
USOO768.5591 B2

(12) United States Patent (10) Patent No.: US 7,685,591 B2
Barr et al. (45) Date of Patent: Mar. 23, 2010

(54) CUSTOMIZING ASOFTWARE APPLICATION 6,931,625 B1* 8/2005 Coad et al. 717/109
THROUGH A PATCH FLE 6,934,933 B2 8/2005 Wilkinson et al.

6.957,256 B1 10/2005 Bradley et al.
(75) Inventors: Paul C. Barr, Redmond, WA (US); 6,968,539 B1 1 1/2005 Huang et al.

Aidan T. Hughes, Bellevue, W. S. 6,993,657 B1 1/2006 Renner et al.
John P. Jennings, Everett, WA (US); s s s 7,000,230 B1 2, 2006 M tal.
Shane A Morrison, Seattle, WA (US) www. urray et a

7,007,278 B2 2/2006 Gungabeesoon
(73) Assignee: Microsoft Corporation, Redmond, WA 7,043,715 B1 5/2006 Bauer et al.

(US) 7,055,146 B1* 5/2006 Durr et al. 717/162
7,073,126 B1 7/2006 Khandekar

(*) Notice: Subject to any disclaimer, the term of this 7,073,172 B2 * 7/2006 Chamberlain 717/169
patent is extended or adjusted under 35 7,100,159 B2 8/2006 Claiborne
U.S.C. 154(b) by 802 days. 7,127,712 B1 * 10/2006 Noble et al. 717/173

(21) Appl. No.: 11/020,025 7,149,789 B2 12/2006 Slivka et al.
7,174,370 B1 2/2007 Saini et al.

(22) Filed: Dec. 20, 2004

(65) Prior Publication Data
Continued

US 2006/O136895A1 Jun. 22, 2006 ()
OTHER PUBLICATIONS

(51) Int. Cl. -- --
G06F 9/44 (2006.01) Bainbridge, et al., Assembling and Enriching Digital Library Col
G06F 9/445 (2006.01) lections”, IEEE Computer Society, May 2003, pp. 323-334.

(52) U.S. Cl. 717/169; 717/173; 717/175; (Continued)
717/178; 709/221

(58) Field of Classification Search 717/105-109, Primary Examiner WeiY Zhen
717/168–178, 100, 107, 112, 163; 709/203, Assistant Examiner Ryan D Coyer

709/220 223 (74) Attorney, Agent, or Firm Lee & Hayes, PLLC
See application file for complete search history.

(57) ABSTRACT
(56) References Cited

U.S. PATENT DOCUMENTS An integrated application setup enables the implementation
5.325,533 A * 6/1994 McInerney et al. 717/107 of application customizations through patch technology. A
5,680,619 A * 10/1997 Gudmundson et al. 717/108 customization patch extends a typical patch file format Such
5,956,481 A * 9/1999 Walsh et al. T26/23 that the customization patch serves as a container for appli
6,073,214 A ck 6, 2000 Fawcett cation customization data useful for customizing an applica
2. . f ck 12. SR tal - - - - - - - - - - - - - - - - - - - 6. tion using different underlying technologies. The contents of

6.2 66s 11 B1 T/2001 N.st al. the customization patch can include transforms, cabinet files,
6,48773 B 11/2002 (SNet al 717/105 and XML content containing customization information.
6,601.233 B1* 7/2003 Underwood 717/102
6,854,061 B2 2/2005 Cooper et al. 14 Claims, 4 Drawing Sheets

500 Ya

Receive patch file having extended patch file format, including transforms),
cabinetfile(s), and customization XML

-Patch file corfigured as OLE structured storage

Read transform file from patch file

502

504

a 508
With application installer, managing the execution of custom code contained
within the transform to implement customizations that are non-native to the

application installer

508

Initiate a customization process (e.g., setup routine, custom action

so

Recognize customization XML inpatch file

512

ParseXML contentlooking for additional customization instructions

a 514
Execute instructions in the customizationXML with the customization process to
implement customizations that are native or non-native to the application installe

that change andlorset custom application features

US 7,685,591 B2
Page 2

U.S. PATENT DOCUMENTS 2005/0257208 A1* 11/2005 Blumfield et al. 717,168
2005/0273461 A1 12/2005 Jameson

7, 191436 B1* 3/2007 Durr et al. 717/170 2006, OO31407 A1 2/2006 Dispensa et al.
7,210,097 B1 4/2007 Clarke et al. 2007/0055707 A1 3, 2007 Dandekar et al.
7.559,058 B2 * 7/2009 Blumfield et al. 717/172 2007/0174834 A1 7/2007 Purkeypile et al.

