

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2014201601 B2

(54) Title
PERCUTANEOUS SPINAL CROSS LINK SYSTEM AND METHOD

(51) International Patent Classification(s)
A61B 17/70 (2006.01) **A61F 2/44** (2006.01)

(21) Application No: **2014201601** (22) Date of Filing: **2014.03.14**

(30) Priority Data

(31) Number
61/782,278 (32) Date
2013.03.14 (33) Country
US

(43) Publication Date: **2014.10.02**
(43) Publication Journal Date: **2014.10.02**
(44) Accepted Journal Date: **2018.09.20**

(71) Applicant(s)
STRYKER EUROPEAN HOLDINGS I, LLC

(72) Inventor(s)
REITBLAT, Abram;TALIJAN, David;DOMBROWSKI, Lori;BUSH Jr., Charles L.

(74) Agent / Attorney
IP Gateway Patent and Trade Mark Attorneys Pty Ltd, PO Box 1321, SPRINGWOOD, QLD, 4127, AU

(56) Related Art
US 20100049252 A1
US 20030009172 A1

2014201601 14 Mar 2014

ABSTRACT

A percutaneous spinal cross link system 30a for interconnecting a spinal fusion construct on one side of the longitudinal axis of the spine with a spinal fusion construct on the other side is disclosed. The cross link system 30a includes a cross bar 50 connected at each end by a respective connector 30 to a respective spinal fusion rod 44a and 44b of each of the spinal fusion constructs. The connector 30 includes a rod receiving portion receiving the spinal fusion rods and a cross bar receiving portion adapted receive the cross bar in an orientation generally perpendicular to the spinal fusion rod. A cannula defined by two spaced apart blades is connected to the connector for defining a minimally invasive pathway through body tissue for the cross bar 50. Other tools for use with the system are also disclosed.

FIG 2 FOR PUBLICATION

2/13

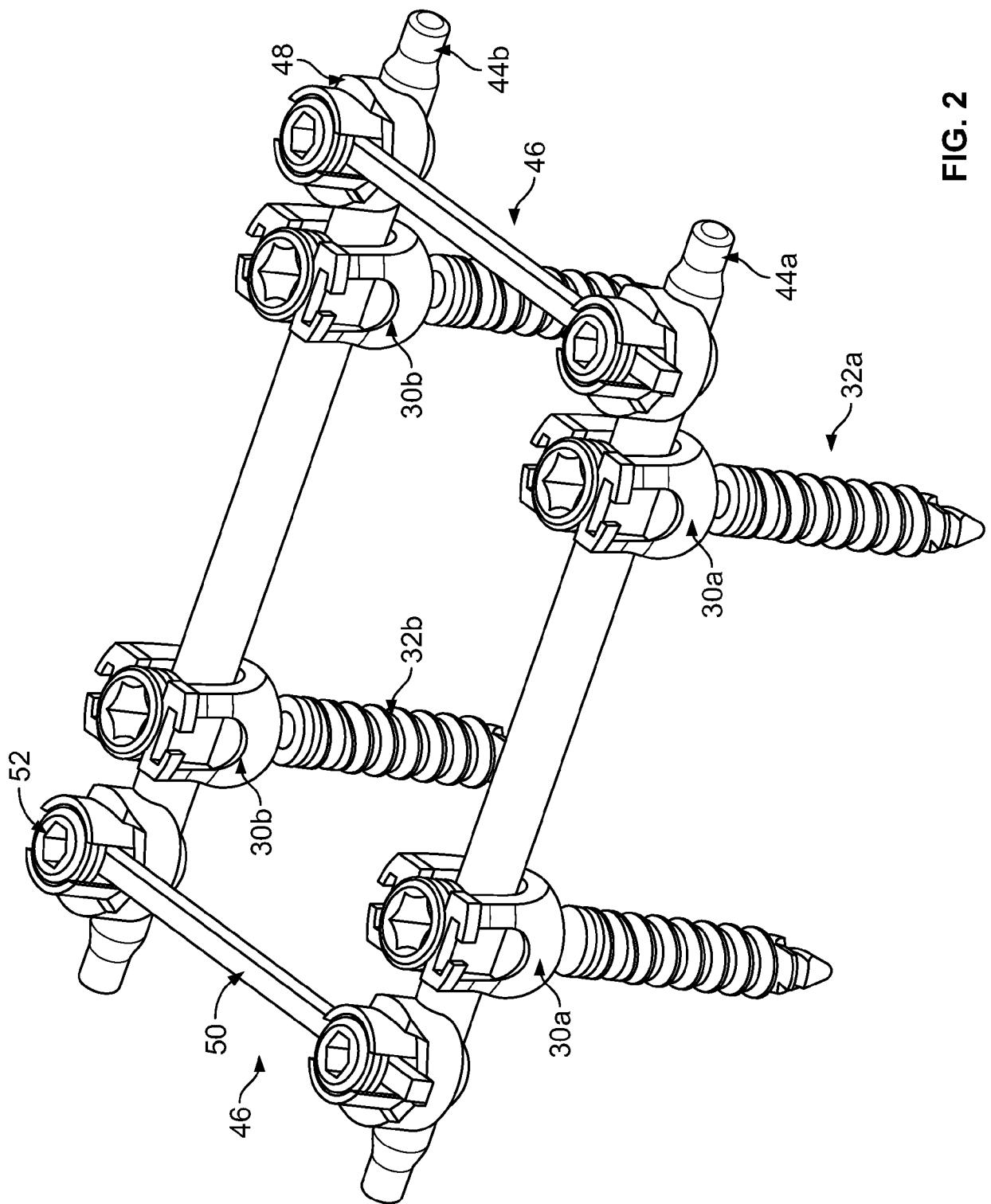


FIG. 2

PERCUTANEOUS SPINAL CROSS LINK SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/782,278 filed March 14, 2013, the disclosure of which is hereby incorporated herein by reference.

FIELD

[0002] The present disclosure relates to the percutaneous insertion of spinal fusion implants into the body of a patient and the affixation of those implants to the spine.

DEFINITION

[0003] In the specification the term “comprising” shall be understood to have a broad meaning similar to the term “including” and will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. This definition also applies to variations on the term “comprising” such as “comprise” and “comprises”.

BACKGROUND

[0004] Pedicle screw fixation constructs have been in use for decades in order to fuse adjacent vertebral segments to improve spinal stability or correct certain spinal deformities. Older approaches for inserting these fixation constructs involved open procedures, in which relatively large skin incisions were created to expose a substantial portion of the patient's spinal column, in order to allow for insertion of the pedicle screws and manipulation of spinal rods through openings in pedicle screws, such openings typically being in heads of the screws.

[0005] Over time, less invasive approaches have been developed. Typically, in such approaches, pedicle screws are inserted into the pedicles of adjacent

vertebrae of a patient's spine through individual percutaneous incisions corresponding to the pedicle screws. Fixation or fusion rods are then inserted into the body through one of those incisions, or through an additional incision adjacent to the most cephalad or caudal pedicle screw, and the rod is rigidly connected to the heads of the pedicle screws such that the rod extends along the longitudinal axis of the spine (i.e., along the cephalad/caudal direction) in order to fix the relative positions of the adjacent vertebrae to which the rod is connected. In some such minimally invasive procedures, a percutaneous access device (e.g., a cannula or portal) is connected to each of the pedicle screws and extends through the respective percutaneous incision. Such percutaneous access devices provide a pathway through the tissue from each incision to the respective pedicle screw, in order to aid in the insertion of a spinal rod. Examples of such percutaneous access devices are described in commonly-assigned U.S. Patent No. 7,955,355 ("the '355 Patent") and U.S. Patent No. 8,002,798 ("the '798 Patent"), the entireties of which are hereby incorporated by reference herein as if fully set forth herein. The reference to prior art in this specification is not and should not be taken as an acknowledgment or any form of suggestion that the referenced prior art forms part of the common general knowledge in Australia or in any other country.

BRIEF SUMMARY OF THE DISCLOSURE

[0006] Although some effort has been devoted in the prior art to such minimally invasive systems, applicant recognizes that still further improvement would be desirable.

[0007] One aspect of the present disclosure provides a system for securing a cross bar to a spinal fusion construct, comprising: a connector having a proximal end and a distal end and a longitudinal axis extending between the proximal and distal ends of the connector, the connector having a rod receiving portion and a cross bar receiving portion, the rod receiving portion being adapted to receive a spinal fusion rod of a spinal fusion construct therein in an orientation generally perpendicular to the longitudinal axis of the connector, and the cross bar receiving portion having a receptacle adapted to receive a cross bar therein in an orientation generally perpendicular to both the longitudinal axis of the connector and to the spinal fusion rod when the spinal fusion rod is received within the rod receiving

portion; a cannula having a proximal end and a distal end; and a drill having an elongated extender, the extender having a proximal end and a distal end and being adapted to be received within the cannula while the distal end of the cannula is connected to the proximal end of the connector and while the spinal fusion rod of the spinal fusion construct is received within the rod receiving portion of the connector, such that a portion of the drill at the distal end of the extender is received within the connector, the distal end of the extender being connected to a drill bit such that the drill bit extends generally perpendicularly to the extender so as to be structured to drill a hole through a spinous process located laterally of the connector.

[0008] According to one aspect of the disclosure, the receptacle of the cross bar receiving portion is preferably defined between a first arm and a second arm. According to another aspect of the disclosure, the arms preferably include inwardly facing threads along at least a portion of the receptacle, and the receptacle is preferably adapted to receive a threaded blocker in engagement with the threads. According to a further aspect of the disclosure, the rod receiving portion of the connector preferably includes a slot adapted to receive the spinal fusion rod therethrough, and the slot is preferably defined between a first arm and a second arm. According to yet a further aspect of the disclosure, the first and second arms defining the slot are preferably adapted to deflect relative to one another when the spinal fusion rod is inserted into the slot.

[0009] Further aspects of the disclosure provide a connector assembly for securing a cross bar to a spinal fusion construct. The connector assembly according to this aspect of the disclosure desirably includes a cannula and also desirably includes a connector in accordance with any of the aspects of the disclosure described above. A distal end of the cannula is desirably connected to the connector such that a proximal end of the cannula extends through an incision in the skin of a body of a patient when the spinal fusion rod is received within the rod receiving portion of the connector and when the spinal fusion construct is implanted in a spine of the patient.

[0010] According to another aspect of the disclosure, the cannula is preferably defined by a plurality of blades, each of which preferably has a distal end detachably connected to the cross bar receiving portion of the connector. According to another aspect of the disclosure, the blades are preferably each integrally formed with the

cross bar receiving portion of the connector and detachably connected thereto at a frangible portion. According to yet another aspect of the disclosure, the cannula preferably includes an inner surface having threads for engaging a threaded blocker along at least a distal portion of the cannula.

[0011] Yet further aspects of the disclosure provide a system for securing a cross bar to a spinal fusion construct. The system according to this aspect of the disclosure desirably includes a dilator and also desirably includes a connector assembly in accordance with any of the aspects of the disclosure described above. The dilator is desirably adapted to define a pathway between the incision in the skin of the patient and the spinal fusion rod of the spinal fusion construct implanted in the spine. The pathway is desirably adapted to receive the connector assembly through it.

[0012] According to one aspect of the disclosure, the system preferably includes a connector inserter having a shaft, the distal end of which is preferably adapted to engage the cross bar receiving portion of the connector while the shaft is received within and extends along the cannula of the connector assembly.

[0013] According to another aspect of the disclosure, the system preferably includes a linkage and also preferably includes a plurality of the connector assemblies in accordance with any of the aspects of the disclosure described above. According to this aspect of the disclosure, the linkage is preferably adapted to simultaneously connect to the proximal end of each of the cannulas of the connector assemblies while the spinal fusion rod is received within the rod receiving portions of the connectors and while the spinal fusion construct is implanted in a spine of the body.

[0014] According to another aspect of the disclosure, the system preferably includes a drill having an elongated extender. According to this aspect of the disclosure, the elongated extender is preferably adapted to be received within the cannula of the connector assembly. A distal end of the extender is preferably connected to a drill bit such that the drill bit extends generally perpendicularly to the extender.

[0015] According to another aspect of the disclosure, the system preferably includes a cross bar inserter, the distal end of which preferably has a connection structure operable to selectively secure and release the cross bar to it. According

to yet another aspect of the disclosure, the system preferably includes a persuader having a tubular member adapted to receive the cannula of the connector assembly inside of it.

[0016] According to another aspect of the disclosure, the cannula of the connector assembly is preferably defined by a plurality of blades. According to this aspect of the disclosure, each of the blades is preferably integrally formed with the cross bar receiving portion of the connector. Each of the blades also preferably has a distal end detachably connected to the cross bar receiving portion of the connector at a frangible portion. The system preferably includes a blade remover having a channel adapted to receive one of the blades.

