Abstract:

The invention provides recombinant DNA molecules that are unique to the maize MON 87419 event and transgenic maize plants, plant parts, seeds, cells, and agricultural products containing the MON 87419 event as well as methods of using and detecting the maize MON 87419 event. Transgenic maize plants containing the MON 87419 event exhibit tolerance to dicamba and glufosinate herbicides.
TRANSGENIC MAIZE EVENT MON 87419 AND METHODS OF USE THEREOF

CROSS REFERENCE TO RELATED APPLICATIONS

[001] This application claims the benefit of priority to U.S. Provisional Application Serial No. 61/968,342 filed March 20, 2014.

INCORPORATION OF SEQUENCE LISTING

[002] The sequence listing that is contained in the file named "MONS362WO.txt", which is 29.4 KB (measured in MS-Windows) and created on March 9, 2015, is filed herewith by electronic submission and incorporated herein by reference.

FIELD OF THE INVENTION

[003] The invention relates to recombinant DNA molecules that are unique to the transgenic maize event MON 87419. The invention also relates to transgenic maize plants, parts, seeds, cells, and agricultural products containing the maize MON 87419 event as well as methods of using the same. Transgenic maize plants containing the maize MON 87419 event exhibit tolerance to dicamba and glufosinate herbicides.

BACKGROUND OF THE INVENTION

[004] Maize (Zea mays) is an important crop in many areas of the world. The methods of biotechnology have been applied to this crop in order to produce maize with desirable traits. One such desirable trait is herbicide tolerance. Expression of a heterologous gene, also known as a transgene, for herbicide tolerance in a plant can confer herbicide tolerance on the plant. However, the expression of a transgene, and therefore its effectiveness, may be influenced by many different factors including the orientation and composition of the cassette driving expression of the individual transgene transferred to the plant chromosome and the chromosomal location and the genomic result of the transgene insertion. This is complicated further in transgenic plants with multiple molecularly-linked transgenes, each conferring a separate trait. In such a situation, proper expression of each of the molecularly-linked transgenes in the plant must result from the same transgene insertion (also called a multi-gene event). In such cases, it is
necessary to design and test multiple expression cassettes, each with a different configuration of transgenes and expression elements, and then to produce and analyze a large number of individual plant transformation events through multiple generations of plants in order to select the transgenic event having superior properties relative to the each of the desirable traits and the optimal phenotypic and agricultural characteristics necessary to make it suitable for commercial purposes. Such selection requires extensive molecular characterization as well as greenhouse and field trials over multiple years, in multiple locations, and under a variety of conditions so that a significant amount of agronomic, phenotypic, and molecular data may be collected. The resulting data and observations must then be analyzed by teams of scientists and agronomists with the goal of selecting the event suitable for commercial agricultural use across a wide range of germplasm and in a variety of field conditions. Once selected, the commercial event conferring the desirable traits may be introgressed into other genetic backgrounds using plant breeding methods, thus producing a number of different crop varieties that contain the desirable trait and are suitably adapted to specific local growing conditions.

[005] To make a transgenic plant containing a single transformation event, a portion of a recombinant DNA construct is transferred into the genome of a maize cell using plant transformation techniques. This maize cell is subsequently used to produce a unique Ro plant, which can then be used to produce transgenic progeny plants. The genome of the progeny plants contains the unique event, and these plants can be tested for the desired trait(s) as well as for agronomic performance. The effectiveness of an event can be impacted by cis and/or trans factors relative to the integration site in the transformation event. The phenotype conferred by the event can also be impacted by the size and design of the DNA construct, which can vary by the combination of genetic elements in an expression cassette, number of transgenes, number of expression cassettes, and configuration of such elements and such cassettes. The performance of a given event can be further complicated by factors such as plant developmental, diurnal, temporal, or spatial patterns of transgene expression; or by extrinsic factors, for example, environmental plant growth conditions, water availability, nitrogen availability, heat, or stress. Thus, the ability to create an event conferring a desirable set of phenotypic traits is not readily predictable.
BRIEF SUMMARY OF THE INVENTION

[006] The invention provides a recombinant DNA molecule containing a sequence selected from the group consisting of SEQ ID NO: 1-10. The invention also provides a recombinant DNA derived from a transgenic maize plant or seed containing the maize MON 87419 event, a representative sample of seed comprising the maize MON 87419 event having been deposited as ATCC Accession No. PTA-120860. The invention also provides a recombinant DNA molecule that is an amplicon diagnostic for the presence of DNA derived from the maize MON 87419 event. The invention also provides a DNA molecule that is in a maize plant, cell, seed, progeny plant, or plant part derived from transgenic maize comprising the maize MON 87419 event.

[007] The invention provides a DNA molecule having sufficient length of contiguous DNA sequence of SEQ ID NO: 10 to function as a DNA probe that hybridizes under stringent hybridization conditions with a DNA molecule comprising a DNA sequence selected from the group consisting of SEQ ID NO: 1-10 and does not hybridize under the stringent hybridization conditions with a DNA molecule not comprising a DNA sequence selected from the group consisting of SEQ ID NO: 1-10. The invention also provides a pair of DNA molecules comprising a first DNA molecule and a second DNA molecule, wherein the first DNA molecule is a fragment of SEQ ID NO: 9 and the second DNA molecule is a fragment of the maize genomic DNA of the maize MON 87419 event, and wherein the first and second DNA molecules each comprise a DNA sequence of sufficient length of contiguous nucleotides to function as DNA primers when used together in an amplification reaction with DNA containing the maize MON 87419 event to produce an amplicon diagnostic for the maize MON 87419 event in a sample.

[008] The invention provides a method of detecting the presence of the maize MON 87419 event in a sample of DNA by contacting the sample with a DNA probe, subjecting the sample and the DNA probe to stringent hybridization conditions, and detecting hybridization of the DNA probe to a DNA molecule in the sample, where the hybridization of the DNA probe to the DNA molecule indicates the presence of the maize MON 87419 event in the sample of DNA.

[009] The invention provides a method of detecting the presence of the maize MON 87419 event in a sample of DNA by contacting the sample with a pair of DNA primers,
performing an amplification reaction sufficient to produce a DNA amplicon comprising a sequence selected from the group consisting of SEQ ID NO: 1-8 and SEQ ID NO: 10, and detecting the presence of the DNA amplicon in the reaction, wherein the presence of the DNA amplicon in the reaction indicates the presence of the maize MON 87419 event in the sample of DNA.

[0010] The invention provides a DNA detection kit containing at least one DNA molecule comprising a DNA sequence of sufficient length of contiguous nucleotides of SEQ ID NO: 10 to function as a primer or probe specific for detecting the presence of the maize MON 87419 event in a sample of DNA.

