PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOGF 7/00, 9/40, 9/44, 9/46, 9/445, 9/45 | Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/24656

10 July 1997 (10.07.97)

(21) International Application Number: PCT/US96/20809

(22) International Filing Date: 27 December 1996 (27.12.96)

(30) Priority Data:

08/580,808 Us

29 December 1995 (29.12.95)

(71) Applicant (for all designated States except US): INTEL COR-
PORATION [US/US]; 2200 Mission College Boulevard,
Santa Clara, CA 95052 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): THURLO, Clark, S.
[US/US}; 137 Winterstein Drive, Folsom, CA 95630 (US).

(74) Agents: TAYLOR, Edwin, H. et al.; Blakely, Sokoloff, Taylor
& Zafman L.L.P., 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility
model), DE, DE (Utility model), DK, DK (Utility model),
EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE,
HU, IL, 1S, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, S§G, SI, SK, SK (Utility model), TJ,
T™, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE,
LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE,
DK, ES, F], FR, GB, GR, IE, IT, LU, MC, NL, PT, SE),
OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,
NE, SN, TD, TG).

Published
With international search report.

(54) Title: METHOD AND APPARATUS FOR PROVIDING AN INTERFACE BETWEEN A SYSTEM AND A PERIPHERAL DEVICE

(57) Abstract

System 100
A peripheral device (106, 107, 108) for use o/s
in interfacing with a system (100). The peripheral Driver
device (106, 107, 108) contains driver code stored Iaterface 101
in memory locations within the peripheral device ——
(106, 107, 108). The driver code is uncompiled, [
and, when read by a system (100) to which the Iaterpreter/
peripheral device (106, 107, 108) is coupled, ?f;ﬂ::}mur 102
enables the system (100) to interface with the
peripheral device (106, 107, 108). r_____, L —_—
Oriver Oriver Oriver
Memory 103 Memory 104 Memory 105
\
interpretive Interpretive interpretive
Driver Code Driver Code Driver Code
Peripheral
Devices
Fax-Modem Flash Memory Video Capture
106 107 108
—_—_)

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sb
SE
SG
S1
SK
SN
Sz

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 97/24656 PCT/US96/20809

-1-

METHOD AND APPARATUS FOR PROVIDING AN
INTERFACE BETWEEN A SYSTEM AND A PERIPHERAL DEVICE

FIELD OF THE INVENTION

The present invention relates to peripheral devices of a computer
system and more particularly to a method and apparatus for providing a

software interface between a system and a peripheral device.

BACKGROUND OF THE INVENTION

A typical computer system comprises one or more processors,
control devices, memory, and input/output devices along with the
necessary interconnects that allow these devices to communicate with
one another. A processor includes, for example, a microprocessor,
microcontroller, or other device that is capable of performing
mathematical computations. A processor is commonly considered to be
the "brain” of a computer system, while the memory and control devices
support the processor by providing information storage and organizing
the flow of information, respectively, within the system.

A peripheral device is typically a user-installed, optional device
that adds additional performance capability to the basic computer
system. For example, a disk drive may be thought of as a peripheral
device. A disk drive supplements a basic computer system by providing
additional memory and a means for long-term storage of information. A
modem is a peripheral device that supplements a basic computer
system by providing a means for communicating information to a remote

location via telephone lines. Basic input and output devices, such as a

WO 97/24656 PCT/US96/20809

-o.

keyboard and a display screen, are examples of other peripheral
devices.

Once a peripheral device is physically coupled to a computer
system, generally via an electrical socket that accommodates easy
coupling and decoupling, the processor, memory, and other devices of
the system gain access to the peripheral device through a series of
interlinks called buses. Through these buses, various parts of the
system are able to communicate with the peripheral device. This
communication, also known as interfacing, involves the exchange of
data from one device to another.

For a computer system to interface properly with a peripheral
device, both the system and the peripheral device must be speaking the
same interface language. This requires that the system be aware of
certain parameters of the peripheral device. For exampie, where the
peripheral device is a memory device used for data storage, the system
needs to know the amount of data that can be stored in the device so
that the system can allocate and more effectively manage the flow of
data sent to (written) and taken (read) from the device. The system also
needs to know the proper protocol for reading or writing data this data.
As another example, if the peripheral device is a modem, the system
needs to know the speed at which the modem transmits data, as well as
the protocol for sending data to the modem for transmission, so that the
system can download data to the modem in a manner in which the
modem can accept it.

