E 4

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
GOO6F 9/44 Al

(11) International Publication Number:

(43) International Publication Date:

- WO 95/03575

2 February 1995 (02.02.95)

(21) International Application Number: PCT/US94/00133

(22) International Filing Date: 6 January 1994 (06.01.94)

(30) Priority Data:

08/094,681 19 July 1993 (19.07.93) us

(71) Applicant: TALIGENT, INC. [US/US]; 10201 N. de Anza
Boulevard, Cupertino, CA 95014 (US).

(72) Inventors: BOLTON, Eugenie, Lee; 1512 Condor Way,
Sunnyvale, CA 94087 (US). DATTATRI, Kayshav; 1225
Phelps Avenue, San Jose, CA 95117 (US).

(74) Agent: STEPHENS, Keith; Taligent, Inc., 10201 N. de Anza
Boulevard, Cupertino, CA 95014 (US).

(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, |
CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR,
LV, MG, MN, MW, NL
SE, SK, UA, UZ, VN, European patent (AT, BE, CH, DE,
R

8
g
R
3
8R
&
w2
S

patent (BF, BJ,
SN, TD, TG).

Published
With international search report.

- | classes for enabling the application to

(54) Title: OBJET-ORIENTED HOST SYSTEM
(57) Abstract

An apparatus for enabling an
object-oriented application to access in
an object-oriented manner a procedural
operating system having a native
procedural interface is disclosed. The

130A

APPLICATION
APPLICATION

132

102
1308

(
8

129

APPLICATION
APPLICATION I

apparatus includes a computer and a

128’\-[WRAPPER | ’

w 7
\

WRAPPER]

memory component in the computer
and support for a host system. A

114 OPERATING SYSTEM

LI DEVICE DRIVERS

code library is stored in the memory
component. The code library includes

MICROINSTRUCTION CODE 112

computer program logic implementing

an object-oriented class library.
The object-oriented class library
comprises related object-oriented

CPU [~-108

RAM N—-108

~~103

CQDE

. 104
access in an object-oriented manner

LIBRARY | 4—110

services provided by the operating [
system. The object-oriented classes !
include methods for accessing the

'/118 y 1/20 1 12}4

: 126
Z

operating system services using
procedural function calls compatible
with the native procedural interface
of the operating system. The
computer processes object-oriented
statements contained in the application
and defined by the class library
by executing methods from the
class library corresponding to the
object-oriented statements. The
object-oriented application includes
support for multi-tasking.

INPUT
DEVICE

DATA
STORAGE
DEVICE

1

DISPLAY PRINTER

i

DATA STORAGE
MEDIUM

CODE
LBRARY |]

110

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cca
M
CN
Cs
cz
DE
DK
ES
FI
FR

GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Beain

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

GB
GE
GN
GR

BEE~HEE

SERERE

MC

g

MG

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Tajikistan

Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-1-

Object-Oriented Host System

A portion of the disclosure of this patent application contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it appears in the Patent and
Trademark Office patent files or records, but otherwise reserves all copyright rights
whatsoever.

Field Of The Invention

The present invention relates generally to object-oriented computing
environments, and more particularly to a system and method for providing an object-
oriented interface for a procedural operating system that includes host support.

Background Of the Invention

Object-oriented technology (OOT), which generally includes object-oriented
analysis (OOA), object-oriented design (OOD), and object-oriented programming
(OQOP), is earning its place as one of the most important new technologies in software
development. OOT has already begun to prove its ability to create significant increases
in programmer productivity and in program maintainability. By engendering an
environment in which data and the procedures that operate on the data are combined
into packages called objects, and by adopting a rule that demands that objects
communicate with one another only through well-defined messaging pafhs, OO0T
removes much of the complexity of traditional, procedure-oriented programming.

The following paragraphs present brief overview of some of the more important
aspects of OOT. More detailed discussions of OOT are available in many publicly
available documents, including Object Oriented Design With Applications by Grady
Booch (Benjamin/Cummings Publishing Company, 1991) and Object-Oriented
Requirements Analysis and Logical Design by Donald G. Firesmith (John Wiley & Sons,
Inc., 1993). The basic component of OOT is the object. An object includes, and is
characterized by, a set of data (also called attributes) and a set of operations (called
methods) that can operate on the data. Generally, an object's data may change only
through the operation of the object's methods.

A method in an object is invoked by passing a message to the object (this process
is called message passing). The message specifies a method name and an argument list.
When the object receives the message, code associated with the named method is

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

2- -
executed with the formal parameters of the method bound to the corresponding values

in the argument list. Methods and message passing in OOT are analogous to
procedures and procedure calls in procedure-oriented software environments.
However, while procedures operate to modify and return passed parameters, methods
operate to modify the internal state of the associated objects (by modifying the data
contained therein). The combination of data and methods in objects is called
encapsulation. Perhaps the greatest single benefit of encapsulation is the fact that the
state of any object can only be changed by well-defined methods associated with that
object. When the behavior of an object is confined to such well-defined locations and
interfaces, changes (that is, code modifications) in the object will have minimal impact
on the other objects and elements in the system. A second "fringe benefit" of good
encapsulation in object-oriented design and programming is that the resulting code is
more modular and maintainable than code written using more traditional techniques.

The fact that objects are encapsulated produces another important fringe benefit
that is sometimes referred to as data abstraction. Abstraction is the process by which
complex ideas and structures are made more understandable by the removal of detail
and the generalization of their behavior. From a software perspective, abstraction is in
many ways the antithesis of hard-coding. Consider a software windowing example: if
every detail of every window that appears on a user's screen in a graphical user
interface (GUI)-based program had to have all of its state and behavior hard-coded into
a program, then both the program and the windows it contains would lose almost all of
their flexibility. By abstracting the concept of a window into a window object, object-
oriented systems permit the programmer to think only about the specific aspects that
make a particular window unique. Behavior shared by all windows, such as the ability
to be dragged and moved, can be shared by all window objects.

This leads to another basic component of OOT, which is the class. A class
includes a set of data attributes plus a set of allowable operations (that is, methods) on
the data attributes. Each object is an instance of some class. As a natural outgrowth of
encapsulation and abstraction, OOT supports inheritance. A class (called a subclass)
may be derived from another class (called a base class, a parent class, etc.) wherein the
subclass inherits the data attributes and methods of the base class. The subclass may
specialize the base class by adding code which overrides the data and/or methods of
the base class, or which adds new data attributes and methods. Thus, inheritance
represents a mechanism by which abstractions are made increasingly concrete as
subclasses are created for greater levels of specialization. Inheritance is a primary
contributor to the increased programmer efficiency provided by OOP. Inheritance
makes it possible for developers to minimize the amount of new code they have to

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

3-
write to create applications. By providing a significant portion of the functionality

needed for a particular task, classes in the inheritance hierarchy give the programmer a
head start to program design and creation. One potential drawback to an object-
oriented environment lies in the proliferation of objects that must exhibit behavior
which is similar and which one would like to use as a single message name to describe.
Consider, for example, an object-oriented graphical environment: if a Draw message is
sent to a Rectangle object, the Rectangle object responds by drawing a shape with four
sides. A Triangle object, on the other hand, responds by drawing a shape with three
sides. Ideally, the object that sends the Draw message remains unaware of either the
type of object to which the message is addressed or of how that object that receives the
message will draw itself in response. If this ideal can be achieved, then it will be
relatively simple to add a new kind of shape later (for example, a hexagon) and leave
the code sending the Draw message completely unchanged.

In conventional procedure-oriented languages, such a linguistic approach would
wreak havoc. In OOT environments, the concept of polymorphism enables this to be
done with impunity. As one consequence, methods can be written that generically tell
other objects to do something without requiring the sending object to have any
knowledge at all about the way the receiving object will understand the message.
Software programs, be they object-oriented, procedure-oriented, rule based, etc., almost
always interact with the operating system to access the services provided by the
operating system. For e3<ample, a software program may interact with the operating
system in order to access data in memory, to receive information relating to processor
faults, to communicate with other processes, or to schedule the execution of a process.

Most conventional operating systems are procedure-oriented and include native
procedural interfaces. Consequently, the services provided by these operating systems
can only be accessed by using the procedures defined by their respective procedural
interfaces. If a program needs to access a service provided by one of these procedural
operating systems, then the program must include a statement to make the appropriate
operating system procedure call. This is the case, whether the software program is
object-oriented, procedure-oriented, rule based, etc. Thus, conventional operating
systems provide procedure-oriented environments in which to develop and execute
software. Some of the advantages of OOT are lost when an object-oriented program is
developed and executed in a procedure-oriented environment. This is true, since all
accesses to the procedural operating system must be implemented using procedure
calls defined by the operating system's native procedural interface. Consequently,
some of the modularity, maintainability, and reusability advantages associated with
object-oriented programs are lost since it is not possible to utilize classes, objects, and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

4-
other OOT features to their fullest extent possible.

One solution to this problem is to develop object-oriented operating systems
having native object-oriented interfaces. While this ultimately may be the best solution,
it currently is not a practical solution since the resources required to modify all of the
major, procedural operating systems would be enormous. Also, such a modification of
these procedural operating systems would render useless thousands of procedure-
oriented software programs. Therefore, what is needed is a mechanism for enabling an
object-oriented application to interact in an object-oriented manner with a procedural
operating system having a native procedural interface.

Summary of the Invention

The present invention is directed to a system and method of enabling an object-
oriented application to access in an object-oriented manner a procedural operating
system having a native procedural interface. The system includes a computer and a
memory component in the computer with support for a host system. A code library is
stored in the memory component. The code library includes computer program logic
implementing an object-oriented class library. The object-oriented class library
comprises related object-oriented classes for enabling the application to access in an
object-oriented manner services provided by the operating system. The object-oriented
classes include methods for accessing the operating system services using procedural
function calls compatible with the native procedural interface of the operating system.
The system also includes means for processing object-oriented statements contained in
the application and defined by the class lii)rary by executing methods from the class
library corresponding to the object-oriented statements.

Preferably, the class library includes:

(1) thread classes for enabling an application to access in an object-oriented

manner operating system services to spawn, control, and obtain information relating to
threads;

(2) task classes for enabling an application to access in an object-oriented manner
operating system services to reference and control tasks, wherein the tasks each
represents an execution environment for threads respectively associated with the tasks;

(3) virtual memory classes for enabling an application to access in an object-
oriented manner operating system services to access and manipulate virtual memory in
a computer;

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-5- -
(4) interprocess communication (IPC) classes for enabling an application to

access in an object-oriented manner operating system services to communicate with
other threads during run-time execution of the application in a computer;

(5) synchronization classes for enabling an application to access in an object-
oriented manner operating system services to synchronize execution of threads;

(6) scheduling classes for enabling an application to access in an object-oriented
manner operating system services to schedule execution of threads;

(7) fault classes for enabling an application to access in an object-oriented
manner operating system services to process system and user-defined processor faults;
and '

(8) machine classes for enabling an application to access in an object-oriented
manner operating system services to define and modify a host and processor sets.

Further features and advantages of the present invention, as well as the structure
and operation of various embodiments of the present invention, are described in detail
below with reference to the accompanying drawings, and in the claims. In the
drawings, identical reference numbers indicate identical or functionally similar
elements.

Brief Description of the Drawings

The present invention will be described with reference to the accompanying
drawings, wherein:

Figure 1 illustrates a block diagram of a computer platform in which a wrapper
of the present invention operates;

Figure 2 is a high-level flow chart illustrating the operation of the present
invention;

Figure 3 is a more detailed flowchart illustrating the operation of the present
invention;

Figure 4 is a block diagram of a code library containing an object-oriented class
library of the present invention;

Figure 5 is a class diagram of thread and task classes of the present invention;

Figure 6 is a class diagram of virtual memory classes of the present invention;

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-6-
Figures 7-9 are class diagrams of interprocess communication classes of the

present invention;
Figure 10 is a class diagram of synchronization classes of the present invention;
Figure 11 is a class diagram of scheduling classes of the present invention;
Figures 12-15 are class diagrams of fault classes of the present invention;

Figure 16 is a class diagram of host and processor set (machine) classes of the
present invention; and

Figure 17 illustrates well-known icons for representing class relationships and
cardinality in class diagrams.

Detailed Description of the Preferred Embodiments
Computing Environment

The present invention is directed to a system and method for providing an
object-oriented interface to a procedural operating system having a native procedural
interface. The present invention emulates an object-oriented software environment on
a computer platform having a procedural operating system. More particularly, the
present invention is directed to a system and method of enabling an object-oriented
application to access in an object-oriented manner a procedural operating system
having a native procedural interface during run-time execution of the application in a
computer. The present invention is preferably a part of the run-time environment of
the computer in which the application executes. In this patent application, the present
invention is sometimes called an object-oriented wrapper since it operates to wrap a
procedural operating system with an object-oriented software layer such that an object-
oriented application can access the operating system in an object-oriented manner.

Figure 1 illustrates a block diagram of a computer platform 102 in which a
wrapper 128, 129 of the present invention operates. It should be noted that the present
invention alternatively encompasses the wrapper 128, 129 in combination with the
computer platform 102. The computer platform 102 includes hardware components
103, such as a random access memory (RAM) 108 and a central processing unit (CPU)
106. It should be noted that the CPU 106 may represent a single processor, but
preferably represents multiple processors operating in parallel. The computer platform
102 also includes peripheral devices which are connected to the hardware components
103. These peripheral devices include an input device or devices (such as a keyboard, a
mouse, a light pen, etc.), a data storage device 120 (such as a hard disk or floppy disk),

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

7-
a display 124, and a printer 126. The data storage device 120 may interact with a

removable data storage medium 122 (such as a removable hard disk, a magnetic tape
cartridge, or a floppy disk), depending on the type of data storage device used. The
computer platform 102 also includes a procedural operating system 114 having a native
procedural interface (not shown). The procedural interface includes procedural
functions which are called to access services provided by the operating system 102.

The computer platform 102 further includes device drivers 116, and may include
microinstruction code 210 (also called firmware). As indicated in Figure 1, in
performing their required functions the device drivers 116 may interact with the
operating system 114. Application programs 130, 132, 134 (described further below)
preferably interact with the device drivers 116 via the operating system 114, but may

 alternatively interact directly with the device drivers 116. It should be noted that the

operating system 114 may represent a substantially full-function operating system,
such as the Disk Operating System (DOS) and the UNIX operating system. However,
the operating system 114 may represent other types of operating systems. For
purposes of the present invention, the only requirement is that the operating system
114 be a procedural operating system having a native procedural interface. Preferably,
the operating system 114 represents a limited functionality procedural operating
system, such as the Mach micro-kernel developed by CMU, which is well-known to
those skilled in the relevant art. For illustrative purposes only, the present invention
shall be described herein with reference to the Mach micro-kernel. In a preferred
embodiment of the present invention, the computer platform 102 is an International
Business Machines (IBM) computer or an IBM-compatible computer. In an alternate
embodiment of the present invention, the computer platform 102 is an Apple computer.