[0011] The invention provides a recombinant maize plant, seed, cell, plant part, or commodity product comprising a DNA molecule having a DNA sequence selected from the group consisting of SEQ ID NO: 1-10. The invention also provides a transgenic maize plant, seed, or cell that is tolerant to glufosinate or dicamba, or glufosinate and dicamba herbicides. The invention also provides a transgenic maize plant, seed, cell, plant part, or commodity product containing the maize MON 87419 event. The invention also provides a transgenic maize plant or seed that is a hybrid having at least one parent plant that comprised the maize MON 87419 event.

[0012] The invention provides a method for controlling weeds in an area comprising planting transgenic maize comprising the maize MON 87419 event in an area and applying an effective dose of dicamba or glufosinate or dicamba and glufosinate herbicides to control the weeds in the area without injuring the transgenic maize. The invention also provides a method for controlling weeds by applying an effective dose of glufosinate herbicide of about 0.1 pounds acid equivalent per acre to about 16 pounds acid equivalent per acre of glufosinate herbicide over a growing season. The invention also provides a method for controlling weeds by applying an effective dose of glufosinate herbicide of about 0.4 pounds acid equivalent per acre to about 1.59 pounds acid equivalent per acre of glufosinate herbicide over a growing season. The invention also provides a method for controlling weeds by applying an effective dose of dicamba herbicide of about 0.1 pounds acid equivalent per acre to about 16 pounds acid equivalent per acre of dicamba herbicide over a growing season. The invention also provides a method for controlling weeds by applying an effective dose of dicamba herbicide is about 0.5 pounds acid equivalent per acre to about 2 pounds acid equivalent per acre of dicamba herbicide over a growing season.
[0013] The invention provides a method of producing a transgenic maize plant that is tolerant to glufosinate and dicamba herbicides by sexually crossing a transgenic maize plant comprising the maize MON 87419 event with a second maize plant, collecting the seed produced, growing the seed to produce progeny plants, treating the progeny plants with glufosinate or dicamba, or glufosinate and dicamba herbicides, and selecting a progeny plant that is tolerant to glufosinate and dicamba herbicides. The invention also provides a method of producing a transgenic maize plant that is tolerant to glufosinate and dicamba herbicides by selfing a transgenic maize plant comprising the maize MON 87419 event, collecting the seed produced, growing the seed to produce progeny plants, treating the progeny plants with glufosinate or dicamba, or dicamba and glufosinate herbicides, and selecting a progeny plant that is tolerant to glufosinate and dicamba herbicides.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Figure 1: illustrates the organization of the transgene insert in the genome of a maize plant comprising maize event MON 87419. The horizontal lines correspond to the relative positions of SEQ ID NO: 1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10; the thick arrows labeled SQ26644 and SQ26645 represent the approximate position of a pair of primers used to identify transgenic maize containing the maize MON 87419 event; the thick, short lines numbered 14 through 22 represent the relative position of unique recombinant construct sequences within the DNA insert (SEQ ID NO:9) and the number refers to the corresponding SEQ ID NO of each, respectively; the thin horizontal arrows represent the relative organization of the two separate expression cassettes of the heterologous transgene inserted DNA of the maize MON 87419 event and the boxes indicate the separate elements of the two expression cassettes; a leading 'P' represents a promoter element, a leading 'L' represents a leader element, a leading T represents an intron, a leading 'TS' represents a chloroplast transit peptide, a leading 'T' represents a 3' transcription termination and polyadenylation element (3' UTR), pat represents the coding region for the phosphinothricin acetyl transferase (PAT) protein, and dmo represents the coding region for the dicamba mono-oxygenase (DMO) protein.
BRIEF DESCRIPTION OF THE SEQUENCES

[0015] SEQ ID NO:1 is a thirty nucleotide DNA sequence representing the 5' junction of maize genomic DNA and the transgene insert. SEQ ID NO:1 corresponds to nucleotide positions 1232 to 1261 of SEQ ID NO: 10.

[0016] SEQ ID NO:2 is a thirty nucleotide DNA sequence representing the 3' junction of maize genomic DNA and the transgene insert. SEQ ID NO:2 corresponds to nucleotide positions 7994 to 8023 of SEQ ID NO: 10.

[0017] SEQ ID NO:3 is a sixty nucleotide DNA sequence representing the 5' junction of maize genomic DNA and the transgene insert. SEQ ID NO:3 corresponds to nucleotide positions 1217 to 1276 of SEQ ID NO: 10.

[0018] SEQ ID NO:4 is a sixty nucleotide DNA sequence representing the 3' junction of maize genomic DNA and the transgene insert. SEQ ID NO:4 corresponds to nucleotide positions 7979 to 8038 of SEQ ID NO: 10.

[0019] SEQ ID NO:5 is a one-hundred nucleotide DNA sequence representing the 5' junction of maize genomic DNA and the transgene insert. SEQ ID NO:5 corresponds to nucleotide positions 1197 to 1296 of SEQ ID NO: 10.

[0020] SEQ ID NO:6 is a one-hundred nucleotide DNA sequence representing the 3' junction of maize genomic DNA and the transgene insert. SEQ ID NO:6 corresponds to nucleotide positions 7959 to 8058 of SEQ ID NO: 10.

[0021] SEQ ID NO:7 is a 1771 nucleotide DNA sequence representing 1246 nucleotides of the 5' flanking maize genomic DNA and 525 nucleotides of the 5' end of the transgene insert.

[0022] SEQ ID NO:8 is a 1767 nucleotide DNA sequence representing 516 nucleotides of the 3' end of the transgene insert and 1251 nucleotides of the 3' flanking maize genomic DNA.

[0023] SEQ ID NO:9 is a 6762 nucleotide DNA sequence corresponding to the transgene insert of the maize MON 87419 event.

[0024] SEQ ID NO:10 is a 9259 nucleotide DNA sequence corresponding to the maize MON 87419 event; the sequence contains the 5' flanking genomic DNA sequence from positions 1 to 1246, the transgenic DNA insert from positions 1247 to 8008, and the 3' flanking genomic DNA sequence from positions 8009 to 9259.
[0025] SEQ ID NO: 11 is a 33 nucleotide DNA sequence corresponding to a primer referred to as SQ26644 and used to identify maize MON 87419 event DNA in a sample; it corresponds to positions 7966 to 7998 of SEQ ID NO: 10.

[0026] SEQ ID NO: 12 is a 24 nucleotide DNA sequence corresponding to a primer referred to as SQ26645 and used to identify maize MON 87419 event DNA in a sample; it corresponds to positions 8022 to 8045 of SEQ ID NO: 10.

[0027] SEQ ID NO: 13 is a 19 nucleotide DNA sequence corresponding to a probe referred to as PB11207 and used to identify maize MON 87419 event DNA in a sample; it corresponds to positions 8002 to 8020 of SEQ ID NO: 10.

[0028] SEQ ID NOs: 14-22 are DNA sequences corresponding to unique sequences within the transgene insert of the maize MON 87419 event.

DETAILED DESCRIPTION OF THE INVENTION

[0029] The following definitions and methods are provided to better define the invention and to guide those of ordinary skill in the art in the practice of the invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.

