA) can be treated by topically administering at least one PPARγ agonist, RXR agonist, and optionally LXR agonist or derivative thereof to a subject. In general, CAs can be classified as lymphocytic, neutrophilic, and combinations thereof (i.e., "mixed"). Examples of lymphocytic CAs include lichen planopilaris, frontal fibrosing alopecia, chronic cutaneous lupus, erythematosus, pseudopelade, central centrifugal alopecia, alopecia mucinosa, and keratitis follicularis spinulosadecalvans. Examples of neutrophilic CAs include folliculitis decalvans, tufted folliculitis, and dissecting cellulitis. Examples of mixed CAs include folliculitis keloidalis and erosive dermatosis.

In an example of the present invention, a pharmaceutical composition comprising a thiazolidinedione, such as rosiglitazone and/or pioglitazone, and Bexarotene can be topically administered to treat a subject having a primary CA, such as LPP. A topical formulation comprising a thiazolidinedione and Bexarotene may be prepared in a gel or liquid, for example, and then administered to at least one region of the subject affected by LPP. For example The topical formulation may be administered to a portion of the subject's scalp exhibiting shiny, flat-topped bumps having an angular shape and a reddish-purplish color.

Administering the topical formulation to the affected region may inhibit or decrease peroxisome loss in at least one cell, such as in a sebaceous stem cell, by increasing expression of the PEX genes and/or genes associated with lipid β-oxidation and desaturation. This, in turn, may decrease or inhibit lipid accumulation in the pilosebaceous unit and thereby channel the lipid stores to increase β-oxidation and abrogate the deleterious effects of lipid overload, i.e., inflammation, loss of hair follicles, and fibrosis.

The following example included to demonstrate an embodiment of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples, which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for
its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

EXAMPLES

[00171] PPARy and LXRs act in concert to regulate lipid metabolism and ApoE expression (Fig. 1). In brief, PPARy acts as a physiological fatty acid sensor and upon dietary intake of fatty acids, they and their immediate metabolites bind to and activate PPARy (Fig. 1). PPARy activation then results in the stimulation of expression of enzymes of lipid metabolism, including induction of LXRa. Similarly, LXRs act as whole body cholesterol sensors and dietary cholesterol intake leads to the activation of the receptors and induction of a number of genes subserving cholesterol trafficking, metabolism and disposal. In addition, LXR activation results in induction of PPARy, resulting in a feed-forward mechanism through which, the combined actions of these receptors are responsible for catabolism and storage of dietary lipids.

[00172] In the brain, the primary RXR partners are LXR and PPARy and their metabolic actions are similar to those observed in the periphery. Importantly, RXR agonists, acting alone, are sufficient to stimulate the transcriptional activity of the LXR and PPARy heterodimers. However, the actions of RXR in the brain have not been extensively examined. It is important to point out that the RAR class of retinoic acid receptors also heterodimerize with RXR, but are termed 'nonpermissive' as they do not respond to RXR ligation. RARs bind all-trans retinoic acid, while RXRs do not.

[00173] The retinoid LGD1069 (Bexarotene, TARGRETIN) is the only FDA approved RXR agonist. Bexarotene is a highly selective retinoid X receptor (RXR) agonist developed for the treatment of cutaneous T-cell lymphoma and has recently been investigated in the treatment of psoriasis and breast cancer. Bexarotene has been shown to induce the expression of the LXR target genes, ABCA1 and ABCG1 in a murine model of mixed dyslipidemis. Clinically, Bexarotene has a good safety profile and has been used over extended periods in humans without significant side effects.

[00174] We found that (a) the ligation of RXR is as effective as either of the PPARy and LXR agonists in stimulating the expression of their target genes and promoting Αβ
degradation and (b) the RXR agonist results in positively cooperative effects whereby the effective dose to elicit the responses of PPARγ and LXR agonists are reduced. We also determined that RXR agonists, alone, or in combination with LXR and PPARγ agonists reduced plaque burden and alter cognition in a murine model of AD. These results are of potential therapeutic importance due to (1) the availability of FDA approved RXR agonists that could be used as monotherapy for AD, and (2) ongoing clinical trials of thiazolidinedione PPARγ agonists which have limited blood brain barrier (BBB) permeability and whose actions can be enhanced by combined treatment with RXR agonists.