[0017] Yet further aspects of the disclosure provide a method for securing a cross bar to a spinal fusion construct. The method according to this aspect of the disclosure desirably includes forming a minimally invasive pathway between an incision in the skin of a patient and a spinal fusion rod of a spinal fusion construct implanted in a spine of the patient. The method desirably also includes passing a connector through the pathway and attaching the connector to the spinal fusion rod. The connector desirably has a cross bar receiving portion adapted to receive a cross bar therein in an orientation generally perpendicular to the spinal fusion rod.

[0018] According to another aspect of the disclosure there is provided a method for securing a cross bar to a spinal fusion construct, comprising forming a tubular minimally invasive pathway extending through body tissue between an incision in the skin of a patient and a first location along a spinal fusion rod of a spinal fusion construct implanted in a spine of the patient; passing a connector through the pathway and attaching the connector to the spinal fusion rod at the first location, the connector having a cross bar receiving portion adapted to receive a cross bar therein in an orientation generally perpendicular to the spinal fusion rod; and maintaining the minimally invasive pathway while advancing the cross bar along the pathway and into engagement with the cross bar receiving portion of the connector.

[0019] According to another aspect of the disclosure, the step of maintaining the minimally invasive pathway may comprise maintaining the minimally invasive pathway with a first cannula, the distal end of which is preferably connected to the cross bar receiving portion of the connector.

[0020] According to another aspect of the disclosure, the step of advancing the cross bar along the pathway may comprise inserting the cross bar along the first cannula and through a slot along the first cannula.

[0021] According to another aspect of the disclosure, the step of advancing the cross bar into engagement with the cross bar receiving portion of the connector may comprise rotatably advancing a threaded blocker along a threaded portion of the first cannula.

[0022] According to another aspect of the disclosure, the method may include detaching a plurality of blades defining the first cannula from the cross bar receiving portion of the connector. According to a further aspect of the disclosure, the step of detaching the blades preferably includes breaking the blades away from the cross bar receiving portion of the connector.

[0023] According to another aspect of the disclosure, the method preferably includes forming a second minimally invasive pathway between a second incision in the skin of the patient and a second spinal fusion rod of the spinal fusion construct. The method according to this aspect of the disclosure preferably also includes passing a second connector through the second pathway and attaching the second connector to the second spinal fusion rod. The second connector preferably has a cross bar receiving portion which is adapted to receive the cross bar therein in an orientation generally perpendicular to both the spinal fusion rod and the second spinal fusion rod. The method according to this aspect of the disclosure preferably also includes maintaining the second minimally invasive pathway with a second cannula, the distal end of which is preferably connected to the cross bar receiving portion of the second connector.

[0024] The step of detaching the blades may comprise breaking the blades away from the cross bar receiving portion.

[0025] The method may further comprise forming a second tubular minimally invasive pathway extending through body tissue between a second incision in the skin of the patient and a second location along a second spinal fusion rod of the spinal fusion construct; passing a second connector through the second pathway and attaching the second connector to the second spinal fusion rod at the second location, the second connector having a cross bar receiving portion adapted to receive the cross bar therein in the orientation; and maintaining the second

minimally invasive pathway with a second cannula having a proximal end and a distal end, the distal end of the second cannula being connected to the cross bar receiving portion of the second connector.

[0026] According to another aspect of the disclosure, the method preferably includes attaching a linkage to the proximal ends of the first and second cannulas.

[0027] According to a further aspect of the disclosure, the method preferably includes forming an opening in a spinous process of the spine with a drill which is inserted along the minimally invasive pathway.

[0028] The step of forming the minimally invasive pathway may comprise advancing a tubular dilator through the body tissue from the incision in the skin to the first location along the spinal fusion rod.

[0029] The method may further comprise attaching a distal end of the tubular dilator to the spinal fusion rod at the first location.

[0030] The spinal fusion construct implanted in the spine may include at least one connecting element securing the spinal fusion rod to the spine, the construct may further include a percutaneous access device detachably connected to the at least one connecting element and extending proximally therefrom out of the body of the patient, the method may further comprise engaging the percutaneous access device with an attachment structure of the tubular dilator, the attachment structure positioned alongside the dilator between the distal end and a proximal end of the dilator.

[0031] According to another aspect of the disclosure there is provided a dilator for accessing a location proximate a spine, comprising: a generally tubular body having a proximal end and a distal end and defining a passageway therealong; and an attachment structure adapted to mate with a portion of an implant attached to the spine.

[0032] The attachment structure may be located at the distal end of the tubular body.

[0033] The attachment structure may be adapted to engage a spinal fusion rod attached to the spine.

[0034] The attachment structure may include a recess shaped to receive at least a portion of the spinal fusion rod therein.

[0035] The attachment structure may be adapted to snap onto the spinal fusion rod by deforming when the spinal fusion rod is received within the recess.

[0036] The attachment structure may include a slot to facilitate the deformation of the attachment structure when the attachment structure snaps onto the spinal fusion rod.

[0037] The attachment structure may be positioned alongside the generally tubular body between its proximal and distal ends.

[0038] The implant attached to the spine may include a spinal fusion rod and at least one connecting element for securing the spinal fusion rod to the spine, the implant further including a percutaneous access device detachably connected to the at least one connecting element and extending proximally therefrom out of the body, and wherein the attachment structure is adapted to securely engage the percutaneous access device.

[0039] The percutaneous access device may comprise two blades positioned adjacent to one another and defining an elongated cannula, and wherein the attachment structure extends laterally from the tubular body and receives the blades therein.

[0040] The attachment structure may include a plurality of receivers extending laterally from the tubular body, each of the receivers having a respective channel therealong shaped to receive a respective blade therein.

[0041] According to another aspect of the disclosure there is provided a dilation system, comprising: the dilator as recited the previous aspect of the disclosure; and at least one inner dilator adapted to be received within the passageway of the dilator, the inner dilator being adapted to spread tissue apart along a pathway to the location proximate the spine before the dilator is advanced along the pathway.

[0042] A distal end of the inner dilator of the dilation system may be tapered.

BRIEF DESCRIPTION OF THE DRAWINGS

[0043] FIG. 1 is a perspective view of a portion of a spine with a prior art spinal fusion construct connected thereto.

[0044] FIG. 2 is a perspective view of a construct of spinal fusion system components in accordance with aspects of the present disclosure.

[0045] FIGS. 3A-B are perspective views of components of a dilation system in accordance with an embodiment of the present disclosure.

[0046] FIG. 3C is a perspective view of an assembly of the components of FIGS. 3A and 3B.

[0047] FIG. 4A is a perspective view of a portion of a prior art spinal fusion construct having a percutaneous access device connected thereto.

[0048] FIG. 4B is a perspective view of a component of a dilation system in accordance with another embodiment of the present disclosure assembled with the portion of the spinal fusion construct of FIG. 4A.

[0049] FIG. 5 is a perspective view of two integrated connectors in accordance with embodiments of the present disclosure.

[0050] FIGS. 6A-B are sectional views of portions of an integrated connector of FIG. 5.

[0051] FIG. 7A is a perspective view of an integrated connector of FIG. 5 assembled with a connector inserter in accordance with an embodiment of the present disclosure.

[0052] FIG. 7B is an enlarged view of a portion of the assembly of FIG. 7A.

[0053] FIG. 8 is a perspective view of a plurality of the integrated connectors of FIG. 5 assembled with a portion of a spinal fusion construct in accordance with an embodiment of the present disclosure.

[0054] FIG. 9 is a perspective view of a linkage assembled with integrated connectors in accordance with an embodiment of the present disclosure.

[0055] FIG. 10 is a perspective view of a right-angle drill in accordance with an embodiment of the present disclosure.

[0056] FIGS. 10A-B are perspective views of a portion of the right-angle drill of FIG. 10 in two different configurations.

[0057] FIG. 11A is a perspective view of a portion of a cross bar inserter connected to a cross bar in accordance with an embodiment of the present disclosure.

[0058] FIG. 11B is a perspective view of a method of insertion of a cross bar into the assembly of FIG. 8.

[0059] FIG. 12A is a perspective view of a method of persuading the cross bar into the assembly of FIG. 8.

[0060] FIG. 12B is a perspective, sectional view of the method of FIG. 12A.

[0061] FIG. 13 is a perspective view of a method of removing the blades from the integrated connectors of the assembly of FIG. 8.

DETAILED DESCRIPTION

[0062] Where reference is made herein to directional terms such as "proximal," "proximal most," "distal," and "distal most," it is to be understood that "proximal" and "proximal most" refer to locations closer to a user or operator of the device or method being described and that "distal" and "distal most" refer to locations further from a user or operator of the device or method being described.

[0063] Referring to FIG. 1, a perspective view illustrates a portion of a spine 10. FIG. 1 illustrates only the bony structures; accordingly, ligaments, cartilage, and other soft tissues are omitted for clarity. The spine 10 has a cephalad direction 12, a caudal direction 14, an anterior direction 16, a posterior direction 18, and a medial/lateral axis 20, all of which are oriented as shown by the arrows bearing the same reference numerals. In this application, "left" and "right" are used with reference to a posterior view, i.e., a view from behind the spine 10. "Medial" refers to a position or orientation toward a sagittal plane (i.e., plane of symmetry that separates left and right sides from each other) of the spine 10, and "lateral" refers to a position or orientation relatively further from the sagittal plane.

[0064] As shown, the spine 10 illustrated in FIG. 1 includes a first vertebra 22, a second vertebra 24, and a third vertebra 26. Connecting elements 30 of a spinal fusion construct are connected to respective pedicles 36, 38, 40 on the right side of the respective first, second, and third vertebrae 22, 24, 26. The connecting elements 30 each include a pedicle screw (not shown) implanted in the respective pedicles 36, 38, 40 and a cage 42 for receiving a spinal fusion rod 44 therein. The cages 42 may be polyaxially coupled to the respective pedicle screws. Each connecting element 30 may also include a set screw 45 for securing the rod 44 within the cage 42. The connecting elements 30 may have the same structure as the connecting elements described in the '798 Patent, and the connecting elements 30 and the rod 44 may have been percutaneously inserted in the same manner as described in that patent. That is, the connecting elements 30 may have been

inserted through separate incisions with the help of guide wires and/or dilators, and the rod 44 may have been inserted with the help of cannulas secured to the connecting elements 30.

[0065] Although only one construct on one side (i.e., the right side) of the spine 10 is illustrated in FIG. 1, another similar spinal fusion construct could be connected to pedicles on the other side of the spine in a similar manner, such that the rods 44 extend generally parallel to one another along the longitudinal axis of the spine. As shown in FIG. 2, a construct in accordance with the present disclosure may include a plurality of connecting elements 30a with an associated rod 44a extending generally parallel to a plurality of connecting elements 30b with an associated rod 44b. Although the spine is not illustrated in FIG. 2, the construct illustrated in FIG. 2 would preferably be connected to the spine such that the pedicle screws 32a of connecting elements 30a would be implanted in pedicles on one side of the longitudinal axis of the spine and the pedicle screws 32b of the connecting elements 30b would be implanted in pedicles on the other side of the longitudinal axis of the spine, such that the rods 44a and 44b extend generally parallel to the longitudinal axis of the spine with the spinous processes of the spine extending between the rods 44a and 44b.

[0066] In accordance with embodiments of the present disclosure, cross links 46 may extend between and be connected to both rods 44a and 44b. Desirably such cross links 46 help to stabilize and increase rigidity of the spinal fusion construct. The cross links 46 may include connectors 48 secured to each rod 44a,b and cross bars 50 received within and secured to the connectors 48 by blockers 52, as discussed in more detail below. A system and method for percutaneously installing such cross links 46 into a spinal fusion construct follows below.

[0067] After two generally parallel constructs of connecting elements 30 and rods 44 have been installed on each side of the spine, for example with the systems and methods described in the '798 Patent, the cross links 46 may then be installed. First, the surgeon may determine at which locations along the rods 44 the cross links 46 are to be located. Although the connectors 48 of the present disclosure are desirably structured so as to be positionable at any location along the rods 44, in some preferred spinal fusion constructs in accordance with the present disclosure the connectors 48 may be located close to the connecting elements 30. It is believed

that such placement of the cross links 46 may increase the stability of the spinal fusion construct.

[0068] After the desired locations for the connectors 48 have been determined, the body tissue between the skin and each of those locations may be dilated. In one embodiment, the dilation may be performed by inserting a dilation system including a generally tubular dilator 54, as shown in FIG. 3A, through an incision in the skin to the desired location along the rod 44. The dilator 54 has a proximal end 56 and a distal end 58 and defines a passageway 57 therealong. The distal end 58 may have an attachment portion 60 for attachment to the rod 44. For example, the attachment portion 60 may include a recess 62 shaped to receive at least a portion of the rod 44 therein. In order to provide a more stable connection to the rod 44, the attachment portion 60 may be structured to snap onto the rod 44 by deforming when the rod 44 is received within the recess 62. In such an embodiment, a slot 64 may be provided to facilitate such deformation. To ease the insertion of the dilator 54, in some embodiments of the dilation system, a pathway between the skin incision and the desired location along the rod 44 may be sequentially dilated by a series of successively larger dilators inserted one over another, for example as discussed in the '798 Patent, after which the dilator 54 may be inserted over the last of such dilators. In other embodiments of the dilation system, a single inner dilator 66, as shown in FIG. 3B, may be inserted along the pathway, after which the dilator 54 may be inserted over the inner dilator 66, as shown in FIG. 3C. The inner dilator 66 may be generally tubular structure sized to be closely received within the dilator 54 and having a proximal end 68 and a distal end 70. In some embodiments, the distal end 70 may be tapered, as shown in FIG. 3B, in order to gently spread the tissue apart along the pathway as the inner dilator 66 is inserted.

