The invention is a percutaneous electrical therapy system with sharp point protection. In a preferred embodiment, the system includes a control unit; an electrode assembly adapted to deliver electrical therapy to a patient, where the electrode assembly has an electrode electrically connectable to the control unit, the electrode having a sharp point at a distal end adapted to be inserted into the patient's tissue; and a sharp point protection assembly operable with the electrode assembly for reducing risk of unintended exposure to the electrode's point. The invention also includes an electrode assembly and sharp point protection assembly for a percutaneous electrical therapy system as described above, apart from the control unit.

The invention is also a method of performing percutaneous electrical therapy, the method including the steps of providing an electrode assembly having an electrode, the electrode having a sharp point at a distal end; inserting the sharp point of the electrode into a patient's tissue without exposing the sharp point to anyone but the patient; and applying an electrical signal to the electrode from a control unit.
Figure 3
Fig. 16

Fig. 18

Fig. 22
PERCUTANEOUS ELECTRICAL THERAPY SYSTEM WITH SHARP POINT PROTECTION

BACKGROUND OF THE INVENTION

[0001] This invention relates generally to percutaneous electrical therapy systems for medical use, such as for pain treatment. In particular, the invention relates to a percutaneous electrical therapy system providing sharp point protection.

[0002] Electrical therapy has long been used in medicine to treat pain and other conditions. For example, transcutaneous electrical nerve stimulation (TENS) systems deliver electrical energy through electrode patches placed on the surface of a patient's skin to treat pain in tissue beneath and around the location of the patches. The efficacy of TENS systems in alleviating pain is questionable at best, however.


[0004] Thus far, PNT practitioners have used percutaneously placed acupuncture needles attached to waveform generators via cables and alligator clips to deliver the therapy to the patient. This arrangement and design of electrodes and generator is far from optimal. For example, the prior art has not addressed the issue of sharpness of the electrode assembly for the patients' caregivers and other bystanders. It is therefore an object of this invention to provide a system having electrodes and electrode assemblies that are safe, efficacious, inexpensive, and easy to use.

[0005] Other objects of the invention will be apparent from the description of the preferred embodiments.

SUMMARY OF THE INVENTION

[0007] The invention is a percutaneous electrical therapy system with sharp point protection. In a preferred embodiment, the system includes a control unit; an electrode assembly adapted to deliver electrical therapy to a patient, where the electrode assembly has an electrode electrically connectable to the control unit, the electrode having a sharp point at a distal end adapted to be inserted into the patient's tissue; and a sharp point protection assembly operable to contain at least the sharp point of the electrode when the electrode is in an undeployed state. In some embodiments, the sharp point protection assembly includes a housing to contain at least the sharp point of the electrode when the electrode is in an undeployed state. In some embodiments, the sharp point of the electrode may be outside of the housing in a deployed state, the housing being adapted to contain a portion of the electrode in the deployed state. The housing may also be adapted to contain at least the sharp point of the electrode when the electrode has changed from the deployed state to an undeployed state.

[0008] In some embodiments, the sharp point protection assembly further includes a locking assembly preventing relative movement between the electrode and the housing. The locking assembly may be a spring-biased detent. The system may also include a tool adapted to release the locking assembly to move the sharp point of the electrode out of the housing. The tool may be further adapted to move the sharp point of the electrode into the housing after having moved the sharp point of the electrode out of the housing and to engage the locking assembly to prevent further relative movement between the electrode and the housing.

[0009] In some embodiments, the electrode assembly has an actuator attached to a proximal end of the electrode, the actuator being disposed within and movable within the housing. The system may also include an actuator tool adapted to interact with the actuator to move the sharp point of the electrode out of the housing. The actuator tool may be further adapted to move the sharp point of the electrode back into the housing after having moved the sharp point of the electrode out of the housing. The actuator tool may also have an electrical contact adapted to make electrical communication between the electrode and the control unit.

[0010] In some embodiments, the housing is adapted to contain none of the electrode when the electrode is in a deployed state in which the sharp point of the electrode has been inserted into the patient's tissue. The housing may be adapted to contain a plurality of electrodes. The system may also include an actuator adapted to move the electrode out of the housing. The housing may be adapted to contain a plurality of electrodes, the actuator being further adapted to move each electrode out of the housing one at a time.

[0011] The electrode assembly further may include a patch adapted to be placed on the patient's skin and to support the electrode in the deployed state. The patch may have an opening adapted to surround a portion of the electrode when the electrode is in the deployed state. The patch may also include an annular member disposed in the patch opening and adapted to engage a handle portion of the electrode. The annular member may have a raised portion disposed above the patch and adapted to engage an aperture of the housing.

[0012] The system may also include an electrical connector attachable to the electrode handle portion to make electrical communication between the electrode and the control unit.

[0013] In some embodiments, the housing is a first housing, with the sharp point protection assembly further includ-
ing a second housing to contain at least the sharp point of the electrode when the electrode has moved from the deployed state to an undeployed state. The system may also include an actuator adapted to move the electrode into the second housing. The system may also include an electrode grasper adapted to grasp the electrode in response to movement of the actuator, such as a fork adapted to mate with a handle portion of the electrode. The second housing may also be adapted to contain at least the sharp points of a plurality of electrodes, with the actuator being optionally further adapted to move a plurality of electrodes into the second housing.

[0014] In some embodiments, the sharp point protection assembly includes an aperture in the housing adapted to permit the electrode to pass through for deployment of the electrode.

[0015] In some embodiments, the system further comprises a movable actuator adapted to move the sharp point of the electrode into the patient’s tissue. The system may also include an actuator limit element limiting movement of the actuator and controlling depth of insertion of the sharp point of the electrode into the patient’s tissue.

[0016] In some embodiments, the system may also include an electrode insertion depth control mechanism.

[0017] In some embodiments, the system may also include a deployed electrode holding mechanism adapted to hold the electrode in place after insertion of the sharp point of the electrode into the patient’s tissue.

[0018] In some embodiments, the system may also include an electrode insertion axial stabilizer adapted to provide axial stability to the electrode during insertion of the sharp point of the electrode into the patient’s tissue.