Example 1

RXR activation drives the expression LXR target genes

[00175] To determine if RXR activation regulates the expression of LXR target genes, we treated primary murine microglia with increasing doses of Bexarotene for 24 hours. We found that the RXR agonist treatment drives the expression of ABCA1, ABCG1, and ApoE (Fig. 3).

Example 2

RXR activation enhances ApoE lipidation status

[00176] To determine if RXR ligation enhances the lipidation status of ApoE, confluent primary murine astrocytes were treated with increasing doses of Bexarotene for 48 hours. Astrocyte conditioned media was collected and assessed by native gel electrophoresis. We found that Bexarotene increases the lipidation status of ApoE, thus increasing the size of the ApoE particles. (Fig. 4).

Example 3

RXR activation stimulates the proteolytic degradation of Αβ by microglia

[00177] Given the ability of RXR activation to drive LXR target gene expression, we predicted that agonist treatment should promote the proteolytic degradation of Αβ by microglia. We found 9cisRA (Fig. 5A) and Bexarotene (Fig. 5B) treatment resulted in a dose-dependent reduction in intracellular Αβ levels. Αβ uptake was unaffected by either drug treatment.
Example 4
Oral RXR agonist treatment regulates gene expression in the brain

[00178] To verify that the RXR agonist, Bexarotene, alters gene expression in the brain, we orally gavaged 6 month old mice with 100 mg/kg Bexarotene (n=4) or vehicle (water) (n=4 per group) for 7 days. We found drug treated animals exhibited elevated levels of ABCA1, ABCG1 and ApoE (Fig. 6), demonstrating that Bexarotene can directly regulate LXR target gene expression in the brain.

Example 5
RXR agonist treatment reduces \(\alpha\beta\) in the brains of an AD mouse model

[00179] To determine if RXR ligation by Bexarotene alters the concentration of \(\alpha\beta\) in the brains of transgenic mice that harbor both mutations in APP and PS1 (Borchelt animal model), ELISAs were performed on diethylamine (DEA) and formic acid (FA) extractions from brain homogenates. Both \(\alpha\beta1-40\) and \(\alpha\beta1-42\) were assessed on both soluble (DEA) and insoluble (FA) fractions. We found that a 7 day drug treatment of 6 month Borchelt animals reduces both soluble and insoluble \(\alpha\beta\) fractions. (Fig. 7). We have increased the number of animals to at least an n of 4 per group.

Example 6
RXR treatment reduces pathology in an animal model of Alzheimer’s Disease

[00180] To determine whether treatment of Bexarotene reduces signs of AD pathology, we treated 6 month old AD mice for 7 days with Bexarotene by oral gavage (100 mg/kg/day in water). We extracted the brains of the mice, and assessed by immunohistochemistry plaque pathology (6E10). AD mice treated with Bexarotene show about 62% reduction in plaque burden in comparison to those not treated with Bexarotene (Fig. 8).

Example 7
RXR treatment improves contextual fear conditioning behavior in an AD animal model

[00181] To determine whether treatment with Bexarotene improves the behavioral deficit found in the AD animal model, we orally gavaged 6 month old AD model mice for 7 days on Bexarotene (100 mg/kg/day in water) (n=8). We then assessed contextual fear
conditioning behavior, an accepted behavioral test for Alzheimer's Disease study, and found that Bexarotene significantly improves behavior r (Fig. 9).

Example 8

RXR activation drives LXR target gene expression in astrocytes

[00182] To determine if the effects of RXR activation can effect astrocytes as well as microglia, we treated primary murine astrocytes with increasing doses of Bexarotene for 24 hours. We found that RXR agonist treatment drives the expression of ABCA1, ABCG1 and ApoE (Fig. 10).

Example 9

RXR activation drives PPARy genes

[00183] In order to confirm that RXR activation not only drives LXR target genes, but also PPARy target genes, we treated confluent primary murine astrocytes with 10 nM Bexarotene in a time course. We found that RXR activation drives CD36, a PPARy regulated gene, expression by qRT-PCR (Fig. 11).

Example 10

RXR activation stimulates the proteolytic degradation of Aβ by astrocytes

[00184] As shown above, astrocytes can drive the expression of LXR target genes after RXR activation, we predicted that agonist treatment should also promote the intracellular degradation of Aβ by astrocytes. We found that Bexarotene (Fig. 12) treatment resulted in a dose dependent reduction in intracellular Aβ levels. Aβ uptake was not affected by drug treatments (data not shown).