Overview of a Wrapper

Various application programs 130, 132, 134 preferably operate in parallel on the
computer platform 102. Preferably, the application programs 130, 132, 134 are adapted
to execute in different operating environments. For example, the application programs
130A and 130B may be adapted to operate in an object-oriented environment. The
application program 132 may be adapted to operate in a Microsoft Windows
environment, an IBM PS/2 environment, or a Unix environment. As will be
appreciated by those skilled in the relevant art, the application programs 1304, 130B,
and 132 cannot interact directly with the operating system 114 unless the operating
system 114 implements an environment in which the application programs 130A, 130B,
and 132 are adapted to operate. For example, if the application 132 is adapted to
operate in the IBM PS/2 environment, then the application 132 cannot directly interact
with the operating system 114 unless the operating system 114 is the IBM PS/2

SUBSTITUTE SHEET (RULE 26)

5

10

1

(9}

20

25

30

35

WO 95/03575 PCT/US94/00133

-8-
operating system (or compatible). If the application programs 130A and 130B are

adapted to operate in an object-oriented environment, then the applications 1304, 130B
cannot directly interact with the operating system 114 since the operating system 114
has a procedural interface. In the example shown in Figure 1, the application 134 is
adapted to operate in the computing environment created by the operating system 114,
and therefore the application 134 is shown as being connected directly to the operating
system 114.

The wrapper 128 is directed to a mechanism for providing the operating system
114 with an object-oriented interface. The wrapper 128 enables the object-oriented
applications 1304, 130B to directly access in an object-oriented manner the procedural
operating system 114 during run-time execution of the applications 130A, 130B on the
computer platform 102. The wrapper 129 is conceptually similar to the wrapper 128.
The wrapper 129 provides an IBM PS/2 interface for the operating system 114, such
that the application 132 can directly access in a PS/2 manner the procedural operating
system 114 (assuming that the application 132 is adapted to operate in the IBM PS/2
environment). The discussion of the present invention shall be limited herein to the
wrapper 128, which provides an object-oriented interface to a procedural operating
system having a native procedural interface.

The wrapper 128 is preferably implemented as a code library 110 which is stored
in the RAM 108. The code library 110 may also be stored in the data storage device 120
and/or the data storage medium 122. The code library 110 implements an object-
oriented class library 402 (see Figure 4). In accordance with the present invention, the
object-oriented class library 402 includes related object-oriented classes for enabling an
object-oriented application (such as the applications 130A and 130B) to access in an

| object-oriented manner services provided by the operating system 114. The object-

oriented classes comprise methods which include procedural function calls compatible
with the native procedural interface of the operating system 114. Object-oriented
statements defined by the object-oriented class library 402 (such as object-oriented
statements which invoke one or more of the methods of the class library 402) are
insertable into the application 130 to enable the application 130 to access in an object-
oriented manner the operating system services during run-time execution of the
application 130 on the computer platform 102. The ob)ect-orlented class library 402 is
further described in sections below.

The code library 110 preferably includes compiled, executable computer
program logic which implements the object-oriented class library 402. The computer
program logic of the code library 110 is not linked to application programs. Instead,
relevant portions of the code library 110 are copied into the executable address spaces

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

9-
of processes during run-time. This is explained in greater detail below. Since the

computer program logic of the code library 110 is not linked to application programs,
the computer program logic can be modified at any time without having to modify,
recompile and /or relink the application programs (as long as the interface to the code
library 110 does not change). As noted above, the present invention shall be described
herein with reference to the Mach micro-kernel, although the use of the present
invention to wrap other operating systems falls within the scope of the present
invention.

The Mach micro-kernel provides users with a number of services with are
grouped into the following categories: threads, tasks, virtual memory, interprocess
communication (IPC), scheduling, synchronization, fault processing, and
host/processor set processing. The class library 402 of the present invention includes a
set of related classes for each of the Mach service categories. Referring to Figure 4, the
class library 402 includes:

(1) thread classes 404 for enabling an application to access in an object-oriented

manner operating system services to spawn, control, and obtain information relating to
threads; /

(2) task classes 406 for enabling an application to access in an object-oriented
manner operating system services to reference and control tasks, wherein the tasks each
represents an execution environment for threads respectively associated with the tasks;

(3) virtual memory classes 408 for enabling an application to access in an object-
oriented manner operating system services to access and manipulate virtual memory in
a computer;

(4) IPC classes 410 for enabling an application to access in an object-oriented
manner operating system services to communicate with other processes during run-
time execution of the application in a computer;

(5) synchronization classes 412 for enabling an application to access in an object-
oriented manner operating system services to synchronize execution of threads;

(6) scheduling classes 414 for enabling an application to access in an object-
oriented manner operating system services to schedule execution of threads;

(7) fault classes 416 for enabling an application to access in an object-oriented
manner operating system services to process system and user-defined processor faults;
and '

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-10-
(8) machine classes 418 for enabling an application to access in an object-oriented

manner operating system services to define and modify a host and processor sets.

The class library 402 may include additional classes for other service categories
that are offered by Mach in the future. For example, security services are currently
being developed for Mach. Accordingly, the class library 402 may also include security
classes 420 for enabling an application to access in an object-oriented manner operating
system security services. As will be appreciated, the exact number and type of classes
included in the class library 402 depends on the implementation of the underlying
operating system.

Operational Overview of a Preferred Embodiment

The operation of the present invention shall now be generally described with
reference to Figure 2, which illustrates a high-level operational flow chart 202 of the
present invention. The present invention is described in the context of executing the
object-oriented application 130A on the computer platform 102. In step 206, which is
the first substantive step of the flow chart 202, an object-oriented statement which
accesses a service provided by the operating system 114 is located in the application
130A during the execution of the application 130A on the computer platform 102. The
object-oriented statement is defined by the object-oriented class library 402. For
example, the object-oriented statement may reference a method defined by one of the
classes of the class library 402. The following steps describe the manner in which the
statement is executed by the computer platform 102.

In step 208, the object-oriented statement is translated to a procedural function
call compatible with the native procedural interface of the operating system 114 and
corresponding to the object-oriented statement. In performing step 208, the statement
is translated to the computer program logic from the code library 110 which
implements the method referenced in the statement. As noted above, the method
includes at least one procedural function call which is compatible with the native
procedural interface of the operating system 114. In step 210, the procedural function
call from step 208 is executed in the computer platform 102 to thereby cause the
operating system 114 to provide the service on behalf of the application 130A. Step 210
is performed by executing the method discussed in step 208, thereby causing the
procedural function call to be invoked.

The operation of a preferred embodiment shall now be described in more detail
with reference to Figure 3, which illustrates a detailed operational flow chart 302 of the
present invention. Again, the present invention is described in the context of executing

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-11-
the object-oriented application 130A on the computer platform 102. More particularly,

the present invention is described in the context of executing a single object-oriented
statement of the object-oriented application 130A on the computer platform 102. The
application 130A includes statements which access services provided by the operating
system 114, and it is assumed that such statements are defined by the class library 402
(in other words, the programmer created the application 130A with reference to the
class library 402). As will be discussed in greater detail below, the executable entity in
the Mach micro-kernel is called a thread. The processing organization entity in the
Mach micro-kernel is called a task. A task includes one or more threads (which may
execute in parallel), and an address space which represents a block of virtual memory
in which the task's threads can execute. At any time, there may be multiple tasks active
on the computer platform 102. When executing on the computer platform 102, the
application 130A could represent an entire task (having one or more threads), or could
represent a few threads which are part of a task (in this case, the task would have other
threads which may or may not be related to the operation of the application 130A). The
scope of the present invention encompasses the case when the application 130A is an
entire task, or just a few threads of a task.

Referring now to Figure 3, in step 308, it is determined whether the computer
program logic (also called computer code) from the code library 110 which implements
the method referenced in the statement is present in the task address space associated
with the application 130A. If the computer program logic is present in the task address
space, then step 316 is processed (described below). If the computer program logic is
not present in the task address space, then the computer program logic is transferred to
the task address space in steps 310, 312, and 314. In step 310, it is determined whether
the library server (not shown) associated with the code library 110 is known. The code
library 110 may represent multiple code libraries (not shown) related to the wrapper
128, wherein each of the code libraries include the computer program logic for one of
the object-oriented classes of the class library 402. As those skilled in the relevant art
will appreciate, there may also be other code libraries (not shown) complletely
unrelated to the wrapper 128.

Associated with the code libraries are library servers, each of which manages the
resources of a designated code library. A processing entity which desires access to the
computer program logic of a code library makes a request to the code library's library
server. The request may include, for example, a description of the desired computer
program logic and a destination address to which the computer program logic should
be sent. The library server processes the request by accessing the desired computer
program logic from the code library and sending the desired computer program logic

SUBSTITUTE SHEET (RULE 26) -

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-12-
to the area of memory designated by the destination address. The structure and

operation of library servers are well known to those skilled in the relevant art. Thus, in
step 310 it is determined whether the library server associated with the code library 110
which contains the relevant computer program logic is known. Step 310 is performed,
for example, by referencing a library server table which identifies the known library
servers and the code libraries which they service. If the library server is known, then
step 314 is processed (discussed below). Otherwise, step 312 is processed. In step 312,
the library server associated with the code library 110 is identified. The identity of the
library server may be apparent, for example, from the content of the object-oriented
statement which is being processed.

After the library server associated with the code library 110 is identified, or if the
library server was already known, then step 314 is processed. In step 314, a request is
sent to the library server asking the library server to copy the computer program logic
associated with the method reference in the statement to the task address space. Upon -
completion of step 314, the library server has copied the requested computer program
logic to the task address space. Preferably, the code library 110 is a shared library.

That is, the code library 110 may be simultaneously accessed by multiple threads.
However, preferably the computer program logic of the code library 110 is physically
stored in only one physical memory area. The library server virtually copies computer
program logic from the code library 110 to task address spaces. That is, instead of
physically copying computer program logic from one part of physical memory to
another, the library server places in the task address space a pointer to the physical
memory area containing the relevant computer program logic. In step 316, the
computer program logic associated with the object-oriented statement is executed on

the computer platform 102. As noted above, in the case where the object-oriented

statement accesses the operating system 114, the computer program logic associated
with the method contains at least one procedural function call which is compatible with
the native procedural interface of the operating system 114. Thus, by executing the
method's computer program logic, the procedural function call is invoked and
executed, thereby causing the operating system 114 to provide the service on behalf of
the application 130A. |

The above-described performance in the computer platform 102 of steps 306,
308, 310, 312, and 314 is due, in large part, to the run-time environment established in
the computer platform 102. As will be appreciated by those skilled in the relevant art,
the run-time environment of the computer platform 102 is defined by the run-time
conventions of the particular compiler which compiles the application program 130A.
For example, the run-time conventions may specify that when an instruction accessing

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 ‘ PCT/US94/00133

-13-
an operating system service is encountered, corresponding code from the code library

110 should be transferred to the task address space (via the associated library server)
and executed. Compiler run-time conventions are generally well known. As will be
appreciated, run-time conventions are specific to the particular compilers used. The
run-time conventions for use with the present invention and with a particular compiler
would be apparent to one skilled in the art based on the disclosure of the present
invention contained herein, particularly to the disclosure associated with the flow chart
302 in Fig. 3. As described above, the wrapper 128 of the present invention is
implemented as a code library 110 which includes computer program logic
implementing the object-oriented class library 402. Alternatively, the wrapper 128 may
be implemented as a hardware mechanism which essentially operates in accordance
with the flow chart 302 of Figure 3 to translate object-oriented statements (defined by
the class library 402) in application programs to procedural function calls compatible
with the procedural interface of the operating system 114. Or, the wrapper 128 may be
implemented as a background software process operating on the computer platform
102 which captures all accesses to the operating system 114 (made by object-oriented
statements defined by the class library 402) and which translates the accesses to
procedural function calls compatible with the procedural interface of the operating
system 114. Other implementations of the wrapper 128 will be apparent to those
skilled in the relevant art based on the disclosure of the present invention contained
herein.

Mach Services

This section provides an overview of the abstractions and services provided by
the Mach micro-kernel. The services are described for each of the major areas of the
Mach micro-kernel. As noted above, these include: threads, tasks, virtual memory,
IPC, scheduling, synchronization services, hardware faults, and host/ privilege services
(also called machine services). The Mach micro-kernel is further discussed in many
publicly available documents, including: K. Loepere, editor, "Mach 3 Kernel
Principles", Open Software Foundation and Carnegie Mellon University, Draft Industrial
Specification, September 1992 and November 1992; K. Loepere, editor, "Mach 3 Kernel
Interfaces", Open Software Foundation and Carnegie Mellon University, Draft Industrial
Specification, September 1992 and November 1992; K. Loepere, editor, "Mach 3 Server
Writer's Guide", Open Software Foundation and Carnegie Mellon University, Draft Industrial
Specification, September 1992 and November 1992; K. Loepere, editor, "Mach 3 Server
Writer's Interfaces", Open Software Foundation and Carnegie Mellon University, Draft
Industrial Specification, September 1992 and November 1992; A. Silberschatz, J. Peterson,
P. Galvin, Operating System Concepts, Addison-Wesley, July 1992; and A. Tanenbaum,
Modern Operating Systems, Prentice Hall, 1992.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-14-
Threads

The executable entity in Mach is known as a thread. Threads have several
aspects that enable them to execute in the system. A thread is always contained in a
task, which represents most of the major resources (e.g., address space) of which the
thread can make use. A thread has an execution state, which is basically the set of
machine registers and other data that make up its context. A thread is always in one of
several scheduling states: executing, ready to execute, or blocked for some reason.
Threads are intended to be light-weight execution entities. This is to encourage the
programmer to make use of multiple threads in applications, thus introducing more
concurrency into the system than has been found in traditional operating systems.
Although threads are not without some cost, they really are fairly minimal and the
typical application or server in a Mach environment can take advantage of this
capability.

Threads do have some elements associated with them, however. The containing
task and address space, as well as the execution state, have already been discussed.
Each thread has a scheduling policy, which determines when and how often the thread
will be given a processor on which to run. The scheduling services are discussed in
more detail in a later section. Closely tied to the schéduling policy of a thread is the
optional processor set designation, which can be used in systems with multiple
processors to more closely control the assignment of threads to processors for
potentially greater application performance. As indicated before, an address space
(task) can contain zero or more threads, which execute concurrently. The kernel makes
no assumptioné about the relationship of the threads in an address space or, indeed, in
the entire system. Rather, it schedules and executes the threads according to the
scheduling parameters associated with them and the available processor resources in
the system. In particular, there is no arrangement (e.g., hierarchical) of threads in an
address space and no assumptions about how they are to interact with each other. In
order to control the order of execution and the coordination of threads to some useful
end, Mach provides several synchronization mechanisms. The simplest (and coarsest)
mechanism is thread-level suspend and resume operations. Each thread has a suspend
count, which is incremented and decremented by these operations. A thread whose
suspend count is positive remains blocked until the count goes to zero.