The software that provides the system with the necessary

parameters and enables the system to interface with the peripheral

WO 97/24656 PCT/US96/20809

-3-

device is called the peripheral device driver, or driver code, or, simply,
driver. The source code for a driver is typically written in a high-level
language or the processor's assembly language, then compiled into an
object code executable file. This executable is stored on a floppy disk
that accompanies the peripheral device, and a user installs the
compiled driver as an executable in the memory of the computer system
to which the peripheral device is to be coupled. The driver may
alternatively be stored in the peripheral device itself or come pre-loaded
in the computer system in either the operating system or the BIOS.
Thereafter, when the peripheral device is accessed, the system uses the
executable to enable the interface.

Different drivers are associated with the same type of peripheral
device, depending on the make, model, and configuration of the
peripheral device, and the make, model, and configuration of the system
for which the peripheral device is intended. One reason for multiple
drivers is that the executable driver code is éompiled in a processor-
specific manner. In other words, a peripheral device driver that has
been compiled for one type of processor is virtually unreadable by
another type of processor. Therefore, a peripheral device having driver
code that has been compiled for a type "X" processor can only be used
in a computer system comprising a type "X" processor. An essentially
identical peripheral device having driver code that has been compiled
for a type "Y" processor can only be used in a computer system
comprising a type "Y" processor.

As a result, each time a user changes from one type of processor-

based system to an incompatible processor-based system, such as

WO 97/24656 PCT/US96/20809

-4-

when upgrading or concurrently working on systems from two different
companies, a new driver needs to be installed to enable interfacing with
the same peripheral device. Similarly, when more advanced peripheral
devices become available, along with their associated drivers, users
working on older processor-based systems may be unable to take
advantage these peripheral devices because the older processors may

not be able to read the newer drivers that have been compiled for newer

processors.

Y AND CTSOFET E

An object of the present invention is to provide a method for
interfacing between a system and a peripheral device.

Another object of the present invention is to provide a method by
which an interface between a system a peripheral device is processor-
independent.

A peripheral device is described for use in interfacing with a
system. The peripheral device contains driver code stored in memory
locations within the peripheral device. The driver code is uncompiled,
and, when read by a system to which the peripheral device is coupled,
enables the system to interface with the peripheral device.

Other features and advantages of the present invention will be

apparent from the accompanying drawings and the detailed description

that follows.

WO 97/24656 PCT/US96/20809

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not
limitation in the figures of the accompanying drawings in which like
references indicate similar elements and in which:

Figure 1 is a block diagram of a system to which peripheral
devices are coupled.

Figure 2 is a sample of interpretive driver code.

DETAILED DESCRIPTION

A peripheral device is described along with a method by which
driver code is provided that enables the peripheral device to interface
with the system to which it is coupled. The peripheral device contains its
associated driver code stored in memory locations within the peripheral
device. The driver code is uncompiled, meaning that the driver code
can be either source code or interpretive code. For the embodiment in
which the driver code is source code, the code is first read by the system
to which the peripheral device is coupled, and is then stored in memory
locations within the system. The system contains an appropriate
compiler for compiling the source code into an executable file, which is
then executed by the system, thereby enabling the system to interface
with the peripheral device.

For the embodiment in which the driver code is interpretive code,
the code is first read by the system to which the peripheral device is
coupled, and is then stored in memory locations within the system. The

system contains an appropriate interpreter for interpreting the source

WO 97/24656 PCT/US96/20809

-6-

code, thereby enabling the system to interface with the peripheral
device. A peripheral device and method of providing an interface
between the peripheral device and a system, will be described in more
detail below.

Figure 1 is a block diagram of a system 100 to which peripheral
devices 106-108 have been coupled. System 100 comprises an
operating system driver interface 101, which is coupled to an interpreter
and driver administrator 102, which is coupled to three memory
locations (or access thereto) 103-105. Each memory location 103, 104,
and 105 interfaces with each of peripheral devices 106, 107, and 108
respectively.