Example 11

ApoE is necessary to promote intracellular degradation by both murine microglia and astrocytes

[00185] To determine if the ability of RXR activation to degrade Aβ is ApoE dependent, we used ApoE knock out microglia (A) or astrocytes (B) in the presence of Bexarotene. Bexarotene has no effect without the presence of ApoE, however, with the addition of exogenous ApoE, the effect of intracellular Aβ degradation returns (Fig. 13).
Example 12

Inhibiting the heterodimer partners to RXR, LXR and PPARy, reduces the effects of RXR activation to promote intracellular Aβ degradation.

[00186] To determine which heterodimer partners are involved in RXR activation driven Aβ intracellular degradation, we inhibited PPARy and LXR by competitive inhibitors, TO and 22-s-Hydroxycholesterol, respectively. Aβ degradation mediated by either microglia (A) or astrocytes (B) is inhibited with either inhibitor to PPAR or LXR. Additionally, a co-treatment with both inhibitors reduces Aβ degradation further (Fig. 14).

Example 13

RXR activation reduces inflammation in an animal model of AD.

[00187] To determine if activating RXR would reduce inflammation, we treated AD mouse models with Bexarotene (100mg/kg/day in water) for 7 days and analyzed a marker for inflammation, Glial Fibrally Acidic Protein (GFAP). As mentioned above, we extracted the brains of the mice, and assessed by immunohistochemistry GFAP expression. AD mice treated with Bexarotene show significantly reduced GFAP expression (Fig. 15).

Example 14

RXR activation induced microglia to take up Aβ in vivo.

[00188] In order to determine if microglia are capable of taking up Aβ, we used confocal microscopy to show Aβ peptides within microglia, the brain's macrophage. We analyzed cryostat sections of transgenic, AD mouse models, with 6E10 and a marker for microglia, Iba1 treated with Bexarotene. Microglia in the brains of Bexarotene treated animals can take up Aβ in vivo (Fig. 16).

Example 15

RXR agonist Bexarotene: structure activity relationship review.

[00189] In general, the structures of RXR agonists can be divided into three regions; a lipophilic domain, an acidic domain and a linker connecting these two regions.
The acidic and lipophilic regions can be used for modifications. There are a number of bioisosteres that have been used to replace a carboxyl group, the most common being the tetrazole heterocycle. Additional groups that can be used to replace the carboxyl and are hydroxyisoxazole 1, oxadiazolone 2, sulfonamide 3 and hydroxamic acid 4.

We examined electron withdrawing functionality (F and NO₂) ortho to the carboxyl group. Another substitution in this position that would be novel is the cyano (CN) group 5.

Modifications to the acidic domain include the following:

Options for modification to the lipophilic region are limited by the size of the substituent in the 3-position of the tetralin. A methyl can be used as a substitution for RXR affinity and selectivity, although the slightly larger ethyl, isopropyl and methoxy were still fairly well tolerated. It has been postulated that the agonist activity of RXR can be modulated by introduction of larger groups to a position that corresponds to the 3-position in bexarotene. For the scaffolds investigated, short alkoxy side chains (methoxy, ethoxy) usually produced agonist activity. As the side chains got larger, the biological activity changed from agonist to partial agonist to antagonist. We explored this phenomenon with the bexarotene template to see if the agonist activity could be modulated. Additional, moderately
sized functional groups that could be introduced here would be trifluoromethoxy 6, cyclopropyl 7 and cyano 8.

[00194] Modifications to the lipophilic domain include the following:

![Chemical structure](image)

[00195] As a second set of targets, several of these modifications can also be applied to the more potent and selective RXR agonist LG-100268.

![Chemical structure](image)

[00196] Due to the potential for intrinsic reactivity, metabolic activation to a reactive species, DNA intercalation or metal coordination, a number of structural features (toxicophores) have been associated with adverse outcomes.

[00197] In summary, examples of analogues and derivatives of Bexarotene are listed below:

![Chemical structures](image)
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims. All references, publications, and patents cited in the present application are herein incorporated by reference in their entirety.
Having described the invention, the following is claimed:

1. A method of treating a psychiatric or cognitive developmental disorder in a subject, comprising:
 administering to the subject a therapeutically effective amount of at least one RXR agonist to treat the psychiatric or cognitive developmental disorder.