Finer synchronization can be obtained through the use of synchronization
objects (semaphores or monitors and conditions), which allow a variety of different
synchronization styles to be used. Threads can also interact via inter-process
communication (IPC). Each of these services is described in more detail in later
sections. Basic operations exist to support creation, termination, and getting and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-15-
setting attributes for threads. Several other control operations exist on threads that can

be performed by any thread that has a send right to the intended thread's control port.
Threads can be terminated explicitly. They can also be interrupted from the various
possible wait situations and caused to resume execution with an indication that they
were interrupted. Threads can also be "wired", which means that they are marked as
privileged with respect to kernel resources, i.e., they can consume physical memory
when free memory is scarce. This is used for threads in the default page-out path.
Finally, threads also have several important IPC ports (more precisely, the send or
receive rights to these ports), which are used for certain functions. In particular, each
thread has a thread self port, which can be used to perform certain operations on the
thread by itself. A thread also has a set of fault ports which is used when the thread
encounters a processor fault during its execution. There is also a distinguished port
that can be used for gathering samples of the thread's execution state for monitoring by
other threads such as debuggers or program profilers.

Tasks

The basic organizational entity in Mach for which resources are managed is
known as a task. Tasks have many objects and attributes associated with them. A task
fundamentally comprises three things. A task contains multiple threads, which are the
executable entities in the system. A task also has an address space, which represents
virtual memory in whichrits threads can execute. And a task has a port name space,
which represents the valid IPC ports through which threads can communicate with
other threads in the system. Each of these fundamental objects in a task is discussed in
greater detail in the following sections. Note that a task is not, of itself, an executable
entity in Mach. However, tasks can contain threads, which are the execution entities.

- A task has a number of other entities associated with it besides the fundamental ones

noted above. Several of these entities have to do with scheduling decisions the kernel
needs to make for the threads contained by the task. Thescheduling parameters, processor
set designation, and host information all contribute to the scheduling of the task's
threads. A task also has a number of distinguished interprocess communication ports
that serve certain pre-defined functions. Ports and other aspects of interprocess
communication are discussed at length in a later section. For now, it is sufficient to
know that port resources are accumulated over time in a task. Most of these are
managed explicitly by the programmer. The distinguished ports mentioned above
generally have to do with establishing connections to several important functions in the
system. Mach supplies three “special” ports with each task. The first is the task self port,
which can be used to ask the kernel to perform certain operations on the task. The
second special port is the bootstrap port, which can be used for anything (it's OS

~ SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-16-
environment-specific) but generally serves to locate other services. The third special

port that each task has is the host name port, which allows the task to obtain certain
information about the machine on which it is running. Additionally, Mach supplies
several "registered” ports with each task that allow the threads contained in the task to
communicate with certain higher-level servers in the system (e.g., the Network Name
Server, the "Service" Server, and the Environment Server).

Two other useful sets of ports exist for each task that allow fault processing and
program state sampling to be performed. The fault ports of a task provide a common
place for processor faults encountered by threads in the task to be processed. Fault
processing is described more fully in a later section. The PC sample port allows profiling
tools to repeatedly monitor the execution state of the threads in the task. Many
operations are possible for tasks. Tasks can be created and terminated. Creation of a
new task involves specifying some existing task as a prototype for the initial contents of
the address space of the new task. A task can also be terminated, which causes all of
the contained threads to be terminated as well. The threads contained in a task can be
enumerated and information about the threads can be extracted. Coarse-grain
execution of a task (more precisely, the threads in the task) can be controlled through
suspend and resume operations. Each task has a suspend count that is incremented
and decremented by the suspend and resume operations. The threads in the task can
execute as long as the suspend count for the containing task is zero. When the suspend
count is positive, all threads in the task will be blocked until the task is subsequently
resumed. Finally, the various parameters and attributes associated with a task (e.g.,
scheduling priority) can be queried and set as desired.

Virtual Memory

Mach supports several features in its virtual memory (VM) subsystem. Both the
external client interfaces as well as the internal implementation offer features that are
not found in many other operating systems. In broadest terms, the Mach virtual
memory system supports a large sparsely populated virtual address space for each of
the tasks running in the system. Clients are provided with general services for
managing the composition of the address space. Some aspects of the VM system are
actually implemented by components that are outside of the micro-kernel, which
allows great flexibility in tailoring certain policy functions to different system
environments. The internal architecture of the Mach VM system has been divided into
machine-independent and machine-dependent modules for maximum portability.
Porting to a new processor/MMU architecture is generally a small matter of
implementing a number of functions that manipulate the basic hardware MMU
structures. Mach has been ported to a number of different processor architectures

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-17-
attesting to the portability of the overall kernel and the virtual memory system in

particular. The address space of a Mach task contains a number of virtual memory
regions. These regions are pieces of virtual address space that have been allocated in
various ways for use by the task. They are the only locations where memory can be
legitimately accessed. All references to addresses outside of the defined regions in the
address space will result in an improper memory reference fault. A virtual memory
region has several interesting attributes. It has a page-aligned starting address and a
size, which must be a multiple of the system page size. The pages in the region all have
the same access protections; these access protections can be read-only, read-write, or
execute. The pages in a region also have the same inheritance characteristic, which
may be used when a new task is created from the current task. The inheritance
characteristic for pages in a region can be set to indicate that a new task should inherit a
read-write copy of the region, that it should inherit a virtual copy of the region, or that
it should inherit no copy of the region. A read-write copy of a region in a new address
space provides a fully shared mapping of the region between the tasks, while a virtual
copy provides a copy-on-write mapping that essentially gives each task its own copy of
the region but with efficient copy-on-write sharing of the pages constituting the region.

Every virtual memory region is really a mapping of an abstract entity known as
a memory object. A memory object is simply a collection of data that can be addressed in
some byte-wise fashion and about which the kernel makes no assumptions. It is best
thought of as some pure i)iece of data that can either be explicitly stored some place or
can be produced in some fashion as needed. Many different things can serve as
memory objects. Some familiar examples include files, ROMs, disk partitions, or fonts.
Memory objects have no pre-defined operations or protocol that they are expected to
follow. The data contained in a memory object can only be accessed when it has been
tied to a VM region through mapping. After a memory object has been mapped to a
region, the data can be accessed via normal memory read and write (load and store)
operations. A memory object is generally managed by a special task known as an
external memory manager or pager. A pager is a task that executes outside of the micro-
kernel much like any other task in the system. It is a user-mode entity whose job is to
handle certain requests for the data of the memory objects it supports. As threads in a
client task reference the pages in a given region, the kernel logically fills the pages with
the data from the corresponding byte addresses in the associated memory object. To
accomplish this the kernel actually engages in a well-defined (and onerous) protocol
with the pager whenever it needs to get data for page faults or when it needs to page-
out data due to page replacements. This protocol, which is known as the External
Memory Management Interface (or EMMI), also handles the initialization sequences for
memory objects when they are mapped by client tasks and the termination sequences

 SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-18-
when any associated memory regions are deallocated by client tasks.

There can be any number of pagers running in the system depending on which
memory objects are in use by the various client tasks. Pagers will typically be
associated with the various file systems that are mounted at a given time, for example.
Pagers could also exist to support certain database applications, which might have
needs for operations beyond what is supported by the file system. Pagers could also
exist for certain servers that wish to supply data to their clients in non-standard ways
(e.g., generating the data computationally rather than retrieving it from a storage
subsystem). The micro-kernel always expects to have a certain distinguished pager
known as the default pager running in the system. The default pager is responsible for
managing the memory objects associated with anonymous virtual memory such stacks,
heaps, etc. Such memory is temporary and only of use while a client task is running.
As described above, the main entities in the Mach VM system are regions, memory
objects, and pagers. Most clients, however, will deal with virtual memory through
operations on ranges of memory. A range can be a portion of a region or it could span
multiple contiguous regions in the address space. Operations are provided by Mach
that allow users to allocate new ranges of virtual memory in the address space and
deallocate ranges as desired. Another important operation allows a memory object to
be mapped into a range of virtual memory as described above. Operations are also
available to change the protections on ranges of memory, change the inheritance
characteristics, and wire (or lock) the pages of a range into physical memory. It is also
possible to read ranges of memory from another task or write into ranges in another
task provided that the control port for the task is available. Additional services are
available that allow the user to specify the expected reference pattern for a range of
memory. This can be used by the kernel as advice on ways to adapt the page
replacement policy to different situations. Yet another service is available to
synchronize (or flush) the contents of a range of memory with the memory object(s)
backing it. Finally services are available to obtain information about regions and to
enumerate the contents of a task's address space described in terms of the regions it
contains.

Interprocess Communication

Mach has four concepts that are central to its interprocess communications
facilities: Ports, Port Sets, Port Rights, and Messages. One of these concepts, Port Rights,
is also used by Mach as a means to identify certain common resources in the system
(such as threads, tasks, memory objects, etc.).

Ports

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-19-
Threads use ports to communicate with each other. A port is basically a message

queue inside the kernel that threads can add messages to or remove message from, if
they have the proper permissions to do so. These “permissions” are called port rights.
Other attributes associated with a port, besides port rights, include a limit on the
number of messages that can be enqueued on the port, a limit on the maximum size of
a message that can be sent to a port, and a count of how many rights to the port are in
existence. Ports exist solely in the kernel and can only be manipulated via port rights.

Port Rights

A thread can add a message to a port’s message queue if it has a send right to that
port. Likewise, it can remove a message from a port’s message queue if it has a receive
right to that port. Port rights are considered to be resources of a task, not an individual
thread. There can be many send rights to a port (held by many different tasks);
however, there can only be one receive right to a port. In fact, a port is created by
allocating a receive right and a port is destroyed only when the receive right is
deallocated (either explicitly or implicitly when the task dies). In addition, the
attributes of a port are manipulated through the receive right. Multiple threads (on the
same or different tasks) can send to a port at the same time, and multiple threads (on
the same task) can receive from a port at the same time. Port rights act as a permission
or capability to send messages to or receive messages from a port, and thus they
implement a low-level form of security for the system. The “owner” of a port is the
task that holds the receive right. The only way for another task to get a send right fora
port is if it is explicitly given the right — either by the owner or by any task that holds a
valid send right for the port. This is primarily done by including the right in a message
and sending the message to another task. Giving a task a send right grants it
permission to send as many messages to the port as it wants. There is another kind of
port right called a send-once right that only allows the holder to send one message to the
port, at which time the send-once right become invalid and can’t be used again. Note
that ownership of a port can be transferred by sending the port’s receive right in a
message to another task.

Tasks acquire port rights either by creating them or receiving them in a message.
Receive rights can only be created explicitly (by doing a port allocate, as described
above); send rights can be created either explicitly from an existing send or receive
right or implicitly while being transmitted in a message. A send-once right can be
created explicitly or implicitly from a receive right only. When a right is sent in a
message the sender can specify that the right is either copied, moved, or a new right
created by the send operation. (Receive rights can only be moved, of course.) When a
right is moved, the sender looses the right and the receiver gains it. When copied, the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 : PCT/US94/00133

-20- -
sender retains the right but a copy of the right is created and given to the receiver.

When created, the sender provides a receive right and a new send or send-once right is
created and given to the receiver. When a task acquires a port right, by whatever
means, Mach assigns it a name. Note that ports themselves are not named, but their
port rights are. (Despite this fact, the creators of Mach decided to refer to the name of a
port right with the term port name , instead of the obvious port right name). This name is
a scalar value (32-bits on Intel machines) that is guaranteed unique only within a task
(which means that several tasks could each have a port name with the same numeric
value but that represent port rights to totally different ports) and is chosen at random.
Each distinct right held by a task does not necessarily have a distinct port name
assigned to it. Send-once rights always have a separate name for each right. Receive
and send rights that refer to the same port, however, will have the same name.

Port rights have several attributes associated with them: the type of the right
(send, send-once, receive, port set, or dead name), and a reference count for each of the
above types of rights. When a task acquires a right for a port to which it already has
send or receive rights, the corresponding reference count for the associated port name
is incremented. A port name becomes a dead name when its associated port is
destroyed. That is, all port names representing send or send-once rights for a port
whose receive right is deallocated become dead names. A task can request notification
when one of its rights becomes dead. The kernel keeps a system-wide count of the
number of send and send-once rights for each port. Any task that holds a receive right
(such as a server) can request a notification message be sent when this number goes to
zero, indicating that there are no more senders (clients) for the port. This is called a no
more senders notification. The request must include a send right for a port to which the
notification should be sent.

Port Sets

Port sets provide the ability to receive from a collection of ports simultaneously.
That is, receive rights can be added to a port set such that when a receive is done on the
port set, a message will be received from one of the ports in the set. The name of the
receive right whose port provided the message is reported by the receive operation.

Messages

A Mach IPC message comprises a header and an in-line data portion, and
optionally some out-of-line memory regions and port rights. If the message contains
neither port rights nor out-of-line memory, then it is said to be a simple message;
otherwise it is a complex message. A simple message contains the message header

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

21-
directly followed by the in-line data portion. The message header contains a

destination port send right, an optional send right to which a reply may be sent
(usually a send-once right), and the length of the data portion of the message. The in-
line data is of variable length (subject to a maximum specified on a per-port basis) and
is copied without interpretation. A complex message consists of a message header
(with the same format as for a simple message), followed by: a count of the number of
out-of-line memory regions and ports, disposition arrays describing the kernel’s
processing of these regions and ports, and arrays containing the out-of-line descriptors
and the port rights.

The poft right disposition array contains the desired processing of the right, i.e.,
whether it should be copied, made, or moved to the target task. The out-of-line
memory disposition array specifies for each memory range whether or not it should be
de-allocated when the message is queued, and whether the memory should be copied
into the receiving task’s address space or mapped into the receiving address space via a
virtual memory copy-on-right mechanism. The out-of-line descriptors specify the size,
address, and alignment of the out-of-line memory region. When a task receives a
message, the header, in-line data, and descriptor arrays are copied into the addresses
designated in the parameters to the receive call. If the message contains out-of-line
data, then virtual memory in the receiving task’s address space is automatically
allocated by the kernel to hold the out-of-line data. It is the responsibility of the
receiving task to deallocate these memory regions when they gre done with the data.

Message Transmission Semantics

Mach IPC is basically asynchronous in nature. A thread sends a message to a
port and once the message is queued on the port the sending thread continues
execution. A receive on a port will block if there are no messages queued on the port.
For efficiency there is a combined send/receive call that will send a message and
immediately block waiting for a message on a specified reply port (providing a
synchronous model). A time-out can be set on all message operations which will abort
the operation if the message is unable to be sent (or if no message is available to be
received) within the specified time period. A send call will block if it uses a send-right
whose corresponding port has reached its maximum number of messages. If a send
uses a send-once right, the message is guaranteed to be queued even if the port is full.
Message delivery is reliable, and messages are guaranteed to be received in the order
they are sent. Note that there is special-case code in Mach which optimizes for the
synchronous model over the asynchronous model; the fastest IPC round-trip time is
achieved by a server doing a receive followed by repeated send/receive’s in a loop and

the client doing corresponding send/receive’s in a loop on its side.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-22-
Port Rights as Identifiers

Because the kernel guarantees both that port rights cannot be counterfeited and
that messages cannot be misdirected or falsified, port rights provide a very reliable and
secure identifier. Mach takes advantage of this by using port rights to represent almost
everything in the system, including tasks, threads, memory objects, external memory
managers, permissions to do system-privileged operations, processor allocations, and
so on. In addition, since the kernel can send and receive messages itself (it represents
itself as a “special” task), the majority of the kernel services are accessed via IPC
messages instead of system-call traps. This has allowed services to be migrated out of
the kernel fairly easily where appropriate.