[0019] In some embodiments, the system may also include an electrode insertion pain reducer adapted to reduce pain experienced by the patient during insertion of the sharp point of the electrode into the patient’s tissue.

[0020] In some embodiments, the system may also include an electrode angle of entry controller adapted to control the electrode’s entry angle during insertion of the sharp point of the electrode into the patient’s tissue.

[0021] The invention is also a method of performing percutaneous electrical therapy, the method including the steps of providing an electrode assembly having an electrode, the electrode having a sharp point at a distal end; inserting the sharp point of the electrode into a patient’s tissue without exposing the sharp point to anyone but the patient; and applying an electrical signal to the electrode from a control unit. The method may include the step of removing the electrode from the patient’s tissue without exposing the sharp point to anyone but the patient. The method may also include the step of making an electrical connection between the electrode and the control unit. The method may also include the step of, after the inserting step, supporting the electrode in the patient’s tissue.

[0022] In some embodiments, the inserting step includes the step of using the electrode assembly to guide electrode entry angle. In some embodiments, the inserting step includes the step of using an introducer to guide electrode entry angle. In some embodiments, the inserting step includes the step of providing axial stability to the electrode during insertion. In some embodiments, the inserting step includes the steps of placing a housing adjacent the patient’s tissue; and moving the sharp point of the electrode out of the housing and into the patient’s tissue. This method may also include the step of placing a patch on the patient’s tissue prior to the step of placing a housing, in which the step of placing a housing includes the step of placing the housing adjacent the patch. In this method, the patch may have an opening, with the moving step including the step of moving the sharp point of the electrode out of the housing, through the opening and into the patient’s tissue. The method may also include the step of mechanically supporting at least a portion of the electrode with the patch.

[0023] In some embodiments of the method, the moving step includes the steps of moving the entire electrode out of the housing; and removing the housing from the patient’s tissue. In some embodiments, the housing is a first housing, the method further including the step of removing the electrode from the patient’s tissue into a second housing without exposing the sharp point to anyone but the patient.

[0024] In some embodiments, the method includes the step of removing the electrode from the patient’s tissue into the housing without exposing the sharp point to anyone but the patient.

[0025] The invention also includes an electrode assembly and sharp point protection assembly for a percutaneous electrical therapy system as described above, apart from the control unit.

[0026] The invention is described in further detail below with reference to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] FIGS. 1A-G are schematic renderings of a percutaneous electrical therapy system according to one embodiment of this invention.

[0028] FIG. 1A shows electrode and sharp point protection assemblies wherein the electrode is in an undeployed and uninserted state.

[0029] FIG. 1B shows the electrode and sharp point protection assemblies of FIG. 1A during deployment but prior to insertion of the electrode into a patient’s tissue.

[0030] FIG. 1C shows the electrode and sharp point protection assemblies of FIG. 1A during deployment and insertion of the electrode into the patient’s tissue.

[0031] FIG. 1D shows the electrode of FIG. 1A inserted into the patient’s tissue.

[0032] FIG. 1E shows the electrode of FIG. 1A attached to a control unit to provide percutaneous electrical therapy.

[0033] FIG. 1F shows the electrode and sharp point protection assemblies of FIG. 1A during undeployment but prior to removing the sharp point of the electrode from the patient’s tissue.

[0034] FIG. 1G shows the electrode and sharp point protection assemblies of FIG. 1A during undeployment and after removing the sharp point of the electrode from the patient’s tissue.

[0035] FIGS. 2A-E are schematic renderings of a percutaneous electrical therapy system according to another embodiment of this invention.
FIG. 2A shows a percutaneous electrical therapy system with electrode and sharp point protection assemblies wherein the electrode is in an undeployed and uninserted state.

FIG. 2B shows the percutaneous electrical therapy system of FIG. 2A during deployment, but prior to insertion, of the electrode.

FIG. 2C shows the percutaneous electrical therapy system of FIG. 2A with the electrode in a deployed and inserted state.

FIG. 2D shows the percutaneous electrical therapy system of FIG. 2A during undeployment of the electrode.

FIG. 2E shows the percutaneous electrical therapy system of FIG. 2A after the electrode has been undeployed.

FIG. 3 shows an electrode montage for use in percutaneous neuromodulation therapy to treat low back pain.

FIG. 4 is an exploded sectional view of an electrode and sharp point protection assembly according to yet another embodiment of this invention.

FIG. 5 is a partially exploded elevational view of the embodiment of FIG. 4.

FIG. 6 is an elevational view of the embodiment of FIG. 4 showing the electrode and sharp point protection assemblies and an actuator tool.

FIG. 7 is a sectional view of the embodiment of FIG. 4 showing the electrode and sharp point protection assemblies and an actuator tool.

FIG. 8 is a sectional view of the embodiment of FIG. 4 showing the actuator tool in engagement with the electrode and sharp point protection assemblies prior to insertion of the electrode into a patient’s tissue.

FIG. 9 is a sectional view of the embodiment of FIG. 4 with the electrode in its deployed and inserted state.

FIG. 10 shows a montage for using the embodiment of FIG. 4 to treat low back pain with the electrodes in a partially deployed but uninserted state.

FIG. 11 shows the electrode montage of FIG. 10 at the beginning of the electrode insertion step.

FIG. 12 shows the electrode montage of FIG. 10 with the electrodes deployed, inserted and attached to a control unit to provide electrical therapy to the patient.

FIG. 13 is an exploded view of an electrode introducer and sharp point protection assembly of yet another embodiment of this invention.

FIG. 14 is a partial sectional view of the introducer and sharp point protection assembly of FIG. 13.

FIG. 15 is a sectional view of the introducer and sharp point protection assembly of FIG. 13.

FIG. 16 is an elevational view of gear assemblies of the introducer and sharp point protection assembly of FIG. 13.

FIG. 17 shows part of the electrode assembly of the embodiment of FIGS. 13-16 in a montage used for treating low back pain using PNT.

FIG. 18 is an elevational view showing the introducer of FIG. 13 in the process of deploying an electrode.

FIG. 19 is a sectional view showing the introducer of FIG. 13 in the process of deploying an electrode, prior to insertion of the electrode.