2002/O124245 A1 9, 2002 Maddux et al. 2008, 0021778 A1 1/2008 Perkowski et al.
2003, OOO9429 A1 1/2003 Jameson
2003/0033597 A1* 2/2003 Allsop et al. 717/169 OTHER PUBLICATIONS
2003/0145317 A1* 7/2003 Chamberlain 717/177 & 8

2003/0167463 A1* 9, 2003 Munsil et al. 717,170 Shegalov, et al., XML-enabled workflow management for eiser
2003/0225866 A1* 12/2003 Hudson TO9,221 st bring atoms , Springer-Verlag New-York,
2004/01996 15 A1 10/2004 Philyaw Weber, et al., “Live Documents with Contextual, Data-Driven Infor
2004/0225671 A1 11/2004 Carroll et al. mation Components'. ACM, Oct. 2002, pp. 236-247.
2005/O132179 A1 6, 2005 Glaum et al.
2005/O193389 A1 9/2005 Murphy et al. * cited by examiner

U.S. Patent Mar. 23, 2010

Operating 12
System

Programs
Program 130

13 Program
Data

Sheet 1 of 4 US 7,685,591 B2

Application
Programs

Network
Adapter

System Bus

S.
Processing

Unit

140

I/O interfaces

nut pers - UN II. As - o oo
Printer Mouse Keyboard

146 136 134

Other Device(s)

Operating
System 126

Application
Programs 128

Other Program
Modules 130

Program

U.S. Patent Mar. 23, 2010 Sheet 2 of 4

COMPUTER
102

MEMORY 206

OPERATING SYSTEM
202

APPLICATION
INSTALLER

2O6

APPLICATIONS
204

COMPUTER
102

APPLICATION
INSTALLATION
PACKAGE
(MSI)
208

PROCESSOR(S)
200

CUSTOMIZATION
PROCESS 212

SETUP ROUTINE
214

CUSTOM ACTION
FROM MS

216

APPLICATION
INSTALLER

CUSTOMIZATION
PROCESS

US 7,685,591 B2

CUSTOMIZATION
PATCH
(MSP)
210

APPLICATION
INSTALLATION
PACKAGE
(MSI)
208

CABINET
FILE(s)
302

U.S. Patent Mar. 23, 2010 Sheet 3 of 4 US 7,685,591 B2

400 Ya
402

Receive patch file having extended patch file format, including transform(s),
cabinet file(s), and customization XML

- Patch file configured as OLE structured storage

404

Read transform file from patch file

4O6

With application installer, apply transform in conjunction with corresponding
Cabinet file to application installation package to implement native customizations
within transform for changing and/or setting custom application features using

Customization data from corresponding cabinet file

408

Initiate a Customization process (e.g., setup routine, custom action)

410

Recognize customization XML in patch file

412

Parse XML content looking for additional customization instructions

414

Execute instructions in the customization XML with the customization process to
implement Customizations that are native or non-native to the application installer

that change and/or set Custom application features

U.S. Patent Mar. 23, 2010 Sheet 4 of 4 US 7,685,591 B2

500 Ya
502

Receive patch file having extended patch file format, including transform(s),
cabinet file(s), and customization XML

- Patch file configured as OLE structured storage

504

Read transform file from patch file

506

With application installer, managing the execution of Custom code contained
within the transform to implement customizations that are non-native to the

application installer

Initiate a customization process (e.g., setup routine, custom action)

508

510

512

514

Recognize customization XML in patch file

Parse XML content looking for additional customization instructions

Execute instructions in the customization XML with the customization process to
implement customizations that are native or non-native to the application installer

that change and/or set custom application features

US 7,685,591 B2
1.

CUSTOMIZING ASOFTWARE APPLICATION
THROUGH A PATCH FILE

TECHNICAL FIELD

The present disclosure generally relates to customizing
applications, and more particularly, to customizing applica
tions through patch files.

BACKGROUND

Prior to installation on a computer, most applications are
customized to better suit the needs of the user. Customizing
an application is to set or change features of the application
based, for example, on a users individual desires or based on
customization needs determined by an administrator for a
given user environment having many users. Customizing
applications provides a consistent experience for users and
reduces problems users have interacting with the Software.
Accordingly, software applications are generally deployed in
a very specific manner. As an example, applications that an
individual can purchase, download, and install from a Web
site are typically customized by the vendor to include particu
lar settings, preferences, defaults, etc., that are most likely to
be useful to a typical end-user. In a different scenario, admin
istrators responsible for deploying applications to client com
puters across large organizations typically pre-configure cus
tomizations in a manner to best Suit various targeted groups of
users. For example, for a particular application, an adminis
trator may implement customization settings for users in an
accounting department that are different than the customiza
tion settings implemented for users in an engineering depart
ment.

Current methods for implementing application customiza
tions have various disadvantages. For example, one exem
plary method for customizing an application requires a set of
tools to implement the customizations. The customization
tools are not included with the application itself, but instead
must be accessed separately by a user or administrator before
any customizations can be made. In addition, the customiza
tion tools work separately from one another, and their appli
cability depends upon whether or not the application has
already been installed.