[0030] Modern plant transformation techniques are used to generate genetically engineered plants. The term 'transgenic' may also be used to refer to genetically engineered plants. During the process of generating a transgenic plant, foreign DNA is randomly inserted into the genome of a plant cell. During the transformation procedure, many individual cells are transformed. Due to random integration, a separate and unique DNA recombination event will take place within the genome of each individual transformed plant cell. An entire transgenic plant is then generated from a single individual transgenic cell which necessarily results in every cell of the transgenic plant containing the uniquely inserted DNA as a stable part of its genome. The transgenic herbicide tolerant maize containing the maize MON 87419 event comprises a single insertion of transgenic DNA into the chromosome/genome of the maize germplasm. The maize MON 87419 event was produced by: (i) transformation of thousands of maize plant cells with a nucleic acid construct that includes the transgenes of interest, (ii) regeneration of a population of maize plants each containing a unique transgenic event, and (iii) multi-year testing, screening, and selection to select an event having the desirable agronomic properties, the maize
MON 87419 event. The maize MON 87419 event is characterized by the unique DNA sequence of the insertion of the transgene into the particular location of the maize plant's genome.

[0031] The act of inserting the transgenic DNA into the genome of the maize plant is accomplished by the act of plant transformation and results in the creation of a new transgenic genomic molecular sequence, known as an "event". This sequence is unique to and specific for the event and can be readily identified when compared to the original maize genomic sequence or other transgenic maize events. Molecular analysis of the maize MON 87419 event identified the genomic insertion site of the inserted DNA (SEQ ID NO:9) and the flanking maize genomic DNA sequence immediately adjacent to either side of the inserted DNA (SEQ ID NO:7 and SEQ ID NO:8). This arrangement of the inserted DNA in relation to the surrounding maize plant genome DNA is therefore specific and unique to the transgenic herbicide tolerant maize comprising the maize MON 87419 event. This new genomic molecular sequence (SEQ ID NO: 10) is also an integral part of the chromosome of transgenic herbicide tolerant maize plants comprising the maize MON 87419 event and as such is static in the plant and may be passed on to progeny of the plant.

[0032] The present invention also provides progeny of the original transformant comprising the maize MON 87419 event. Such progeny may be produced by selfing of a maize plant comprising the maize MON 87419 event or by sexual outcross between a maize plant comprising the maize MON 87419 event and another plant that does or does not contain the maize MON 87419 event. Such other plant may be a transgenic plant comprising the same or different event(s) or a nontransgenic plant, such as one from a different variety. Even after repeated back-crossing to a recurrent parent, the maize MON 87419 event from the transformed parent is present in the progeny of the cross at the same genomic location.

[0033] As used herein, the term "maize" means Zea mays (also referred to as corn) and includes all plant varieties that can be bred with maize.

[0034] The invention provides a transgenic herbicide tolerant maize plant containing the maize MON 87419 event that is tolerant to dicamba (3,6-dichloro-2-methoxybenzoic acid) herbicide and glufosinate (2-amino-4-(hydroxymethylphosphinyl) butanoic acid) herbicide. Dicamba is a synthetic auxin herbicide useful for controlling broadleaf weeds. Glufosinate is an organophosphorus herbicide useful for controlling a broad spectrum of annual and perennial grass and broadleaf weeds. The maize MON 87419 event contains a demethylase (dmo) gene from
Stenotrophomonas maltophilia that expresses a dicamba mono-oxygenase (DMO) protein to confer tolerance to dicamba herbicide and a bialaphos resistance (pat) gene from Streptomyces viridochromogenes that expresses the phosphinothricin N-acetyltransferase (PAT) protein to confer tolerance to glufosinate herbicide.

[0035] As used herein, the term "recombinant" refers to a non-natural DNA, protein, or organism that would not normally be found in nature and was created by human intervention. As used herein, a "recombinant DNA molecule" is a DNA molecule comprising a combination of DNA molecules that would not naturally occur together and is the result of human intervention, for example, a DNA molecule that is comprised of a combination of at least two DNA molecules heterologous to each other, such as a DNA molecule that comprises a transgene and the plant genomic DNA adjacent to the transgene. An example of a recombinant DNA molecule is a DNA molecule comprising at least one sequence selected from SEQ ID NO: 1-10. As used herein, a "recombinant plant" is a plant that would not normally exist in nature, is the result of human intervention, and contains a transgenic DNA molecule. As a result of such genomic alteration, the recombinant plant is something new and distinctly different from the related wild-type plant. An example of a recombinant plant is a maize plant containing the maize MON 87419 event.

[0036] As used herein, the term "transgene" refers to a DNA molecule artificially incorporated into an organism's genome as a result of human intervention, such as by plant transformation methods. A transgene may be heterologous to the organism. The term "transgene insert" as used herein refers to the transgene inserted by plant transformation techniques into the maize genome to produce maize event MON 87419. The sequence for this transgene insert is provided as SEQ ID NO: 9. The term "transgenic" refers to comprising a transgene, for example a "transgenic plant" refers to a plant comprising a transgene.

[0037] As used herein, the term "heterologous" refers to a first molecule not normally associated with a second molecule or an organism in nature. For example, a DNA molecule may be derived from a first species and inserted into the genome of a second species. The DNA molecule would thus be heterologous to the genome and the organism.

[0038] As used herein, the term "chimeric" refers to a single DNA molecule produced by fusing a first DNA molecule to a second DNA molecule, where neither first nor second DNA molecule would normally be found in that configuration fused to the other. The chimeric DNA molecule is thus a new DNA molecule not normally found in nature. An example of a chimeric
DNA molecule is a DNA molecule comprising at least one sequence selected from SEQ ID NO:1-10.

[0039] The invention provides DNA molecules and their corresponding DNA sequences. As used herein, the terms "DNA" and "DNA molecule" refer to a deoxyribonucleic acid (DNA) molecule. A DNA molecule may be of genomic or synthetic origin, and is by convention from the 5' (upstream) end to the 3' (downstream) end. As used herein, the term "DNA sequence" refers to the nucleotide sequence of a DNA molecule. The nomenclature used is that required by Title 37 of the United States Code of Federal Regulations § 1.822 and set forth in the tables in WIPO Standard ST.25 (1998), Appendix 2, Tables 1 and 3. By convention, the DNA sequences of the invention and fragments thereof are disclosed with reference to only one strand of the two complementary DNA sequence strands. By implication and intent, the complementary sequences of the sequences provided here (the sequences of the complementary strand), also referred to in the art as the reverse complementary sequences, are within the scope of the invention and are expressly intended to be within the scope of the subject matter claimed. Thus, as used herein references to SEQ ID NO:1-10 and SEQ ID NO:14-22 and fragments thereof include and refer to the sequence of the complementary strand and fragments thereof.