FIG. 20 is a sectional view showing the introducer of FIG. 13 in the process of deploying an electrode, during insertion of the electrode.

FIG. 21 is a sectional view showing the introducer of FIG. 13 in the process of deploying an electrode, also during insertion of the electrode.

FIG. 22 is a sectional view of an inserted electrode assembly of the embodiment of FIGS. 13-16.

FIG. 23 is a partial sectional view of an electrode remover and sharp point protection assembly according to yet another embodiment of the invention prior to removal of an electrode.

FIG. 24 is a partial sectional view of the electrode remover and sharp point protection assembly of FIG. 23 partially actuated but prior to removal of an electrode.

FIG. 25 is a partial sectional view of the electrode remover and sharp point protection assembly of FIG. 23 partially actuated but prior to removal of an electrode.

FIG. 26 is a partial sectional view of the electrode remover and sharp point protection assembly of FIG. 23 partially actuated and engaged with an electrode but prior to removal of the electrode.

FIG. 27 is a partial sectional view of the electrode remover and sharp point protection assembly of FIG. 23 during removal of an electrode.

FIG. 28 is a partial sectional view of the electrode remover and sharp point protection assembly of FIG. 23 after removal of an electrode.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Percutaneous electrical therapy systems, such as PNT systems, deliver electric current to a region of a patient’s tissue through electrodes that pierce the skin covering the tissue. The electric current is generated by a control unit external to the patient and typically has particular waveform characteristics such as frequency, amplitude and pulse width. Depending on the treatment or therapy being delivered, there may be one electrode containing both a cathode and an anode or a plurality of electrodes with at least one serving as a cathode and at least one serving as an anode.

The electrode has a sharp point to facilitate insertion through the patient’s skin and to enhance local current density during treatment. Once inserted into the skin, the sharp point may become exposed to pathogens, microbes, toxins, etc. in the patient’s tissue and/or blood. After removal of the electrode from the patient’s tissue, a caregiver or other bystander may be struck accidentally with the sharp point of the electrode, thereby exposing the caregiver to any pathogens that may be on the used electrode. This invention therefore provides a sharp point protection assembly for a percutaneous electrical therapy system.
FIGS. 1A-G are block diagrams showing deployment and use of one embodiment of this percutaneous electrical therapy system and electrode assembly invention. As shown in FIGS. 1A and 1B, the system includes an electrode 1 having a sharp point 2 at its distal end and a sharp point protection assembly 3 surrounding at least the electrode’s sharp point 2 when the electrode is in its undeployed and uninserted states. The undeployed and uninserted states include pre-deployment and post-deployment states of the electrode. In this embodiment, sharp point protection assembly 3 includes a housing 4 having an aperture 5 at its distal end. An actuator 6 interacts with a handle 11 at the proximal end of electrode 2 as shown.

Deployment of the electrode assembly includes the steps taken to place the electrode assembly in proper position and condition for use in electrical therapy. FIG. 1A shows the electrode assembly in an undeployed (pre-deployed) state. During deployment, aperture 5 is placed against a patient’s skin 22, as shown in FIG. 1B. Electrode 2 is then inserted into the tissue underlying the patient’s skin by moving actuator 6 distally, as shown in FIG. 1C. Actuator 6 may have an optional limit stop 9 element cooperating with a limit stop area 8 of housing 4 to limit distal motion of actuator 6 and to control the depth of insertion of sharp point 2 of electrode 1. In a preferred embodiment of the invention, for example, where the electrical therapy system is used to provide percutaneous neuromodulation therapy, the predetermined electrode depth is 3 cm. Other electrode depths may be used, of course, depending on the intended application and therapy.

After insertion, housing 4 and actuator 6 (which have heretofore acted as an electrode introducer) are preferably removed, as shown in FIG. 1D. Electrode 1 is connected to a control unit 10 via a conductor or cable 16. For use with PNT, control unit 10 preferably supplies a current-regulated and current-balanced waveform with an amplitude of up to approximately 20 mA, frequency between approximately 4 Hz and 50 Hz, and pulse width of between approximately 50 μsec and 1 msec. Other electrical waveforms having other parameters may be used, of course, depending on the therapy to be provided. Also, while FIG. 1E shows only one electrode connected to the control unit, it should be understood that a plurality of electrodes may be connected to a single control unit, as called for by the desired electrical stimulation treatment.

After completion of the electrical therapy, the electrode assembly is undeployed. During undeployment, the electrode must be removed from the patient in a sharp-safe manner. In this embodiment, as shown in FIG. 1F, the aperture 5 of the housing 4 of a sharp point protection assembly 3 is placed over the handle portion 11 of electrode 1. Sharp point protection assembly 3 may be the same assembly used to deploy and insert the electrode (i.e., the electrode introducer), or it may be an entirely different assembly (e.g., an electrode remover). The sharp point 2 of electrode 1 is then drawn into housing 4 of sharp point protection assembly 3 by moving actuator 6 proximally, as shown in FIG. 1G. Thus, sharp point protection assembly 3 of FIGS. 1A-1H allows an undeployed undeployed contact between the electrode’s sharp point and a caregiver or other bystander before, during and after deployment of the electrode.

FIGS. 2A-E are block diagrams of another embodiment of our percutaneous electrical therapy system and electrode assembly invention. A control unit 10 is connected to an electrode 12 within an electrode assembly 13 via a conductor 16. As above, for use with PNT, control unit 10 preferably supplies a current-regulated and current-balanced waveform with an amplitude of up to approximately 20 mA, frequency between approximately 4 Hz and 50 Hz, and pulse width of between approximately 50 μsec and 1 msec. As shown in its undeployed state in FIG. 2A and in its uninserted state in FIG. 2B, the system includes a sharp point protection assembly 14 comprising a housing 18 surrounding the sharp point 20 of electrode 12 when the electrode point 20 has not yet been inserted through the patient’s skin 22.