[0069] Another embodiment of a dilation system may include a dilator 72, as shown in FIG. 4B, which may be structured to engage a percutaneous access device connected to one of the connecting elements 30. The percutaneous access device may be in the form of those described in the '355 Patent and the '798 Patent. For example, as shown in FIG. 4A, the percutaneous access device may be a cannula 74 defined by a two blades 76 connected to opposing sides of the cage 42. The blades 76 may be separately formed from and detachably connectable to the cage 42 of the connecting element 30 by a distal tab 80, as described in certain

embodiments of the '798 Patent. Alternatively, the cannula 74 may be defined by blades that are integrally formed with the cage 42 and connected thereto by frangible portions (e.g., reduced thickness portions, which may be defined by grooves formed in either or both of the interior and exterior surfaces of cannula at the junction between the blades and the cage), whereby the blades are detachable from the cage 42 breaking the blades away from the cage 42 at the frangible portions. As shown in FIG. 4B, the dilator 72 has a proximal end 81 and a distal end 83 and defines a passageway 85 therealong, and the dilator 72 may include a generally tubular cannula 82 and an attachment structure 84 constructed to engage the blades 76. The attachment structure 84 may include a plurality of receivers 86 extending laterally from the cannula 82, each of the receivers 86 having a channel 88 therealong shaped to receive one of the blades 76 therein. The dilator 72 may be inserted into the body by inserting the proximal ends 90 of the blades 76 into the channels 88 of the receivers 86 at the distal end 83 of the dilator and advancing the dilator 72 distally through the body tissue. During the advancement, the cannula 82 of the dilator may first pass through an incision in the skin, such as an incision adjacent to the cannula 74 defined by the blades 76, and then may progress distally through the body tissue to a desired location along the rod 44, such as a location adjacent to the cage 42. To ease the insertion of the dilator 72, in some embodiments of the dilation system, a pathway between the skin incision and the desired location along the rod 44 may be dilated in advance of the movement of the cannula 82 along that pathway. For example, a dilator (not shown) having a tapered distal end, such as a dilator structured similarly to the inner dilator 66 of FIG. 3B, may be inserted along the pathway in advance of the cannula 82. In one example, such a dilator may be received within the passageway 85 of the cannula 82 with the tapered distal end of the dilator projecting distally of the cannula 82 so as to gently spread the tissue apart along the pathway as the dilator 72 is inserted.

[0070] The body tissue between the skin and each of the desired locations for the connectors 48 may be dilated using one or a combination of dilation systems, such as those illustrated in FIGS. 3A-C and 4B. In order to prepare for the insertion of the connectors 48 along the pathways defined by those dilation systems, one or more tools may be used to push tissue away from the desired locations for the connectors 48. For example, an elongate tool (not shown) may be inserted along

the passageways 57, 85 defined by the dilators 54, 72, and the distal end of such tool may be used to push any tissue away from the desired locations for the connectors 48. The connectors 48 may then be inserted along the passageways 57, 85 to the desired locations along the rods 44.

[0071] In one embodiment of the present disclosure, the connectors 48 may be initially connected to a percutaneous access device before placement within the body. For example, as illustrated in FIG. 5, the percutaneous access device may be in the form of a cannula 92 defined by a two blades 94 extending proximally from opposing sides of the connector 48. In the embodiment illustrated in FIG. 5, the blades 94 may be integrally formed with the connector 48 and connected thereto by frangible portions 96 at the distal end 97 of the cannula 92, thus forming an integrated connector 98 having a proximal end 101 and a distal end 103, with the connector 48 being located at the distal end 103 of the integrated connector 98. However, in an alternative embodiment, the blades 94 may be separately formed from and detachably connectable to the connector 48, such as by distal tabs, as described in certain embodiments of the percutaneous access devices in the '798 Patent. The blades 94 may define a pass-through slot 100 extending between them. In other embodiments (not shown), the percutaneous access device may define a slot opening radially outward in only one direction along the cannula 92. In some embodiments, a separately formed ring 102 may be connected to both blades 94, preferably towards the proximal end 99 of the cannula 92, so as to stabilize the blades 94 and resist their becoming detached from the connector 48 prematurely. The ring 102 may be shaped as an annular member having channels formed therethrough for receiving the blades 94 therein. In certain embodiments, the ring 102 may be in the form of abutment member as described in the '798 Patent. The ring 102 may be connected to the blades 94 before the integrated connector 98 is inserted into the body or after the integrated connector 98 is connected to the rod 44 within the body.

[0072] The connector 48 may include a connecting member 104 and a retaining member 106. The retaining member 106 may be in the form of a separately formed ring encircling a portion of the connecting member 104. FIG. 6A is a cross-sectional view of a portion of an integrated connector 98 towards its distal end 103 with the retaining member 106 removed, the cross-section being taken along a plane

perpendicular to the slot 100. The connector 48 includes a rod receiving portion 108 for receiving a rod 44 and a cross bar receiving portion 110 for receiving a cross bar 50. The cross bar receiving portion 110 may include two proximally extending arms 112 defining a receptacle 114 therebetween shaped to receive a cross bar 50 therein in an orientation perpendicular to the longitudinal axis 116 of the integrated connector 98. The receptacle 114 may be in form of a pass through slot communicating with the slot 100 of cannula 92 at the distal end 97 of the cannula 92. The cannula 92 may include a threaded portion 118 at least along the distal end 97 thereof, and the cross bar receiving portion 110 of the connector 48 may include a threaded portion 120 along the arms 112 thereof. In other embodiments (not shown), the threaded portion 118 of the cannula 92 may not be present while the threaded portion 120 of the connector 48 is present. The arms 112 of the cross bar receiving portion 110 may each be connected to a respective one of the blades 94 at one of the frangible portions 96. The frangible portions 96 may be defined by reduced thickness portions, such as by one or both of interior grooves 122 and exterior grooves 124. The interior and exterior grooves 122, 124 may be substantially aligned with one another along the longitudinal axis of the integrated connector 98, as shown in FIG. 6A, to define the reduced thickness portion of the frangible portion 96.

[0073] FIG. 6B is a cross-sectional view of a portion of an integrated connector 98 towards its distal end 103 with the retaining member 106 removed, the cross-section being taken along a plane parallel to the slot 100 and perpendicular to the view of FIG. 6A. The view of FIG. 6B focuses on the rod receiving portion 108 of the connector 48. The rod receiving portion 108 may include two distally extending arms 126 defining a receptacle 128 therebetween shaped to receive a rod 44 therein in an orientation perpendicular to the longitudinal axis 116 of the integrated connector 98 and generally perpendicular to the orientation of the cross bar 50 when the cross bar 50 is received within the cross bar receiving portion 110 of the connector 48. The receptacle 128 may be in form of a pass through slot open to the distal end 103 of the integrated connector 98. The rod receiving portion 108 may be structured to snap onto the rod 44 by deforming when the rod 44 is inserted into the receptacle 128. For example, the arms 126 may deflect away from one another during such insertion. One or more slots 130 extending further into the rod receiving

portion 108 from the receptacle 128 may be provided to facilitate such deflection of the arms 126. The opening 132 into the receptacle 128 at the distal end 103 of the integrated connector 98 may also have a chamfer 134 to ease insertion of the rod 44 into the receptacle 128 and initiate the deflection of the arms 126 during such insertion.

[0074] The retaining member 106 desirably provides stiffness to the connecting member 104, such as by restraining the arms 126 from deflecting too easily. In that manner, the retaining member 106 desirably helps to secure the connector 48 to the rod 44 by restraining the rod 44 from becoming dislodged from the receptacle 128 when not desired. The retaining member 106, when engaged with and encircling the connecting member 104, may engage the connecting member 104 along engagement surfaces 136. As shown in FIG. 7B, the retaining member 106 may take the form of a generally annular ring encircling the connecting member 104. The retaining member 106 may include proximally-extending, arcuate deviations 138 on opposing sides of the retaining member 106 and aligned with the receptacle 128, so as to not interfere with a rod 44 placed into and extending laterally through the receptacle 128.

[0075] A connector inserter 140, as illustrated in FIGS. 7A-B, may be engaged with an integrated connector 98 in order to assist with the insertion of the integrated connector 98 along the passageways 57, 85 of the dilators 54, 72 and to the desired locations along the rods 44. The connector inserter 140 may have a proximal end 142 and a distal end 144 with an elongate shaft 146 extending therebetween, the shaft 146 being configured to be received within the cannula 92 of the integrated connector 98. The proximal end 142 of the connector inserter 140 may include a handle 148, and the distal end 144 of the connector inserter 140 may include a threaded portion 150 for engagement with the threaded portion 120 of the connector 48, as shown in FIG. 7B. The connector inserter 140 may thus be engaged with the integrated connector 98 by advancing the connector inserter 140 distally within the cannula 92 and rotating the threaded portion 150 of the connector inserter 140 into engagement with the threaded portion 120 of the connector 48. The integrated connector 98 may then be inserted into the body by grasping the handle 148 of the connector inserter 140 and using the connector inserter 140 to manipulate the integrated connector 98 down along the one of the passageways 57, 85 of the

dilators 54, 72 until the rod receiving portion 108 of the connector 48 snaps into engagement with the rod 44. The connector inserter 140 may then be removed by rotating the threaded portion 150 of the connector inserter 140 out of engagement with the threaded portion 120 of the connector 48 and withdrawing the connector inserter 140 proximally. After any of the integrated connectors 98 are engaged with the rods 44, the associated dilators 54, 72 may be removed. In some embodiments of the present disclosure, a ring 102 (see FIG. 5) may be connected to the blades 94 of an integrated connector 98 after the dilator 54, 72 has been removed, and, in other embodiments, a ring 102 may be connected to the blades 94 before the integrated connector 98 is inserted into the body through the dilator 54, 72.

[0076] FIG. 8 illustrates two integrated connectors 98 connected to respective rods 44a,b adjacent respective cages 42a,b of respective connecting elements 30a,b. The cannulas 92 of the integrated connectors 98 thus desirably provide percutaneous pathways through body tissue from the connectors 48 to respective incisions in the skin. Although not illustrated in FIG. 8, the connecting element 30a would be implanted in a pedicle on one side of the longitudinal axis of the spine, and the connecting element 30b would be implanted in a pedicle on the other side of the longitudinal axis of the spine, such that the rods 44a and 44b extend generally parallel to the longitudinal axis of the spine with the spinous processes of the spine extending between the rods 44a and 44b. One of the cages 42a in FIG. 8 is illustrated as having two blades 76 of a cannula 74 of a percutaneous access device connected thereto. The slots 100 of the integrated connectors 98 may be generally aligned with one another and may extend generally perpendicular to the rods 44a,b.

[0077] In some embodiments, as shown in FIG. 9, a linkage 152 may be connected to the proximal ends 101 of the integrated connectors 98 after the integrated connectors 98 are connected to the respective rods 44a,b. The linkage 152 may include a rail 154 having a movable link 156 slidably connected thereto and having a fixed link 158 rigidly connected to one end. The movable link 156 may have a locked and an unlocked configuration, such that the movable link 156 freely slides along the rail 154 to vary the distance between the two links 156, 158 in the unlocked configuration, and such that the movable link 156 resists movement along the rail 154 in the locked configuration. The rail 154 may include graduations 160 along its length, which graduations 160 may be marked with measurements. Each

link 156, 158 may be connected to the proximal end 101 of an integrated connector 98, as shown in FIG. 9, to stabilize the integrated connectors 98. The graduations 160 may also help to determine the distance between the connectors 98, which may assist with the determination of an appropriate length for a cross bar 50 to be inserted between the connectors 48.

[0078] Before inserting a cross bar 50 between the connectors 48, a pathway between the connectors 48 may first be created. For example, one or more elongate tools (not shown) may be passed down through the cannulas 92 of one or more of the integrated connectors 98 and through the slots 100 so as to separate or cut away tissue between the connectors 48. In some methods, the spinous processes between the generally parallel rods 44a and 44b may interfere with the desired placement of a cross bar 50. In such cases, a portion of the interfering bone may be removed.