Operating system driver interface 101 provides the interface
between the commands initiated by the system user and the peripheral
devices. For example, for an embodiment in which peripheral memory
cards, such as Personal Computer Memory Card International
Association-compliant (PCMCIA) cards, PC or CardBus cards, are to be
accessed, the operating system driver interface comprises a file
system/media manager and a card services interface. The file
system/media manager partitions and manages the memory media by,
for example, providing for directory and subdirectory levels for a user,
and associating each of these levels to memory locations. The card
services interface, based on the memory location indicated by a read or
write command initiated by the file system/media manager, determines
which of a plurality of peripheral memory cards is being accessed, and

passes the command along to the proper technology driver. The system

WO 97/24656 PCT/US96/20809

-7-
then interfaces with the appropriate memory card through the
associated driver to execute the command.

Peripheral device 106 is a fax-modem that is capable of
converting data from system 100 into telephone signals for transmitting
the data to a remote location. Fax-modem 106 is also capable of
transmitting data received via a telephone signal back into the system.
Therefore, fax-modem 106, in addition to being coupled to system 100,
is also coupled to a telephone line (not shown). Peripheral device 107
is flash memory that provides system 100 with non-volatile, flash
memory for storage of data. Peripheral device 108 is a video capture
device that digitizes incoming images from a camera and provides the
data associated with those images to system 100 for manipulation or
storage. For one embodiment of the present invention, system 100 is a
desktop or mobile computer system, and peripheral devices 106 - 108
are compliant with the PCMCIA or CardBus standards. Many of the
terms and operations mentioned herein may be found in a standard
PCMCIA driver specification.

Each of peripheral devices 106 - 108 comprises memory
locations large enough to store the driver code for the associated
peripheral device. As indicated in Figure 1, within the peripheral device
memory of each of peripherals 106 - 108 is stored its associated driver
as interpretive code, which is capable of being interpreted by an
interpreter. Also as indicated, the system to which a peripheral device is
coupled contains or has access to driver memory locations within the

system. The driver code stored in the memory of a peripheral device is

WO 97/24656 PCT/US96/20809

-8-

read into the system by the driver administrator and stored in the
appropriate driver memory location within the system.

The interpretive driver code is stored in protected regions of
memory of the associated peripheral device. A protected region of
memory is a memory location from which the contents of the memory
cannot be readily erased or written-over, making it difficult to corrupt the
interpretive driver code stored in peripheral device memory through
normal use and operation of the peripheral device.

System 100, before transferring the interpretive driver code of a
peripheral device into system memory, must first be apprised of the
basic information needed to load the driver code into driver memory
locations 103 - 105. For example, the driver administrator must know
where the driver code resides within the memory of a particular
peripheral device. This basic information may be obtained either from
predefined memory locations with the peripheral device, or via
previously installed set-ups within the system. After the interpretive
driver code has been read from the peripheral device and stored in
system memory, communication with the peripheral device is primarily
conducted in accordance with the software interface established by the
driver.

After the proper interpretive driver code, which may be the entire
code stored in the peripheral device or some portion thereof, has been
transferred from the peripheral device 106 - 108 to driver memory
locations 103 - 105 within the system, the interpreter in the
interpreter/driver administrator 102 of the system interprets the code as

needed to interface with the peripheral device. Interpretive code is code

WO 97/24656 PCT/US96/20809

-9-

that need not be compiled before executing it. BASIC is one example of
interpretive code. Interpretive languages are usually generic across
various processors. So, for example, a driver written in BASIC for a
system comprising processor "X" will also run on a system comprising
processor "Y," notwithstanding incompatibilities between processors "X"
and "Y," as long as a BASIC interpreter is provided in each system. An
interpreter, which may be processor-dependent, is the tool through
which an interpretive language is executed.