Synchronization

Currently, Mach provides no direct support for synchronization capabilities.
However, conventional operating systems routinely provide synchronization services.
Such synchronization services employ many well-known mechanisms, such as
semaphores and monitors and conditions, which are described below. Semaphores are a
synchronization mechanism which allows both exclusive and shared access to a
resource. Semaphores can be acquired and released (in either an exclusive or shared
mode), and they can optionally specify time-out periods on the acquire operations.
Semaphores are optionally recoverable-in the sense that when a thread that is holding a
semaphore terminates frematurely, the counters associated with the semaphore are
adjusted and waiting threads are unblocked as appropriate.

Monitors and conditions are a synchronization mechanism which implements a
relatively more disciplined (and safer) style of synchronization than simple
semaphores. A monitor lock (also called a mutex) is essentially a binary semaphore
that enables mutually exclusive access to some data. Condition variables can be used
to wait for and signify the truth of certain programmer-defined Boolean expressions
within the context of the monitor. When a thread that holds a monitor lock needs to
wait for a condition, the monitor lock is relinquished and the thread is blocked. Later,
when a another thread that holds the lock notifies that the condition is true, a waiting
thread is unblocked and then re-acquires the lock before continuing execution. A
thread can also perform a broadcast operation on a condition, which unblocks all of the
threads waiting for that condition. Optional time-outs can also be set on the condition
wait operations to limit the time a thread will wait for the condition.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-23- -
Scheduling

Since Mach is multiprocessor capable, it provides for the scheduling of threads
in a multiprocessor environment. Mach defines processor sets to group processors and
it defines scheduling policies that can be associated with them. Mach provides two
scheduling policies: timeshare and fixed priority. The timeshare policy is based on the
exponential average of the threads' usage of the CPU. This policy also attempts to
optimize the time quantum based on the number of threads and processors. The fixed
priority policy does not alter the priority but does round-robin scheduling on the
threads that are at the same priority. A thread can use the default scheduling policy of
its processor set or explicitly use any one of the scheduling policies enabled for its
processor set. A maximum priority can be set for a processor set and thread. In Mach
the lower the priority value, the greater the urgency.

Faults

The Mach fault handling services are intended to provide a flexible mechanism
for handling both standard and user-defined processor faults. The standard kernel
facilities of threads, messages, and ports are used to provide the fault handling
mechanism. (This document uses the word “fault” where the Mach documentation
uses the word “exception”. Such terminology has been changed herein to distinguish
hardware faults from the exception mechanism of the C++ language). Threads and
task have fault port(s). They differ in their inheritance rules and are expected to be
used in slightly different ways. Error handling is expected to be done on a per-thread
basis and debugging is expected to be handled on a per-task basis. Task fault ports are
inherited from parént to child tasks, while thread fault ports are not inherited and
default to no handler. Thread fault handlers take precedence over task fault handlers.
When a thread causes a fault the kernel blocks the thread and sends a fault message to
the thread's fault handler via the fault port. A handler is a task that receives a message
from the fault port. The message contains information about the fault, the thread, and
the task causing the fault. The handler performs its function according to the type of
the fault. If appropriate, the handler can get and modify the execution state of the
thread that caused the fault. Possible actions are to clear the fault, to terminate the
thread, or to pass the fault on to the task-level handler. Faults are identified by types
and data. Mach defines some machine-independent fault types that are supported for
all Mach implementations (e.g., bad access, bad instruction, breakpoint, etc.). Other
fault types can be implementation dependent (e.g., f-line, co-processor violation, etc.).

| SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-24-
Host and Processor Sets

Mach exports the notion of the host, which is essentially an abstraction for the
computer on which it is executing. Various operations can be performed on the host
depending on the specific port rights that a task has for the host. Information that is
not sensitive can be obtained by any task that holds a send right to the host name port.
Examples of such information include the version of the kernel or the right to gain
access to the value of the system clock. Almost all other information is considered
sensitive, and a higher degree of privilege is required to get or manipulate the
information. This added level of privilege is implied when a task holds a send right to
the host control port (also known as the host privilege port). This right must be given out
very carefully and selectively to tasks, because having this right enables a task to do
virtually everything possible to the kernel, thus by-passing the security aspects of the
system supported by the IPC services. Various operations can be performed with this
added privilege, including altering the system's clock setting, obtaining overall
performance and resource usage statistics for the system, and causing the machine to
re-boot.

Mach also exports the notions of processors and processor sets, which allow tasks
to more carefully specify when and on what processors its threads should execute.
Processors and processor sets can be enumerated and controlled with the host privilege
port. A processor represents a particular processor in the system, and a processor set
represents a collection of processors. Services exist to create new processor sets and to
add processors to a set or remove them as desired. Services also exist to assign entire
tasks or particular threads to a set. Through these services a programmer can control
(on a coarse grain) when the threads and tasks that constitute an application actually
get to execute. This allows a programmer to specify when certain threads should be
executed in parallel in a processor set. The default assignment for tasks and threads
that do not explicitly use these capabilities is to the system default processor set, which
generally contains any processors in the system that aren't being used in other sets.

Security

Mach may include other categories of services in addition to those described
above. For example, Mach may include services relating to security. In accordance
with the Mach security services, every task carries a security token, which is a scalar
value that is uninterpreted by Mach. There is a port called the host security port that is
given to the bootstrap task and passed on to the trusted security sever. A task’s
security token can be set or changed by any task that holds a send right to the host
security port, while no special permissions are needed to determine the value of a tasks

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

25-
security token (other than holding the task’s control port, of course). At the time a

Mach IPC message is received, the security token of the sender of the message is
returned as one of the output parameters to the receive function. Tasks that hold the
host security port can send a message and assign a different security token to that
message, so that it appears to have come from another task. These services can be used
by upper layers of the system to implement various degrees of security.

Wrapper Class Library

This section provides an area-by-area description of the object-oriented interface
for the services provided by the Mach micro-kernel. This object-oriented interface to
the Mach services represents the wrapper class library 402 as implemented by the code
library 110. The wrapper class library 402 includes thread classes 404, task classes 406,
virtual memory classes 408, IPC classes 410, synchronization classes 412, scheduling
classes 414, fault classes 416, and machine classes 418 are discussed. The wrapper class
library 402 may include additional classes, such as security classes 420, depending on
the services provided by the underlying operating system 114. Each area is described
with a class diagram and text detailing the purpose and function of each class. Selected
methods are presented and defined (where appropriate, the parameter list of a method
is also provided). Thus, this section provides a complete operational definition and
description of the wrapper class library 402. The implementation of the methods of the
wrapper class library 402 is discussed in a later section.

The class diagrams are presented using the well-known Booch icons for
representing class relationships and cardinality. These Booch icons are presented in
Figure 17 for convenience purposes. The Booch icons are discussed in Object Oriented
Design With Applications by Grady Booch, referenced above. The wrapper class library
402 is preferably implemented using the well-known C++ computer programming
language. However, other programming languages could alternatively be used.
Preferably, the class descriptions are grouped into SPI (System Programming Interface),
API (Application Programming Interface), Internal, and “Noose” methods -- indicated
by #ifndef statements bracketing the code in question (or by comments for Noose
methods). SPI interfaces are specific to the particular computer platform being used.
For illustrative purposes, the wrapper class library 402 is presented and described
herein with respect to a computer platform operating in accordance with the IBM
MicroKernel (which is based on Mach Version 3.0) or compatible. Persons skilled in
the relevant art will find it apparent to modify the SPI classes to accommodate other
computer platforms based on the teachings contained herein.

API interfaces are included in the wrapper class library 402 regardless of the

- SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-26-
platform the system is running on. The Internal interfaces are intended for use only by

low-level implementors. The Noose methods are provided solely to enable an
application 130 operating with the wrapper 128 to communicate with an application

134 (or server) that was written to run on Mach 114 directly. They provide access to the
raw Mach facilities in such a way that they fall outside of the intended object-oriented
programming model established by the wrapper 128. Use of Noose methods is highly
discouraged. The SPI and API (and perhaps the Internal) classes and methods are
sufficient to implement any application, component, or subsystem.

Thread Classes

Figure 5 is a class diagram 501 of the thread classes 404 and the task classes 406.
The thread classes 404 provide an object-oriented interface to the tasking and threading
functionality of Mach 114. A number of the thread classes 404 are handle classes (so
noted by their name), which means that they represent a reference to the corresponding
kernel entity. The null constructors on the handle classes create an empty handle object.
An empty handle object does not initially correspond to any kernel entity -- it must be
initialized via streaming, an assignment, or a copy operation. Calling methods on an
empty handle will cause an exception to be thrown. Multiple copies of a handle object
can be made, each of which point to the same kernel entity. The handle objects are
internally reference-counted so that the kernel entity can be deleted when the last object
representing it is destroyed.

TThreadHandle is a concrete class that represents a thread entity in the system.
It provides the methods for controlling and determining information about the thread.
It also provides the mechanism for spawning new threads in the system. Control
operations include killing, suspending /resuming, and doing a death watch on it.
Constructing a TThreadHandle and passing in a TThreadProgram object causes a new
thread to be constructed on the current task. The first code run in the new thread are
the Prepare() and Run() methods of the TThreadProgram object. Destroying a
TThreadHandle does not destroy the thread it represents. There may also be a cancel
operation on the TThreadHandle object. Note that each TThreadHandle object contains
a send right to the control port for the thread. This information is not exported by the
interface, in general, but because it does contain a port right the only stream object a
TThreadProgram can be streamed into is a TIPCMessageStream. Attempting to stream
into other TStream objects will cause an exception to be thrown.

TThreadHandle provides a number of methods for use by debuggers and the runtime
environment, and for supporting interactions with Mach tasks running outside of the
environment established by the wrapper 128. These methods include getting and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 ‘ PCT/US94/00133

' -27-
setting the state of a thread, spawning an “empty” thread in another task, getting the

thread’s fault ports, returning a right to the thread’s control port, and creating a
TThreadHandle handle from a thread control port send right.

As noted above, the wrapper 128 establishes a computing environment in which
the applications 130 operate. For brevity, this computing environment established by
the wrapper 128 shall be called CE. With regard to the wrapper 128, TThreadHandle
spawns a CE runtime thread on the current task. A thread can also be spawned on
another task, instead of on the current task, by using the CreateThread methods in the
TTaskHandle class and in subclasses of TTaskHandle. (Creating a thread on another
task is not recommended as a general programming model, however.) To spawn a CE
thread on another CE task, the TCETaskHandle::CreateThread method is used by
passing it a TThreadProgram describing the thread to be run. To spawn a non-CE
thread (that is, a thread which does not operate in the computing environment
established by the wrapper 128), the CreateThread method is used on the appropriate
subclass of TTaskHandle (that is, the subclass of TTaskHandle that has been created to
operate with the other, non-CE computing environment). For example, to spawn an
IBM OS2 thread on an OS2 task, you might use a TOS2TaskHandle::CreateThread
method. It is not possible to run a CE thread on a non-CE task, nor is it possible to run
a non-CE thread on a CE task. '

TThreadHandle iricludes the following methods:

TThreadHandle (const TThreadProgramé& copyThreadCode): creates a new
thread in the calling task - makes an internal COPY of the TThreadProgram, which is
deleted upon termination of the thread.

TThreadHandle (TThreadProgram* adoptThreadCode): creates a new thread in
the calling task - ADOPTSs adoptThreadCode which is deleted upon termination of the
thread. The resources owned by the thread are also discarded. A copy of the
TThreadProgram is NOT made.

TThreadHandle (EExecution yourself) creates a thead handle for the calling
thread. '

TStream streams in a TThreadHandle object to a TIPCMessageStream.

CopyThreadSchedule () returns a pointer to the Scheduling object (e.g.,
TServerSchedule, TUISchedule etc) that is used to schedule the object. Allocates
memory for the TThreadSchedule object which has to be disposed of by the caller.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

8-
SetThreadSchedule (const TThreadSchedule& newSchedule) sets the scheduling

object in the thread to the newSchedule object. This allows one to control the way a
thread is scheduled -

GetScheduleState (TThreadHandle& theBlockedOnThread) allows one to query
the current state of the thread (theBlockedOnThread) on which this thread is blocked.

CancelWaitAndPostException () const causes a blocking kernel call to be
unblocked and a TKernelException to be thrown in the thread (*this).

WaitForDeathOf () const performs death watch on the thread - blocks calling
thread until the thread (*this) terminates. CreateDeathInterest () creates a notification
interest for the death of the thread (*this). When the thread terminates the specified
TInterest gets a notification.

TThreadProgram is an abstract base class that encapsulates all the information
required to create a new thread. This includes the code to be executed, scheduling
information, and the thread’s stack. To use, it must be subclassed and the Begin and
Run methods overridden, and then an instantiation of the object passed into the
constructor for TThreadHandle to spawn a thread. The Begin routine is provided to aid
startup synchronization; Begin is executed in the new thread before the TThreadHandle
constructor completes, and the Run routine is executed after the TThreadHandle
constructor completes. The methods CopyThreadSchedule and GetStackSize return the
default thread schedule and stack size. To provide values different from the default,
these methods should be overridden to return the desired thread schedule and /or stack
size. TThreadProgram includes the following methods:

TThreadProgram (const TTexté& taskDescription): TaskDescription provides a
text description of a task that can be access via the TTaskHandle::GetTaskDescription
method. Only in effect if the object is passed a TTaskHandle constructor. If default
constructor is used instead, the interface will synthesize a unique name for
TTaskHandle::GetTaskDescription to return.

GetStackSize () returns the size of the stack to be set up for the thread. Override
this method if you don’t want the “default” stack size.

GetStack (): Used to set up the thread’s stack. Override this method if you want
to provide your own stack.

Run () represents the entry point for the code to be run in the thread. OVERRIDE
THIS METHOD to provide the code the thread is to execute.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

229
Task Classes

See Figure 5 for a class diagram of the task classes 406.

TTaskHandle is a concrete base class that encapsulates all the attributes and
operations of a basic Mach task. It can be used to refer to and control any task on the
system. TTaskHandle cannot be used directly to create a task, however, because it
doesn’t have any knowledge about any runtime environment. It does provide
sufficient protocol, via protected methods, for subclasses with specific runtime
knowledge to be created that can spawn tasks (TCETaskHandle, below, is an example
of such a class). TTaskHandle objects can only be streamed into and out of
TIPCMessageStreams and sent via IPC to other tasks, and they are returned in a
collection associated with TCETaskHandle. The task control operations associated with
a TTaskHandle include killing the task, suspending and resuming the task, and doing a
deathwatch on the task. The informational methods include getting its host, getting
and setting its registered ports, enumerating its ports or virtual memory regions,
getting its fault ports, enumerating its threads, etc. TTaskHandle includes the
following methods:

TTaskHandle (EExecutionThread) creates a task handle for the specified thread.

Suspend () suspends the task (i.e., all threads contained by the task). Resume ()
resumes the task (i.e., all threads contained by the task).

Kill () terminates the task - all threads contained by the task are terminated.