[0079] One exemplary tool for performing such bone removal, in accordance with an embodiment of the present disclosure, includes a right-angle drill 162 as shown in FIG. 10. The right-angle drill 162 may have a proximal end 166 and a distal end 168 and an elongated extender 164 extending therebetween. The distal end 168 of the right angle drill 162 may be structured to sit stably within a receptacle 114 of a cross bar receiving portion 110 of a connector 48. A drill bit 172 may be connected to a drill bit attachment mechanism 170 located at the distal end 168 of the right-angle drill 162. The drill bit attachment mechanism 170 may be connected to the extender 164 by a right-angle bend 169, such that the drill bit 172 extends in a generally perpendicular direction to the extender 164. The drill bit attachment mechanism 170 may be structured for detachable connection to the drill bit 172. For example, as shown in FIG. 10A, the drill bit 172 may include a connection end 171 structured for removable insertion into a receiver opening (not shown) in the drill bit attachment mechanism 170. After the connection end 171 is positioned within the receiver opening, a locking lever 173 may be pivoted downwardly, as shown in FIG. 10B, to secure the drill bit 172 within the drill bit attachment mechanism 170. The extender 164 of the right-angle drill 162 may be structured as a hollow shaft, so that a drive shaft (not shown) may be rotatably received within the extender 164 for driving the rotation of the drill bit 172. The drive shaft may be operably coupled to the drill bit 172 via a mechanism (not shown) for transmitting the rotary motion of

the drive shaft through the right-angle bend 169, such as a universal joint, a bevel gear, a worm gear, or any other suitable mechanism. The extender 164 may include one or more holes 175 along its length, which holes 175 may communicate with the interior of the extender 164 for cleaning or other purposes. The proximal end 166 of the extender 164 may be connected to a drive handle 174 for actuating the rotation of the drill bit 172. The drive handle 174 may be detachably connected to a connector (not shown) at the proximal end 166 of the extender 164, which connector is operably coupled to the drive shaft. In some embodiments, other types of drive handles (e.g., drive handle 174' illustrated in FIG. 10) may be interchangeably connected to the connector at the proximal end 166 of the extender 164. The right-angle drill 162 may be structured such that rotation of the drive handle 174 causes rotation of the drill bit 172 (e.g., in a 1:1 ratio, although other ratios may be used). In other embodiments (not shown), the right-angle drill 162 may incorporate a motor for electrical power driven rotation of the drill bit 172. The right-angle drill 162 may include a support handle 176 located along the extender 164 between the proximal end 166 and the distal end 168. The support handle 176 may extend in a generally perpendicular orientation from the extender 164.

[0080] In use, an appropriate drill bit 172 may first be connected to the drill bit attachment mechanism 170. For example, based on the approximate distance between the connectors 48 indicated by the graduations 160 of the linkage 152, a drill bit 172 having an appropriate length may be connected to the drill bit attachment mechanism 170. The right-angle drill 162 may then be inserted along a cannula 92 of one of the integrated connectors 98, and the drill bit 172 may extend through a slot 100 of the integrated connector 98 towards a location on a spinous process where the surgeon desires an opening to be formed. The right-angle drill 162 may be positioned such that, at least initially, the distal end 168 rests in the receptacle 114 of the cross bar receiving portion 110 of a connector 48. The drive handle 174 may then be rotated in order to rotate the drill bit 172 and form an opening through the spinous process. Fluoroscopy may be used to help navigate the drill bit 172 within the body, and the perpendicularly extending support handle 176 may be used both to support the right-angle drill 162 and to act as a directional vector, as the support handle 176 may desirably extend generally parallel to the drill bit 172. After

one or more openings are formed through one or more spinous processes with the right-angle drill 162, the right-angle drill 162 may be removed from the body.

[0081] Before a cross bar 50 is inserted into the body and connected between two connectors 48, the cross bar 50 may first be bent and/or cut as needed so that the cross bar 50 is appropriately sized and shaped to extend between the connectors 48. The cross bar 50 may be attached to a cross bar inserter 178, as shown in FIGS. 11A-B, before insertion into the body. The cross bar inserter 178 may be an elongate tool having a handle 184 at a proximal end 180 and a connection structure 186 at the distal end 182 for detachably connecting to a cross bar 50. The proximal end 180 of the cross bar inserter 178 may also include an actuator 188 configured to operate the connection structure 186 so as to selectively secure and release the cross bar 50 to the connection structure 186. Once the cross bar 50 is attached to the cross bar inserter 178, the handle 184 of the cross bar inserter 178 may be grasped and used to manipulate the cross bar 50 down along the cannula 92 of one of the integrated connectors 98, through the slot 100, and across through body tissue (including through an opening in the spinous process, if applicable), as illustrated in FIG. 11B, until the cross bar 50 extends between the integrated connectors 98 in a position proximate the connectors 48 attached to each parallel rod 44a,b.

[0082] Once the cross bar 50 is positioned proximate the connectors 48, the cross bar 50 may be moved into a final position extending between and simultaneously received by the receptacles 114 of the cross bar receiving portions 110 of each of the connectors 48. The cross bar 50 may be moved into that final position using the cross bar inserter 178. In another alternative, the cross bar 50 may be moved into the final position using either or a combination of a persuader 190 and a blocker inserter 192, as shown in FIGS. 12A-B. The persuader 190 may have a generally tubular member 191 having a distal end 194 and a proximal end 196. The tubular member 191 may be sized to fit over an integrated connector 98 such that the integrated connector 98 is received inside the tubular member 191, as shown in FIGS. 12A-B. A handle 198 may be connected to the tubular member 191 towards its proximal end 196. The blocker inserter 192 may be an elongate tool having a handle 204 at its proximal end 206 and a blocker interface 200 at its distal end 202. The blocker interface 200 may be shaped to engage a correspondingly

shaped interface 208 (such as a hexagonally shaped recess) on a blocker 52. The blocker 52 may be an externally threaded component, similar to the set screws 45 of the connecting elements 30 implanted in the pedicles, and the threads 210 of the blocker 52 may be structured to engage the threaded portion 118 towards the distal end 97 of the cannula 92 and the threaded portion 120 of the cross bar receiving portion 110 of the connector 48.

[0083] In one embodiment, the handle 198 of a persuader 190 may be grasped and manipulated so that the tubular member 191 is fit over the proximal end 101 of an integrated connector 98 and advanced distally towards the transversely oriented cross bar 50. The distal end 194 of the tubular member 191 may contact the cross bar 50 and push it distally towards and into the final position within the receptacle 114 of the connector 48.

[0084] In another embodiment, a blocker inserter 192 may have a blocker 52 placed onto the blocker interface 200 at its distal end 202, after which the blocker inserter 192 may be advanced distally between the blades 94 of the integrated connector 98. When the blocker 52 reaches the threaded portion 118 of the cannula 92, the blocker inserter 192 may be rotated to advance the blocker 52 along the threaded portion 118. Further advancement of the blocker 52 may cause the threads 210 of the blocker 52 to engage and advance along the threaded portion 120 of the connector 48. The blocker 52 may be advanced in this manner until the cross bar 50 is securely captured within the receptacle 114. Desirably, at some point during the distal advancement of the blocker 52, such as during the advancement along the threaded portion 118 or along the threaded portion 120, the blocker 52 may contact the cross bar 50 and push the cross bar 50 distally towards and into the final position within the receptacle 114.

[0085] In another embodiment of the present disclosure, both the persuader 190 and the blocker inserter 192 may be used, as shown in FIGS. 12A-B. For example, the persuader 190 may be used to push the cross bar 50 distally, as described above, until the cross bar 50 is at least within the threaded portion 118 of the cannula 92. After that, the blocker inserter 192 connected to the blocker 52 may be advanced, as described above, to push the cross bar 50 the remaining distance towards and into the final position within the receptacle 114.

[0086] In some embodiments, the blocker inserter 192 may be constructed as a torque wrench, such that the torque applied by the blocker interface 200 is limited to a pre-selected amount. In other embodiments, the blocker inserter 192 may not be so constructed, and a separate torque-limiting blocker inserter (not shown) may be provided. In either case, the final tightening of the blocker 52 into the connector 48 so as to secure the cross bar 50 therein may be performed with a torque limiting tool. Such a tool may be set to limit the tightening torque to, for example, 8 Nm (newton-meters).

[0087] The cross bar 50 may be released from the cross bar inserter 178, and the cross bar inserter 178 may be removed from the body, at any point after the cross bar 50 is in a desired position within the body. For example, the cross bar inserter 178 may be removed before the cross bar 50 is moved into the final position using either or both of the persuader 190 and the blocker inserter 192. Alternatively, the cross bar inserter 178 may remain attached to the cross bar 50 during the final positioning with the persuader 190 and the blocker inserter 192, preferably in a location out of the way of those tools.

[0088] After the various blockers 52 have been finally tightened to secure one or more cross bars 50 within the connectors 48, any insertion tools that remain positioned within the body (including the cross bar inserter 178, persuader 190, and blocker inserter 192) may be removed from the body. The cannula 92 may then be removed from the connector 48. For example, the blades 94 of the cannula may be separately disconnected from the connector 48 and removed from the body. In an embodiment utilizing an integrated connector 98, the blades 94 may be disconnected from the connector 48 by breaking each of the blades 94 away from the connector 48 at the frangible portions 96.

[0089] One method for breaking the blades 94 of the integrated connector 98 away from the connector 48 is illustrated in FIG. 13. Such a method may include separately engaging each blade 94 with a blade remover 212. The blade remover 212 may be an elongate tool having a proximal end 214 and a distal end 216. The blade remover 212 may include a handle 218 at the proximal end 214 and may have a channel 220 formed therein open to the distal end 216. The channel 220 may be constructed to receive a blade 94 of an integrated connector 98 therein. The blade remover 212 may also include a spring clip 222 in communication with the channel

220 such that the spring clip 222 may securely engage a blade 94 when the blade 94 is positioned within the channel 220, preferably in order to retain the blade 94 within the blade remover 212 after the blade 94 has been detached from the connector 48. The blade remover 212 may also include a release mechanism (not shown) movably engaged within the channel 220 so as to eject the blade 94 from the channel 220 after the detached blade 94 has been removed from the body. In one embodiment, the release mechanism may include a slider received within a longitudinal track along the channel 220, such that distal movement of the slider will push the blade 94 out of the channel 220 at the distal end 216 of the blade remover 212.

[0090] In use, the blade remover 212 is engaged to a blade 94 by sliding the blade remover 212 distally over the blade 94 until the blade is received within the channel 220. Using the handle 218, a user may pivot the blade remover 212, and thus the blade 94 received therein, about the frangible portion 96 until the frangible portion 96 fractures, thus disconnecting the blade 94 from the connector 48. The blade remover 212 may then be removed from the body, and desirably the spring clip 222 may retain the blade 94 within the blade remover 212 until the blade remover 212 is removed from the body. After the blade remover 212 is removed from the body, the detached blade 94 may be ejected from the channel 220 by actuating the release mechanism. The blade remover 212 may then be used again by repeating the above steps to remove other blades 94 from the connectors 48.

[0091] Although, in the connectors 48 described herein, the rod receiving portion 108 is illustrated as being integrally formed with the cross bar receiving portion 110, in other embodiments of the connectors in accordance with the present disclosure, the rod receiving portion may be separately formed from the cross bar receiving portion, and both such parts may be coupled together to form the connector. In one such an embodiment, the rod receiving portion and the cross bar receiving portion may be polyaxially coupled together.

[0092] Although the connectors 48 described herein are structured for direct engagement with the rods 44, other embodiments of the connectors in accordance with the present disclosure may be otherwise engageable with portions of the spinal fusion construct. For example, the connector may be structured to straddle the cage 42 of a connecting element 30 while the connector is connected to the rod 44 on

each side of the cage 42. In another example, the connector may not be engaged with the rod 44 at all, and may instead, for example, be structured to be directly affixed to the cage 42 of a connecting element 30.

[0093] The various components described herein are preferably constructed of materials safe for use in the body. In one embodiment, many of the components, including the components of the integrated connector 98, may be constructed from a titanium alloy.

[0094] Although the disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

CLAIMS:

1. A system for securing a cross bar to a spinal fusion construct, comprising:
 - a connector having a proximal end and a distal end and a longitudinal axis extending between the proximal and distal ends of the connector, the connector having a rod receiving portion and a cross bar receiving portion, the rod receiving portion being adapted to receive a spinal fusion rod of a spinal fusion construct therein in an orientation generally perpendicular to the longitudinal axis of the connector, and the cross bar receiving portion having a receptacle adapted to receive a cross bar therein in an orientation generally perpendicular to both the longitudinal axis of the connector and to the spinal fusion rod when the spinal fusion rod is received within the rod receiving portion;
 - a cannula having a proximal end and a distal end; and
 - a drill having an elongated extender, the extender having a proximal end and a distal end and being adapted to be received within the cannula while the distal end of the cannula is connected to the proximal end of the connector and while the spinal fusion rod of the spinal fusion construct is received within the rod receiving portion of the connector, such that a portion of the drill at the distal end of the extender is received within the connector, the distal end of the extender being connected to a drill bit such that the drill bit extends generally perpendicularly to the extender so as to be structured to drill a hole through a spinous process located laterally of the connector.
2. The system of claim 1, wherein the cross bar receiving portion includes a first arm and a second arm defining the receptacle therebetween.
3. The system of claim 2, wherein the first and second arms include threads facing inwardly towards one another along at least a portion of the receptacle, the receptacle being adapted to receive a threaded blocker therein in engagement with the threads.
4. The system of any one of claims 1 to 3, wherein the rod receiving portion of the connector includes a first arm and a second arm defining a slot therebetween, the slot being adapted to receive the spinal fusion rod therethrough.