[0040] As used herein, the term "fragment" refers to a smaller piece of a whole. For example, fragments of SEQ ID NO:10 would include sequences that are at least about 20 consecutive nucleotides, at least about 25 consecutive nucleotides, at least about 30 consecutive nucleotides, at least about 35 consecutive nucleotides, at least about 40 consecutive nucleotides, at least about 45 consecutive nucleotides, at least about 50 consecutive nucleotides, at least about 60 consecutive nucleotides, at least about 70 consecutive nucleotides, at least about 80 consecutive nucleotides, at least about 90 consecutive nucleotides, or at least about 100 consecutive nucleotides of the complete sequence of SEQ ID NO:10.

[0041] The DNA sequence corresponding to the complete DNA sequence of the transgene insert and substantial segments of the maize genome DNA flanking either end of the transgene insert is provided as SEQ ID NO:10. The DNA sequences of the maize genomic DNA physically linked by phosphodiester bond linkage to and therefore flanking the 5' end of the transgene insert is provided as SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7. The DNA sequence of the maize genomic DNA physically linked by phosphodiester bond
linkage to and therefore flanking the 3' end of the transgene insert is provided as SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.

[0042] Transgenic maize containing the maize MON 87419 event comprises two regions referred to as junctions. A "junction" is where one end of the transgene insert has been connected to the genomic DNA. A junction spans or extends across a portion of the transgene insert and the adjacent flanking genomic DNA and as such is the connection point of these two as one contiguous molecule. One junction is at the 5' end of the transgene insert and one is at the 3' end of the transgene insert, referred to herein as the 5' and 3' junction, respectively. A "junction sequence" refers to a DNA sequence of any length that spans the 5' or 3' junction of an event. Junction sequences of the maize MON 87419 event are readily apparent to one of skill in the art using SEQ ID NO:10. Examples of junction sequences of the maize MON 87419 event are provided as SEQ ID NO:1-8. Figure 1 illustrates the physical arrangement of SEQ ID NO:1-10 arranged from 5'to 3'. The invention thus provides a DNA molecule that contains at least one of the DNA sequences as set forth in SEQ ID NO:1-8.

[0043] The junction sequences of the maize MON 87419 event may be present as part of the genome of a transgenic maize plant, seed, or cell containing the maize MON 87419 event. The identification of any one or more of SEQ ID NO:1-8 in a sample derived from a transgenic maize plant, plant part, seed, or cell indicates that the DNA was obtained from transgenic maize containing the maize MON 87419 event and is diagnostic for the presence of the maize MON 87419 event.

[0044] The maize MON 87419 event contains sequences which are unique to the transgene insert, specifically SEQ ID NO:14-22. These sequences are unique to the specific chimeric configuration of the various promoters, introns, chloroplast targeting peptides (CTP), 3' termination signal, the *pat* and *dmo* genes within the transgene insert of the event. Figure 1 illustrates the relative position of each of these unique transgene insert sequences with respect to SEQ ID NO:9.

[0045] Provided are exemplary DNA molecules that can be used either as primers or probes for diagnosing the presence in a sample of DNA derived from the maize MON 87419 event. Such primers or probes are specific for a target nucleic acid sequence and as such are useful for the identification of the maize MON 87419 event by the methods described here.
A "primer" is a DNA molecule that is designed for use in annealing or hybridization methods that involve an amplification reaction. An amplification reaction is an in vitro reaction that amplifies template DNA to produce an amplicon. As used herein, an "amplicon" is a DNA molecule that has been synthesized using amplification techniques. Amplicons of the invention have a DNA sequence comprising one or more of SEQ ID NO: 1-10, or fragments thereof. A pair of primers may be used with template DNA, such as a sample of maize genomic DNA, in an amplification reaction, such as polymerase chain reaction (PCR), to produce an amplicon, where the amplicon produced would have a DNA sequence corresponding to sequence of the template DNA located between the two sites where the primers hybridized to the template. A primer is typically designed to hybridize to a complementary target DNA strand to form a hybrid between the primer and the target DNA strand. The presence of a primer is a point of recognition by a polymerase to begin extension of the primer using as a template the target DNA strand. Primer pairs refer to use of two primers binding opposite strands of a double stranded nucleotide segment for the purpose of amplifying the nucleotide segment between them. Examples of primer sequences are provided as SEQ ID NO: 11 and SEQ ID NO: 12. The primer pair provided as SEQ ID NO: 11 and SEQ ID NO: 12 are useful as a first DNA molecule and a second DNA molecule, where the first DNA molecule is a fragment of SEQ ID NO: 9 and the second DNA molecule is a fragment of the maize genomic DNA sequence of SEQ ID NO: 10, and each are of sufficient length to function as DNA primers when used together in an amplification reaction with DNA containing the maize MON 87419 event to produce an amplicon diagnostic for the maize MON 87419 event in a sample. The maize genomic DNA sequence of the maize MON 87419 event is provide as positions 1-1246 and 8009-9259 of SEQ ID NO: 10.

A "probe" is a nucleic acid molecule that is complementary to a strand of a target nucleic acid and useful in hybridization detection methods. Probes according to the invention include not only deoxyribonucleic or ribonucleic acids but also polyamides and other probe materials that bind specifically to a target DNA sequence and the detection of such binding can be useful in detecting the presence or absence of the target DNA sequence. A probe may be attached to a conventional detectable label or reporter molecule, such as a radioactive isotope, ligand, chemiluminescent agent, or enzyme. An exemplary DNA sequence useful as a probe for detecting maize MON 87419 event is provided as SEQ ID NO: 13.
[0048] Methods for designing and using primers and probes are well known in the art, and DNA molecules comprising fragments of SEQ ID NO: 1-10 and useful as primers and probes for detecting the maize MON 87419 event can readily be designed by one of skill in the art.

[0049] The DNA molecules and corresponding DNA sequences provided herein are therefore useful for identifying the maize MON 87419 event in transgenic maize plants, cells, seeds, or parts; selecting maize varieties or hybrids comprising the maize MON 87419 event; and detecting the presence or absence of the maize MON 87419 event in a sample.

[0050] As used herein, the term "isolated" refers to separating a molecule from other molecules normally associated with it in its native or natural state. The term "isolated" thus may refer to a DNA molecule that has been separated from other DNA molecule(s) which normally are associated with it in its native or natural state. Such a DNA molecule may be present in a recombinated state, such as a recombinant DNA molecule. Thus, DNA molecules fused to regulatory or coding sequences with which they are not normally associated, for example as the result of recombinant techniques, are considered isolated, even when integrated as a transgene into the chromosome of a cell or present with other DNA molecules.