In a pre-installation scenario (i.e., at application deploy
ment time), for example, a customization installation tool is
used to read information from an application installation
package and present customization options to a user or
administrator. The customization installation tool generates a
transform based on input from a user that indicates the user's
customization intent. The transform can be applied exclu
sively, and only one time, to the application installation pack
age. Applying the transform to the installation package results
in the Software application being installed on a computer with
the customizations specified during the pre-installation cus
tomization session. However, once the application is
installed, the customization installation tool cannot be used
again to update, alter, or fix customizations should the need
arise due to an inadvertent customization mistake or customi
Zation requirements that may change overtime. Furthermore,
in a scenario where an administrator needs to create different
deployment versions or custom installations for an applica
tion across a variety of user groups (e.g., secretaries, engi
neers, accountants, etc.), the customization installation tool
needs to be run separately and in its entirety for each different
deployment version.

In a post-installation scenario (i.e., at application mainte
nance time), once an application has been installed, any

10

15

25

30

35

40

45

50

55

60

65

2
changes that need to be made to customizations require the
use of a second, post-installation customization tool. For
example, if an administrator forgets to turn off a particular
setting in an application during a pre-installation customiza
tion session, he would have to start a new customization
process over again, using a different post-installation cus
tomization tool. In a post-installation customization session,
the post-installation customization tool generates a mainte
nance file that is loaded onto the computer to make changes to
the application customizations according to the user's intent
as entered during the post-installation customization session.
Unlike the transform noted above in the pre-installation cus
tomization, the maintenance file can be used multiple times
per product to make changes to the application customiza
tions. However, each time a need arises to make additional
changes to the customizations, an administrator must begin
from Scratch, using the post-installation customization tool to
make appropriate customization alterations. Furthermore, in
a scenario where an administrator needs to make varying
customization changes to different deployment versions
across a variety of user groups (e.g., secretaries, engineers,
accountants, etc.), the post-installation customization tool
needs to be run separately and in its entirety for each different
deployment version.

Thus, a significant disadvantage with current customiza
tion methods is that numerous custom installations or
changes to numerous custom installations require that the
pre- and post-installation customization tools be run sepa
rately and in their entirety for each different custom installa
tion or change made to a custom installation. Another disad
Vantage is that a user's customization intentistied exclusively
to a particular manner of implementation. Any adjustment to
that customization intent requires that the particular method
of implementation be exercised again in its entirety. Yet
another disadvantage is the disjointed manner in which cus
tomizations are made. That is, the use of pre- and post-instal
lation customization tools requires that a user or administra
tor become familiar with two different tools in order to
implement customizations on an application. Other disadvan
tages with current customization methods are that they are not
integrated with the standard setup procedures of the applica
tions and the customization tool(s) themselves must be
accessed separately from the application media.

Accordingly, a need exists for an integrated application
setup that enables application customizations to be managed
in both pre- and post-installation scenarios and in scenarios
where different application deployment versions require
varying application customizations.

SUMMARY

A system and methods provide an integrated application
setup that enables the implementation of application customi
Zations through a patch. A customization patch extends a
typical patch file format and serves as a container for addi
tional application customization data. The contents of the
customization patch can include transforms, cabinet files, and
XML content containing customization information.
An application installer on a client computer, for example,

recognizes and executes the patch transforms in conjunction
with the patch cabinet files against a targeted application
installation package in order to implement customizations
contained within the transforms. A separate customization
process executing on the client computer (e.g., code execut
ing from a setup routine, a custom action from the application
installation package, etc.) is configured to recognize the addi

US 7,685,591 B2
3

tional customization XML content within the patch and to
implement the customization directives contained in the
XML content.

Customizations contained in the customization patch can
be native to the application installation and thus be managed
by the application installer. In addition, custom code con
tained within a patch transform or the customization XML
can provide customizations that are not native to the applica
tion installation. Accordingly, the application installer man
ages the execution of the custom code which itself imple
ments the non-native customization.

BRIEF DESCRIPTION OF THE DRAWINGS

The same reference numerals are used throughout the
drawings to reference like components and features.

FIG. 1 illustrates an exemplary computing environment
Suitable for implementing application customizations
through patches.

FIG. 2 illustrates an exemplary embodiment of a computer
configured for implementing application customizations
through patches.

FIG. 3 illustrates additional details regarding components
of a customization patch and functional aspects related to the
customization patch.

FIG. 4 is a flow diagram illustrating exemplary methods for
implementing application customizations through patches.

FIG. 5 is a flow diagram illustrating additional exemplary
methods for implementing application customizations
through patches.

DETAILED DESCRIPTION

Introduction

The following discussion is directed to a system and meth
ods that enable application customizations to be made
through patches. A patch file format, typically used for updat
ing product/application binaries, is extended to create a cus
tomization patch that includes customization information
represented in a collection of underlying technologies which
enable the customizations. Such technologies include, for
example, custom actions built into an application installation
package and customization XML contained in the customi
Zation patch.

Advantages of the described system and methods include,
for example, the ability to use established patch deployment
technologies which avoids the need for an alternative cus
tomization deployment process. Another advantage includes
an integrated application setup that enables application cus
tomizations to be managed at both deployment time and
maintenance time.