For an alternate embodiment of the present invention, the
peripheral devices coupled to a system contain source code rather than
interpretive code as the device driver software. Source code, before
being executed, is typically compiled into an object code executable.
Therefore, for this embodiment, the system contains (or has access to) a
compiler. Upon transferring the source code driver from the peripheral
device by reading it into driver memory locations of system memory, the
source code is compiled into object code by the compiler, and is stored
in system memory as an executable file. The system then executes the
file as needed to interface with the peripheral device. Source codes,
like interpretive codes, are usually generic across various processors.
So, for example, a source code driver written for a system comprising
processor "X" will also run on a system comprising processor "Y,"
notwithstanding incompatibilities between processors "X" and "Y," as
long as a compiler, which may be processor-dependent, is provided in
each system.

As one example of a useful application in accordance with the

present invention, a system, comprising a digital camera, uses flash

WO 97/24656 PCT/US96/20809

-10 -

storage devices, or flash cards, as the film upon which digital images
from the digital camera are stored. For one embodiment, each flash
card contains its associated driver code stored in an interpretive
language in memory within the card. The digital camera comprises an
interpreter/driver administrator and memory.

After a picture is taken, the digital camera stores the data
associated with the picture into the flash card by calling on the operating
system driver interface to write the data into the attached flash card. The
driver administrator reads the section of memory within the flash card
containing the desired driver code related to write operations, and
stores this code in memory within the camera. The camera then
proceeds to execute or run this code using the interpreter, thereby
enabling an interface between the camera and the flash card, storing
the data in the flash card. For an alternate embodiment, the system is
an audio recording device which stores digital audio signals in
peripheral flash memory. For another embodiment, the system is a
personal data assistant (PDA) or cellular phone which uses peripheral
devices to perform functions such as storing or displaying data.

As stated above, BASIC is one type of interpretive language.
BASIC, however, is a relatively extensive language, resulting in a
substantially large interpreter to interpret the language and fairly high
computational requirements. In the interest of reducing the size of the
interpreter that must be stored in a system, and reducing the load on the
processor of the system, a new interpretive language is developed,
along with an associated interpreter, which is optimized for the particular

application for which the interpretive driver code will be used. In doing

WO 97/24656 PCT/US96/20809

-11 -

so, the size and the processing requirements of the interpreter and the
interpretation, respectively, are reduced.

For example, Figure 2 is a sample of interpretive driver code that
has been written in a new interpretive language that has been optimized
for flash memory peripherals. Only the lines of code associated
parameter settings and the write operation are shown here. A more
complete interpretive driver code sequence would additionally include,
for example, lines of code associated with the read and erase
operations.

The first line of code of Figure 2, "PARAMETER_START" indicates
that this is the section of the code that provides parameter information
related to the parameters of the flash card. The line "SPEED = 200"
indicates that the flash card's access speed is 200ns. The line "BLOCK
= 64K" indicates that the block size of the flash card is 64KB. "DEVICE =
1M" indicates that the size of the flash devices in the flash card are 1MB.
"SIZE = 2M" indicates that the total memory size of the flash card is 2MB.
WIDTH = 08" indicates that this is a x8 card.

The next line of code of Figure 2, "WRITE_START" indicates that
this is the section of the code that provides the protocol for executing a
write operation to the flash card. A write command is initiated by the
operating system driver interface of the system, in response to, for
example, a system user command. The write command is directed to
the interpreter/driver administrator in the form of a write request packet
comprising 1) the request type (write in this case); 2) the number of
bytes to be written (called "number_bytes" in Figure 2); 3) the

destination address of the data (called "destination_address" in Figure 2

WO 97/24656 PCT/US96/20809

-12-

and refers to the flash card in this case); and 4) the source address of
the data (called "source_address" in Figure 2 and usually refers to a
buffer in system memory). In response to a write command, the
interpreter/driver administrator, if it hasn't already done so, will load
either the entire interpretive driver code or only the write portion of the
code from the peripheral device into the appropriate driver memory
location with the system. The interpreter/driver administrator then
locates the "WRITE_START" line in the interpretive drive code within the
system, and begins to execute what follows.

In the first two lines of code within the write section,
“PCMCIA_CALL SET VPP = 12V" and "PCMCIA_CALL SET VCC = 5V*
the code instructs the system to set the appropriate voltage levels to the
peripheral device to enable a write to the flash memory. Next, a variable
“offset" is set equal to 0. This variable will determine the offset from the
original destination and source addresses, provided in the original write
request packet, into which the associated data will be written. "LABEL
'BEGIN"™ labels this line of the code for reference by subsequent JUMP
commands, described below.