[0051] The invention provides maize plants, progeny, seeds, plant cells, and plant parts containing the maize MON 87419 event, and commodity products produced using these. A representative sample of transgenic herbicide tolerant maize seed comprising MON 87419 event has been deposited according to the Budapest Treaty with the American Type Culture Collection (ATCC®). The ATCC repository has assigned the Patent Deposit Designation PTA-120860 to the seed of the transgenic herbicide tolerant maize plant containing the maize MON 87419 event. The plants, progeny, seeds, plant cells, plant parts, and commodity products of the invention contain a detectable amount of DNA having at least one of the sequences provided as SEQ ID NO: 1-10 and SEQ ID NO: 14-22. Plants, progeny, seeds, plant cells, and plant parts of the invention may also contain one or more additional transgenic traits, particularly those introduced by crossing a maize plant containing the maize MON 87419 event with another plant containing the additional transgenic trait(s). Such traits include but are not limited to increased insect resistance, increased water use efficiency, increased yield performance, increased drought resistance, increased seed quality, improved nutritional quality, hybrid seed production, and/or increased herbicide tolerance, in which the trait is measured with respect to a maize plant lacking such transgenic trait.
[0052] Plants of the invention may be used to produce progeny that contain the maize MON 87419 event. As used herein, "progeny" includes any plant, seed, and plant cell comprising the maize MON 87419 event inherited from an ancestor plant, indicated by the plant comprising a DNA molecule having at least one sequence selected from SEQ ID NO: 1-10. Plants, progeny, and seeds may be homozygous or heterozygous for the maize MON 87419 event. Progeny plants may be grown from seeds produced by a maize plant containing the maize MON 87419 event or from seeds produced by a maize plant fertilized with pollen containing the maize MON 87419 event.

[0053] As used herein, a "plant part" of the invention is any part derived from a transgenic maize plant containing the maize MON 87419 event. Plant parts include but are not limited to pollen, ovule, pod, flower, roots, stems, fibers, and leaves. Plant parts may be viable or nonviable.

[0054] The invention provides a commodity product that is produced from transgenic maize containing the maize MON 87419 event. Commodity products of the invention contain a detectable amount of DNA comprising a DNA sequence selected from the group consisting of SEQ ID NO: 1-10. As used herein, a "commodity product" refers to any composition or product which is comprised of material derived from a transgenic maize plant, maize seed, maize plant cell, or maize plant part containing the maize MON 87419 event. Commodity products include but are not limited to processed seeds, grains, plant parts, and meal. Transgenic maize containing the maize MON 87419 event can be used to manufacture any commodity product typically acquired from maize. A commodity product of the invention will contain a detectable amount of DNA corresponding to the maize MON 87419 event. Detection of one or more of this DNA in a sample may be used for determining the content or the source of the commodity product. Any standard method of detection for DNA molecules may be used, including methods of detection disclosed herein.

[0055] The invention provides methods for controlling weeds using glufosinate or dicamba, or glufosinate and dicamba herbicides with transgenic maize containing the maize MON 87419 event. A method for controlling weeds in an area, such as a field, is provided that consists of planting transgenic maize plants containing the maize MON 87419 event in an area and applying an herbicidally effective dose of glufosinate or dicamba, or glufosinate and dicamba herbicides to the area for the purpose of controlling weeds in the area without injuring
the transgenic maize plants containing the maize MON 87419 event. Such application of glufosinate or dicamba, or glufosinate and dicamba herbicides may be pre-emergence (any time after transgenic maize seed containing the maize MON 87419 event is planted and before transgenic maize plants containing the maize MON 87419 event emerge) or post-emergence (any time after transgenic maize plants containing the maize MON 87419 event emerge). A herbicidally effective dose of glufosinate for use in the area for controlling weeds should consist of a range from about 0.1 pound acid equivalent per acre (ae/ac) to as much as about 16 pounds ae/ac of glufosinate over a growing season. A herbicidally effective dose of dicamba for use in the area for controlling weeds should consist of a range from about 0.1 pound ae/ac to as much as about 16 pounds ae/ac of dicamba over a growing season. Multiple applications of glufosinate or dicamba, or glufosinate and dicamba herbicides may be used over a growing season, for example, two applications (such as a pre-planting application and a post-emergence application or a pre-emergence application and a post-emergence application) or three applications (such as a pre-planting application, a pre-emergence application, and a post-emergence application).

[0056] As used herein, the "active ingredient" or "ai" is the component of an herbicide formulation responsible for the herbicidal activity, often measured in pounds per gallon or applied as pounds per acre. For herbicides that are acids (for example, molecules that have a carboxyl group as part of their structure), the acidic group is often converted to (may be replaced by the desired ions to form) a salt or (reacted with an alcohol to form) an ester during the formulation process. This may alter not only the chemical characteristics of a particular herbicide molecule, but also the mass. However, the corresponding acid is the herbicidally active portion of the formulation and equivalency of herbicidal activity between different active ingredients can be calculated using the acid equivalent as the standard unit of measurement. The term "acid equivalent" or "ae" means the portion of an active ingredient in a formulation that theoretically could be converted back to the corresponding acid. Herbicide application rates may be expressed as "acid equivalent per acre" (abbreviated as "ae/ac") or as "active ingredient per acre" (abbreviated as "ai/ac").

[0057] Methods for producing an herbicide tolerant transgenic maize plant containing the maize MON 87419 event are provided. Progeny produced by these methods may be varietal or hybrid plants; may be grown from seeds produced by a transgenic maize plant containing the maize MON 87419 event or from seeds produced by a maize plant fertilized with pollen from a
transgenic maize plant containing the maize MON 87419 event; and may be homozygous or heterozygous for the maize MON 87419 event. Plants may be self-pollinated (also known as "selfing") or cross-pollinated (also known as "crossing"). Transgenic maize plants containing the maize MON 87419 event may be self-pollinated to generate a true breeding line of plants that are homozygous for the maize MON 87419 event. Selfing results in progeny known as "inbred" and is used to produce inbred lines that are genetically uniform. Alternatively, transgenic maize plants containing the maize MON 87419 event may be outcrossed (bred with another plant that is transgenic or nontransgenic) to produce a varietal or a hybrid seed. Seed and progeny plants made by the methods of the invention would contain the maize MON 87419 event and may then be treated with glufosinate or dicamba, or glufosinate and dicamba herbicides. Treatment with glufosinate or dicamba, or glufosinate and dicamba herbicides may be used to select progeny that are tolerant. Alternatively, these progeny plants may be analyzed using diagnostic methods to select for plants or seeds containing the maize MON 87419 event.

[0058] Plants, progeny, seeds, plant cells, and plant parts of the invention may also contain one or more additional maize transgenic traits, particularly those introduced by crossing a maize plant containing the maize MON 87419 event with another maize plant containing the additional transgenic trait(s). Such maize transgenic traits include, but are not limited to, increased insect resistance, increased water use efficiency, increased yield performance, increased drought resistance, increased seed quality, improved nutritional quality, hybrid seed production, and herbicide tolerance, in which the trait is measured with respect to a maize plant lacking such transgenic trait. Such maize transgenic traits are known to one of skill in the art; for example, a list of such traits is provided the United States Department of Agriculture's (USDA) Animal and Plant Health Inspection Service (APHIS) and can be found on their website at http://www.aphis.usda.gov. Two transgenic plants may thus be crossed to produce progeny that contain two or more independently segregating transgenic traits. Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation. Descriptions of breeding methods that are commonly used for different traits and crops can be found in one of several references, for example, Fehr, in Breeding Methods for Cultivar Development, Wilcox J. ed., American Society of Agronomy, Madison WI (1987).