To begin deployment, distal face 21 of housing 18 is placed against the patient’s skin 22, as shown in FIG. 2B. The system may also include an electrode actuator 19 that enables deployment and insertion of the sharp point 20 of electrode 12 through the patient’s skin 22 into a underlying tissue to a predetermined depth through an aperture 24 in housing 18, as shown in FIG. 2C. Actuator 19 may be part of the electrode assembly 13 or a separate component of the system. Actuator may have an optional limit stop element 23 that cooperates with a limit stop area 17 of housing 18 to limit distal movement of actuator 19, thereby controlling depth of insertion of electrode 12. In a preferred embodiment of the invention, for example, where the electrical stimulation system is used to provide percutaneous neuromodulation therapy, the predetermined electrode depth is approximately 3 cm, although other electrode depths may be used depending on the application. The control unit 10 may then provide the appropriate therapy to the patient through electrode 12 and any other electrodes connected to it.

During undeployment, actuator 19 is used to draw electrode 12 back proximally into housing 18. After removal of the electrode from the patient’s skin, housing 18 of sharp point protection assembly 14 once again surrounds the sharp point 20 of the now uninserted electrode 12, as shown in FIGS. 2D and 2E. Actuator 19 helps enable this operation to occur without ever exposing the sharp point of the electrode when the sharp point is no longer in the patient. In fact, the operator of the electrode assembly never sees the sharp point of the electrode. Thus, sharp point protection assembly 14 shields the potentially contaminated portion of the undeployed electrode and protects the patient’s caregiver or other bystander from unintended contact with the sharp point of the electrode before, during and after electrical therapy.

While FIGS. 2A-E show the electrode connected to the control unit prior to deployment and insertion of the electrode into the patient’s skin, the connection between the control unit and the electrode could be made during deployment or after insertion. Also, while FIGS. 2A-E show only one electrode connected to the control unit, it should be understood that a plurality of electrodes may be connected to a single control unit, as called for by the desired electrical stimulation treatment.

To use the percutaneous electrical therapy systems of FIGS. 1A-G and FIGS. 2A-E to treat a patient, one or more electrodes are inserted through the patient’s skin into
the underlying tissue. As an example, to treat low back pain using PNT with unipolar electrodes, an array or montage such as that shown in FIG. 3 may be used. The "T12"-"S1" designations refer to the patient’s vertebrae. The sharp point protection assembly shields the electrode assembly operator from exposure to the electrode’s sharp point prior to, during and after treatment. The control unit or generator supplies current pulses between pairs of electrodes for durations of a few minutes to several hours, preferably delivering the current-regulated waveform described above. Thirty minute treatments are recommended in the Gioname et al. low back pain treatment articles.

[0078] During deployment and treatment, the electrode assembly and other parts of the system perform other functions in addition to being a sharps-protected conduit for current flow into the patient. For example, in the embodiment of FIGS. 2A-E, aperture 24, distal face 21 and the interaction of actuator 19 and housing 18 cooperate as an electrode angle of entry controller to control the electrode’s entry angle during insertion of the sharp point of the electrode into the patient’s tissue. The interaction of aperture 5, distal face 7 of housing 4, and the interaction of actuator 6 and housing 4 perform this function in the embodiment of FIGS. 1A-G.


[0080] FIGS. 4-12 show another embodiment of this invention. An electrode assembly 30 includes a base 32, an electrode 34, and a plunger or actuator 36. Base 32 has a flange or flared end 44 that is adapted to make contact with a patient’s skin. Base 32 may be formed from any suitable polymer or metal, such as a high density polyethylene (HDPE). Base 32 is preferably opaque so that the electrode cannot be seen by a needle-shy patient.

[0081] Actuator 36 fits within a housing portion 40 of base 32 in a slidable arrangement. A locking assembly is operable to prevent relative movement between actuator 36 and housing 40 of base 32. In this embodiment, the locking assembly of actuator 36 has integrally-formed resilient detents 48 on its exterior cylindrical surface. In the undeployed state of electrode assembly 30, detents 48 mate with a corresponding openings 50 in base 32 to hold actuator 36 and base 32 in place with respect to each other to prevent electrode 34 from moving outside of the protective housing 40 of base 32 and thereby providing sharp point protection, as explained further below. Mechanisms other than the detent and opening arrangement shown here may be used to hold the actuator and base in place may be used without departing from the invention.

[0082] In this embodiment, electrode 34 is preferable a 3 cm. long 32 gauge stainless steel needle. Other sizes and materials may be used for electrode 34, of course, without departing from the scope of the invention. Actuator 36 is preferably formed from HDPE, as well, although other suitable materials may be used.

[0083] Electrode 34 has a larger-diameter handle 52 at its proximal end. Handle 52 fits within a channel 54 formed within actuator 36. Channel 54 has a narrow opening 56 at its distal end whose diameter is slightly larger than the diameter of electrode 34 but narrower than the diameter of handle 52 to hold electrode 34 in place within actuator 36 after initial manufacture and assembly. As shown in FIG. 7, in an undeployed state the sharp point 38 of electrode 34 is disposed within housing portion 40 of base 32, specifically, within a narrow channel 42 of the housing 40.

[0084] To deploy one or more electrode assemblies on a patient in order to provide electrical stimulation therapy (such as PNT), the distal surface 46 of flange portion 44 of base 32 is mounted on the desired site on the patient’s skin, preferably with a compressible adhesive pad (not shown) surrounding a ring 43 extending downward from surface 46 around an aperture 41 formed at the distal end of channel 42, although other means of attaching base 32 to the patient may be used as appropriate.

[0085] An electrical connector and actuator tool 60 is used to insert the electrode and connect the electrode electrically with a control unit 62. Actuator tool 60 and electrode assembly 30 also interact to provide the sharp point protection assembly of this embodiment. When the distal end of actuator tool 60 is placed against the proximal bases of base 32 and actuator 36, the exposed proximal end 64 of electrode handle 52 makes electrical contact with a contact surface 66 within actuator tool 60. Contact surface 66, in turn, is electrically connected to the control unit 62 via a cable or other conductor 68.