Exemplary Computing Environment
FIG. 1 illustrates an exemplary computing environment

Suitable for implementing application customizations
through patches. Although one specific configuration is
shown in FIG. 1. Such computing devices may be imple
mented in other computing configurations.
The computing environment 100 includes a general-pur

pose computing system in the form of a computer 102. The
components of computer 102 may include, but are not limited
to, one or more processors or processing units 104, a system
memory 106, and a system bus 108 that couples various
system components including the processor 104 to the system
memory 106.
The system bus 108 represents one or more of any of

several types of bus structures, including a memory bus or

5

10

15

25

30

35

40

45

50

55

60

65

4
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus
architectures. An example of a system bus 108 would be a
Peripheral Component Interconnects (PCI) bus, also known
as a Mezzanine bus.
Computer 102 includes a variety of computer-readable

media. Such media can be any available media that is acces
sible by computer 102 and includes both volatile and non
volatile media, removable and non-removable media. The
system memory 106 includes computer readable media in the
form of Volatile memory, such as random access memory
(RAM) 110, and/or non-volatile memory, such as read only
memory (ROM) 112. A basic input/output system (BIOS)
114, containing the basic routines that help to transfer infor
mation between elements within computer 102, such as dur
ing start-up, is stored in ROM 112. RAM 110 contains data
and/or program modules that are immediately accessible to
and/or presently operated on by the processing unit 104.
Computer 102 may also include other removable/non-re

movable, Volatile/non-volatile computer storage media. By
way of example, FIG. 1 illustrates a hard disk drive 116 for
reading from and writing to a non-removable, non-volatile
magnetic media (not shown), a magnetic disk drive 118 for
reading from and writing to a removable, non-volatile mag
netic disk 120 (e.g., a “floppy disk’), and an optical disk drive
122 for reading from and/or writing to a removable, non
volatile optical disk 124 such as a CD-ROM, DVD-ROM, or
other optical media. The hard disk drive 116, magnetic disk
drive 118, and optical disk drive 122 are each connected to the
system bus 108 by one or more data media interfaces 125.
Alternatively, the hard disk drive 116, magnetic disk drive
118, and optical disk drive 122 may be connected to the
system bus 108 by a SCSI interface (not shown).
The disk drives and their associated computer-readable

media provide non-volatile storage of computer readable
instructions, data structures, program modules, and other data
for computer 102. Although the example illustrates a hard
disk 116, a removable magnetic disk 120, and a removable
optical disk 124, it is to be appreciated that other types of
computer readable media which can store data that is acces
sible by a computer. Such as magnetic cassettes or other
magnetic storage devices, flash memory cards, CD-ROM,
digital versatile disks (DVD) or other optical storage, random
access memories (RAM), read only memories (ROM), elec
trically erasable programmable read-only memory (EE
PROM), and the like, can also be utilized to implement the
exemplary computing system and environment.
Any number of program modules can be stored on the hard

disk 116, magnetic disk 120, optical disk 124, ROM 112,
and/or RAM 110, including by way of example, an operating
system 126, one or more application programs 128, other
program modules 130, and program data 132. Each of such
operating system 126, one or more application programs 128,
other program modules 130, and program data 132 (or some
combination thereof) may include an embodiment of a cach
ing scheme for user network access information.
Computer 102 can include a variety of computer/processor

readable media identified as communication media. Commu
nication media embodies computer readable instructions,
data structures, program modules, or other data in a modu
lated data signal Such as a carrier wave or other transport
mechanism and includes any information delivery media. The
term "modulated data signal” means a signal that has one or
more of its characteristics set or changed in Such a manner as
to encode information in the signal. By way of example, and
not limitation, communication media includes wired media
Such as a wired network or direct-wired connection, and

US 7,685,591 B2
5

wireless media Such as acoustic, RF, infrared, and other wire
less media. Combinations of any of the above are also
included within the scope of computer readable media.
A user can enter commands and information into computer

system 102 via input devices such as a keyboard 134 and a
pointing device 136 (e.g., a “mouse'). Other input devices
138 (not shown specifically) may include a microphone, joy
Stick, game pad, satellite dish, serial port, Scanner, and/or the
like. These and other input devices are connected to the pro
cessing unit 104 via input/output interfaces 140 that are
coupled to the system bus 108, but may be connected by other
interface and bus structures, such as aparallel port, game port,
or a universal serial bus (USB).
A monitor 142 or other type of display device may also be

connected to the system bus 108 via an interface, such as a
video adapter 144. In addition to the monitor 142, other
output peripheral devices may include components such as
speakers (not shown) and a printer 146 which can be con
nected to computer 102 via the input/output interfaces 140.

Computer 102 may operate in a networked environment
using logical connections to one or more remote computers,
Such as a remote computing device 148. By way of example,
the remote computing device 148 can be a personal computer,
portable computer, a server, a router, a network computer, a
peer device or other common network node, and the like. The
remote computing device 148 is illustrated as a portable com
puter that may include many or all of the elements and fea
tures described herein relative to computer system 102.