2. The method of claim 1, the RXR agonist comprising

 ![Chemical Structure 1]

 or a pharmaceutically acceptable salt thereof.

3. The method of claim 1 further comprising administering a PPARy agonist in combination with the RXR agonist.

4. The method of claim 3, the PPARy agonist comprising a thiazolidinedione or a derivative thereof.

5. The method of claim 4, the PPARy agonist comprising at least one compound or a pharmaceutically acceptable salt thereof selected from the group consisting of: (+)-5[(4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-l-benzopyran-2-yl)m

 ![Chemical Structure 2]
6. The method of claim 3, further comprising administering a LXR agonist to the subject.

7. The method of claim 2, the RXR agonist is in micronized form.

8. The method of claim 1, the psychiatric or cognitive developmental disorder is selected from the group consisting of autism spectrum disorder, psychosis, schizophrenia, anxiety, mood disorders, attention deficit/hyperactivity disorders, conduct disorders, and Down’s syndrome.
9. A method of treating a psychiatric or cognitive developmental disorder in a subject, comprising:

administering to the subject a therapeutically effective amount of at least one RXR agonist, the RXR agonist comprising:

![Chemical structure](image)

or a pharmaceutically acceptable salt thereof to treat the psychiatric or cognitive developmental disorder.

10. The method of claim 9 further comprising administering a PPARy agonist in combination with the RXR agonist.

11. The method of claim 9, the PPARy agonist comprising a thiazolidinedione or a derivative thereof.

12. The method of claim 11, the PPARy agonist comprising at least one compound or a pharmaceutically acceptable salt thereof selected from the group consisting of: (+)-5[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4thiazolidinedione; 5-[4-[(5-ethylpyridin-2-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; (ciglitazone); 4-(2-naphthylmethyl)-1,2,3,5-oxathiadiazole-2-oxide; 5-[4-[(N-(benzoxazol-2-yl)-N-
13. The method of claim 10, further comprising administering a LXR agonist to the subject.

14. The method of claim 9, the RXR agonist is in micronized form.

15. The method of claim 9, the psychiatric or cognitive developmental disorder is selected from the group consisting of autism spectrum disorder, psychosis, schizophrenia, anxiety, mood disorders, attention deficit/hyperactivity disorders, conduct disorders, and Down’s syndrome.

16. A method of treating a psychiatric or cognitive developmental disorder in a subject, comprising:

 administering to the subject a therapeutically effective amount of at least one RXR agonist to treat the psychiatric or cognitive developmental disorder, the RXR agonist is in micronized form and comprises:
17. The method of claim 16, further comprising administering a PPARγ agonist in combination with the RXR agonist.

18. The method of claim 16, the PPARγ agonist comprising a thiazolidinedione or a derivative thereof.

19. The method of claim 18, the PPARγ agonist comprising at least one compound or a pharmaceutically acceptable salt thereof selected from the group consisting of: (+)-5[[4-[(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)methoxy]phenyl]methyl]-2,4thiazolidinedione; 5-[4-[2-(5-ethylpyridin-2-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[(1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; (ciglitazone); 4-(2-naphthylmethyl)-1,2,3,5-oxathiadiazole-2-oxide; 5-[4-[2-[(N-(benzoxazol-2-yl)-N-methylamino)ethoxy]benzyl]-5-methylthiazolidine-2,4-dione; 5-[4-[2-[2,4-dioxo-5-phénylthiazolidine-3-yl]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-[(N-methyl-N-(phenoxy carbonyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(4-
chorophenyl)ethylsulfonyl]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[(4-(3-hydroxy-1-methylcyclohexyl)methoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[(2-benzyl-2,3-dihydrobenzopyran)-5-ylmethyl]thiazolidine-2,4-dione; 5-[(2-(2-naphthylmethyl)benzoxazol]-5-ylmethyl]thiazolidine-2,4-dione; 5-[4-[2-(3-phenylureido)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(N-benzoxazol-2-yl)-N-metholamino]ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[3-(5-methyl-2-phenyloxazol-4-yl)propionyl]benzyl]thiazolidine-2,4-dione; 5-[2-(5-methyl-2-phenyloxazol-4-ylmethyl)benzofuran-5-ylmethyl]oxazolidine-2,4-dione; 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione; and 5-[4-[2-(N-(benzoxazol-2-yl)-N-methylamino)ethoxy]benzyl]oxazolidine-2,4-dione.