[0086] Actuator tool 60 has two oppositely disposed pegs 70 extending outward from the distal portion of its cylindrically surface. Pegs 70 mate with two corresponding slots 72 in actuator 36 and with two corresponding grooves 74 in base 32. (The second slot 72 and second groove 74 are each opposite the slot 72 and groove 74, respectively, shown in FIGS. 4 and 5.) When connecting actuator tool 60 to electrode assembly 30, pegs 70 move along longitudinal portions 76 of slots 72 and along longitudinal portions 78 of grooves 74. Concurrently, exposed distal end 64 of electrode handle 52 begins to make sliding contact with contact surface 66 of actuator tool 60 to create the electrical connection between actuator tool 60 and electrode 32.

[0087] Clockwise rotation (looking down on the assembly) of actuator tool 60 after pegs 70 reach the end of longitudinal portions 76 and 78 moves pegs 70 into short circumferential portions 80 and 82, respectively, of slots 72 and grooves 74. The length of circumferential portions 80 of slots 72 is less than the length of circumferential portions 82 of grooves 74. Continued movement of pegs 70 along circumferential portions 82 will therefore move pegs 70 against the ends 81 of circumferential slots 80. Further
clockwise rotation of actuator tool 60 will cause actuator 36 to rotate clockwise as well, thereby moving detents 48 out of openings 50 and allowing the electrode 34 and actuator 36 to move with respect to base 32.

[0088] Second longitudinal portions 84 of grooves 74 are formed in base 32 at the end of circumferential portions 82. Movement of pegs 70 distally along longitudinal portions 84 pushes pegs 70 against the distal edges of circumferential slot portions 80, thereby moving actuator 36 and electrode 34 distally toward the patient's skin 22.

[0089] As it moves, electrode 34 passes through channel 42, and the sharp point of electrode 34 moves out through aperture 41. Channel 42 and actuator 36 provide axial support to electrode 34 during this forward movement and also, along with the support provided by flange 44, provide entry angle guidance to the electrode. In addition, downward pressure on the patient's skin during electrode deployment compresses the compressible adhesive pad and presses ring 43 against the patient's skin 22, which helps ease electrode entry through the skin and also lessens the insertion pain experienced by the patient.

[0090] Distal movement of the electrode and its actuator within base 32 continues until the distal surface 86 of a cylindrical cap portion 92 of actuator tool 60 meets an annular surface 88 of housing 40. At this point, sharp point 38 of electrode 34 has extended a predetermined depth into the tissue underlying the patient's skin. In the preferred embodiment, this predetermined depth is approximately 3 cm, although other electrode depths may be desired depending on the treatment to be performed.

[0091] An optional feature of the invention is a deployed electrode holding mechanism. In this embodiment, an interference fit between the inner surface of channel 42 and the outer surface 55 of channel 52 performs this function.

[0092] Electrical stimulation treatment may begin once the electrodes have been deployed and inserted. Control unit 62 supplies stimulation current to the electrodes, e.g. in the manner described in the Ghomane et al. articles. The electrical waveform provided by the control unit depends on the application. For example, in an embodiment of a system providing percutaneous neuromodulation therapy, control unit 62 would preferably provide a current-regulated and current-balanced waveform with an amplitude of up to approximately 20 mA, frequency between approximately 4 Hz and 50 Hz, and pulse width of between approximately 50 μsec and 1 msec.

[0093] The interaction of actuator tool 60 and base 32 provides stability to electrode 34 and its electrical connection to the control unit during treatment by holding the electrode in place, by providing strain relief for tugging forces on cable 68, and by providing a robust mechanical connection. It should be noted that the sharp point of the electrode is not exposed to the operator or to any other bystander at any point during deployment and use of the electrode assembly.

[0094] After treatment has been completed, the electrode may be removed from the patient. To do so, actuator tool 60 is moved proximally away from the patient. As pegs 70 move proximally along longitudinal portions 84 of grooves 74, pegs 70 push against proximal edges of the actuator's circumferential slot portions 80, thereby moving actuator 36 and electrode 34 proximally as well. When pegs reach the proximal end of longitudinal groove portions 84, the sharp end 38 of electrode 34 is out of the patient and safely inside housing 40 of base 32. Counterclockwise movement of actuator tool 60 moves pegs along circumferential portions 80 and 82 of slot 72 and groove 74, respectively. Since, as discussed above, circumferential portion 80 is shorter than circumferential portion 82, this counterclockwise movement will turn actuator 36 counterclockwise.

[0095] At the limit of the counterclockwise movement, detents 48 move back into openings 50 to prevent further movement of the electrode and actuator with respect to base 32. Further distal movement of actuator tool 60 moves pegs 70 distally along longitudinal portions 76 and 78 of slot 72 and groove 74, respectively, to disconnect actuator tool 60 from electrode assembly 30. Base 32 can then be removed from the patient.

[0096] Once again, at no time during the electrode deployment, use or removal processes was the sharp point of the electrode exposed to the operator or bystanders.

[0097] FIGS. 10-12 show the use of the electrode and sharp point protection assemblies of FIGS. 4-9 to treat low back pain using PNT. As shown in FIG. 10, ten electrode assemblies 30a-j are arranged in a montage on the patient's back and attached with adhesive. Next, ten actuator tools 60a-j are attached to the ten electrode assemblies 30a-j. In this example, prior to deployment the actuator tools are mounted on an actuator tool tray 61 that provides electrical communication to a control unit 62 via cable 69. The actuator tools electrically connect with tool tray 61, and thereby to cable 69 and control unit 62, via individual cables 68a-j. It should be understood that the tool tray 61 and its electrical connection scheme play no part in this invention. FIG. 11 shows the beginning of the electrode insertion process.

[0098] Once each electrode assembly has been actuated by its respective actuator tool to insert an electrode into the patient's tissue (as shown in FIG. 12), control unit 62 provides electrical signals to treat the patient. Preferably, half the electrodes (e.g., assemblies 30b, 30c, 30g, 30h and 30i) are treated as anodes, and the other half as cathodes. In the preferred embodiment, control unit 62 would provide a current-regulated and current-balanced waveform with an amplitude of up to approximately 20 mA, frequency between approximately 4 Hz and 50 Hz, and pulse width of between approximately 50 μsec and 1 msec. to treat the patient's low back pain using PNT.

[0099] Another embodiment of the invention is shown in FIGS. 13-28. In this embodiment, an electrode introducer and an electrode remover cooperate to provide sharp point protection.