WaitForDeathOf () performs death watch on the task - The calling thread blocks
until the task (*this) terminates. CreateDeathInterest () creates a notification interest for
the death of the task. The thread specified in the TInterest object gets a notification
when the task (*this) terminates.

AllocateMemory (size_t howManyBytes, TMemorySurrogate& newRange)
allocates a range of (anonymous) virtual memory anywhere in the task's address space.
The desired size in bytes is specified in howManyBytes. The starting address (after
page alignment) and actual size of the newly allocated memory are returned in
newRange.

AllocateReserved AddressMemory (const TMemorySurrogate& range,
TMemorySurrogate& newRange) allocates a range of (anonymous) virtual memory at a
specified reserved address in the task's address space. The range argument specifies
the address and size of the request. The newRange returns the page aligned address

SUBST ITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 ' PCT/US94/00133

and size of the allocated memory.

GetRemotePorts (TCollection<TRemotePortRightHandle>& thePortSet) gets list
of ports on *this task. The caller is responsible for de-allocating the memory in the
returned Collection.

virtual void CreateFaultAssociationCollection (TCollection<FaultAssociation>& -
where) return Fault Ports registered for this Task.

TCETaskHandle is a subclass of TTaskHandle that represents a Mach task
executing with the CE runtime system (recall that that CE represents the computing
environment established by the wrapper 128), and embodies all the knowledge
required to set up the CE object environment. It can be used to spawn a new task by
passing a TThreadProgram into its constructor. The new task is created with a single
thread, which is described by the TThreadProgram object passed into the
TCETaskHandle constructor. There is also a constructor that will allow a
TCETaskHandle to be constructed from a TTaskHandle. To insure that a non-CE-
runtime task is not wrapped with a TCETaskHandle, the constructor consults the CE
loader/library server (that is, the loader/library server operating in the CE
environment) to make sure the task being wrapped has been registered with it. This is
done automatically (without any user intervention). TCETaskHandle includes the
following methods:

TCETaskHandle (const TThreadProgramé& whatToRun) creates a new task and a
thread to execute specified code. The new thread executes the code in 'whatToRun'.

TCETaskHandle (EExecutionTask) wraps task of currently executing thread.

TCETaskHandle (const TThreadProgramé& whatToRun, const
TOrderedCollection<TLibrarySearcher>& librarySearchers) creates a new task and a
thread to execute specified code with specified ibrary search. The librarysearchers
specifies the list of libraries to be used for resolving names.

TCETaskHandle (const TTaskHandle& aTask) creates a CE task object from a
generic task object.

AddLibrarySearcher (const TLibrarySearcher& newLibSearcher) adds a library
searcher for the task - loader uses newLibrarySearcher first to resolve lib referneces i.e.
the newLibrarySearcher is put on the top of the collection used to resolve references.

GetTaskDescription (TText& description) const returns a string description of
the task - gets the string from the associated TThreadProgram of the root thread (passed

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

31-
to constructor). The string is guaranteed to be unique, and a string will be synthesized

by the interface if no description is passed to the TThreadProgram constructor.

NotifyUponCreation (TInterest* notifyMe) synchronously notifies the caller of
every new task creation in the system. There is no (*this) task object involved. The task
from which this call originates is the receiver of the notification.

Virtual Memory Classes

Figure 6 is a class diagram 601 for the virtual memory classes 408. Note that
TTaskHandle is a class that represents a task. TTaskHandle has already been discussed
under the Task classes 406 section. For virtual memory operations, objects of type
TTaskHandle serve to specify the address space in which the operation is to occur.
Most of the virtual memory operations that can be performed in Mach are represented
as methods of TTaskHandle. The various methods of TTaskHandle that operate on
virtual memory take TMemorySurrogate objects as parameters. See the various
methods under the TTaskHandle description for further details. A number of the
memory classes have copy constructors and /or assignment operators. It should be
noted that the memory classes contain references to the memory and not the actual
memory itself. Therefore when memory class objects are copied or streamed, only the
references within them are copied and not the actual memory. The TMemorySurrogate
class contains explicit methods for doing copies of the memory it references.

TMemorySurrogate is a class that represents a contiguous range of memory in
the virtual address space. It has a starting address and a size (in bytes).
TMemorySurrogates can be used to specify ranges of memory on which certain
operations are to be performed. They are typically supplied as arguments to methods
of TTaskHandle that manipulate the virtual memory in the address spacé associated
with the task. This class is used to specify/supply a region of memory with a specific
size. The class itself does not allocate any memory. It just encapsulates existing
memory. It is the responsibility of the caller to provide the actual memory specified in
this class (the argument to the constructor). This class is NOT subclassable.

TChunkyMemory is an abstract base class that manages memory in chunks of a
specified size. Memory is allocated in chunks (of the specified chunkSize), but the user
still views the memory as a series of bytes. TChunkyMemory includes the following
methods:

LocateChunk (size_t where, TMemorySurrogate& theContainingRange) looks up
in the collection of chunks and returns in theContainingRange the address of the
memory and the chunksize. '

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-32-
CutBackTo (size_t where) cuts back to the chunk containing "where" i.e. the

chunk at the offset where will become the last chunk in the list.

AllocateMemoryChunk (TMemorySurrogate& theAllocatedRange) is called by
clients to allocate new chunks of memory as needed. Returns the allocated range.

THeapChunkyMemory is a concrete class that manages chunky memory on a heap.

TVMChunkymemory is a concrete class that manages chunky memory using virtual
memory.

TMemoryRegionInfo is a class used with virtual memory regions in a task’s address
space. It provides memory attribute information (like Inheritance, Protection etc.). It
also provides access to the memory object associated with the region of memory and to
the actual memory range encapsulated in the memory region. Nested inside
TMemoryRegionInfo is the TMemoryAttributeBundle class that defines all the
memory attributes of any memory region. This is useful when one wants to get/set all
the memory attributes (or to re-use memory attributes with minimal changes).
TMemoryAttributeBundle is also used in the class TTaskHandle to deal with mapping
memory obijects into a task’s address space. TMemoryRegionInfo includes the
following methods:

EMemoryProtection { kReadOnly, kReadWrite, kExecute } specifies the
protection for the memory.

EMemoryInheritance { kDontInherit, kReadWriteInherit, kCopyInherit }
specifies the inheritance attribute for the memory.

EMemoryBehavior { kReferenceSequential, kReferenceReverseSequential,
kReferenceRandom} specifies how memory might be referenced.

EMemoryAttribute { kCacheable, kMigrateable } specifies how machine specific
properties of memory might be managed.

EMemoryAdvice { kWillUse, kWontUse }specifies how memory will be used.

TMemoryObjectHandle is a base class that represents the notion of a Mach
memory object. It embodies the piece of data that can be mapped into virtual memory.
System servers that provide TMemoryObjectHand]es to clients will subclass from
TMemoryObjectHandle in order to define specific types of memory objects such as
files, device partitions, etc. For the client of general virtual memory services, the main
use of TMemoryObjectHandle and the various subclasses is to provide a common type

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-33- -
and protocol for data that can be mapped into a task's address space.

TChunkyStream is a concrete class (derived from TRandomAccessStream) that
embodies a random access stream backed by chunks of memory. The chunk size can be
specified or a default used. The chunks can be enumerated. This class provides a
common function of theTMemory class without incurring the overhead of maintaining
the memory as contiguous. If the remaining functionality of TMemory is required
other classes could be defined.

TContiguousMemoryStream is a concrete class that uses contiguous memory
(supplied by the client). Since it is derived from TRandomAccessStream, all random
access operations (like Seek()) are applicable to TContiguousMemoryStream objects.

InterProcess Communication (IPC) Classes

The IPC classes 410 represent the Mach IPC message abstraction. Note that all
messaging behavior is on the message classes; the port right classes are basically for
addressing the message. The usage model is preferably as follows: A
TIPCMessageStream is instantiated, objects are streamed into it, and the

- TIPCMessageStream::Send method is called with an object representing a destination

send-right passed as an argument. To receive a message, a TIPCMessageStream is
instantiated and its Receive method called, passing in a receive-right object as an
argument. When the Receive returns, objects can be streamed out of the
TIPCMessageStream object. Note that the TIPCMessageStream objects are reusable. A
more detailed description of the IPC classes 410 follow with reference to Figure 7,which
illustrates a class diagram 702 of IPC message classes, Figure 8 which illustrates a class
diagram 802 of IPC out-of-line memory region classes, andFigure 9 which illustrates a
class diagram 902 of IPC port right classes.

Message Classes

MIPCMessage is an abstract base class that represents a Mach IPC message. It
provides all the methods for setting up the fields of the header, the disposition array,
and the port and out-of-line memory arrays. It also contains all the protocol for
message sending and receiving. It provides rudimentary protocol (exported as a
protected interface) to child classes for setting up the in-line message data. The classes
TIPCMessageStream and TIPCPrimitiveMessage derive from this class, and provide
the public methods for adding data to the message. MIPCMessage includes the
following methods:

GetReplyPort (TPortSendSideHandle& replyPort) is valid for receive side only.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-34-
Returns a reply port object, if one was sent with the message. Only returns it the first

time this is called after message is received. Otherwise returns false.

TSecurityToken GetSendersSecurityToken() is valid for receive side only.
Returns the security token of the task that sent this message.

SetSendersSecurity Token(const TSecurityToken& impostorSecurityToken,const -
TPortSendRighté& hostSecurityPort) is valid for send side only. The next time the
message is sent, it will carry the specified security token instead of the one for the task
that actually does the send. Takes effect ONLY FOR THE NEXT SEND, and then
reverts back to the actual sender’s security token value.

Methods for sending/ recéiving IPC messages (Note that all these methods have
an optional TTime timeout value. If you don’t want a timeout, specify
kPositiveInfinity. All these methods replace any existing value for reply port in msg
header. For those methods that allow specification of a reply port, the disposition of
the reply port right, as well as the port right itself, is passed via a
MIPCMessage::TReplyPortDisposition object. This is the only way to set the reply port,
since the disposition state is only valid for the duration of the send. Objects for port
rights whose dispositions are MOVE become invalid once the send takes place.):

Send (const TPortSendSideHandle& destinationPort, const TTimeé& timeout =
kPositivelnfinity) is a one-way, asynchronous send.

Send (const TPortSendSideHandle& destinationPort, const
TReplyPortDisposition& replyPort, const TTime& timeout = kPositivelnfinity) is an
asynchronous send, with send (-once) reply port specified.

Receive (const TPortReceiveSideHandle& sourcePort, const TTime& timeout =
kPositivelnfinity) is a "blocking" receive.

Send AndReceive (const TPortSendSideHandle& sendPort, const
TPortReceiveSideHandle& receivePort, const TTime& timeout = kPositiveInfinity)
sends a message, blocks and receives a reply (reply port is a send-once right
constructed from receivePort).

Send AndReceive (const TPortSendSideHandle& sendPort, const
TPortReceiveSideHandle& receivePort, MIPCMessageé& receiveMsg, const TTime&
timeout = kPositiveInfinity) send message, block and receive reply(reply port is a send-

~ once right constructed from receivePort). Message is received into a new message

object to avoid overwrite.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-35-
Reply AndReceive (const TPortSendSideHandle& replyToPort, const

TPortReceiveSideHandle& receivePort, const TTime& timeout = kPositivelnfinity):
sends back a reply, blocks and receives a new message.

ReplyAndReceive (const TPortSendSideHandle& replyToPort, const
TPortReceiveSideHandle& receivePort, MIPCMessage& receiveMsg, const TTime&
timeout = kPositivelnfinity) sends back a reply, blocks and receives a new message.

Subclasses' methods for getting/setting port right fields in header (Remote and Local
Ports: On SEND side, REMOTE PORT specifies the destination port, and LOCAL
PORT specifies the reply port. On RECEIVE side, REMOTE PORT specifies the reply
port (port to be replied to) and LOCAL PORT specifies the port received from. The way
the port was (or is to be) transmitted is returned in theDisposition. It can have values:
MACH_MSG_TYPE_(MOVE_RECEIVE, MOVE_SEND, MOVE_SEND_ONCE,
COPY_SEND, MAKE_SEND, MAKE_SEND_ONCE}.):

GetRemotePort: pass in the remote port right, and specify the disposition.
PORT RIGHT methods:

MovePortRightDescriptor: sender is giving away the port right to the
destination. Works on Send, SendOnce, and Receive rights.

CopyPortSendRightDescriptor: sender is creating a copy of the send right at the
destination.

MakePortSendRightDescriptor: a new send right will be created at the
destination.

MakePortSendOnceRightDescriptor: a new send once right will be created at the
destination.

TIPCMessageStream is a concrete class that provides a stream-based IPC
messaging abstraction. This is the recommended class to be used for IPC operations. It
derives from MIPCMessageDescriptor and from TStream. To send a message, a user of
TIPCMessageStream streams in the data to be sent, including port-rights
(TPortRightHandle derivatives), out-of-line memory regions
(TOutOfLineMemorySurrogate), port-right arrays (TPortRightHandleArray), objects
containing any or all of these, and any other object or data type desired.
TIPCMessageStream will automatically set up the appropriate data structures for the
port rights, port right arrays, and out-of-line memory in the message header, and put a
place holder in the stream so that these elements will be streamed out of the message in

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 A PCT/US94/00133

-36-

" the appropriate place in the stream. Once the data has been streamed in, the message is

sent using the Send method, supplying the appropriate destination port right
(TPortSenderHandle) and optionally a reply port. To receive a message, the Receive
method is called, supplying a receive right (TPortReceiverHandle) for the port to be

“ received from. The data just received can then streamed out of the

TIPCMessageStream.

TIPCMessageStream also provides two methods for doing a combined send and
receive operation, designed to provide commonly-used message transmission
semantics (and to take advantage of fast-paths in the Mach micro-kernel).
SendAndReceive does a client-side synchronous-style send and then blocks in a receive
to pick up the reply message. ReplyAndReceive does a server-side send of (presumably)
a reply message and then immediately blocks in a receive awaiting the next request.
Both calls require that a destination port and a receive port be specified. Additionally,
the Send AndReceive method automatically creates the appropriate send-once right
from the supplied receive right and passes it along as the reply port.

TIPCPrimitiveMessage is a concrete class that derives from MIPCMessage and
provides a more rudimentary, low level interface to the Mach message system. Data is
provided to and from the message header and body via get and set calls. There is no
streaming capability. This is a concrete class that represents a Mach IPC message. In-
line data is added to the message by passing in a TMemorySurrogate. Port rights,
arrays, and OOLdata must be added and extracted explicitly using the appropriate
methods.

TOutOfLineMemorySurrogate represents an out-of-line memory range that is
to be included in an IPC message. It uses TMemorySurrogate in its implementation,
and only adds disposition information to the startAddress and length information
already contained in TMemorySurrogate. This class is the same as a
TMemorySurrogate, except it includes disposition information used when sending the
message, and may represent the storage associated with the range. This class includes
streaming operators, methods to set/get the range, and methods to set/get disposition
information.

Port Rights

The following classes represent all the valid types of Mach port rights. These
classes all share the following general behaviors: In general, when a port right object is
instantiated it increments the kernel’s reference count for that right, and when a port
right object is destroyed it decrements the kernel’s port right reference count.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-37-
However, note that port right objects are handles for the “real” kernel port right entities.