[0059] The plants, seeds, cells, plant parts, and commodity products of the invention may be used for detection of DNA and protein molecules indicative of the presence of the maize
MON 87419 event. Such detection would be done using the DNA sequences provided herein and the respective DMO and PAT protein sequences encoded by the transgene insert that is provided as SEQ ID NO:9. Detection of the presence of the maize MON 87419 event may be done by using methods known in the art, such as thermal amplification of nucleic acid, nucleic acid hybridization techniques (such as northern blotting and southern analysis), protein detection techniques (such as western blotting, immuno-precipitation, and enzyme-linked immunosorbent assay-based (ELISA) techniques) or by using the methods of detection and/or the detection kits provided herein. One method provides for contacting a DNA sample with a primer pair that is capable of producing an amplicon from DNA of the transgenic maize containing the maize MON 87419 event, performing an amplification reaction and thereby producing a DNA amplicon comprising at least one of the DNA sequences provided as SEQ ID NO: 1-10 and SEQ ID NO: 14-22, and then detecting the presence or absence of the amplicon molecule and optionally confirming within the sequence of the amplicon a sequence comprising at least one of the sequences provided as SEQ ID NO: 1-10 and SEQ ID NO: 14-22. The presence of such an amplicon is diagnostic for the presence of DNA specific for the transgenic maize containing the maize MON 87419 event and thus biological material in the sample that is derived from transgenic maize containing the maize MON 87419 event. Another method provides for contacting a DNA sample with a DNA probe, subjecting the probe and the DNA sample to stringent hybridization conditions, and then detecting hybridization between the probe and the target DNA sample. Detection of hybridization is diagnostic for the presence of DNA specific for the transgenic maize containing the maize MON 87419 event in the DNA sample.

[0060] DNA detection kits for the maize MON 87419 event are provided. Variations on such kits can also be developed using the compositions and methods disclosed herein and the methods well known in the art of DNA detection. DNA detection kits can be applied to methods for breeding with transgenic maize plants containing the maize MON 87419 event. Such kits contain DNA primers or probes comprising fragments of SEQ ID NO: 1-10. One example of such a kit comprises at least one DNA molecule of sufficient length of contiguous nucleotides of SEQ ID NO: 10 to function as a DNA probe useful for detecting the presence and/or absence in a sample of DNA derived from transgenic herbicide tolerant maize plants containing the maize MON 87419 event. A DNA molecule sufficient for use as a DNA probe is provided that is useful for determining, detecting, or diagnosing the presence and/or absence in a sample of transgenic
herbicide tolerant maize containing the maize MON 87419 event DNA is provided as SEQ ID NO: 13. Other probes may be readily designed by one of skill in the art and should comprise at least about fifteen nucleotides of SEQ ID NO: 10 and be sufficiently unique to transgenic herbicide tolerant maize containing the maize MON 87419 event DNA in order to identify DNA derived from the maize MON 87419 event. Another type of kit comprises a primer pair useful for producing an amplicon useful for detecting the presence or absence in a sample of the maize MON 87419 event. Such a kit would employ a method comprising contacting a target DNA sample with a primer pair, then performing a nucleic acid amplification reaction sufficient to produce an amplicon comprising a DNA molecule having at least one sequence selected from SEQ ID NO: 1-10, and then detecting the presence or absence of the amplicon. Such a method may also include sequencing the amplicon or a fragment thereof. Other primer pairs may be readily designed by one of skill in the art and should comprise at least twenty nucleotides of SEQ ID NO: 10 and be sufficiently unique to the transgenic herbicide tolerant maize containing the maize MON 87419 event DNA in order to detect the maize MON 87419 event. Kits of the invention may optionally also comprise reagents for performing the detection or diagnostic reactions described herein or instructions for the use of the kit and its contents.

[0061] As used herein, the term "comprising" means "including but not limited to".

Deposit Information

[0062] A deposit of a representative sample of transgenic maize seed comprising the maize MON 87419 event has been made according to the Budapest Treaty with the American Type Culture Collection (ATCC) having an address at 10801 University Boulevard, Manassas, Virginia USA, Zip Code 20110. The ATCC Patent Deposit Designation (accession number) for seeds comprising the maize MON 87419 event is PTA-120860 and the date of deposit was January 17, 2014. The deposit will be maintained in the depository for a period of 30 years, or 5 years after the last request, or for the effective life of the patent, whichever is longer.

EXAMPLES

[0063] The following examples are included to more fully describe the invention. It should be appreciated by those of skill in the art that many modifications can be made in the specific examples which are disclosed and still obtain a similar result. Certain agents which are
both chemically and physiologically related may be substituted for the agents described herein while achieving the same or similar results. All such substitutions and modifications apparent to those skilled in the art are deemed to be within the scope of the invention.

Example 1: MON 87419 event production and selection

[0064] This example describes the production, analysis, and selection of transgenic maize containing the event MON 87419, an event which can provide tolerance to both dicamba and glufosinate herbicides. Summarized are the production and analysis of tens of thousands of individual plants over multiple years through the rigorous molecular, phenotypic, and field testing required for the ultimate selection of the maize MON 87419 event.

[0065] Transformation vectors containing a variety of different expression cassettes were designed and tested to confirm their utility for expressing the dmo and pat genes. Using this data, expression element combinations were selected and eight different transformation vectors were constructed and transformed into maize. These vectors tested promoters and terminators in various combinations with the two coding regions for the pat gene and the dmo gene (Table 1). The resulting plants were analyzed for protein expression and two vectors (shown as A and B in Table 1) were selected for commercial maize transformation.