[0100] A preferred embodiment of an electrode introducer 100 is shown in FIGS. 13-16 and 19-21. In this embodiment, introducer 100 is designed to insert multiple electrodes. It should be understood that the principles of this invention could be applied to an introducer designed to hold and insert any number of electrodes.

[0101] Twelve electrodes 102 are disposed within a magazine 103 rotatably mounted within a housing 104. In this embodiment, housing 104 is a two-part injection molded polystyrene assembly. As seen best in FIG. 14, magazine
rotates about a hub mounted on supports formed in housing. A leaf spring mates with one of twelve radial grooves formed in magazine to form a twenty-position ratchet mechanism for rotatable magazine in housing.

Magazine has twelve electrode chambers arranged radially about hub. When introducer is completely full, each chamber contains one electrode. The diameter of upper portion of chamber is sized to form an interference fit with the wider portions and of electrode handle portion. Lower wide portion of electrode is formed from a compressible material. The diameter of lower portion of chamber is slightly larger so that there is no interference fit between chamber portion and electrode handle, for reasons explained below. Each time leaf spring is within the groove, the opening of a magazine chamber is lined up with the aperture of introducer, as shown in FIGS. 14 and 15.

A slide member is disposed on a rail formed in housing. Extending longitudinally downward from slide member is a drive rod, and extending longitudinally upward from slide member is a gear rack. The teeth of gear rack cooperate with teeth on a rotational gear mounted about a shaft extending into a shaft mount formed in housing. A second set of teeth are mounted on a smaller diameter rotational gear (shown more clearly in FIG. 16) which is also mounted about the same shaft. Gears rotate together about the shaft.

The teeth of smaller diameter gear mesh with the teeth of a second gear rack extending from a longitudinally-moveable actuator. A spring mounted between actuator and a spring platform biases actuator away from housing.

To deploy the electrode assembly of this embodiment, a flexible and compressible annular patch is placed on the patient’s skin at the desired site, preferably with adhesive. The arrangement or montage shown in FIG. 17 may be used. In this montage, five electrodes serve as cathodes and five serve as anodes.

As shown in FIGS. 19 and 20, patch is an annular rigid member disposed in its center and extending upwardly from it. Rigid member has a smaller diameter opening leading to a larger diameter opening. The diameter of opening is slightly smaller than the lower wide portion of the handle portion of electrode and slightly larger than the diameter of the central portion of handle portion of electrode.

After the patch is in place, the distal end of introducer is placed against patch so that introducer aperture surrounds the upwardly extending portion of rigid patch member, as shown in FIG. 18. This interaction aligns the opening of one of the introducer’s magazine chambers with the opening of rigid member and helps control the electrode’s angle of entry, as shown in FIG. 19. Downward pressure on introducer compresses patch, thereby causing the upper surface of rigid member to engage a lower surface of magazine and pressing rigid member downward into the patient’s skin. This pressure on the patient’s skin around the insertion site minimizes the pain of insertion of the electrode.

Depressing actuator moves gear rack distally, which causes gears and to rotate. Because of the relative diameters and relative tooth counts of gears and, gear rack moves longitudinally a much greater distance than the corresponding longitudinal movement of gear rack. This feature enables the electrode to be inserted its required distance into the patient’s skin using only a comparatively small movement of the operator’s thumb. Distal movement of gear rack is guided by the movement of slide member along rail.

As slide member moves distally, drive rod moves into a magazine chamber until the distal end of drive rod engages the top surface of the electrode’s handle portion. As shown in FIG. 20, further distal movement of drive rod pushes electrode downward so that sharp point of electrode leaves the introducer housing and enters the patient’s skin and the tissue beneath the skin. Chamber provides axial stability to the electrode during insertion.

When the portion of electrode handle portion leaves the smaller diameter portion of magazine chamber, it enters the larger diameter portion of chamber. At this point, because the diameter of chamber portion is wider than the diameter of the electrode handle, the electrode is no longer attached to introducer.

Continued downward movement of actuator and drive rod pushes the lower larger diameter portion of electrode handle through the smaller diameter portion of rigid member by compressing handle portion. Further downward movement pushes handle portion into the larger diameter portion of rigid member so that the rigid member’s smaller diameter portion lies between the larger diameter portions and of the electrode handle. This interaction holds the electrode in place in the patient’s tissue and helps provide depth control for electrode insertion. In this embodiment, the preferred depth of the electrode’s sharp point is approximately 3 cm., although other electrode depths may be desired depending on the treatment to be performed. Slide member also acts as a stop at this point when it engages the limit stop area of housing, thereby also controlling electrode insertion depth.

Magazine is rotated to a new insertion position and placed against an empty patch after insertion of each electrode until all electrodes have been deployed and inserted. A suitable electrical connector such as an alligator clip is electrically connected to electrode through an aperture (not shown) formed in the upper larger diameter portion of electrode handle to provide electrical communication between a control unit and electrode via a cable or other conductor, as shown in FIG. 22. Patch provides strain relief for electrode by preventing tugging forces on cable from dislodging the electrode from the patient, thereby helping keep the electrode in place.

Control unit supplies stimulation current to the electrodes, e.g., in the manner described in the Ghoname et
al. articles. Once again, the electrical waveform provided by the control unit depends on the application. For example, in an embodiment of a system providing percutaneous neuromodulation therapy, control unit 150 would preferably provide a current-regulated and current-balanced waveform with an amplitude of up to approximately 20 mA, frequency between approximately 4 Hz and 50 Hz, and pulse width of between approximately 50 μsec and 1 msec.

[0114] It should be noted that at no time during the electrode deployment, insertion and electrical therapy treatment processes was the sharp point of the electrode exposed to the operator or bystanders.

[0115] In an alternative embodiment, the lower wide portion of the electrode handle is formed from a rigid material and has rounded camming edges. The central annulus of patch 140 in this alternative embodiment is either compressible or has a resilient camming opening under the camming action of the electrode handle.