Logical connections between computer 102 and the remote
computer 148 are depicted as a local area network (LAN) 150
and a general wide area network (WAN) 152. Such network
ing environments are commonplace in offices, enterprise
wide computer networks, intranets, and the Internet. When
implemented in a LAN networking environment, the com
puter 102 is connected to a local network 150 via a network
interface or adapter 154. When implemented in a WAN net
working environment, the computer 102 includes a modem
156 or other means for establishing communications over the
wide network 152. The modem 156, which can be internal or
external to computer 102, can be connected to the system bus
108 via the input/output interfaces 140 or other appropriate
mechanisms. It is to be appreciated that the illustrated net
work connections are exemplary and that other means of
establishing communication link(s) between the computers
102 and 148 can be employed.

In a networked environment, such as that illustrated with
computing environment 100, program modules depicted rela
tive to the computer 102, orportions thereof, may be stored in
a remote memory storage device. By way of example, remote

10

15

25

30

35

40

45

application programs 158 reside on a memory device of 50
remote computer 148. For purposes of illustration, applica
tion programs and other executable program components,
Such as the operating system, are illustrated hereinas discrete
blocks, although it is recognized that Such programs and
components reside at various times in different storage com
ponents of the computer system 102, and are executed by the
data processor(s) of the computer.

EXEMPLARY EMBODIMENTS

FIG. 2 illustrates an exemplary embodiment of a computer
102 configured for implementing application customizations
through patches. Computer 102 includes one or more proces
sors 200 configured to execute an operating system 202 and
various application programs 204 stored in a memory 206.
The operating system 202 of computer 102 is shown as

including an application installer component 206. Applica

55

60

65

6
tion installer 206 is generally configured as an operating
system service to install applications 204 on computer 102.
Application installer 206 implements a custom installation of
an application by applying transforms to a target application
installation package 208 associated with the software appli
cation being installed. An application installation package
208 is a database that contains a large group of instructions
that tell the application installer 206 how the application is to
be installed. An example of an application installation pack
age 208 is a Microsoft Windows Installer Package (MSI pack
age). An MSI file contains a database that stores all the
instructions and data required to manage the state of a pro
gram, Such as adding, changing, or removing it from a com
puter 102. For example, an MSI file of an application can
contain instructions for installing the application on a com
puter when a prior version of the application is already
installed or where that application has never been present.

In addition to installing applications 204, application
installer 206 is configured to implement patch technology.
Traditionally, patch functionality has been used only to
update application binaries for purposes such as security fixes
or other program bugs. Thus, patches are typically developed
and distributed to replace or be inserted into compiled code
(i.e., a binary file or object module). However, in the current
embodiment described here, patch functionality that is native
to the application installer 206 is used to implement applica
tion customizations. Thus, custom features, settings, operat
ing characteristics, and the like, can be implemented through
the use of patch technology which has traditionally been used
for repairing or updating application binaries. As discussed in
more detail herein below with regard to FIG. 3, the native
patch functionality of the application installer 206 is lever
aged to enable application customizations through the use of
a customization patch 210 having an extended patch file for
mat that includes application customization information.
One example of an application installer 206 is Microsoft(R)

Windows(R Installer, available from Microsoft Corporation
of Redmond, Wash. The Microsoft Windows Installer enables
managing the state of Software applications. This includes
managing the installation, modification, upgrade, or removal
of software applications. Thus, the installer performs func
tions such as modifying applications, upgrading applications,
and removing applications that have been installed on a com
puter 102. Throughout this disclosure, application installer
206 is discussed in terms of the Microsoft Windows Installer.
Accordingly, additional information regarding application
installer 206 is available from Microsoft Corporation, Red
mond, Wash., with reference to the Microsoft Windows
Installer.

Referring again to FIG. 2, computer 102 also includes a
customization process 212. Like application installer 206,
customization process 212 also executes against customiza
tion patch 210. However, customization process 212 executes
separately from the application installer 206, and as discussed
more fully below regarding FIG.3, it recognizes and operates
against customization information (i.e., customization XML)
within the customization patch 210 that application installer
206, by design, does not recognize. Thus, customization pro
cess 212 is a set of code generally configured to recognize and
implement additional customization information that is con
tained within a customization patch 210.

Customization process 212 can be implemented in various
ways. For example, customization process can be imple
mented as part of an application setup routine 214 Such as
"setup.exe'. Thus, a user may initiate a setup routine 214 in a
particular mode (e.g., a customization mode) that implements
application customizations by recognizing and executing

US 7,685,591 B2
7

customization information within the customization patch
210 that the application installer 206 is not designed to rec
ognize. Customization process 212 might also be imple
mented as one or more custom actions 216 installed on com
puter 102 from an application installation package 208. That
is, a custom action 216 configured to recognize and execute
customization XML from the patch file 210, may be installed
on computer 102 during installation of the application instal
lation package 208 by the application installer 206.