5. The system of claim 4, wherein the first and second arms are adapted to deflect relative to one another upon the spinal fusion rod being inserted into the slot.
6. The system of any one of claims 1 to 5, wherein the cross bar receiving portion is located towards the proximal end of the connector relative to the rod receiving portion.
7. The system of any one of claims 1 to 6, wherein the cannula is defined by a plurality of blades, each of the blades having a distal end detachably connected to the cross bar receiving portion of the connector.
8. The system of claim 7, wherein each of the blades are integrally formed with the cross bar receiving portion of the connector, the distal ends of each of the blades being detachably connected to the cross bar receiving portion at a frangible portion.
9. The system of any one of claims 1 to 8, wherein the cannula includes threads on an inner surface thereof along at least a portion of the cannula proximate its distal end, the threads being adapted to engage a threaded blocker.
10. The system of any one of claims 1 to 9, further comprising:
a dilator adapted to define a pathway between the incision in the skin and the spinal fusion rod of the spinal fusion construct implanted in the spine, the pathway being adapted to receive the connector and the cannula therethrough.
11. The system of any one of claims 1 to 10, further comprising a connector inserter having a shaft extending between a proximal end and a distal end, the distal end being adapted to engage the cross bar receiving portion of the connector while the shaft is received within the cannula.
12. The system of any one of claims 1 to 11, wherein:
the connector comprises a plurality of connectors; and
the cannula comprises a plurality of cannulas;
further comprising a linkage adapted to simultaneously connect to the proximal end of each cannula while the spinal fusion rod is received within the rod

receiving portions and the spinal fusion construct is implanted in the spine of the body.

13. The system of any one of claims 1 to 12, wherein the portion of the drill at the distal end of the extender is structured to be received within the receptacle of the cross bar receiving portion.

14. The system of any one of claims 1 to 13, further comprising a cross bar inserter having a proximal end and a distal end, the distal end having a connection structure being operable to selectively secure and release the cross bar thereto.

15. The system of any one of claims 1 to 14, further comprising a persuader including a tubular member adapted to receive the cannula therein.

16. The system of any one of claims 1 to 15, wherein the cannula is defined by a plurality of blades, each of the blades being integrally formed with the cross bar receiving portion of the connector, and each of the blades having a distal end being detachably connected to the cross bar receiving portion of the connector at a frangible portion; further comprising a blade remover having a channel adapted to receive one of the blades therein.

17. The system of any one of claims 1 to 16, wherein the drill bit is detachably connected to the distal end of the extender.

18. The system of any one of claims 1 to 17, wherein the extender of the drill includes one or more holes along its length.

19. The system of any one of claims 1 to 18, wherein the extender includes a drive shaft rotatably received within it.

20. The system of claim 19, further comprising a means for transmitting rotary motion of the drive shaft from the drive shaft to the drill bit through a right-angle bend.

21. The system of any one of claims 1 to 20, wherein the drill further includes a handle along the extender between its proximal and distal ends, the handle extending laterally from the extender.