They can be copied, in which case there may be two objects that refer to the same kernel
port right entity. These copies are reference counted internally so that when all the
objects that refer to a port right are deleted, the kernel’s port right reference count is
decremented. When a port right becomes a dead name (i.e., when the port it belonged
to is destroyed), attempts to use methods on the representative object will throw an
exception (excluding those operations, like setting the reference counts, that are valid
on dead names).

TPortRightHandle is an abstract base class that represents the notion of a port
right. It contains all the protocol common to each type of port right, such as getting the
port name, requesting dead name notification, testing to see if the port right is a dead
name, etc. (The port name is returned as a mach_port_name_t type, and is provided as
a way to interact with Mach servers not written using the object wrappers.) It also
serves as a common super class to allow a generic type representing all types of ports to
be passed polymorphically. TPortSenderHandle and TPortReceiverHandle derive from
these classes. This class includes methods for streaming support (This class and any
classes that contain it can only be streamed into or out of the TIPCMessageStream class.
Attempting to stream into any other TStream will throw an exception at runtime.),
Getters/Setters, and methods for requesting notifications (Must provide a send-once
right that the notification is to be sent to. MAKE a send-once right by passing (by
reference) a receive right’; MOVE a send-once right by ADOPTING a send-once right.)

TPortSenderHandle is an abstract class that represents any port right that an
IPC message can be sent to. E.g., this is the type that MIPCMessage::Send takes as the
destination and reply ports. The classes TPortSendRightHandle and
TPortSendOnceRightHandle derive from this class. This class includes methods for
streaming support, and Getters and setters.

TPortSendRightHandle represents a port send right. It supports all the typical
operations that can be performed on a send right. It is created by passing a valid
TPortReceiveRightHandle or TPortSendRightHandle into the constructor, or by
streaming it out of a TIPCMessageStream. This class includes methods that create an
empty TPortSendRightHandle object without affecting the kernel reference counts,
constructors that create a new Send Right in the current task, methods for Streaming
Support, and Getters and setters.

TPortSendOnceRightHandle represents a port send-once right. It supports all
the typical operations that can be performed on a send-once right. It is created by
passing a valid TPortRecieveRightHandle into the constructor, or by streaming it out of

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-38-
a TIPCMessageStream. When a message is sent to an object of this class, making the

send-once right invalid, all subsequent attempts to send to this object will cause an
exception to be thrown. In addition, the object will be marked as invalid and attempts
to use methods of the object will also cause exceptions to be thrown (except for
methods for initializing the object, obviously). This class includes Constructors that
create a TPortSendOnceRightHandle object without, Constructors that create a new
Send Once right on the current task, methods for Streaming Support, and Getters and
setters

TPortReceiverHandle is an abstract class that represents any port right that an
IPC message can be received from. E.g., this is the type that MIPCMessage::Receive
takes as the port to receive from. The classes TPortRightReceiveHandle and
TPortSetHandle derive from this class. This class includes methods for Streaming
Support, and Getters and setters

TPortReceiveRightHandle represents a port receive right. It supports all the
typical operations that can be performed on a receive right, such as requesting no-
more-senders notification, setting and getting the port’s maximum message size and
queue length, getting and setting its make-send count, etc. If a
TPortReceiveRightHandle is instantiated (other than with the null or copy constructors)
it causes a port and receive right to be created. The copy constructor creates another
object (an alias) that references the same receive right. These objects are internally
reference counted, such that when the last object referencing a particular receive right is
destroyed, it destroys the receive right (and the port) it represents, causing all extant
rights to that port to become dead names. This classisa concrete class that represents
a port receive right. By definition, the actual kernel port entity is created when a
receive right is created, and destroyed when a receive right is destroyed. Since this
class is a handle, creation and destruction of the receive right is not necessarily tied to
creation and deletion of a TPortReceiveRightHandle. For example, the default
constructor does not actually create a receive right, but just an empty object. This class
includes Constructors that create a TPortReceiveRightHandle object without creating a
port or affecting the kernel reference counts, Constructors that create new Receive
Rights and Ports, methods to make an uninitialized object valid, creating a receive right
(and therefore a port) in the process, Streaming Support, Receive Right / Port
manipulation methods, Getters and setters, and Methods for requesting notifications.

TPortSetHandle represents a port set. It has methods for adding, removing, and
enumerating the TPortReceiveRightHandle objects representing the receive rights
contained in the port set, methods for getting and setting its make send count, etc. If a
TPortSetHandle is instantiated with a default constructor, it causes a port set to be

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-39-
created. If it is instantiated using the copy constructor, an alias is created for the same

port set. When the last object representing a particular port set is deleted, it destroys
the port set. This class cannot be streamed.

TPortRightHandleArray is a concrete class that represents an array of port
rights that can be sent as an out-of-line descriptor in an IPC message. It can contain any
kind of port right, and the disposition of the port right (i.e., how it is to be transferred to
the target task) is specified for each port right in the array. This class implements an
array of port rights that can be sent as an out-of-line descriptor in an IPC message
(along with port rights and out-of-line memory). This class includes methods for
Streaming Support, Methods to add elements to the array (SEND SIDE), and Methods
to remove elements from the array (RECEIVE SIDE). '

TRemotePortRightHandle is a concrete class that is used to refer to a port right
in another task. It does not contain most of the usual port right methods, since it is not
intended to be used to perform those types of functions but merely to act as a name or
handle for the remote pbrt right. Constructing this class DOES NOT create a port right
-- it only represents a port right that already exists in another task.

Wait Groups

MWaitable and TWaitGroup are classes that provide for message dispatching
and the ability to wait for more than one type of message source at the same time.
TWaitGroup is a class that provides the ability to set up a collection of objects derived
from MWaitable such that a thread can use the Wait method to receive a message from
any of the MWaitable objects. It also provides for automatic dispatching of the received
message. Multi-Wait Operations are called repeatedly by a task to receive messages.
They are multi thread safe so there can be more than one thread servicing messages.
This class includes methods for manipulating the members of the TWaitGroup. For
example, GetListOfWaitables returns a list of MWaitables in this group. MWaitable is
an abstract base class that associates a port with an internal handler method
(HandleIPCMessage). It also provides a common base class for collecting together via
the TWaitGroup class Receive Rights and other classes based on Receive Rights

TWaitablePortReceiveRightHandle is a convenience class that derives from
both TPortReceiveRightHandle and MWaitable. It is an abstract base class whose
subclasses can be added to a TWaitGroup to provide for multi-wait/dispatching of
Mach message IPC with other MWaitable subclasses.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-40-
Synchronization Classes

Figure 10 is a class diagram 1002 of the synchronization classes 412, which are
used to invoke the synchronization services of Mach. As discussed above, the
synchronization classes 412 employ semaphores and monitors and conditions.
TSemaphore is a class that provides the general services of a counting semaphore.
When acquiring a semaphore, if some other task already has acquired the semaphore,
the calling thread blocks (no exception thrown). But if the semaphore is invalid for
some reason, an exception is thrown. This class includes the following methods:

Acquire: acquire the semaphore in exclusive mode.

Acquire (const TTime& maximumWait): acquire the semaphore in exclusive
mode, with time-out.

AcquireShared (): acquire the semaphore in shared mode.

AcquireShaired (const TTime& maximumWait): acquire the semaphore in shared
mode, with time-out.

Release (): release the previously acquired semaphore.

AnyThreadsWaiting (): returns true if the semaphore currently has threads
waiting to acquire it. ~

TLocalSemaphore is a class that represents a counting semaphore that can be
acquired in an exclusive or shared mode. The major operations are acquire and release.
An optional time-out value can be specified on the acquire operation to limit the time

- spent waiting if desired. This class mplements 'local’' semaphores, which may only be

used within a task (address space) and have no recovery semantics.

TRecoverableSemaphoreHandle is a class that represents a semaphore that
behaves like a TLocalSemaphore with the additional property that the semaphore is
"recoverable”. Recoverability means that when a thread holding the semaphore
terminates abnormally, the counts are adjusted, and any waiting threads are
appropriately unblocked. An exception is raised in each such thread indicating that the
semaphore was recovered and the integrity of any associated user data may be suspect.
Note that for abnormal termination of a thread that had acquired the semaphore in a
shared fashion, no exceptions need be raised in other threads since the associated data
should only have been accessed in a read-only fashion and should still be in a
consistent state. This class includes the following methods:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 ' PCT/US94/00133

41-
GetCurrentHolders: returns a collection of the current threads holding the

semaphore.

SetRecovered: sets state of the semaphore to ‘recovered’, removing a previous
'damaged’ state.

Destroy: removes the recoverable semaphore from the system

TMonitorEntry is a class that represents the lock (sometimes called a mutex)
associated with a monitor. The constructor for this class actually causes the monitor
lock to be acquired, and the act of exiting the local scope (which causes the destructor to
be called) causes the monitor lock to be relinquished. If another task is already in the
monitor, the thread attempting to enter the monitor will be blocked in the
TMonitorEntry constructor until the preceding thread(s) leave the monitor. This class
includes operators new and delete which are private so that TMonitorEntry's can only
be allocated on the stack, thus providing automatic entry and exit (and the associated
monitor lock acquire and release) with scope entry and exit.

TMonitorCondition is a class that represents a condition variable that is
associated with some monitor. The major operations are wait, notify, and broadcast.
The wait operation causes the current thread to wait for the condition to be notified,
and while the thread is blocked the monitor lock is relinquished. Notify and broadcast
are called by a thread exécuting inside the monitor to indicate that either one or all of
the threads waiting on the condition should be unblocked when the notifying (or
broadcasting) thread exits the monitor. When a waiting thread is unblocked, it
attempts to reaquire the monitor lock (one thread at a time in the case of a broadcast), at
which point it resumes executing in the monitor. An optional time-out value can be
specified to limit the time spent waiting for a condition. Other than construction and
destruction, all methods of TMonitorCondition must be called only from within the
monitor.

TMonitorLock is a class that represents a lock on a monitor. It is passed into the
constructors for TMonitorEntry and TMonitorCondition to indicate which monitor is
being aquired or to which monitor a condition is to be associated.

Scheduling Classes

Figure 11 is a class diagram 1102 of the scheduling classes 414, which are used to
invoke the scheduling services of Mach.

TThreadSchedule is a concrete base class that embodies the scheduling behavior

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 - PCT/US94/00133

42-
of a thread. It defines the thread's actual, default, and maximum priorities. The lower

the priority value, the greater the urgency. Each processor set has a collection of
enabled TThreadSchedules and a default one. A thread may be assigned any
TThreadSchedule that is enabled on the processor set on which the thread is running.
The priority may be set up to the maximum value defined by TThreadSchedule, but use
of this feature is strongly discouraged. Specific scheduling classes (TIdleSchedule,
TServerSchdule etc.) are made available using this class as the base. However (since
there are no pure virtual functions in this class) derived classes are free to create objects
of this class if necessary (but it may not be required to do so). TThreadSchedule objects
(using polymorphism) are used to specify scheduling policy for threads. The subclasses
presented below should be used to determine the appropriate priority and proper
range.

TIdleThreadSchedule is a concrete subclass of TThreadSchedule for those
threads that are to run when the system is idle. They only run when nothing else in the
system can run. This category, in general, would be used for idle timing, maintenance,
or diagnostic threads.

TServerSchedule is a concrete subclass of TThreadSchedule for server threads.
Server threads must be very responsive. They are expected to execute for a short time
and then block. For services that take an appreciable amount of time, helper tasks with

'a different kind of TThreadSchedule (TSupportSchedule) should be used.

TUserlnterfaceSchedule is a concrete subclass of TThreadSchedule for those
application tasks that should be responsive and handle the application's human
interface. They typically run for a short time and then block until the next interaction.

TApplicationSchedule is a class used with those threads that support an
application’s longer running parts. Such threads run for appreciable amounts of time.
When an application or window is activated, the threads in the associated task become
more urgent so that the threads become more responsive.

TPseudoRealTimeThreadSchedule is a class that allows tasks to specify their
relative urgency in the fixed priority class by setting their level within its range. The
task schedule exports the number of levels that are allowable and the default base level.
If a level is requested that would cause the value to be outside the class range an
exception will be thrown. This class includes the following methods:

SetLevel (PriorityLevels theLevel): Set the level of the task. A lower number is
more urgent.

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-43-
ReturnNumberOfLevels (): Return the number of levels of urgency for this

scheduling object.

ReturnDefaultLevel (): Return the default level of urgency for this scheduling
object. The default level is relative to the scheduling class's most urgent priority.

Fault Classes

Figures 12, 13, 14, and 15 present class diagrams 1202, 1220, 1302, 1402, and 1502
of the fault classes '416, which are used to invoke the fault services of Mach. For the
classes that represent fault messages (for example, TIPCldentityFaultMessage,
TIPCIdentityFaultMessage, etc.), it is necessary to dedicate a single port for each
message type. That is, the user should ensure that only one type of message will be
received on any given port that is used for fault handling. Preferbly, the fault classes
416 include a processor-specific set of classes for each processor 106 that the operating
system 114 runs on. Alternatively, the fault classes 414 may include generally generic
classes which apply to multiple processors. The Motorola-68000-specific classes are
presented herein for illustrative purposes, and is not limiting. Persons skilled in the
relevant art will find it apparent to generate processor-specific classes for other
processors based on the teachings contained herein.

TFaultType is an abstract base class that represents a fault. 1t is subclassed to
provide the processor-unique fault values. It identifies the fault by processor and fault
id. The following three classes are subclasses of TFaultType:

TMC680X0FaultType represents a fault type on a Motorola 68K processor. It
identifies the possible 68K type values and CPU descriptor.

TMC680X0BadAccessFaultType represents a bad access type on a Motorola 68K
processor.

TMC680X0A ddressFaultType represents an address error type on a Motorola
68K processor.

TFaultDesignation is a class that encapsulates the destination, the format for a
fault message, and the types of faults for which the message should be sent for a task or
thread. This class allows you to specify on a task or thread basis that the fault message
of the requested type for the specified fault types should be sent to the port indicated
by the send right.

TFaultTypeSet encapsulates a set of fault types.

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-44-
TFaultData is a class that encapsulates fault data provided by the kernel in

addition to the processor state. Not all faults have fault data. The fault data is
provided in the fault message and is available from the thread state.

TIPCFaultMessage is a class that encapsulates the fault message sent by the
kernel on behalf of the thread that got the Fault. It is used to receive and reply to the
Fault. Three subclasses (below) are provided for the three possible kinds of data that
might be sent with the fault message. The message may include the identification of
the faulting task and thread, or the state of the faulting thread, or both sets of
information. TIPCIdentityFaultMessage encapsulates the Fault message containing the
identity of the thread that got the Fault. It is used to receive and reply to the Fault.
TIPCStateFaultMessage encapsulates the Fault message containing the thread state of
the thread that got the Fault. It is used to receive and reply to the Fault.
TIPCStateAndIdentityFaultMessage encapsulates the Fault message containing the
thread state and identity of the thread that got the Fault. It is used to receive and reply
to the Fault.