FIG. 3 illustrates additional details regarding components
of a customization patch 210 and functional aspects related to
the customization patch 210. As shown in FIG. 3, a customi
zation patch 210 includes transform files 300, cabinet files
302, and customization XML 3.04.

Traditionally, a patch provides a way to update and main
tain an application 204. One example of a patch is a Windows
Installer Patch file (MSP). Application installer 206 includes
native capability for implementing MSP patch functionality.
An MSP patch file represents an updated component of an
application or portion of the application 204. Patch files are
usually obtained from a software manufacturer or developer
of the original application program. Traditionally, patches
enable updates to existing applications without having to
uninstall the product, which preserves the customizations of
the application installation. Thus, in the past, patches have not
included customization information for setting or changing
features or characteristics of an application. Patches may
change only a few bytes of a single application file, or they
may change all of the files and registry keys in a product.
An MSP patch file does not include a database like a

regular application installation package 208. Rather, it con
tains a database transform file or files configured to add infor
mation to the database of its target application installation
package 208. It also contains cabinet files that application
installer 206 uses to apply the patch files that are stored in the
cabinet file stream of the patch file package. The files in an
MSP patch are stored in an OLE structured storage format.
OLE is Microsoft's framework for a compound document
technology.

In the present embodiment, the customization patch 210
represents an extension of the MSP patch file format. Thus, as
noted above, in addition to containing transform files 300 and
cabinet files 302, customization patch 210 also contains cus
tomization XML 3.04. The customization patch 210 is pref
erably stored in a compound document format Such as OLE
structured storage. The customization XML 304 represents
customizations contained within transforms 300. More gen
erally, the customization XML 304 represents customization
intent of a user generated, for example, through a customiza
tion user interface (not shown) that is part of an integrated
application setup enabling application customizations to be
managed at both application deployment time and application
maintenance time. For purposes of the present disclosure, the
manner in which the customization XML 304 is generated or
incorporated into the customization patch 210 is immaterial
and therefore will not be discussed in any further detail. In
addition to representing customizations contained within
transforms 300, the customization XML 304 can contain
additional customization information that can be readily con
Sumed and implemented by a customization process 212.
The customization XML 304 is generic in that it can be

used to implement customization intent using various arbi
trary customization technologies. For example, in the current
implementation, the customization XML 304 has been con
sumed by Windows Installer Transform technology which
generated transforms 300 that will be used by application
installer 206 as discussed below to effect application customi

10

15

25

30

35

40

45

50

55

60

65

8
zations. The customization XML 304 can also be consumed
by a customization application to display current customiza
tions to a user through a UI and permit further customizations
to be made.

FIG.3 is intended to show how a customization patch 210
is used or consumed by components of computer 102 in the
process of customizing an application. When a customization
patch 210 is received, the application installer 206 (e.g.,
Microsoft Windows Installer), using its native patch technol
ogy functionality, accesses the patch 210 and recognizes any
transforms 300 and cabinet files 302, as indicated in FIG. 3.
The application installer 206 does not recognize, and there
fore ignores, the customization XML 3.04. The application
installer 206 implements the transforms 300 as it normally
would in the case where it was patching binaries for the
application. However, in the present embodiment, the trans
forms contain a set of customization changes for the applica
tion that the application installer 206 applies to the applica
tion installation package 208. Thus, instead of repairing or
updating part of the application binary file with code, the
patch contains customization instructions and data that are
used to set or make changes to features and/or operational
characteristics of the application. The types of customizations
depend to Some extent on the application being customized,
but may include, for example, default page settings in a word
processing application (e.g., margins, spacing, fonts, font
sizes, etc.). Such customizations may be based, for example,
on an individual user's customization desires, or on the cus
tomization needs of a given user environment serving many
users as determined by an administrator. When the applica
tion installer 206 implements the transforms 300, the data
base of the application installation package 208 is updated
using relevant data stored in the cabinet files 302, and the
appropriate customization settings and features within the
application are updated.

Customizations that are not part of the native functionality
of the application installer 206 can also be achieved by the
application installer 206 using custom code contained in a
transform 300. Custom code in a transform 300 can direct the
application installer 206 to make a particular application cus
tomization that is not native to the installer 206. An example
of a non-native customization might be changing the organi
Zation name in an application. Suppose for instance that
“Company X has 100 client computers each having a docu
ment editing application installation. At some time, such as
upon initial deployment, the document editing application is
customized to indicate that Company X is the organization
that owns the application. At some later time, however,
“Company Y” buys Company X and wants to update the
customizations for the document editing application on all the
client computers. As noted above, changing the organization
name is not a customization that is within the native function
ality of the application installer 206. However, in the current
embodiment, the customization update can be achieved by
generating custom code, that when executed, will perform
this non-native customization. The custom code is passed to
the application installer 206 via a transform 300 contained in
a customization patch 210. The application installer 206
accesses the transform 300 and executes the custom code,
which instructs the installer 206 how to make the organization
name update, using data from a cabinet file 302. The data in
the cabinet file 302 may include, for example, the new name
of the company, “Company Y”.