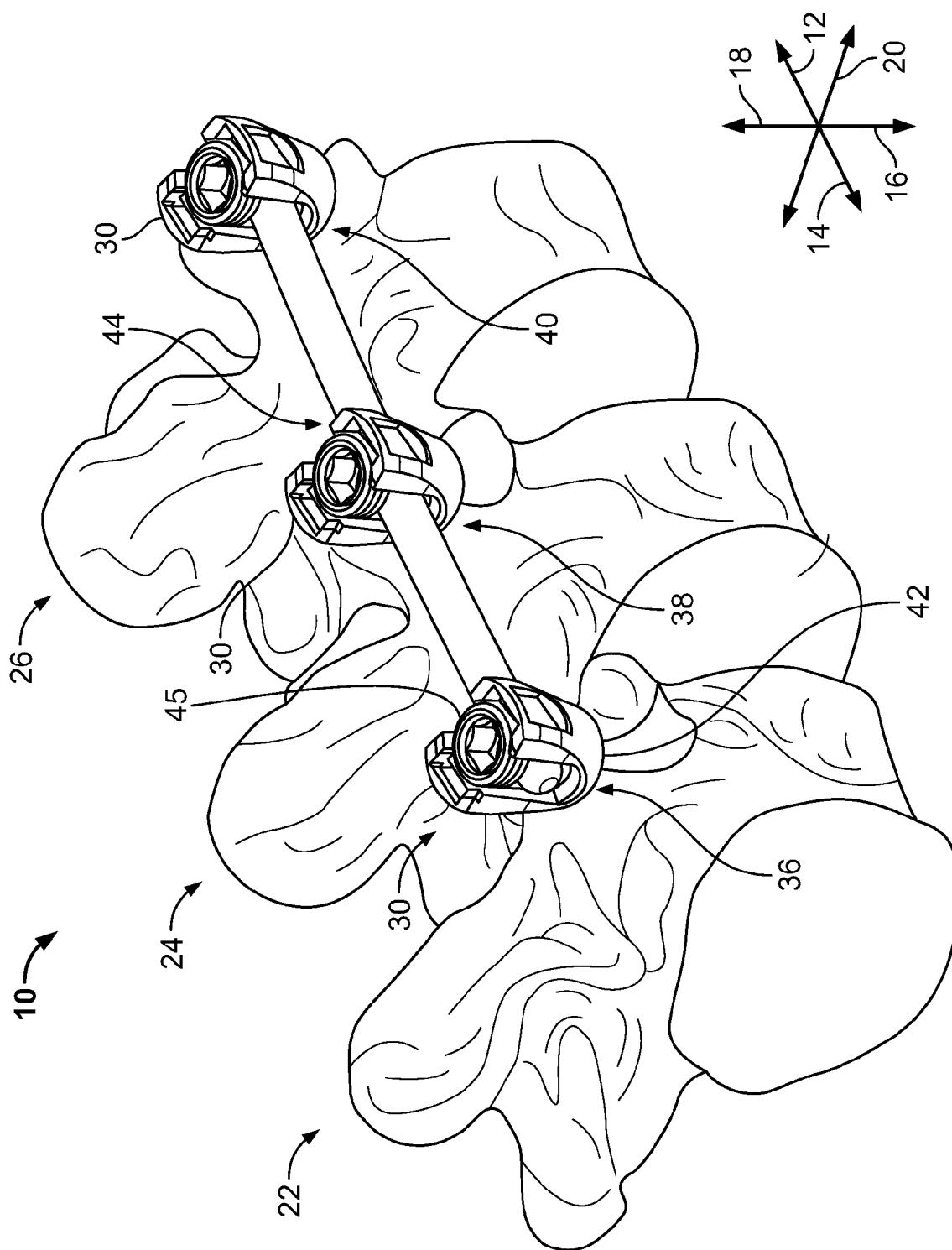


FIG. 1

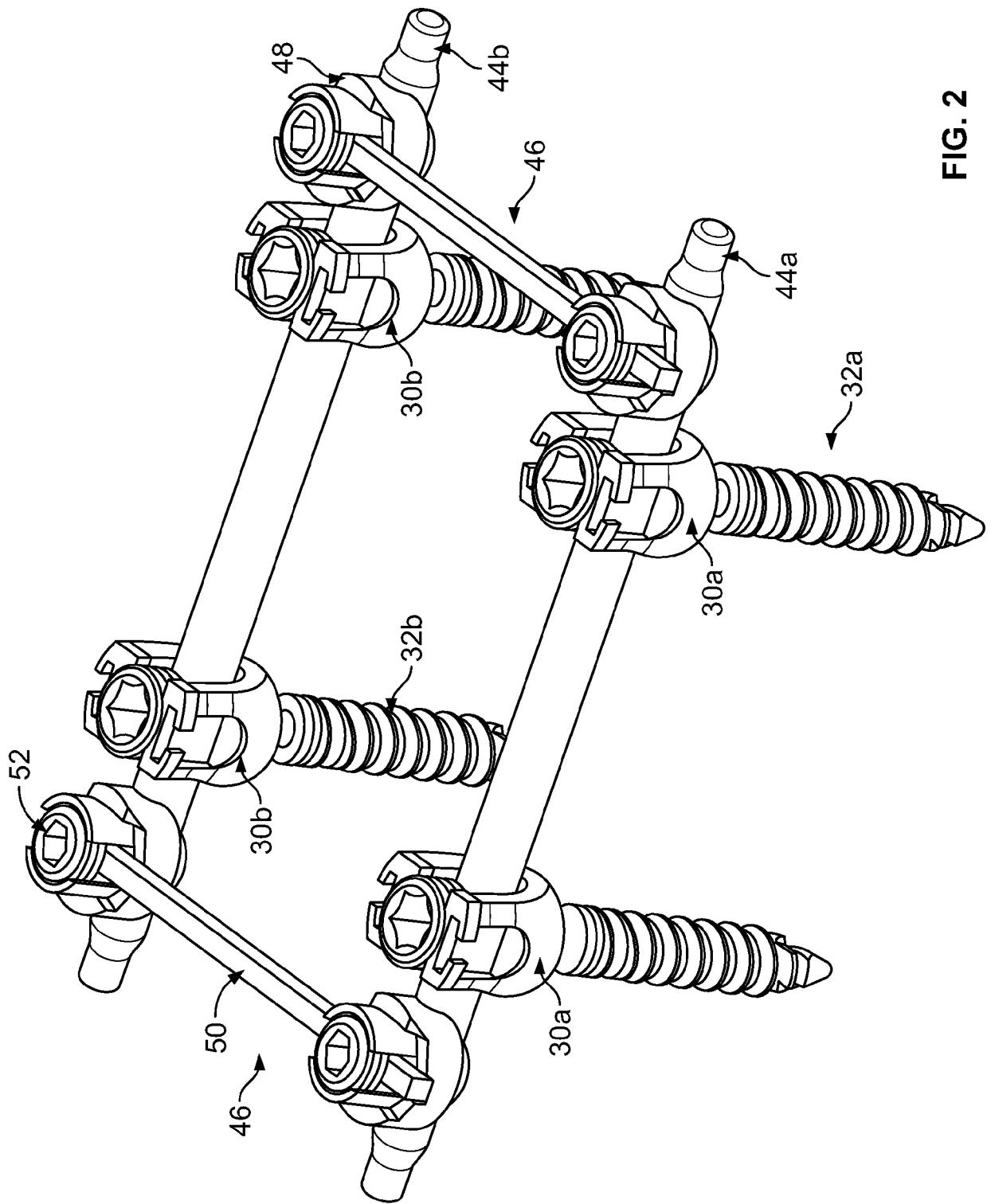


FIG. 2

3/13

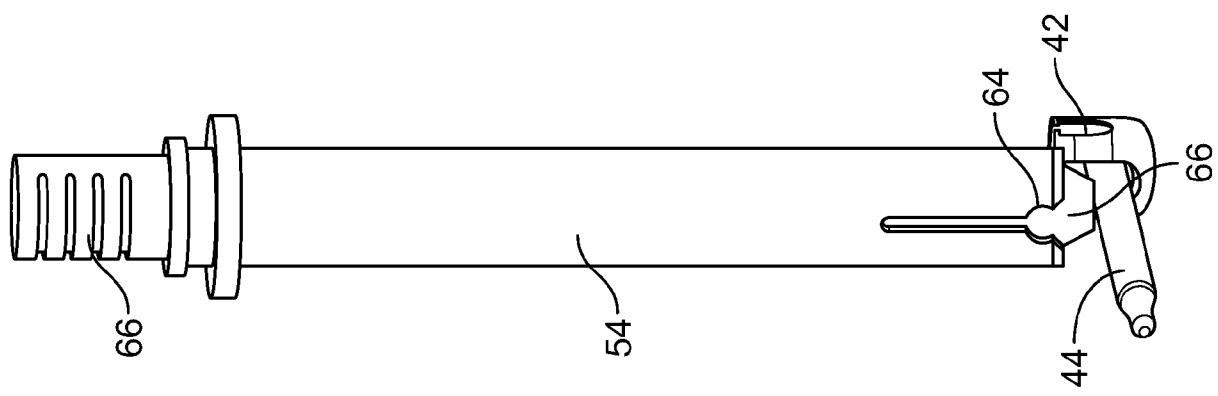


FIG. 3C

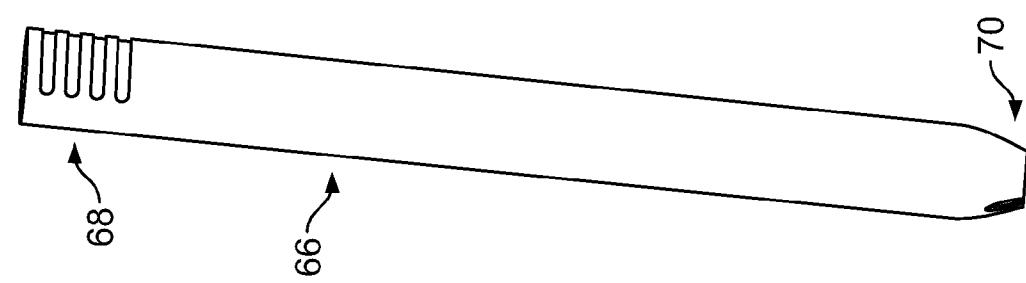


FIG. 3B

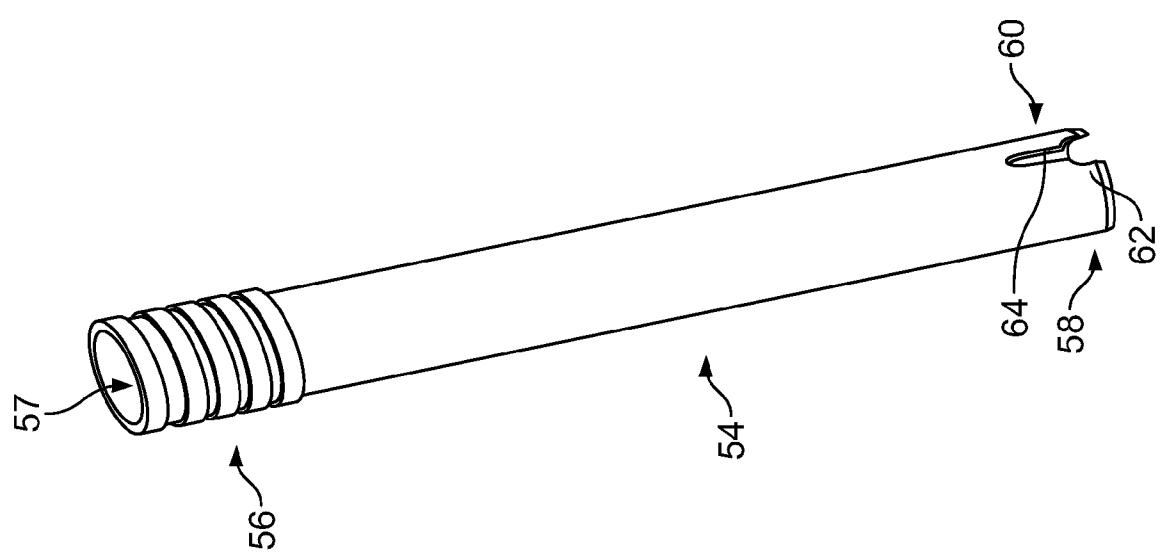
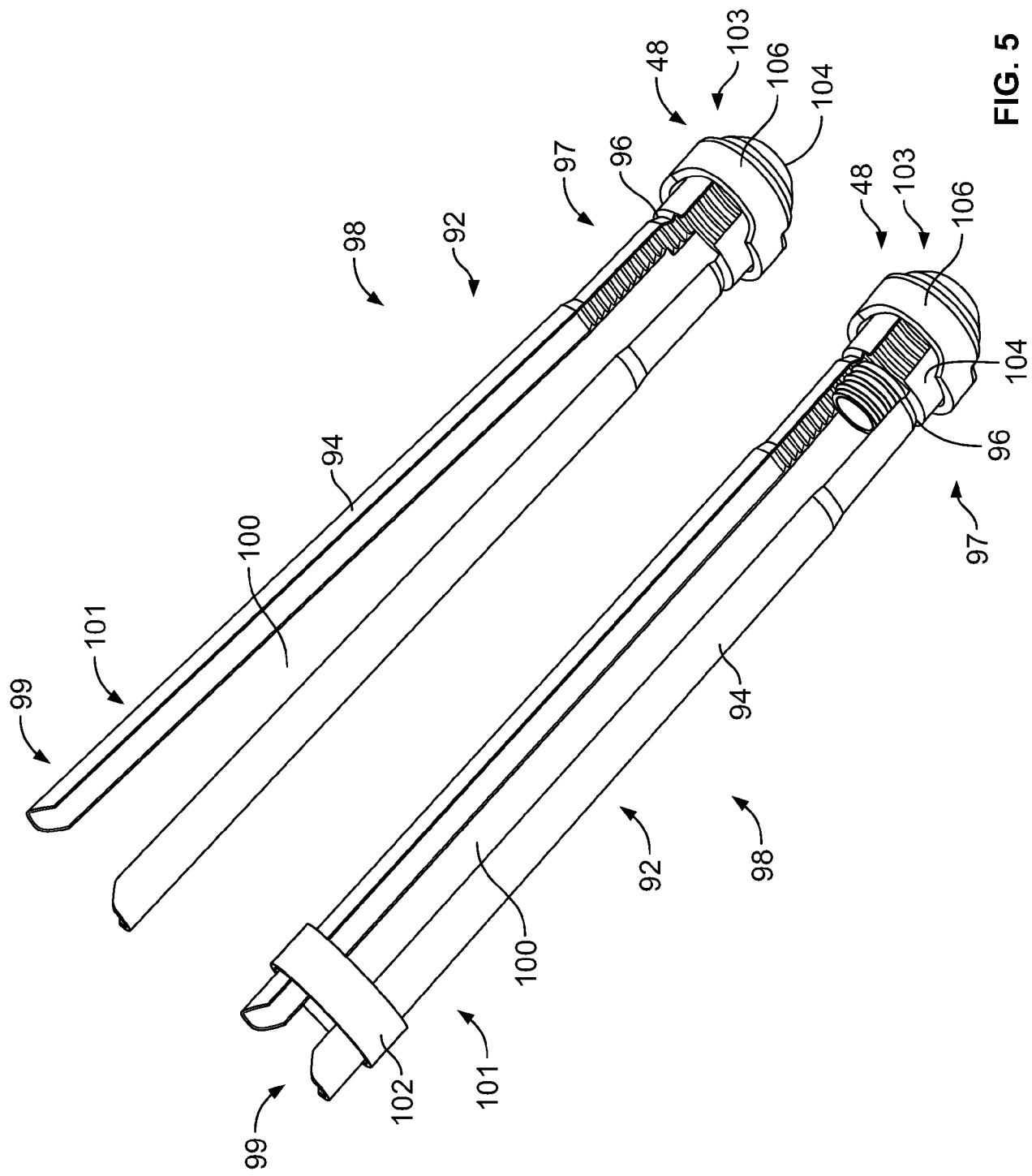