*OUTPUT destination_address + offset, write_command" instructs
that the data or control commands following the "OUTPUT" command be
sent to the flash card. In this case, the destination address sent with the
write request packet is offset by the “offset" variable (0 in the first
iteration) and is sent a "write_command," which is a flash card-specific
command that indicates that the next write to that address contains data
to be stored. "OUTPUT destination_address + offset, source_address +

offset" instructs that the data stored in the source address, offset by the

WO 97/24656 PCT/US96/20809

-13-

"offset" variable, is to be stored at the destination address, also offset by
the "offset” variable.

Once data has been written in accordance with the two
"OUTPUT" commands described above, the system must wait until the
flash card is ready to accept another write command before continuing.
"counter = 0" sets the variable "counter" equal to 0. The “counter”
variable is used to pause the system while the flash card completes the
previous write operation. "LABEL 'VERIFY" labeis this line of code for
subsequent reference by a JUMP command. "COMPARE card_status,
write_valid" is a command indicating that if the value of "card_status" is
equal to the value of "write_valid," then the variable "flag" will be set
equal to 1. Otherwise “flag" will be set equal to 0. "Card_status" is flash
card-dependent value that the flash card provides to the system to
indicate whether or not the previous OUTPUT command to write data
into the flash card executed properly. “"Write_valid" is also a flash card-
dependent value that is equal to the value the flash card provides to
indicate a successful write operation has taken place.

If "card_status” is equal to "write_valid," then the write to the flash
card has been successful, and the variable "flag" will be set to 1. Then,
in the next line, the interpreter is instructed to jump to the line of code
labeled "VERIFIED". If, on the otherhand, "card_status” is not equal to
"write_valid," then the write to the flash card has not been successful,
and the variable "flag" will be set to 0. The next line of code will warrant
no action on the interpreter's pan, and the counter will be incremented

in the following line of code “INCREMENT counter'. The INCREMENT

WO 97/24656 PCT/US96/20809

-14 -
command sets the value of the indicated variable equal to the current
value of the variable plus one, thereby incrementing its value by one.

Next the interpreter determines if the counter has reached 100,
and if so, the interpreter is instructed to jump back up to the line labeled
"BEGIN" so that the data can be rewritten. The higher the value of the
variable "counter," the longer the delay. Therefore, the counter limitation
in this line of code should be set to a reasonable value by which time
data can be written into the flash card. If counter hasn't reached 100 yet,
the interpreter is instructed to increment the counter in the next line, and
loop back to the label "VERIFY" to continue checking the flash card
status.

The variable "offset" is incremented in the command line
"INCREMENT offset," and its value is then compared to the total number
of bytes, "number_bytes" that the original write request data packed
indicated would be written to the flash card. If "offset" is not equal to
"number_bytes,” thereby setting "flag" to 0, the interpreter is instructed to
jump back up to the line of code labeled "BEGIN" so that the remaining
bytes can be written into the flash card. Once "offset" reaches
"number_bytes," "flag" will be set equal to 1, and the line "If flag = 1
THEN JUMP DONE" will instruct the interpreter to skip down two lines to
the line labeled "DONE". The following line of code "WRITE_END"
indicates to the interpreter that the write to the flash card has been
completed. Thus, in this manner, the interpretive driver code, originally
resident on the peripheral device, has provided a software interface

between the system and peripheral, thereby enabling communication

for the execution of a write operation.

WO 97/24656 PCT/US96/20809

-15-

In the foregoing specification, the invention has been described
with reference to specific exemplary embodiments thereof. It will,
however, be evident that various modifications and changes may be
made thereto without departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly, to be

regarded in an illustrative rather than a restrictive sense.

WO 97/24656 PCT/US96/20809

-16 -
CLAIMS

What is claimed is:

1. A peripheral device comprising:

memory; and

driver code stored in the memory, the driver code being
uncompiled code that, when read by a system to which the

peripheral device is coupled, enables the system to

interface with the peripheral device.