[0116] FIGS. 23-28 show a sharps-safe remover according to one embodiment of this invention. Remover 200 is designed to work with the electrode and electrode patch assembly described with respect to FIGS. 13-22 above. It should be understood that the principles of sharps-safe remover 200 may apply to other electrode designs as well.

[0117] Remover 200 has a housing 202 with an aperture 204 at its distal end. A number of previously undeployed electrodes 102 are stored within housing 202. A pair of rails 214 and 216 hold the electrodes 102 in alignment via the electrode handles 107, as shown. While this embodiment of the remover is designed to provide sharps-safe removal and storage of a plurality of electrodes, the invention applies to removers designed to remove and store one or any number of electrodes.

[0118] As described above, electrodes for percutaneous electrical therapy are inserted through a patient's skin into underlying tissue with handle portions exposed above the skin. The first step in undeploying and removing an inserted electrode is to line up the exposed handle 107 of an electrode with the remover's aperture 204, as shown in FIG. 23, by placing the distal face 205 of remover 200 against the patient's skin or against any portion of the electrode assembly (such as an adhesive patch) surrounding the electrode. While not shown in FIGS. 23-28, aperture 204 is sized to surround an annular member (such as annular member 141 discussed above) holding an electrode handle of an electrode assembly (such as that shown in FIGS. 13-22 above), the sharp point of which has been inserted through a patient's skin.

[0119] An electrode engagement fork 206 is pivotably attached to a longitudinally movable actuator 208 via an arm 209 and a hinged pivot 210. A coil spring 212 biases actuator 208 upwards towards the actuator and fork position shown in FIG. 28. A leaf spring 218 extends from arm 209. A cross-bar 220 at the end of leaf spring 218 slides in groove 222 and a corresponding groove (not shown) on the other side of housing 202. Leaf spring 218 is in its relaxed state in the position shown in FIG. 23. In this position, a cross-bar 224 extending from the distal end of arm 209 adjacent fork 206 lies at the top of a camming member 226 and a corresponding camming member (not shown) on the other side of housing 202.

[0120] Downward movement of actuator 208 (in response, e.g., to pressure from a user's thumb) against the upward force of spring 212 moves cross-bar 224 against a first camming surface 228 of camming member 226, as shown in FIG. 24. Camming surface 228 pushes cross-bar 224 of arm 209 against the action of leaf spring 218 as actuator 208, arm 209 and fork 206 move downward.

[0121] FIG. 25 shows the limit of the downward movement of fork 206. At this point, crossbar 224 clears the camming member 226, and leaf spring 218 rotates fork 206 and arm 209 about pivot 210 to engage fork 206 with electrode handle 107, as shown in FIG. 26. The tine spacing of fork 206 is shorter than the diameter of the upper wide portion 112 of electrode handle 107 but wider than the diameter of the narrow middle portion 113 of electrode handle 107.

[0122] Release of actuator 208 by the user permits spring 212 to move actuator 208, 209 and fork 206 proximally. The engagement between fork 206 and electrode handle 107 causes the electrode to begin to move proximally with the fork out of the patient and into the remover housing, as shown in FIG. 27. At this point, cross-bar 224 is now engaged with a second camming surface 230 of camming member 226. Camming surface 230 pushes cross-bar 224 against the action of leaf spring 218 in the other direction (to the left in the view shown in FIG. 27) as the electrode, fork and arm rise under the action of coil spring 212.

[0123] The electrode and fork continue to rise until they reach the upward limit of their permitted motion, as shown in FIG. 28. At the point, electrode handle 107 has engaged rails 214 and 216 and the most recent electrode previously stored in remover 200. Electrode handle 107 pushes against the electrode handle of the previously stored electrode handle, which in turn pushes against any electrode handles stored above it in the stack. In this manner, the latest electrode removed by remover 200 goes into the bottom of the stack of used electrodes stored in remover 200. Now that the sharp point 108 of electrode 102 is safely inside housing 202, remover 200 can be withdrawn from the site on the patient's skin through which the electrode had been inserted. Once cross-bar 224 clears the top of camming member 226, and leaf spring 218 moves arm 209 back to the center position shown in FIG. 23.

[0124] It should be noted that remover 200 provides sharp point protection for the entire electrode undeployment and removal process. Once all electrodes have been removed, the used electrodes can be safely transported in the sharps-safe container provided by the housing 202 of remover 200.

[0125] Modifications of the above embodiments of the invention will be apparent to those skilled in the art. For example, while the invention was described in the context of percutaneous electrical therapy in which electrodes are used to deliver electricity to a patient, the sharps-safe features may be used with electrodes designed for medical monitoring and/or diagnosis. In addition, the sharps-safe features of this invention may be used with acupuncture needles or other needles not used for conducting electricity to or from a patient.

What is claimed is:

1. A percutaneous electrical therapy system comprising:

- a control unit;

- an electrode assembly adapted to deliver electrical therapy to a patient, the electrode assembly comprising an electrode electrically connectable to the control unit,
the electrode comprising a sharp point at a distal end adapted to be inserted into the patient’s tissue; and

a sharp point protection assembly operable with the electrode assembly for reducing risk of unintended exposure to the electrode’s point.

2. The system of claim 1 wherein the sharp point protection assembly comprises a housing to contain at least the sharp point of the electrode when the electrode is in an undeployed state.

3. The system of claim 2 wherein the sharp point of the electrode is outside of the housing in a deployed state, the housing being adapted to contain a portion of the electrode in the deployed state.

4. The system of claim 3 wherein the housing is adapted to contain at least the sharp point of the electrode after the electrode has changed from the deployed state to an undeployed state.

5. The system of claim 2 wherein the sharp point protection assembly further comprises a locking assembly preventing relative movement between the electrode and the housing.

6. The system of claim 5 wherein the locking assembly comprises a spring-biased detent.

7. The system of claim 5 further comprising a tool adapted to release the locking assembly and to move the sharp point of the electrode out of the housing.

8. The system of claim 7 wherein the tool is further adapted to move the sharp point of the electrode back into the housing after having moved the sharp point of the electrode out of the housing and to engage the locking assembly to prevent further relative movement between the electrode and the housing.

9. The system of claim 2 wherein the electrode assembly further comprises an actuator attached to a proximal end of the electrode, the actuator being disposed within and movable within the housing.