TThreadState is an abstract class that represents the CPU state of a thread.
Subclasses actually define the processor specific forms. There is no information in the
class. All work is done in the derived classes. All queries for CPU state will return a
TMC680X0State pointer which has to be cast at runtime to the correct derived class
object. Derived subclasses are specific to particular processors, such as many of the
subclasses shown in Figures 12, 13, 14, and 15 which are dependent on the Motorola
68xxx line of processors. Such subclasses include TMC680X0State, which is a concrete
class that represents the 680x0 CPU state of a thread. Other examples include
TMC680X0CPUState, which encapsulates the CPU state available for all 68K states, and
TMC680X0CPUFaultState, which encapsulates the 68K fault state available for all 68K
states.

Host and Processor Set Classes

Figure 16 is a class diagram 1602 for the machine classes 418, which are also
called herein the host and processor set classes. The machine classes 418 are used to
invoke the services related to Mach's machine and multiprocessor support.

TPrivilegedHostHandle is a concrete class that embodies the privileged port to
the kernel's host object. The privileged host port is the root of Mach's processor
management. The holder of the privileged host port can get access to any port on the
system. The basic privilege mechanism provided by the kernel is restriction of
privileged operations to tasks holding control ports. Therefore, the integrity of the

10

15

20

25

30

35

WO 95/03575 ‘ PCT/US94/00133

-45-
system depends on the close holding of this privileged host port. Objects of this class

can: get boot information and host statistics, reboot the system, enumerate the
privileged processor sets, communicate with non-CE entities, and enumerate the
processors.

THostHandle is a non-privileged concrete class that embodies the name port to
the kernel's host object. Objects of this class can return some host information, and
return the default processor set. Objects of this class are useful to get information from
the host (such as kernel version, maximum number of CPUs, memory size, CPU type,
etc.) but cannot cause any damage to the host. Users should be provided access to
objects of this class rather than the highly privileged TPrivilegedHostHandle objects.

TProcessorHandle is a concrete class representing a processor. A processor can
be started, exited, added to a TPrivilegedProcessorSetHandle, return information, and
be sent implementation-dependent controls.

TPrivilegedProcessorSetHandle is a concrete class providing the protocol for a
processor set control port. Objects of this class can: enable and disable scheduling
policies, set the maximum priority for the processor set, return statistics and
information, enumerate the tasks and threads, and assign threads and tasks to the
processor set. Client access to objects of this class should be highly restricted to protect
the individual processors and the processor set.

TProcessorSetHandle is a concrete class providing the protocol for a processor
set name port. Objects of this class can return basic information about the processor set
(the number of processors in the processor set, etc.) but they cannot cause any damage
to the processor set.

Implementation of Wrapper Methods

As noted above, the Mach and the Mach procedural interface are well-known.
The wrapper class library 402, and the operation of the methods of the wrapper class
library 402, have been defined and described in detail above. Implementation of the
methods defined by the wrapper class library 402 is described below by considering
selected methods from the wrapper class library 402. Persons skilled in the relevant art
will find it apparent to implement the other methods of the wrapper class library 402
based on the well-known specification of the Mach, the discussion above regarding the
wrapper class library 402, and the discussion below regarding the implementation of
the wrapper methods. The implementation of the kill() method from the
TThreadHandle class of the thread classes 404 is shown in Code Example 2, below. A
routine called "examplel" is shown in Code Example 1, below. The "examplel" routine

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-46-
includes a decomposition statement which causes the kill() method to be executed.
© Copyright, Taligent Inc., 1993

void examplel(TThreadHandle& aThread)

{
TRY

{

aThread.Kill(); // terminates aThread immediatly
}
CATCH(TKernelException)

(
printf(“Couldn’t kill thread\n”); // error occured trying to kill

}
ENDTRY;
/1.

J
CODE EXAMPLE 1

void TThreadHandle::Kill()
{
kern_return_t error;
if((error = thread_terminate(fThreadControlPort)) != KERN_SUCCESS)
THROW(TKernelException()); // Error indicator

}
CODE EXAMPLE 2

Where:

fThreadControlPort is an instance variable of the TThreadHandle class that
contains the Mach thread control port for the thread the class represents.

TKernelException is the C++ exception class that is thrown when a kernel
routine gets an error.

THROW, TRY, CATCH, and ENDTRY are part of the C++ language that allow
you to throw and catch C++ exceptions.

The implementation of the suspend() method from the TTaskHandle class of the task -
classes 406 is shown in Code Example 4, below. A routine called "example2" is shown
in Code Example 3, below. The "example2" routine includes a decomposition statement
which causes the suspend() method to be executed.

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

47-

void example2(TTaskHandle& aTask)

{
TRY

{
aTask.Suspend(); // suspend all threads on task aTask

}
CATCH(TKernelException)
(.
printf(“Couldn’t suspend threads\n”); // error occured
J
ENDTRY;

//...

CODE EXAMPLE 3
void TTaskHandle::Suspend()
{

kern_return_t error;
if((error = task_suspend(fTaskControlPort)) != KERN_SUCCESS)
THROW(TKernelException()); // Error indicator

}
CODE EXAMPLE 4

Where:

fTaskControlPort is an instance variable of the TTaskHandle class that contains
the Mach thread control port for the task the class represents.

TKernelException is the C++ exception class that is thrown when a kernel
routine gets an error.

THROW, TRY, CATCH, and ENDTRY are part of the C++ language that allow
you to throw and catch C++ exceptions.

The implementation of the GetLevel() method from the
TPseudoRealTimeThreadSchedule class of the scheduling classes 414 is shown in Code
Example 6, below. A routine called "example3" is shown in Code Example 5, below.
The "example3" routine includes a decomposition statement which causes the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 95/03575 PCT/US94/00133

-48- -
GetLevel() method to be executed.

void example3(TPseudoRealTimeThreadSchedule& aSchedule)

{
PriorityLevels curPriority;
curPriority = aSchedule.GetLevel (); ~ // Get thread’s current priority
e

}
CODE EXAMPLE 5

PriorityLevels TPseudoRealTimeThreadSchedule::GetLevel()
{
struct task_thread_sched_info schedInfo;
thread_sched_info schedInfoPtr = schedInfo;
mach_msg_type_number_t returnedSize;
returnedSize = sizeof (schedInfo);
void thread_info (fThreadControlPort, THREAD_SCHED_INFO, schedInfoPtr,
&returnedSize);
return (schedInfo.cur_priority);

}
CODE EXAMPLE 6

Where:

fThreadControlPort is an instance variable of the
TPseudoRealTimeThreadSchedule class. It contains the Mach thread control port of the
thread for which the class is a schedule.

The implementation of the GetKernelVersion() method from the THostHandle class of
the machine classes 418 is shown in Code Example 8, below. A routine called
"example4” is shown in Code Example 7, below. The "example4" routine includes a
decomposition statement which causes the GetKernelVersion() method to be executed.

void example4(THostHandle& aHost)
{

kernel_version_t version;
aHost.GetKernelVersion (&version); / / get version of kernel currently
running

/-

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 95/03575 PCT/US94/00133

_ -49-
CODE EXAMPLE 7

void THostHandle::GetKernelVersion (kernel_version_t& theVersion)

{

void host_kernel_version(fHostPort, theVersion);

}
CODE EXAMPLE 8

Where:

fHostPortis an instance variable of the THostHandleclass that contains the Mach
host control port for the host the class represents.

The implementation of the GetMakeSendCount() method from the
TPortReceiveRightHandle class of the IPC classes 410 is shown in Code Example 10,
below. A routine called "example5" is shown in Code Example 9, below. The
"example5" routine includes a decomposition statement which causes the
GetMakeSendCount() method to be executed. As evident by its name, the
GetMakeSendCount() method accesses the Mach to retrieve a make send count
associated with a port. The GetMakeSendCount() method includes a statement to call
mach_port_get_attributes, which is a Mach procedurally-oriented system call that
returns status information about a port. In GetMakeSendCount(), fTheTask is an
instance variable of the TPortReceiveRightHandle object that contains the task control
port of the associated task, and fThePortName is an instance variable of the
TPortReceiveRightHandle object that contains the port right name of the port
represented by the TPortReceiveRightHandle object.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 95/03575 PCT/US94/00133

-50-

void example5(TPortReceiveRightHandle& aReceiveRight)
[.

unsigned long count;

count = aReceiveRight.GetMakeSendCounty();

//..

}
CODE EXAMPLE 9

unsigned long TPortReceiveRightHandle::GetMakeSendCount()
{
mach_port_status_t thelnfo; / / port status info returned by Mach
mach_msg_type_number_t theSize; / / size of info returned by |
void mach_port_get_attributes(fTheTask, fThePortName,
MACH_PORT_RECEIVE_STATUS,
&thelnfo, &theSize);
return(theInfo.mps_mscount);
JCODE EXAMPLE 10

Variations on the present invention will be obvious to persons skilled in the
relevant art based on the discussion contained herein. For example, the scope of the
present invention includes a system and method of enabling a procedural application
to access in a procedural manner an object-oriented operating system having a native
object oriented interface during run-time execution of the application in a computer.
This embodiment of the present invention preferably operates by locating in the
application a procedural statement which accesses a service provided by the operating

- system, and translating the procedural statement to an object-oriented function call (i.e.,

method) compatible with the native object-oriented interface of the operating system
and corresponding to the procedural statement. The object-oriented function call is
executed in the computer to thereby cause the operating system to provide the service
on behalf of the application. While various embodiments of the present invention have
been described above, it should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope of the present invention
should not be limited by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following claims and their equivalents.

SUBSTITUTE SHEET (RULE 26)

O 00 9 O

10
11
12

13
14
15

16
17
18

AW D=

WO 95/03575 PCT/US94/00133

(@)

()

G

(e)

-51- =
What Is Claimed Is:

An apparatus for enabling an object-oriented application to access in an object-
oriented manner a procedural operating system having a native procedural
interface, the apparatus comprising:

a computer;
a memory component in the computer;

a code library, stored in the memory component, comprising computer program
logic implementing an object-oriented class library, the object-oriented class
library comprising related object-oriented classes for enabling the application to
access in an object-oriented manner services provided by the operating system,
the object-oriented classes comprising methods for accessing the operating
system services using procedural function calls compatible with the native
procedural interface of the operating system;

means, in the computer, for processing object-oriented statements contained in
the application and defined by the class library by executing methods from the
class library corresponding to the object-oriented statements;

host means, in which a host represents an abstraction of the computer, wherein
the computer comprises multiple processors operating in parallel, and wherein
processor sets each include one or more of the processors.

The apparatus of claim 1, wherein the object-oriented class library comprises
object-oriented, machine classes for enabling the application to access in an
object-oriented manner operating system services to define and modify the host
and the processor sets.

SUBSTITUTE SHEET (RULE 26)

A AW - 0N AW N = AN U AW =

SHW N

WO 95/03575 PCT/US94/00133

-52-

The apparatus of claim 2, wherein the machine classes comprise an object-
oriented class encapsulating a privilege port of the host, the object-oriented class
comprising methods for enabling objects having access to instances of the object-
oriented class to obtain boot information and host statistics, to boot the
computer, to enumerate privileged processor sets, and to enumerate processors
via the privilege port of the operating system.

The apparatus of claim 2, wherein the machine classes comprise an object-
oriented class encapsulating a name port of the host, the object-oriented class
comprising methods for enabling objects having access to instances of the object-
oriented class to obtain limited information relating to the host, and to obtain a
list of processors assigned to a default processor set.

The apparatus of claim 2, wherein the machine classes comprise an object-
oriented class defining a protocol for accessing a processor set control port, the
object-oriented class comprising methods for enabling instances of the object-
oriented class to enable and disable scheduling policies, to set a maximum
priority for a processor set, to enumerate tasks and threads associated with a
processor set, and to assign tasks and threads to a processor set.

The apparatus of claim 2, wherein the machine classes comprise an object-
oriented class defining a protocol for accessing a processor set name port, the
object-oriented class comprising methods for enabling instances of the object-
oriented class to obtain limited information relating to a processor set.

SUBSTITUTE SHEET (RULE 26)

O 00 3 O

10
11
12
13
14
15
16

17
18
19

WO 95/03575 PCT/US94/00133

(a)
(b)
(c)

(d)

-53-

An apparatus for providing an object-oriented interface to a procedural
operating system having a native procedural interface, the apparatus
comprising:

a computer;
a memory component in the computer;

a code library, stored in the memory component, comprising computer program
logic implementing an object-oriented class library, the object-oriented class
library comprising related object-oriented classes for enabling an object-oriented
application to access in an object-oriented manner services provided by the
operating system, the object-oriented classes comprising methods for accessing
the operating system services using procedural function calls compatible with
the native procedural interface of the operating system; wherein object-oriented
statements defined by the object-oriented class library are insertable into the
application to enable the application to access in an object-oriented manner the
operating system services during run-time execution of the application in the
computer; and

means in the object-oriented class library, including object-oriented, machine
classes for enabling the application to access in an object-oriented manner
operating system services to define and modify a host and processor sets.

SUBSTITUTE SHEET (RULE 26)

O 00 0 O

10
11
12
13
14
15
16

S L AW -

T R S S S

WO 95/03575 PCT/US94/00133

(b)
(c)

10.

11.

-54-

An apparatus for providing an object-oriented interface to a procedural
operating system having a native procedural interface, the apparatus
comprising:

a computer;-
a memory component in the computer; and

a code library, stored in the memory component, comprising computer program
logic implementing an object-oriented class library, the object-oriented class
library comprising object-oriented, machine classes for enabling an object-
oriented application to access in an object-oriented manner operating system
machine services to define and modify a host and processor sets, the object-
oriented classes comprising methods for accessing the operating system machine
services using procedural function calls compatible with the native procedural
interface of the operating system; wherein object-oriented statements defined by
the object-oriented class library are insertable into the application to enable the
application to access in an object-oriented manner the operating system machine
services during run-time execution of the application in the computer.

The apparatus of claim 8, wherein the machine classes comprise an object-
oriented class encapsulating a privilege port of the host, the object-oriented class
comprising methods for enabling objects having access to instances of the object-
oriented class to obtain boot information and host statistics, to boot the
computer, to enumerate privileged processor sets, and to enumerate processors
via the privilege port of the operating system. '

The apparatus of claim 8, wherein the machine classes comprise an object-
oriented class encapsulating a name port of the host, the object-oriented class
comprising methods for enabling objects having access to instances of the object-
oriented class to obtain limited information relating to the host, and to obtain a
list of processors assigned to a default processor set.

The apparatus of claim 8, wherein the machine classes comprise an object-
oriented class defining a protocol for accessing a processor set control port, the

SUBSTITUTE SHEET (RULE 26)

W NN - AN W AW

AW N -

O 00 ~3 O W

10

11
12
13

14
15
16

WO 95/03575 PCT/US94/00133

12.

13.

(a)

(b)

(c)

-55-

object-oriented class comprising methods for enabling instances of the object-

oriented class to enable and disable scheduling policies, to set a maximum
priority for a processor set, to enumerate tasks and threads associated with a
processor set, and to assign tasks and threads to a processor set.

The apparatus of claim 8, wherein the machine classes comprise an object-
oriented class defining a protocol for accessing a processor set name port, the
object-oriented class comprising methods for enabling instances of the object-
oriented class to obtain limited information relating to a processor set.