FIG. 3A

4/13

5/13

6/13

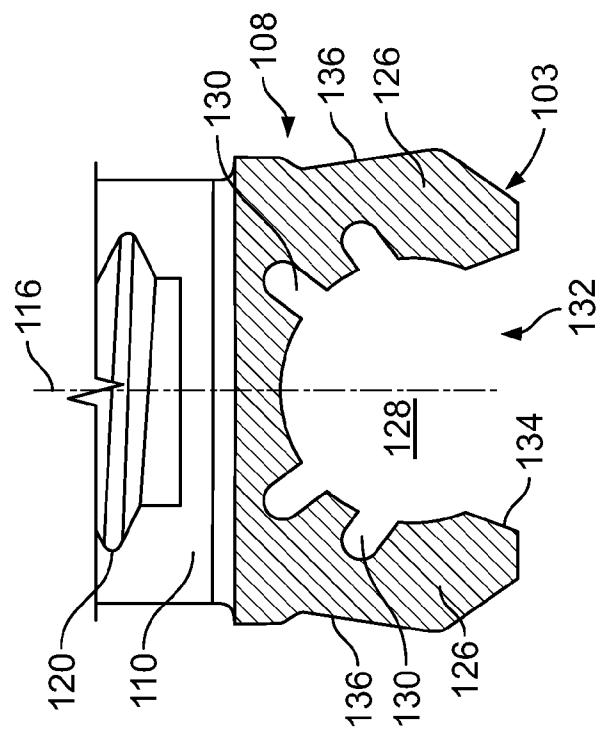


FIG. 6B

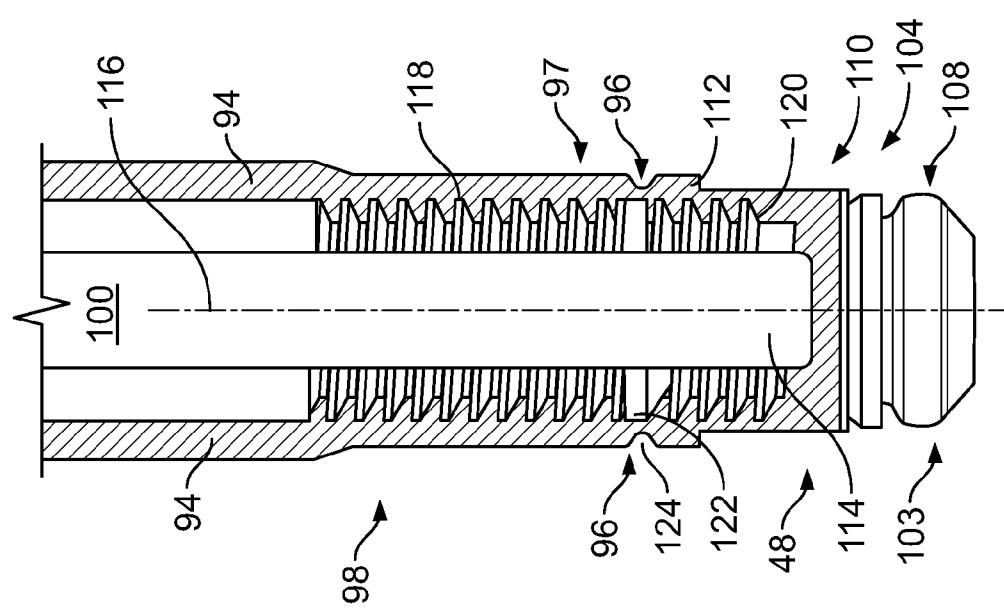


FIG. 6A

7/13

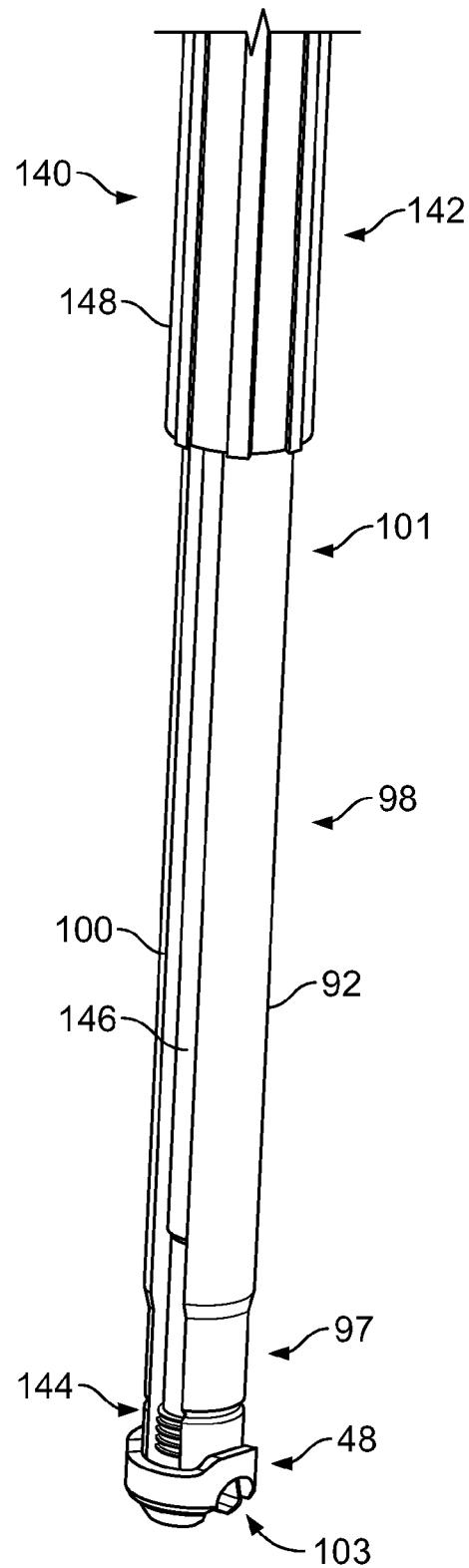


FIG. 7A

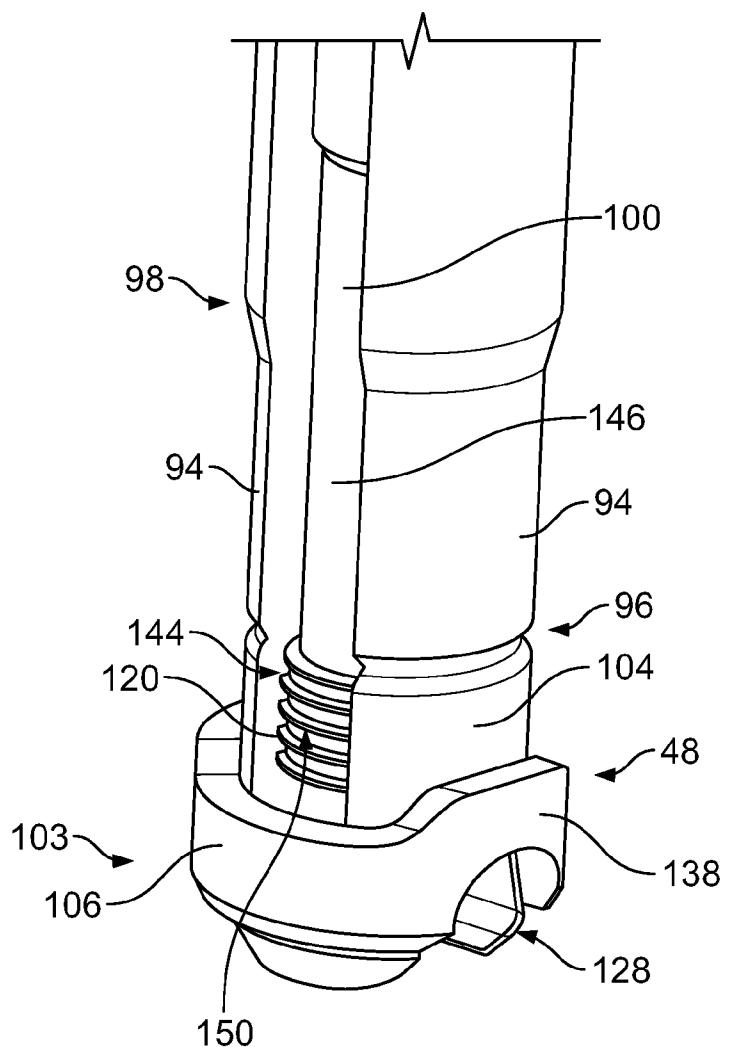


FIG. 7B

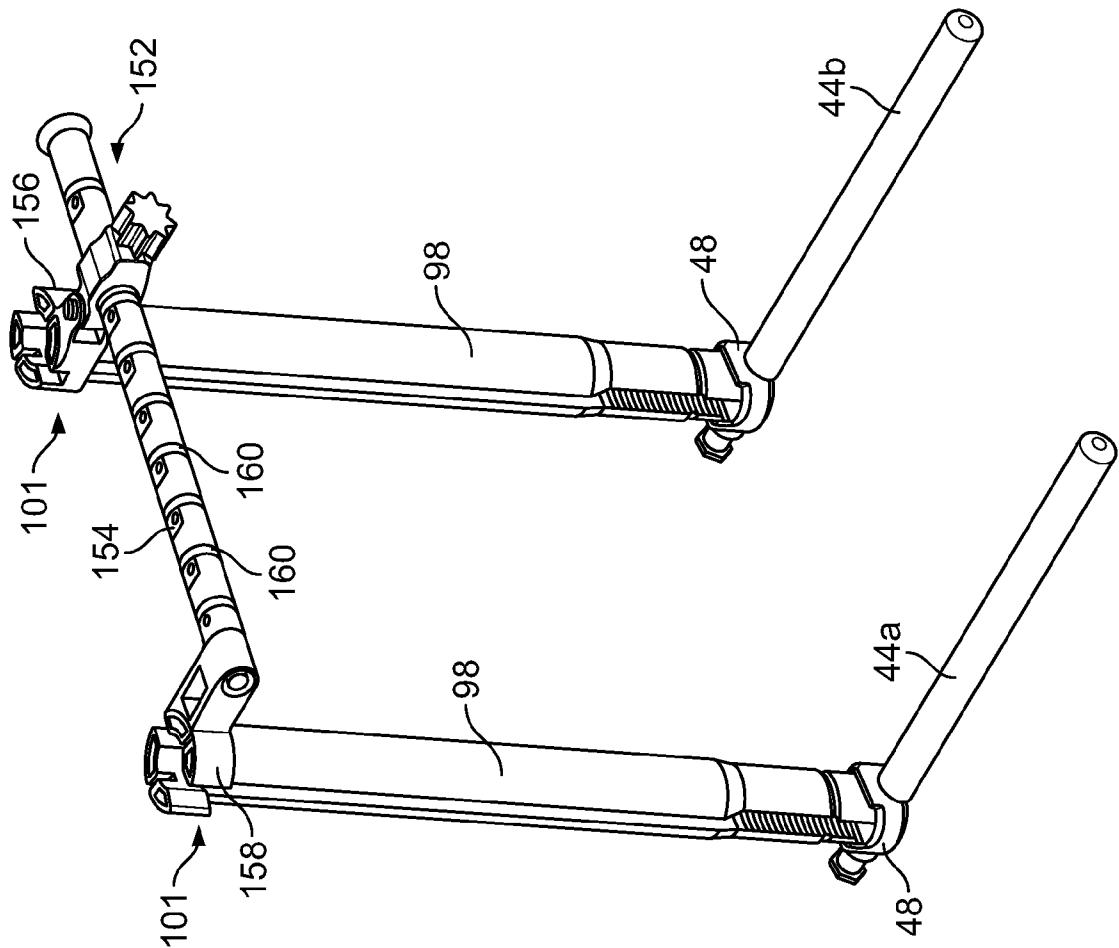


FIG. 8

9/13

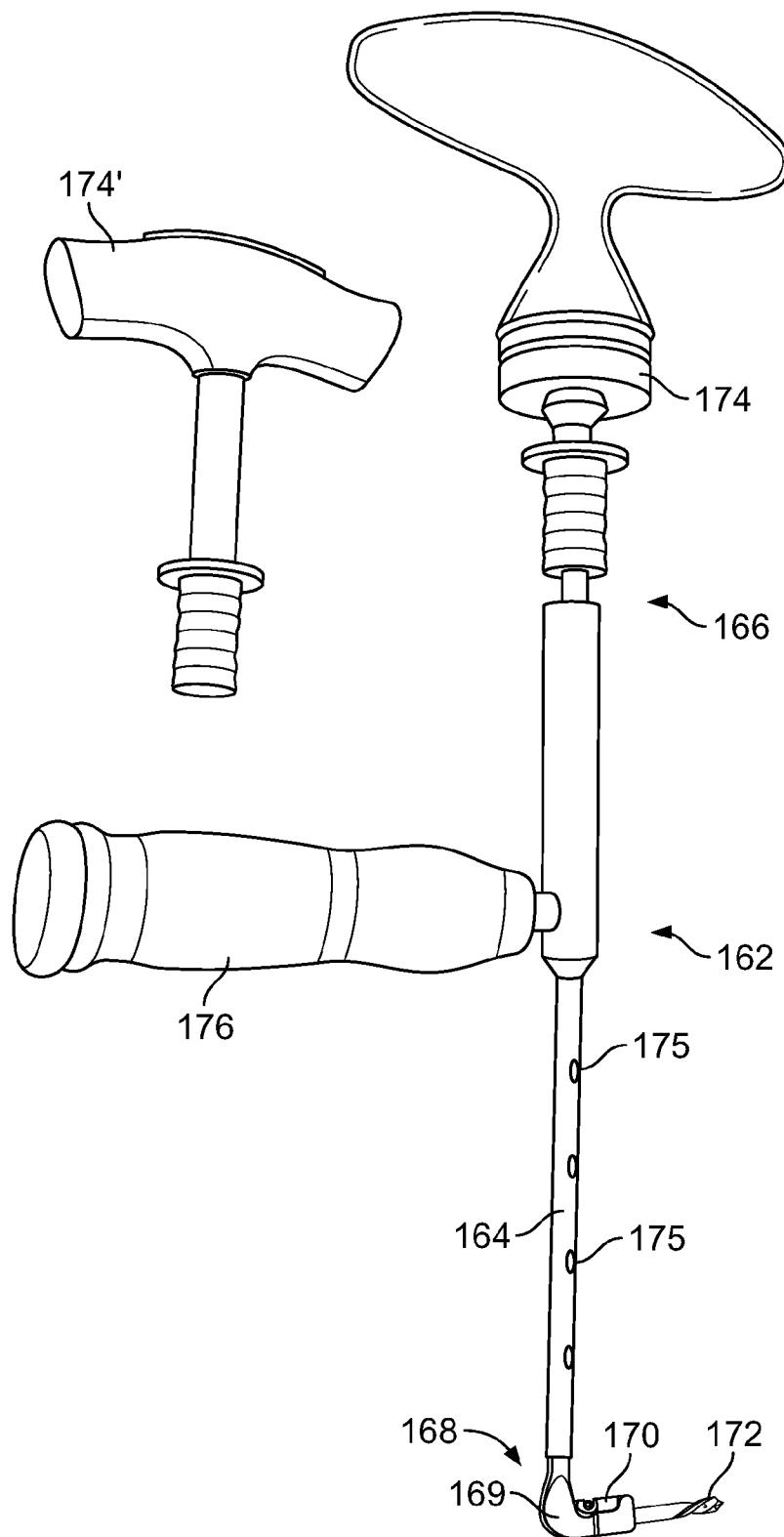