10. The system of claim 9 further comprising an actuator tool adapted to interact with the actuator to move the sharp point of the electrode out of the housing.

11. The system of claim 10 wherein the actuator tool is further adapted to move the sharp point of the electrode back into the housing after having moved the sharp point of the electrode out of the housing.

12. The system of claim 11 wherein the actuator tool has an electrical contact adapted to make electrical communication between the electrode and the control unit.

13. The system of claim 10 further comprising a locking assembly preventing relative movement between the actuator and the housing, the actuator tool being adapted to release the locking mechanism and to move the sharp point of the electrode out of the housing.

14. The system of claim 2 wherein the housing is adapted to contain none of the electrode when the electrode is in a deployed state in which the sharp point of the electrode has been inserted into the patient’s tissue.

15. The system of claim 14 wherein the housing is adapted to contain a plurality of electrodes.

16. The system of claim 14 further comprising an actuator adapted to move the electrode out of the housing.

17. The system of claim 16 wherein the housing is adapted to contain a plurality of electrodes, the actuator being further adapted to move each electrode out of the housing one at a time.

18. The system of claim 14 wherein the electrode assembly further comprises a patch adapted to be placed on the patient’s skin and to support the electrode in the deployed state.

19. The system of claim 18 wherein the patch has an opening adapted to surround a portion of the electrode when the electrode is in the deployed state.

20. The system of claim 19 wherein the patch further comprises an annular member disposed in the patch opening and adapted to engage a handle portion of the electrode.

21. The system of claim 20 wherein the annular member comprises a raised portion disposed above the patch and adapted to engage an aperture of the housing.

22. The system of claim 14 further comprising an electrical connector attachable to the electrode handle portion to make electrical communication between the electrode and the control unit.

23. The system of claim 14 wherein the housing is a first housing, the sharp point protection assembly further comprising a second housing to contain at least the sharp point of the electrode when the electrode has moved from the deployed state to an undeployed state.

24. The system of claim 23 further comprising an actuator adapted to move the electrode into the second housing.

25. The system of claim 24 further comprising an electrode grasping adapted to grasp the electrode in response to movement of the actuator.

26. The system of claim 25 wherein the electrode grasping is a fork adapted to mate with a handle portion of the electrode.

27. The system of claim 23 wherein the second housing is adapted to contain at least the sharp points of a plurality of electrodes.

28. The system of claim 27 further comprising an actuator adapted to move a plurality of electrodes into the second housing.

29. The system of claim 2 wherein the sharp point protection assembly further comprises an aperture in the housing adapted to permit the electrode to pass through for deployment of the electrode.

30. The system of claim 1 further comprising a movable actuator adapted to move the sharp point of the electrode into the patient’s tissue.

31. The system of claim 30 further comprising an actuator limit element limiting movement of the actuator and controlling depth of insertion of the sharp point of the electrode into the patient’s tissue.

32. The system of claim 1 wherein the electrode assembly further comprises an electrode insertion depth control mechanism.

33. The system of claim 1 wherein the electrode assembly further comprises a deployed electrode holding mechanism adapted to hold the electrode in place after insertion of the sharp point of the electrode into the patient’s tissue.

34. The system of claim 1 further comprising an electrode insertion axial stabilizer adapted to provide axial stability to the electrode during insertion of the sharp point of the electrode into the patient’s tissue.

35. The system of claim 1 further comprising an electrode insertion pain reducer adapted to reduce pain experienced by the patient during insertion of the sharp point of the electrode into the patient’s tissue.

36. The system of claim 1 further comprising an electrode angle of entry controller adapted to control the electrode’s
entry angle during insertion of the sharp point of the electrode into the patient’s tissue.

37. A method of performing percutaneous electrical therapy comprising:

- providing an electrode assembly comprising an electrode, the electrode comprising a sharp point at a distal end;
- inserting the sharp point of the electrode into a patient’s tissue without exposing the sharp point to anyone but the patient; and
- applying an electrical signal to the electrode from a control unit.

38. The method of claim 37 further comprising:

- removing the electrode from the patient’s tissue without exposing the sharp point to anyone but the patient.

39. The method of claim 37 further comprising:

- making an electrical connection between the electrode and the control unit.

40. The method of claim 37 further comprising after the inserting step:

- supporting the electrode in the patient’s tissue.

41. The method of claim 37 wherein the inserting step comprises:

- using the electrode assembly to guide electrode entry angle.

42. The method of claim 37 wherein the inserting step comprises:

- using an introducer to guide electrode entry angle.

43. The method of claim 37 wherein the inserting step comprises:

- providing axial stability to the electrode during insertion.

44. The method of claim 37 wherein the inserting step comprises:

- placing a housing adjacent the patient’s tissue; and
- moving the sharp point of the electrode out of the housing and into the patient’s tissue.

45. The method of claim 44 further comprising placing a patch on the patient’s tissue prior to the step of placing a housing, the step of placing a housing comprising placing the housing adjacent the patch.

46. The method of claim 45 wherein the patch comprises an opening, the moving step comprising moving the sharp point of the electrode out of the housing, through the opening and into the patient’s tissue.

47. The method of claim 45 further comprising:

- mechanically supporting at least a portion of the electrode with the patch.

48. The method of claim 44 wherein the moving step comprises:

- moving the entire electrode out of the housing; and
- removing the housing from the patient’s tissue.

49. The method of claim 48 wherein the housing comprises a first housing, the method further comprising:

- removing the electrode from the patient’s tissue into a second housing without exposing the sharp point to anyone but the patient.

50. The method of claim 44 further comprising removing the electrode from the patient’s tissue into the housing without exposing the sharp point to anyone but the patient.

51. An electrode assembly and sharp point protection assembly for a percutaneous electrical therapy system comprising:

- an electrode assembly adapted to deliver electrical therapy to a patient, the electrode assembly comprising an electrode electrically connectable to the control unit, the electrode comprising a sharp point at a distal end adapted to be inserted into the patient’s tissue; and
- a sharp point protection assembly operable with the electrode assembly for reducing risk of unintended exposure to the electrode’s point.

* * * * *