FIG. 3 further illustrates how additional customization
information within the customization XML 304 can be con
Sumed by a customization process 212 (e.g., a setup routine
214, custom actions from an application installation package,

US 7,685,591 B2

etc.) in order to effect further application customizations and/
or alter the behavior of a process on computer 102. As noted
above, customization XML 304 generally provides a road
map to customizations contained in the transforms 300 and
implemented through the application installer 206. However,
customization XML.304 can also include additional customi
Zation information that is accessible to a customization pro
cess 212. For example, a setup routine 214 initiated by a user
in a customization mode may be configured to parse the
customization XML and recognize and implement various
instructions contained in the XML. The XML may include
instructions such as instructions to alter a behavior of a par
ticular process or instructions to make customization changes
to an application. For instance, additional information in cus
tomization XML 304 could instruct setup routine 214 to
change its login level from a basic level to a verbose level.
When the setup routine 214 parses the XML and reads it in, it
knows to toggle its login level from basic to verbose.

EXEMPLARY METHODS

Example methods for implementing application customi
zations through patches will now be described with primary
reference to the flow diagrams of FIGS. 4 and 5. The methods
apply generally to the exemplary embodiments discussed
above with respect to FIGS. 1-3. While one or more methods
are disclosed by means of flow diagrams and text associated
with the blocks of the flow diagrams, it is to be understood
that the elements of the described methods do not necessarily
have to be performed in the order in which they are presented,
and that alternative orders may result in similar advantages.
Furthermore, the methods are not exclusive and can be per
formed alone or in combination with one another. The ele
ments of the described methods may be performed by any
appropriate means including, for example, by hardware logic
blocks on an ASIC or by the execution of processor-readable
instructions defined on a processor-readable medium.
A "processor-readable medium, as used herein, can be any

means that can contain, store, communicate, propagate, or
transport instructions for use or execution by a processor. A
processor-readable medium can be, without limitation, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor System, apparatus, device, or propagation
medium. More specific examples of a processor-readable
medium include, among others, an electrical connection
(electronic) having one or more wires, a portable computer
diskette (magnetic), a random access memory (RAM) (mag
netic), a read-only memory (ROM) (magnetic), an erasable
programmable-read-only memory (EPROM or Flash
memory), an optical fiber (optical), a rewritable compact disc
(CD-RW) (optical), and a portable compact disc read-only
memory (CDROM) (optical).
Method 400 is an example method for implementing appli

cation customizations through patches. At block 402 of
method 400, a patch file is received on a computer 102. The
patch file is a customization patch file that contains customi
Zation information for customizing an application on com
puter 102. The customization information in the patch file is
contained in one or more transform files, cabinet files, and
XML content. The transform files contain the customizations
to be applied to an application installation package, while the
cabinet files contain data related to the customizations that is
used to update the customizations. The XML content pro
vides a road map of the customizations contained in the
transform files. The XML content is a generic expression of a
user's customization intent, and can include additional cus
tomization information not found in the transform files. The

10

15

25

30

35

40

45

50

55

60

65

10
contents of the patch file (i.e., transform files, cabinet files,
XML content) are generally structured in a compound docu
ment format such as Microsoft's OLE structured storage for
mat.
At block 404, after receiving the patch file, an application

installer reads a transform file from the patch file in a manner
consistent with its native patch functionality. At block 406,
the application installer applies the transform and a corre
sponding cabinet file to an application installation package.
Application of the customizations contained in the transform
and the data from the cabinet file implement customizations
in the application that are native to the functionality of the
application installer 206. The customizations set or make
changes to custom features in the application according to a
user's or administrator's desires.
The method continues at block 408 where a customization

process is initiated. The customization process is independent
of the application installer 206. The customization process
enables application customizations to be implemented based
on additional customization information contained within the
XML content. Because the application installer 206 is not
designed to recognize the XML content, it ignores the XML
content. However, the separate customization process on
computer 102 is configured to recognize the presence of the
XML content in the patch file as shown at block 410. At block
412, the customization process parses the XML content look
ing for additional customization instructions. The customiza
tion instructions are executed at block 414 to implement
customizations that may be native or non-native to the appli
cation installer 206. As indicated at block 408, the customi
Zation process can be implemented in a number of ways. For
example, the customization process can be configured as part
of the application setup routine or aparticular execution mode
of the application setup routine. The customization process
might also be configured as one or more stand-alone custom
actions installed on computer 102 from the application instal
lation package.
Method 500 is another example method for implementing

application customizations through patches. At block 502 of
method 500, a patch file is received on a computer 102. As in
the method 400 above, the patch file is a customization patch
file that contains customization information for customizing
an application on computer 102. The customization informa
tion in the patch file is contained in one or more transform
files, cabinet files, and XML content. However, in this
method, a custom code technology is used to implement the
customizations. The transform file(s) contains custom code
configured to implement customizations that may be non
native to the application installer 206. That is, customizations
that the application installer 206 may not be designed to
implement can be implemented through the use of custom
code contained in a transform file that is configured to imple
ment such a non-native customization.
At block 504, the application installer reads the transform

file in the patch file. The application installer then manages
the execution of the custom code in the transform, as shown at
block 506. Execution of the custom code implements the
customizations that may be non-native to the application
installer 206.
The method 500 then continues in a manner similar to

method 400, where a customization process may be initiated
(block 508) to recognize customization XML in the patch file
(block 510) and to parse the XML content for customization
instructions (block 512). At block 514, instructions from
XML content within the patch file are executed to implement
customizations that may be native or non-native to the appli
cation installer 206.