A method for enabling an object-oriented application to access in an object-
oriented manner a procedural operating system having a native procedural
interface on a computer with a memory component in the computer and a codel
library, stored in the memory component, comprising the steps of:

implementing an object-oriented class library, the object-oriented class library
comprising related object-oriented classes for enabling the application to access
in an object-oriented manner services provided by the operating system, the
object-oriented classes comprising methods for accessing the operating system
services using procedural function calls compatible with the native procedural
interface of the operating system;

processing object-oriented statements contained in the application and defined
by the class library by executing methods from the class library corresponding to
the object-oriented statements;

representing an abstraction of the computer as a host, wherein the computer
comprises multiple processors operating in parallel, and wherein processor sets
each include one or more of the processors.

SUBSTITUTE SHEET (RULE 26)

AN bW e W AW N e A W bW

B O R S B

WO 95/03575 PCT/US94/00133

14.

15.

16.

17.

18.

19.

-56-

The method as recited in claim 13, including the step of enabling the application
to access in an object-oriented manner operating system services to define and

modify the host and the processor sets.

The apparatus as recited in claim 14, including the step of encapsulating a
privilege port of the host, the object-oriented class comprising methods for
enabling objects having access to instances of the object-oriented class to obtain
boot information and host statistics, to boot the computer, to enumerate
privileged processor sets, and to enumerate processors via the privilege port of
the operating system.

The method of claim 14, including the step of encapsulating a name port of the
host, the object-oriented class comprising methods for enabling objects having
access to instances of the object-oriented class to obtain limited information
relating to the host, and to obtain a list of processors assigned to a default
processor set.

The method of claim 14, including the step of defining a protocol for accessing a
processor set control port, the object-oriented class comprising methods for
enabling instances of the object-oriented class to enable and disable scheduling
policies, to set a maximum priority for a processor set, to enumerate tasks and
threads associated with a processor set, and to assign tasks and threads to a
processor set.

The method of claim 14, including the step of defining a protocol for accessing a
processor set name port, the object-oriented class comprising methods for
enabling instances of the object-oriented class to obtain limited information
relating to a processor set.

A method for providing an object-oriented interface to a procedural operating
system having a native procedural interface on a computer with a memory

SUBSTITUTE SHEET (RULE 261

00 N N W oA

10

11
12
13
14

15
16

WO 95/03575 PCT/US94/00133

(a)

(b)

(c)

(d)

-57-
component in the computer, the apparatus comprising:

storing a code library in the memory component, with computer program logic
implementing an object-oriented class library, the object-oriented class library
comprising related object-oriented classes for enabling an object-oriented
application to access in an object-oriented manner services provided by the
operating system,

accessing the operating system services using procedural function calls
compatible with the native procedural interface of the operating system;

defining object-oriented statements by the object-oriented class library which is
insertable into the application to enable the application to access in an object-
oriented manner the operating system services during run-time execution of the

application in the computer; and

enabling the application to access in an object-oriented manner operating system
services to define and modify a host and processor sets.

SUBSTITUTE SHEET (RULE 26)

O 00 9 O W

10

12
13
14
15

AN N AW -

Wn & W N -

WO 95/03575 PCT/US94/00133

20.

(a)
(b)

(©)

21.

23.

-58- -

A method for providing an object-oriented interface to a procedural operating
system having a native procedural interface on a computer with a memory
component in the computer, comprising: the steps of:

storing a code library in the memory component;

storing computer program logic to implement an object-oriented class library in |
the memory component, the object-oriented class library comprising object- .
oriented, machine classes for enabling an object-oriented application to access in
an object-oriented manner operating system machine services to define and
modify a host and processor sets;

accessing the operating system machine services using procedural function calls
compatible with the native procedural interface of the operating system; wherein
object-oriented statements defined by the object-oriented class library are
insertable into the application to enable the application to access in an object-
oriented manner the operating system machine services during run-time
execution of the application in the computer.

The method as recited in claim 20, including the step of encapsulating a
privilege port of the host, the object-oriented class comprising methods for
enabling objects having access to instances of the object-oriented class to obtain
boot information and host statistics, to boot the computer, to enumerate
privileged processor sets, and to enumerate processors via the privilege port of
the operating system. '

The method as recited in claim 21, including the step of encapsulating a name
port of the host, the object-oriented class comprising methods for enabling
objects having access to instances of the object-oriented class to obtain limited
information relating to the host, and to obtain a list of processors assigned to a
default processor set.

The methoid as recited in claim 22, including the step of defining a protocol for
accessing a processor set control port, the object-oriented class comprising
methods for enabling instances of the object-oriented class to enable and disable

SUBSTITUTE SHEET (RULE 26)

W N -

WO 95/03575 PCT/US94/00133

24,

-59-
scheduling policies, to set a maximum priority for a processor set, to enumerate

tasks and threads associated with a processor set, and to assign tasks and
threads to a processor set.

The method as recitedin claim 23, including the step of defining a protocol for
accessing a processor set name port, the object-oriented class comprising
methods for enabling instances of the object-oriented class to obtain limited
information relating to a processor set.

SUBSTITUTE SHEET (RULE 26)

PCT/US94/00133

WO 95/03575

mn7

| 9inbi4

oLl —

acl

Advddall

3d00

WNIa3n

3OVHOLS V.ivd

"HIAINIHd AV1dsid

0

30I1A3d
JOVHOLS
viva

4 (
9cl 0 vel 0

\ ﬂ
oct

30IA3a
1NdNI

m:\ 0

€0}~

chl~_

/

cot

~_ | Abvyaan volL
oL AHVHE —~—
~J ndo
801 Y 90t
3009 NOILONYLSNIOHDIN
SHIAIMA 3DIA3A _J IW3LSAS ONILYHIdO vl
/ . HIddVHM . HIAddVHM |—_gz1
9Lt > > 621 >| [>
0 U e 0
L 2 2l e
vel—~| = S g~ sl | &
S o ol |9l voer
= = =1
@) o[—ctl @) @)
Z = z| [z

WO 95/03575

202

217

START 204

LOCATE IN PROGRAM
OBJECT-ORIENTED
STATEMENT ACCESSING
OPERATING SYSTEM

206

TRANSLATE OBJECT
ORIENTED STATEMENT
TO PROCEDURAL
FUNCTION CALL
COMPATIBLE WITH
PROCEDURAL INTERFACE
OF OPERATING SYSTEM

208

EXECUTE PROCEDURAL
FUNCTION CALL

210

(DONE)_ , 212

Figure 2

PCT/US94/00133

WO 95/03575 PCT/US94/00133

317

METHOD CODE IN
TASK ADDRESS
SPACE?

312

LIBRARY SERVER FIND LIBRARY
KNOWN? SERVER

ACCESS LIBRARY SERVER
AND COPY METHOD CODE
FROM CODE LIBRARY TO
TASK ADDRESS SPACE

EXECUTE METHOD CODE 316

< DONE '\ . 318

Figure 3

WO 95/03575 PCT/US94/00133

417

CODE

_ [~ _LIBRARY 110
THREAD CLASSES I 404
TASK CLASSES I 406
VIRTUAL MEMORY CLASSES I 408
IPC CLASSES 410 CLASS
/ LIBRARY 402
SYNCHRONIZATION CLASSESI~,412
SCHEDULING CLASSES | 414
FAULT CLASSES I 416
MACHINE CLASSES I 418
SECURITY CLASSES I 420

Figure 4

PCT/US94/00133

WO 95/03575

517

829

-80S

90S

92% \/ﬁ SIPUBHYSEIZSOL)
A S[PURIDISELADL

yse] 48yl 025—

14

G ainbi4

sa|pueH

JayoreaghrerqrL 29

22s

weioigpesy Ly 8L9
7N\

LS S[pPuUBsELL

spueHIySRIIod],

s[pueHIY3RNIOJa10WIY |,

areSormglrows I,

—~
N

J[Mpaydsgpesay L]
91—

~_ S[pueHpeaayLy, 2Ls

¥0S

slpueHIYSRpUsGHIOg L,

S

1S2x3U] 1, J
HA S
/Nom /

LOS

PCT/US94/00133

WO 95/03575

6/17

229
A

s|pueHXse] | u

¥29 108[qoA1ows |

029 KiowsNANUNYDOIWA L

AowsnAunypdes{

9 0._=m_u_ 919 (‘ AowsyAunyp L)

ojujuoibeyioway |

(432

weanglowspysnonbiuon | weansHunyn | 5
yibusj

fO 19 ssalppe uels
uonisodsip

AowsNBUIOINOL

809 WEBl)SSSa00yWopUeY | 09
yibuaj ¢
sselppe yels H_
909 weans | Nom\(@cmmbo.tm_z n /

PCT/US94/00133

WO 95/03575

m7

aLL

Z 9@1nb14

asbessapaAniwLdDdIL

“ybiguod 1

80L

abessapNDdIN

wealjgabessaNOdiL

weans/Hunyo |

¥0L

N\

c0.L

PCT/US94/00133

WO 95/03575

8/17

g ainbi4
ayebosngAioway L
uonisodsip
908 AowsysuronoL
Yibusj

ssalppe Jels

08

ajebosinglioway |

c08

PCT/US94/00133

WO 95/03575

!

() elpuey

() sjpuey

826 8lpueHIYBIHaAI808HIOJ8|qRIB A | Emo:w_m>_mowm=muzcmm LI gz6
0 wem P
vce dnosoyepm | aIqelIe MIN 0=() ajpuen
\
cc6
6 21nbi4
: sIpuBHIYBIHOAIS08HIOL | sjpueHIYBIYeoUOPUBSHO | .
u
. " L 916
~
& 816 elPUBHISSHOd L U slpueHIyBIYpUaSHOd L
V16
AL a|puBHIBAI®0a O | alpueHIapuUagIOd] oL6
ajpueHiyBiduodelowey))~ v06

806 ~{ feuyeipueriybiiod

ajpueHIYBIHUOd L

// 906

PCT/US94/00133

WO 95/03575

10/17

0l ainbi4

UORIPUODIOHUOW | A Anuzionuopn |) ‘ OO TOHUON |)

e e

101 clol

s|pueHaloydewsga|qeiancoay |

\u\

8001

aljoydewsasg |

\.\

oLot

aloydeweag|esoL

\n\

9001

\.\

001

%

¢0o}

PCT/US94/00133

WO 95/03575

1117

ViLE

8LLL

LI @inBi4

a|npayogaoeusjulIasn L

a|npayogpesiy] lonias |

a|npayoguonesiddy |

voLl

ojpueHpesIy] |

\ /Imo:

éolLt

WO 95/03575 PCT/US94/00133

12/17

1202
TFaultDesignation 1204
TTaskHandle
1206 TThreadHandle
n 1210
1208 FaultAssociation
TPortSendRightHandle
1212 1212 TFaultTypeSet
TFaultType (EFaultMessageType)
1216 1218
1220
\ 1222
TFaultType 1230

etc. for all possible
68K faults

/

(TMC680X0AddressFault ’ (TMC680X0BadAccessFault)

1226 1228

1224 (TMC680X0FaultType >

Figure 12

PCT/US94/00133

WO 95/03575

1317

€l ainbi4

aece 7\‘ ajpueHpesiyl | V
A S|pueHsel | v ~0z¢cl

abessaIne4Aiuap|puyalelsodiL

9lel

ajeigpealy] |

mmmmwms_:ﬂ-mmm«muwom_.ﬁ

vLEL clel

sjpueHpeaiy] | olet

veel
ajpueHyse] |

eleqined L

ozeL \‘ adAjyneq | ‘ V

abessoapiine4Amusap|DdiL

2{01541

sbessspine40dIL

20¢t

yOEL aBessajNaAWLIdIBUIN DI L

cogl

PCT/US94/00133

WO 95/03575

14117

80v |

¥ 1 ainbi4

9jels pealy) ayj o}
uonppe u| eyep suinjal yeyy adAy jney yoes 1o}

eleqgined |

90v |
z

. ‘ BlR(SSe00YpPEg L

)

covi

PCT/US94/00133

WO 95/03575

Gl ainbi4 8251

15117

goWeIPO.ISOX 0890 L

9161

COWeIMORISOX089DN L

SIPIOY089DN.L 1451

-

92S|).‘ Asng 888901 v

vmmT(A Asngov0890WL v

81EISNd40X0890N

03WEIPIOBISOX08IDNL

8061

omm_)\‘ sieisibaynd4d A sialsibayNdo)

)

cES F\I\m aleigpeaiy| 98e | . ©leISpealy] 0X089DN.L

~

90G1

~N
~N

$0S1 aleispesiy] |

c0S1

PCT/US94/00133

WO 95/03575

16/17

919¢

8191

gl ainbi4

ojpueHise] L

1451

clol ! \ 9|puBHISOHL
@

8091
A\
e|pueHISOHPeBa|IAUd L

s|pueHpeasyl |

L
9091

8|pueH10SS920id |

091

s|npayospealyL |

c09l

PCT/US94/00133

WO 95/03575

1nr

Ll ainbi4

(edAy ejqnedwoo) syueyul

(uonejuswsedwi 10}) sesn

(soepaul 10y) sesn

—g e
19Ge! okLL
P —=—
O~

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 94/00133

A. CLASSIFICATION OF SUBJECT MATTER
IPC GO6F9/44

PC 6

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system foliowed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A C++ REPORT,
pages 50 - 54

see the whole document

May 1992 , NEW YORK, US,
pages 243 - 248 XP344047

of measurement systems'

column, line 4; figure 3

vol. 4, no. 8 , October 1992 , US,
DOUGLAS C. SCHMIDT: 'Systems programming

with C++ wrappers: Encapsulating IPC
services with object-oriented interfaces'

A CONFERENCE RECORD OF IEEE INSTRUMENTATION
AND MEASUREMENT TECHNOLOGY CONFERENCE, 12 13,19,20

P. DAPONTE ET AL.: 'Object-oriented design

see page 244, left column, Tine 15 - right

/-

m Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

® Special categories of cited documents :

"A® document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international filing date but
later than the priority date claimed

-

X"

-y

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
m&ts, such combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actual completion of the international search

10 June 1994

Date of mailing of the international search report

24.06.94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Wiltink, J

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 94/00133

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

SOFTWARE ENGINEERING COMPEURO'90, 8 May
1990 , TEL-AVIV, IL,

pages 12 - 17 XP293785
PETER HRUSCHKA: 'Towards an Object
Oriented Method for System Architecture
Design'

see page 15, left column, line 24 - line
38; figure 4

Category ° | Citation of document, with indication, where appropriate, of the relevant passages - | Relevant to claim No.
A C++ REPORT, 1,7,8,
vol. 4, no. 3 , March 1992 , US, 13,19,20
pages 51 - 55
JOHN MUSSER: 'Extending streambufs: class
Togstrbuf!’
see page 51, left column, line 1 - right
column, line 14
A PROCEEDINGS OF THE 1990 IEEE INTERNATIONAL 1,7,8,
CONFERENCE ON COMPUTER SYSTEMS AND 13,19,20

Form PCT/ISA/210 (continuation of second sheet) {July 1992)

page 2 of 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