20. The method of claim 17, further comprising administering a LXR agonist to the subject.

21. The method of claim 16, the psychiatric or cognitive developmental disorder is selected from the group consisting of autism spectrum disorder, psychosis, schizophrenia, anxiety, mood disorders, attention deficit/hyperactivity disorders, conduct disorders, and Down’s syndrome.
Fig. 1

PPARγ

Dietary lipids & Cholesterol

Liver X Receptors

Ligands:
- Oxysterols
- GW3965
- T0-091317

Ligands:
- Fatty acids
- Oxidized lipids
- Thiazolidinediones
- pioglitazone
- rosiglitazone
- NSAIDs

PPARγ Target Genes
- Lipoprotein Lipase
- aP2
- CD36

LXRa

Lipid Metabolism

Cholesterol Transport

PPARγ (human)

Corepressor complex
- NCOR/SMRT
- HDAC

Coactivator complex
- CBP/p300
Fig. 4
Fig. 7
Number of Freezing Times

![Bar graph showing the number of freezing times for Tg neg, Tg pos Water, and Tg pos Bex groups.](image)

Fig. 9
CD36 expression

Fig. 11
Intracellular Aβ Degradation

Fig. 12
A

Microglial Intracellular Aβ Degradation

B

Astrocyte Intracellular Aβ Degradation

Figs. 13A-B
DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT
(PCT Article 17(2)(a), Rules 13ter.1(c) and (d) and 39)

<table>
<thead>
<tr>
<th>Applicant’s or agent’s file reference</th>
<th>IMPORTANT DECLARATION</th>
<th>Date of mailing (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWR-020242WO</td>
<td></td>
<td>15 MARCH 2013 (15.03.2013)</td>
</tr>
</tbody>
</table>

International application No.

<table>
<thead>
<tr>
<th>PCT/US2012/060262</th>
<th>International filing date (day/month/year)</th>
<th>(Earliest) Priority date (day/month/year)</th>
</tr>
</thead>
</table>

International Patent Classification (IPC) or both national classification and IPC

- A61K 31/4406(2006. 01)i, A61K 31/19(2006. 01)i, A61P 25/24(2006. 01)i, A61P 25/00(2006. 01)i

Applicant

CASE WESTERN RESERVE UNIVERSITY

This International Searching Authority hereby declares, according to Article 17(2)(a), that **no international search report will be established** on the international application for the reasons indicated below.

1. The subject matter of the international application relates to:
 a. □ | scientific theories.
 b. □ mathematical theories.
 c. □ | plant varieties.
 d. □ animal varieties.
 e. □ | essentially biological processes for the production of plants and animals, other than microbiological processes and the products of such processes.
 f. □ | schemes, rules or methods of doing business.
 g. □ | schemes, rules or methods of performing purely mental acts.
 h. □ | schemes, rules or methods of playing games.
 i. □ methods for treatment of the human body by surgery or therapy.
 j. □ methods for treatment of the animal body by surgery or therapy.
 k. □ diagnostic methods practised on the human or animal body.
 l. □ mere presentation of information.
 m. □ computer programs for which this International Searching Authority is not equipped to search prior art.

2. The failure of the following parts of the international application to comply with prescribed requirements prevents a meaningful search from being carried out:
 - The description
 - the claims
 - the drawings

3. A meaningful search could not be carried out without the sequence listing; the applicant did not, within the prescribed time limit:
 - furnish a sequence listing on paper complying with the standard provided for in Annex C of the Administrative Instructions, and such listing was not available to the International Searching Authority in a form and manner acceptable to it.
 - furnish a sequence listing in electronic form complying with the standard provided for in Annex C of the Administrative Instructions, and such listing was not available to the International Searching Authority in a form and manner acceptable to it.
 - pay the required late furnishing fee for the furnishing of a sequence listing in response to an invitation under Rule 13ter.1(a) or (b)

4. Further comments:

Name and mailing address of ISA/KR
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
CHOI, Sung Hee
Telephone No. 82-42-481-8740

Form PCT/ISA/203 (July 2009)