<table>
<thead>
<tr>
<th>Vector</th>
<th>Promoter</th>
<th>Gene of Interest</th>
<th>Terminator</th>
<th>Promoter</th>
<th>Gene of Interest</th>
<th>Terminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AND,ge,Ubq1</td>
<td>PAT</td>
<td>Os,Ara5</td>
<td>PCSV/I-Act1</td>
<td>CTP4/DMO</td>
<td>Hsp17.5</td>
</tr>
<tr>
<td>B</td>
<td>P-1</td>
<td>PAT</td>
<td>T-1</td>
<td>PCSV/I-Act1</td>
<td>CTP4/DMO</td>
<td>Hsp17.5</td>
</tr>
<tr>
<td>C</td>
<td>AND,ge,Ubq1</td>
<td>PAT</td>
<td>Os,Ara5</td>
<td>P-1</td>
<td>CTP4/DMO</td>
<td>Hsp17.5</td>
</tr>
<tr>
<td>D</td>
<td>P-1</td>
<td>PAT</td>
<td>T-1</td>
<td>AND,ge,Ubq1</td>
<td>CTP4/DMO</td>
<td>Hsp17.5</td>
</tr>
<tr>
<td>E</td>
<td>AND,ge,Ubq1</td>
<td>PAT</td>
<td>Os,Ara5</td>
<td>P-2</td>
<td>CTP4/DMO</td>
<td>Hsp17.5</td>
</tr>
<tr>
<td>F</td>
<td>AND,ge,Ubq1</td>
<td>PAT</td>
<td>Os,Ara5</td>
<td>P-3</td>
<td>CTP4/DMO</td>
<td>Hsp17.5</td>
</tr>
<tr>
<td>G</td>
<td>P-1</td>
<td>PAT</td>
<td>T-1</td>
<td>P-2</td>
<td>CTP4/DMO</td>
<td>Hsp17.5</td>
</tr>
<tr>
<td>H</td>
<td>P-1</td>
<td>PAT</td>
<td>T-1</td>
<td>P-3</td>
<td>CTP4/DMO</td>
<td>Hsp17.5</td>
</tr>
</tbody>
</table>

[0066] Over thirteen thousand unique transformed maize plants were produced using the two vectors (A and B) that were selected. In plants there is often wide variation in the levels of expression of an introduced gene among individual events, and gene expression can directly
correlate positively or negatively with the phenotype of the plant containing the event. The expression of foreign genes in plants is known to be influenced, among other things, by their chromosomal position. For this reason, it was necessary to screen a large number of individual plants containing random insertion events through multiple years and locations to identify the optimal event. The transgenic maize MON 87419 event was created through Agrobacterium-mediated transformation of LH244 maize immature embryos. Methods for transforming maize are known in the art. Maize cells were transformed and regenerated into intact maize plants. Rooted plants with normal phenotypic characteristics were selected. Thousands of individual, independent events were then transferred to soil for growth and further assessment.

Table 2. Event Selection Process

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Vector A Events Advanced</th>
<th>Vector B Events Advanced</th>
<th>Total Unique Events Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0 Evaluation</td>
<td>Transgenic Events Produced</td>
<td>5236</td>
<td>8413</td>
</tr>
<tr>
<td></td>
<td>First Pass Single Copy analysis</td>
<td>1300</td>
<td>1698</td>
</tr>
<tr>
<td></td>
<td>R0 Spray</td>
<td>642</td>
<td>798</td>
</tr>
<tr>
<td></td>
<td>Initial Detailed Molecular Analysis</td>
<td>85</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>R0 Southern</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td>Early Screens (R1 & R2)</td>
<td>R1 Trials & molecular analysis</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>R2 Trials & molecular analysis</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Advanced Field Trials & Molecular Analysis</td>
<td>SA Year 1</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>US Year 1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SA Year 2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>In-depth evaluation</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Final event selection</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

[0067] Throughout the event selection process, molecular analysis as well as field trials to assess phenotype, agronomics, and efficacy of the events were conducted, often concurrently (Table 2). The 13,000 individual, unique transformed maize R0 plants were analyzed first by
PCR to select for events with a single copy of the transgene insert (First Pass Single Copy). This resulted in the advancement of 2,998 events. The next selection was R0 herbicide spray tolerance conducted in a green house. The plants were tested for tolerance to both glufosinate (Ignite® 280 herbicide) and dicamba (Clarity® herbicide) by using a tank mix of glufosinate (0.9 lb ai/ac) and dicamba (2.0 lb ae/ac) sprayed at the V1/V2 growth stage. Plants that showed >15% injury were discarded, and 1,440 events were selected for further analysis. An initial detailed molecular analysis was conducted and included sequence identification and confirmation, and a second check of copy number and absence of backbone. This analysis resulted in 184 events containing only a single copy of the transgene insert selected for advancement. Southern analysis on DNA extracted from R0 events was done to further confirm transgene insert copy number and to confirm absence of transformation backbone. Based on this, 112 events were selected for advancement to R1 for further analysis. R0 plants were self-pollinated and seed was collected for R1 trials.

[0068] Concurrently with all field trials, additional molecular analysis was in progress. Northern analysis was done to detect and measure mRNA transcripts of the *pat* and *dmo* genes. N-terminal protein sequencing of the PAT and DMO proteins purified from transgenic plants containing select events was done to confirm the recombinant protein sequence. Western analysis to detect the PAT and DMO proteins was done with transgenic plant samples. Sequencing of the entire transgene and both the 5’ and 3’ ends of the insert was conducted and subsequently used to develop methods of detecting individual events. In depth Southern analysis was performed on R1 plants to confirm copy number and the absence of backbone.

[0069] For the R1 field trial early screens, of the 112 events selected from the R0 screening 82 events were selected based on seed return and nursery size considerations. The R1 plants were segregating, and thus were null, hemizygous, or homozygous for an event. The 82 events in R1 plants were evaluated in a field efficacy screen with high rates of herbicide application. Plant injury was assessed following treatments with various combinations of glufosinate (Ignite 280) and dicamba (Clarity) (up to 20X glufosinate and up to 16X dicamba labeled field application rates) and with application timing at various growth stages from V1/V2 to V8/V10. Injury ratings were taken 10 to 14 days after herbicide application. Standard injury ratings include scoring for percent chlorosis, malformation, and breeding. Overall averages for multiple plants containing the same event were used to select events for advancement. Herbicide
applications at 2X rates generally produced less than 10% injury, and herbicide application at the 16X and 20X rates produced injury ratings of more than 10%. In addition to the efficacy testing, agronomic scoring was collected for each plant and correlated to the event it contained. The agronomic scoring criteria that were evaluated included plant height, ear height, percent moisture, test weight, days to 50% pollen, and days to 50% silk. Based on analysis of the data collected from the R1 field trials and the molecular analysis, 44 events were selected for advancement to R2 for further analysis. R1 plants were self-pollinated and seed was collected for R2 trials.

[0070] In the R2 field trial early screens, R2 and F1 events (from an R1 outcross) were evaluated in field efficacy screens at three locations (two states and Puerto Rico). Plant injury was assessed following treatments with various combinations of glufosinate and dicamba application rates and application timing. The R2 plants are homozygous for the event, and the herbicide tolerance failure rate after herbicide application was low, confirming the R1 results. Agronomic data was collected and scored as in the R1 field trials. Additional molecular analysis, including gene expression analysis, was also used to select plants containing the best events. Based on analysis of the data collected from the R2 and F1 field trials and the molecular analysis, 42 events were selected for advancement to R3 for further analysis. R2 plants were self-pollinated and seed was collected for R3 trials.