2. The peripheral device of claim 1, wherein the code is stored in

the memory as interpretive code capable of being interpreted by

an interpreter contained within the system.

3. The peripheral device of claim 1, wherein the code is stored in
the memory as source code capable of being compiled and

executed by the system.

4 The peripherat device of claim 1, wherein the peripheral device

comprises flash memory.

5. The peripheral device of claim 4, wherein the system comprises a

digital camera.

6. The peripheral device of claim 1, wherein the peripheral device

comprises a fax-modem device.

WO 97/24656 PCT/US96/20809

-17 -

7. The peripheral device of claim 1, wherein the peripheral device is

a video capture device.

8. A flash memory comprising:
a protected region of memory within the flash memory; and
driver code stored in the protected region of memory, the
driver code being uncompiled code that, when read by a
system to which the flash memory is coupled, enables the

system to interface with the flash memory.

9. The flash memory of claim 8, wherein the code is stored as

interpretive code.

10. The flash memory of claim 8, wherein the code is stored as

source code.

11. The flash memory of claim 8, wherein the flash memory stores

digital images from the system, the system comprising a digital

camera.

12. The flash memory of claim 8, wherein the flash memory stores

digital audio signals from the system.

13. An apparatus wherein a system is coupled to and interfaces with
a peripheral device, the apparatus comprising:

peripheral device memory;

WO 97/24656 PCT/US96/20809

-18 -

system memory coupled to the peripheral device memory; and

driver code stored in the peripheral device memory, the driver
code being uncompiled code that, when read by the

system, enables the system to interface with the peripheral

device.

14. The apparatus of claim 13, wherein the code is stored in the
peripheral device memory as interpretive code, which is then
transferred to system memory, and is interpreted by an interpreter

contained within the system to enable interfacing with the

peripheral device.

15. The apparatus of claim 13, wherein the code is stored in the
peripheral device memory as source code, which is then
transferred to system memory, compiled by a compiler contained
within the system, and is executed by the system to enable

interfacing with the peripheral device.

16. The apparatus of claim 13, wherein the peripheral device

comprises flash memory.

17. The apparatus of claim 16, wherein the system comprises a

digital camera and wherein the peripheral device stores digital

images from the system.

WO 97/24656

18.

19.

20.

21.

22.

PCT/US96/20809

-19-

The apparatus of claim 14, wherein the peripheral device
comprises flash memory, the system comprises a digital camera,

and the peripheral device stores digital images from the system.

The apparatus of claim 14, wherein the peripheral device
comprises flash memory, the system comprises an audio

recording device, and the peripheral device stores digital audio

signals from the system.

The apparatus of claim 13, wherein the peripheral device

comprises a video capture device.

A method of interfacing a peripheral device to a system, the
method comprising the steps of:
reading memory locations within the peripheral device
containing uncompiled driver code;
storing the driver code in memory locations within the system,;

using the driver code to enable the system to interface with the

peripheral device.

The method of claim 21, wherein the code is stored in the
peripheral device as interpretive code, which is interpreted by an

interpreter contained within the system to enable the system to

interface with the peripheral device.

WO 97/24656

23.

24.

25.

26.

27.

28.

PCT/US96/20809

-20-
The method of claim 21, wherein the code is stored in the

peripheral device as source code, which is compiled and

executed by the system to enable the system to interface with the

peripheral device.

The method of claim 21, wherein the peripheral device comprises

flash memory.

The method of claim 24, further comprising the step of storing

digital images in the peripheral device, wherein the system

comprises a digital camera.

The method of claim 22, further comprising the step of storing
digital images in the peripheral device, wherein the system

comprises a digital camera and the peripheral device comprises

flash memory.

The method of claim 21, wherein the peripheral device comprises

a fax-modem device.

The method of claim 21, wherein the peripheral device comprises

a video capture device.