US 7,685,591 B2
11

Application customizations can be implemented using a
patch file at Virtually any time. For example, application
customizations can be implemented during the deployment or
installation of an application onto one or more computers.
Application customizations can also be implemented at any
time, and in any number, after installation of the application
onto the computer.

CONCLUSION

Although the invention has been described in language
specific to structural features and/or methodological acts, it is
to be understood that the invention defined in the appended
claims is not necessarily limited to the specific features or acts
described. Rather, the specific features and acts are disclosed
as exemplary forms of implementing the claimed invention.
The invention claimed is:
1. A method for customizing an application implemented at

least in part by a computing device comprising:
receiving an Object Linking and Embedding (OLE) struc

tured storage patch file containing a transform file,
wherein the transform filed comprises custom code, a
cabinet file, and XML content; and

customizing an executable application with an application
installer according to the information contained in the
received patch file, the customizing comprising making
changes to one or more features of the executable appli
cation, wherein the customizing differs from native
functionality of the application installer.

2. A method as recited in claim 1, wherein the customizing
comprises applying a transform file contained within the
patch file to an application installation package.

3. A method as recited in claim 1, wherein customizing the
application comprises executing XML contained within the
patch file to implement a customization process previously
installed from an application installation package and config
ured to recognize and execute the XML.

4. A method as recited in claim3, wherein implementing a
customization process is selected from the group comprising:

executing a setup routine configured to recognize the
XML, parse the XML for customization instructions,
and execute the customization instructions; and

executing a custom action configured to recognize the
XML, parse the XML for customization instructions,
and execute the customization instructions.

5. A method as recited in claim 1, wherein customizing the
application is customizing the application in a manner
selected from the group comprising:

customizing the application during installation of the
application; and

customizing the application after installation of the appli
cation.

6. One or more processor-readable storage media having
processor-executable instructions configured for:

receiving an Object Linking and Embedding (OLE) struc
tured customization patch file having extended patch file
format, including a transform file, a cabinet file, and
XML content, wherein the transform file contains cus
tom code that directs an application installer to make a
particular customization to an application the customi
Zation comprising enabling a feature of the application,
wherein the customization differs from native function
ality of the application installer;

parsing the customization patch file to locate application
customization information, the parsing comprising rec

5

10

15

25

30

35

40

45

50

55

60

12
ognizing the transform file, the cabinet file, and the
XML content within the customization patch file; and

implementing the customization to the application,
wherein changes to one or more features of the applica
tion are made based on the application customization
information in the customization patch file.

7. One or more processor-readable storage media as recited
in claim 6, wherein implementing an application customiza
tion is implementing an application customization in a man
ner selected from the group comprising:

implementing the application customization by executing
custom code within the transform file; and

implementing the application customization based on
information in the XML content.

8. One or more processor-readable storage media as recited
in claim 6, wherein implementing an application customiza
tion comprises implementing an application customization
during an installation of the application.

9. One or more processor-readable storage media as recited
in claim 6, wherein implementing an application customiza
tion comprises implementing an application customization
after an installation of the application.

10. A computer comprising the one or more processor
readable storage media as recited in claim 6.

11. A computer comprising:
a processor; and
one or memory devices coupled to the processor, wherein

the one or more memory devices are encoded with:
an Object Linking and Embedding (OLE) structured

customization patch file having information for cus
tomizing an application, the information comprising:
a transform file, wherein the transform filed com

prises custom code:
a cabinet file; and
customization XML, and

an application installer configured to customize the appli
cation based on the information in the customization
patch, wherein the application installer is configured to
execute the custom code to implement a customization,
and wherein the customization differs from native func
tionality of the application installer and wherein, when
the application installer installs the application for
which the customization patch has information for cus
tomizing, the information in the customization patch is
used to customize the application with customization
comprising:
adding a new application feature;
changing a setting of the application; and
changing an operating characteristic of the application.

12. A computer as recited in claim 11, further comprising
an application installation package, wherein the application
installer is configured to apply customizations contained in
the transform file to the application installation package.

13. A computer as recited in claim 12, further comprising a
customization process configured to parse the customization
XML and implement application customizations according
to instructions within the customization XML.

14. A computer as recited in claim 13, wherein the cus
tomization process is selected from a group comprising:

an application setup routine; and
a custom action installed from the application installation

package.