FIG. 10

10/13

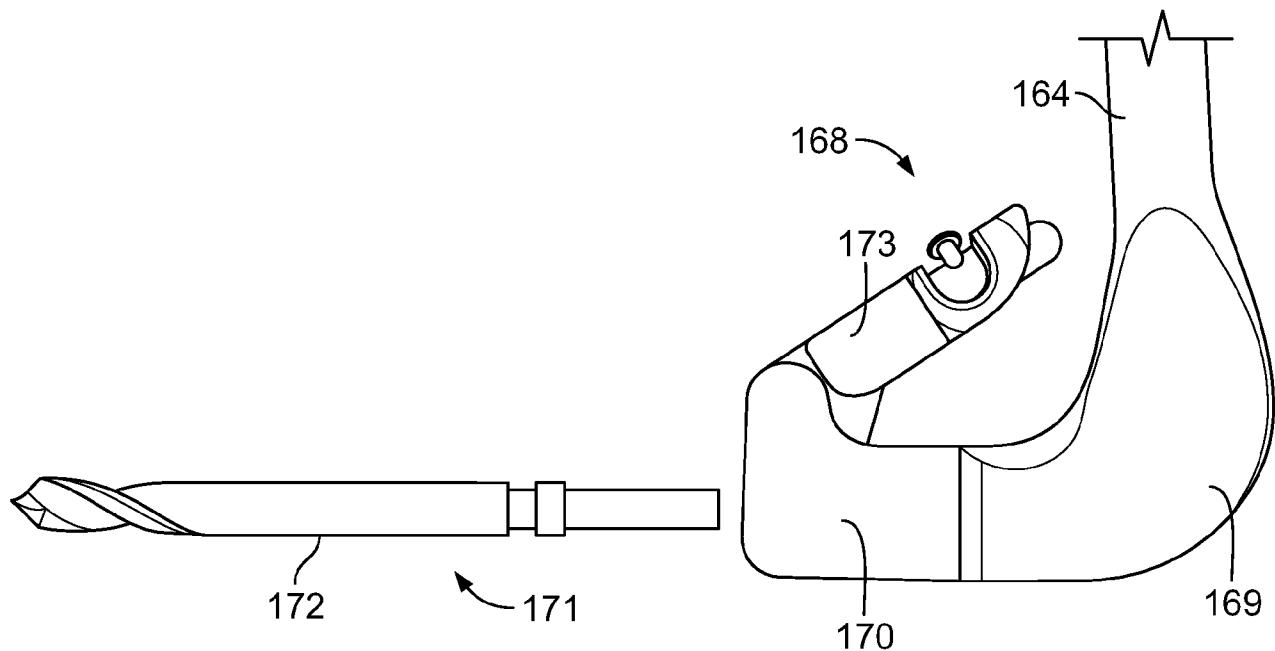


FIG. 10A

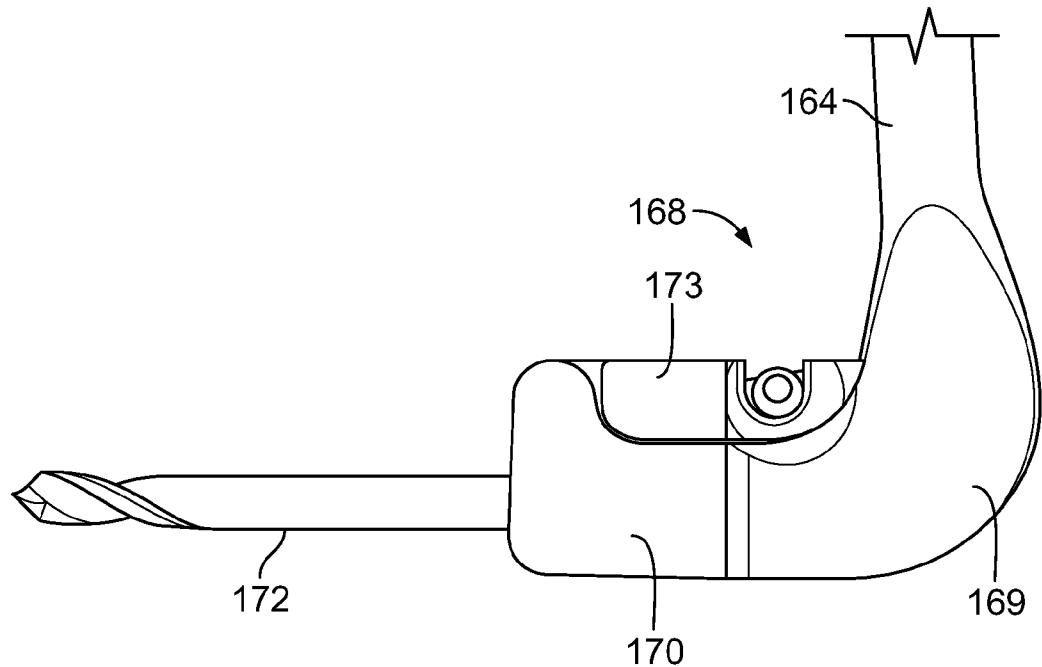


FIG. 10B

11/13

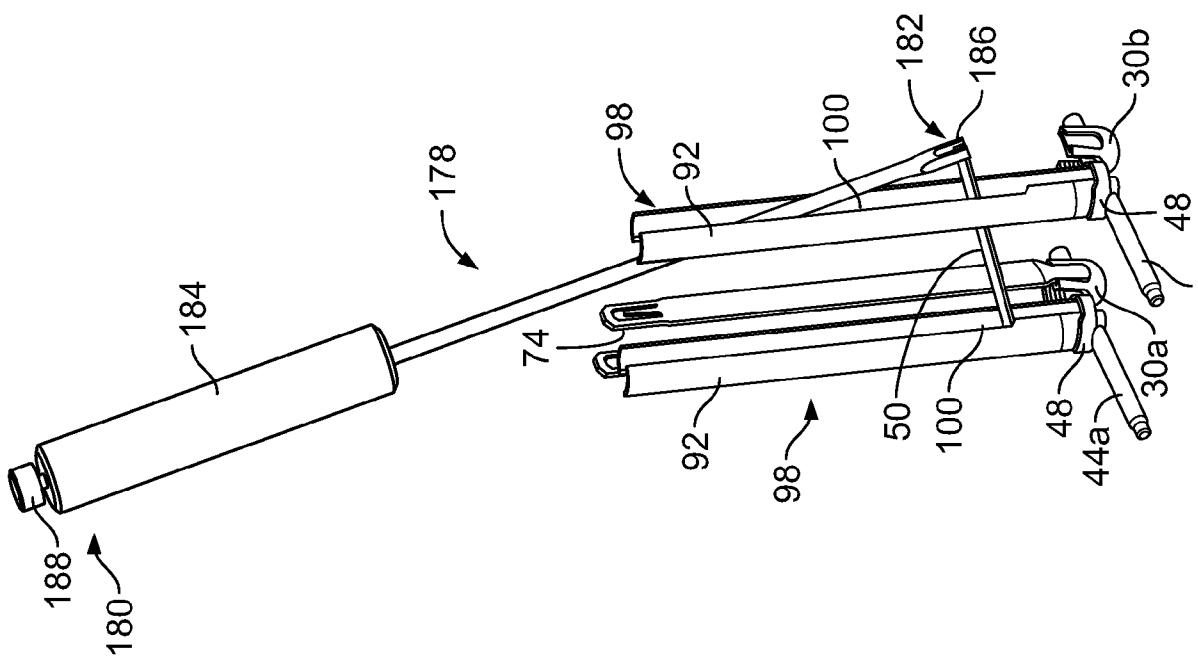


FIG. 11B

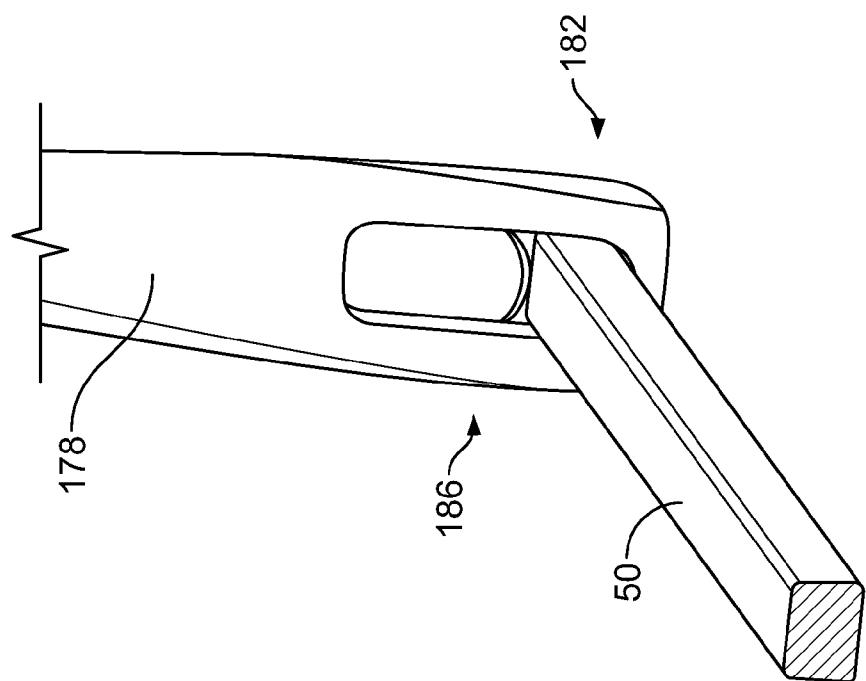
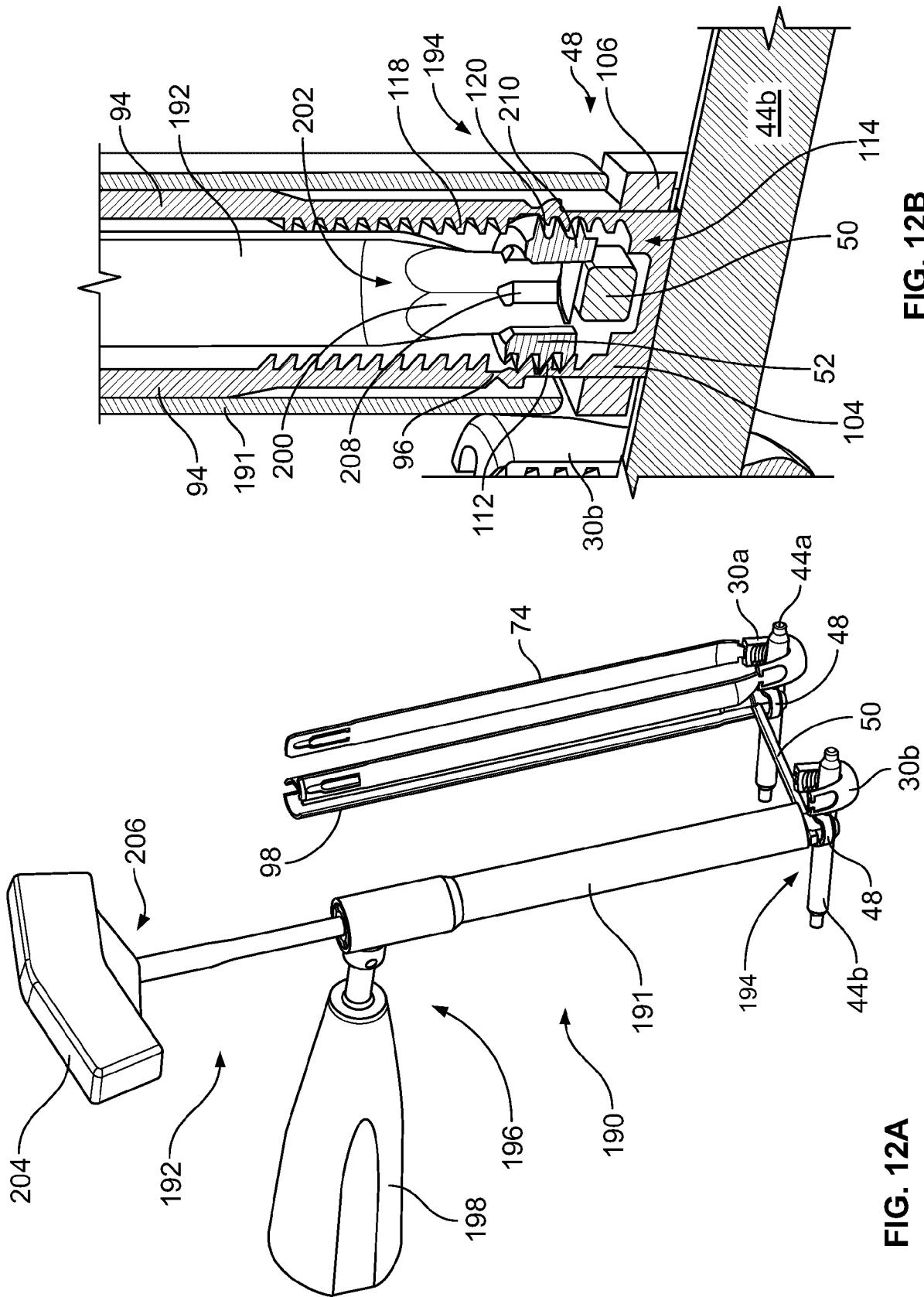



FIG. 11A

12/13

13/13

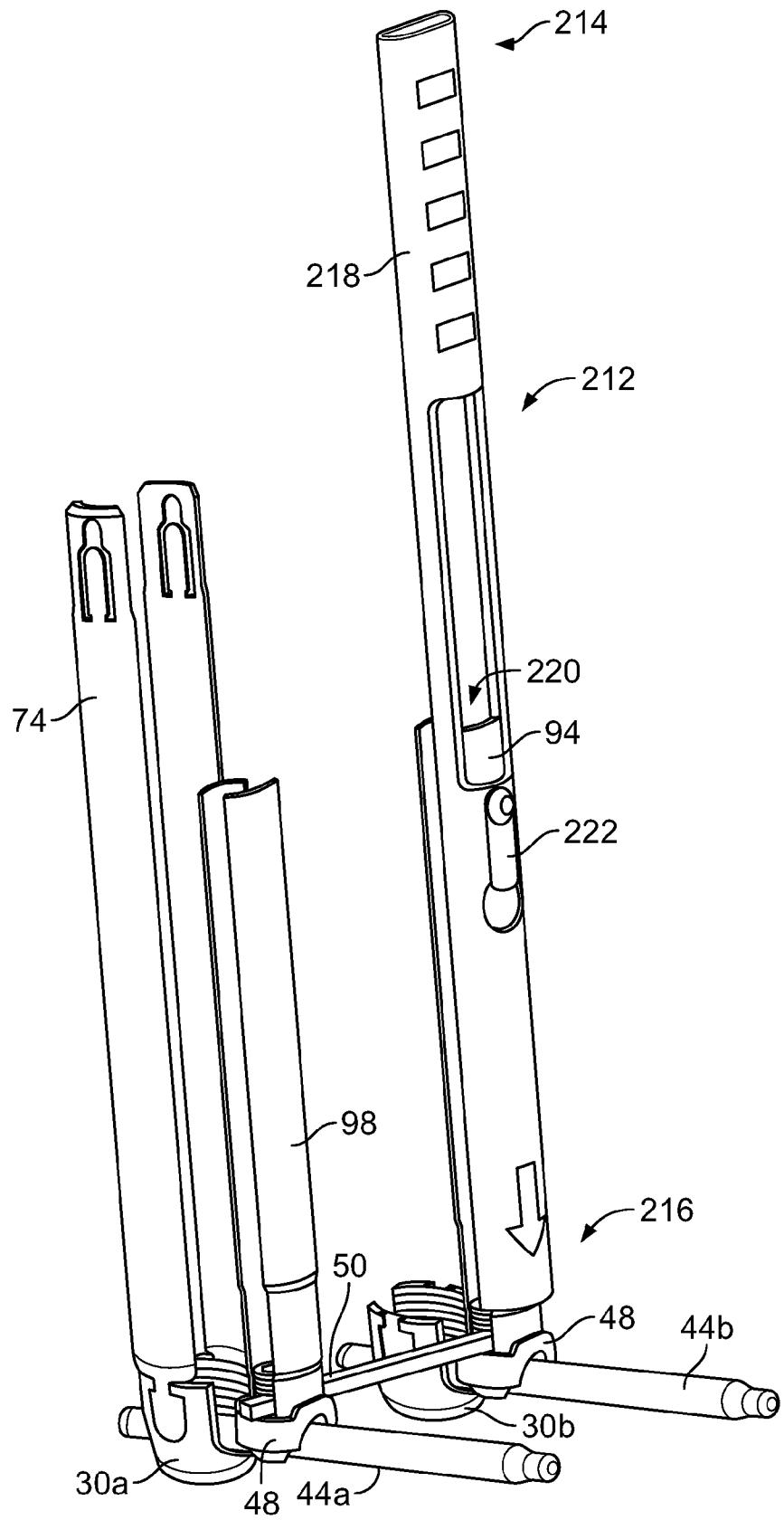


FIG. 13