PCT/US96/20809

WO 97/24656

172

$391A3Q
jesaydyad

{

L @1nbi4

801 201 901
aimde) oapiA Aowapy ysei4 wapopw-xe4
apoo laaug apo) 19AuQ epo7 JaANQa
aapnaiduaug eAnaidiaug eAnasdiaiug
coL Aowop vor Aowsn €Ot Aowapy
J2410 4FA!40 v YI®Ty

TR

/423 adur3vr

—.c—. muv&.nbmcu.
Jaaleg
s/0

00} woaishs

WO 97/24656 PCT/US96/20809

2/ 2

PARAMETER_START
SPEED = 200
BLOCK = 64K
DEVICE = 1M
SIZE = 2M
WIDTH = 08

PARAMETER_END

WRITE_START
PCMCIA_CALL SET VPP = 12V
PCMCIA CALL SETVCC =5V
offset=0
LABEL "BEGIN"
OUTPUT destination_address + offset, write_command

OUTPUT destination |_address + offset, source _address + offset
counter=0

LABEL "VERIFY"
COMPARE card_status, write_valid
IF flag = 1 THEN JUMP "VERIFIED"
IF counter = 100 THEN JUMP "BEGIN"
INCREMENT counter
JUMP VERIFY
LABEL "VERIFIED"

INCREMENT offset

COMPARE offset, number_bytes

IF flag = 1 THEN JUMP "DONE"

JUMP "BEGIN"

LABEL "DONE"

WRITE_END

Figure 2

INTERNATIONAL SEARCH REPORT Intcrnational application No.
PCT/US96/20809

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 7/00, 9/40, 9/44, 9/46, 9/445, 9/45
US CL :395/651, 652, 712
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 395/651, 652, 712, 701, 705, 706, 707

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched
NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
STN, DIALOG

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y,P US, A, 5,519,851 (BENDER ET AL) 21 MAY 1996, FIG'S 1-| 1-28
13 AND COL 1, LINE 5, TO COL 16, LINE 36.

Y,P US, A, 5,504,902 (MCGRATH ET AL) 02 APRIL 1996, FIG'S| 1-28
1-8 AND COL 1, LINE 5, TO COL 16, LINE 17.

Y US, A, 5,404,494 (GARNEY) 04 APRIL 1995, SEE ENTIRE| 1-28
DOCUMENT.
Y US, A, 5,319,751 (GARNEY) 07 JUNE 1994, FIG’S 1-13| 1-28

AND COL 1, LINE 5, TO COL 18, LINE 17.

Y US, A, 5,412,798 (GARNEY) 02 MAY 1995, FIG'S 1-17] 1-28
AND COL 1, LINE 20, TO COL 26, LINE 44.

@ Further documents are listed in the continuation of Box C. D See patent family annex.

. Spocial categories of cited documents: T mmwmum@:::cd:wmz
. . . 3 date and oot in conflict with the application ited to understand
A document the general state of the art which is not considered iack i P 3
mbepn:f‘-'. s which i principle or theory uaderlying the invention
gy carlier document published oa ot afler the inomational filing date X document of particular rolevance; the claimed e e o
°L" docwnent which may throw doubts os priority claim(s) or which is whea the document is takea alone
cited to catablish the publication date of saother citation of other)
special reason (a8 specified) “Y* d of p ; the claimed inveation cannot be
idered 10 involve an & ive sicp when the document is
0° document referving 0 an oral disclosure, usc, exhibition or other combined with c.e or more other d such combinati
means being obvious 10 8 person skilled in the art
P document published prior to the internstional filing date but later than = g* i
mcpriorhyp‘fd::cc prior e iling T & document member of the same pateat family
Date of the actual completion of the international search Date of mailing of the intcrnational search report
09 APRIL 1997 2 3 APR 1997
Name and mailing address of the ISA/US Al | flicer
Commissioner of Patents and Trademarks
Box PCT C (o)
Washington, D.C. 20231 :
Facsimile No. (703) 308-5356 Telephone No. (703) 308-6685

Form PCT/ISA/210 (second sheet)(July 1992)%

INTERNATIONAL SEARCH REPORT

Intemational application No.

PCT/US96/20809

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

1-24 AND COL 1, LINE 10, TO COL 20, LINE 52.

Y US, A, 5,265,218 (TESTA ET AL) 23 NOVEMBER 1993, FIG’S

1-28

Form PCT/ISA/210 (continuation of second sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