[0071] For the advanced field trials, both hybrid and inbred efficacy and hybrid and inbred agronomic field trials were conducted. The agronomic field trials were run during the same season as the efficacy field trials. All field trials used a randomized complete block design and were conducted at multiple locations. For both efficacy and agronomic field trials, agronomic scoring was collected throughout the field trial season, and at the end of the season yield was determined (efficacy yield or agronomic yield). Efficacy field trials were conducted to assess crop injury 10 to 14 days following herbicide application, crop injury ratings, and yield. The target crop injury rating was a score of less than 10% for advancement of the event. For agronomic field trials, the plots were maintained weed free and no glufosinate or dicamba herbicide was applied during the growing season. The hybrid agronomic field trials included controls of a comparable hybrid (hybrid control) produced using the same parental maize lines used to make the transgenic hybrid cross, but not containing a transgenic event. Inbred controls were a comparable inbred to the transgenic inbred lines.
[0072] A meta-analysis was performed using the aggregate of the multi-season, multi-location field trial data. Table 3 illustrates the number of replications for which an observation was repeated for the particular field trial type for plants containing either one of the events. For each of the two events, there were 135 data points recorded for hybrid agronomic performance, 933 data points for hybrid efficacy, 179 data points for inbred agronomics, 30 data points for inbred efficacy, and 16 data points for event based pressure testing of herbicide application rates for maize containing the event.

<table>
<thead>
<tr>
<th>Description</th>
<th>Reps per event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Agronomics</td>
<td>135 reps</td>
</tr>
<tr>
<td>Hybrid Efficacy</td>
<td>933 reps</td>
</tr>
<tr>
<td>Inbred Agronomics</td>
<td>179 reps</td>
</tr>
<tr>
<td>Inbred Efficacy</td>
<td>30 reps</td>
</tr>
<tr>
<td>Event based Pressure Test</td>
<td>16 reps</td>
</tr>
<tr>
<td>Total Replications per event</td>
<td>1293</td>
</tr>
</tbody>
</table>

[0073] Hybrid plants each containing one of 23 selected events (a subset of the 42 events from the R2 field trial) were evaluated in South America (SA) Year 1 contra-season efficacy field trials and agronomic field trials. Trials were conducted at six locations in a randomized complete block design with 4 treatments and 2 replications per treatment. In the efficacy field trials, the dicamba formulation was Banvel® 4SL herbicide and the glufosinate formulation was Liberty® 1.67SL. Herbicide treatments consisted of the following: (1) non-treated control; (2) dicamba at 2 lbs ae/acre (ac) PRE (where PRE is defined as at planting or before crop emergence) followed by dicamba at lib ae/ac applied at each of VE-V2 followed by V4 followed by V8; (3) glufosinate applied at 0.8 lb ai/ac at VE-V2 followed by V4 followed by V8; and (4) glufosinate applied at 0.8 lb ai/ac plus dicamba applied at 1 lb ae/ac at VE-V2 followed by V4 followed by V8. Injury ratings were taken at 10 to 14 days after herbicide application. Overall averages for multiple plants containing the same event were used to select events for advancement. The target crop injury rating was a score of less than 10%, and the observed injury rating was below 1%. Based upon hybrid injury scoring, agronomic scoring, efficacy yield, agronomic yield, and additional molecular analysis, 17 events were selected for advancement.
[0074] Inbred and hybrid plants from the 17 events advanced from the SA Year 1 contra-season field trials were then further evaluated in United States (US) Year 1 efficacy field trials and agronomic field trials. These trials were conducted in 2012, which was a season of severe drought in the United States. The hybrid efficacy field trials were conducted at 12 locations, 2 states in a randomized complete block design with 6 treatments and 3 replications per treatment. The hybrid plants containing the transgenic event derived glyphosate tolerance from the male parent in the cross. In these efficacy field trials, the glyphosate formulation was Roundup PowerMAX® 4.5SL, the dicamba formulation was Clarity 4SL, and the glufosinate formulation was Ignite 280 2.34SL. Herbicide treatments consisted of the following: (1) non-treated control; (2) glyphosate at 3 lbs ae/ac applied at V4 followed by V8; (3) glufosinate at 0.8 lb ai/ac applied at V2 followed by V4 followed by V8; (4) dicamba at 2 lbs ae/ac applied PRE and then again applied at V4 followed by V8; (5) glyphosate at 3 lbs ae/ac plus dicamba at 1.5 lbs ae/ac applied at V2 followed by V4 followed by V8; (6) dicamba at 2 lbs ae/ac applied at V2 followed by glufosinate at 0.8 lbs ai/ac plus dicamba at 1 lb ae/ac applied at growth stage V4 followed by glyphosate at 3 lbs ae/ac plus dicamba at 1.5 lbs ae/ac applied at growth stage V8. Injury ratings were taken 10 to 14 days after herbicide application. Overall averages for multiple plants containing the same event were used to select events for advancement. The target crop injury rating was a score of less than 10%, and the observed injury rating was below 1%. Based on hybrid injury scoring, agronomic scoring, efficacy yield, agronomic yield, and additional molecular analysis, 11 events were selected for advancement.

[0075] South America (SA) Year 2 contra-season field trials to assess hybrid efficacy and inbred agronomic yield were then conducted with plants containing these 11 events. The hybrid plants containing the transgenic event derived glyphosate tolerance from the male parent in the cross. The hybrid efficacy field trials were conducted essentially as described for South America (SA) year 1 contra-season field trials but with the following herbicide treatments: (1) non-treated control; (2) glyphosate at 3 lbs ae/ac applied at V4 followed by V8; (3) glufosinate at 0.8 lb ai/ac applied at V4 followed by V8; (4) dicamba at 2 lbs ae/ac applied PRE and then again applied at V4 followed by V8; (5) glyphosate at 3 lbs ae/ac plus dicamba at 1.5 lbs ae/ac applied at V4 followed by V8; (6) glufosinate at 0.8 lbs ai/ac plus dicamba at 1 lb ae/ac applied at V4 followed by glyphosate at 3 lbs ae/ac plus dicamba at 1.5 lbs ae/ac applied at V8. Injury ratings were taken 10 to 14 days after herbicide application. Overall averages for multiple plants containing the
same event were used to select events for advancement. Based on hybrid injury scoring, agronomic scoring, hybrid efficacy yield, inbred agronomic yield, and additional molecular analysis, 5 events were selected for advancement.

[0076] Additional molecular analysis was then completed for these 5 events. The multi-year field and molecular data for each of the 5 events, including hybrid trait efficacy field trials, hybrid and inbred yield measurements, agronomic scoring, and molecular information was then reviewed, and two events were selected for further analysis. Both of these events were produced using the same transformation vector, and therefore had the same transgene insert but not the same genomic location or flanking sequence.

[0077] United States (US) Year 2 hybrid and inbred efficacy field trials, and hybrid and inbred agronomic field trials were conducted to evaluate these two events. The hybrid efficacy trials were done similar to year 1 US field trials, but included different spray regimens. Efficacy was measured by injury ratings and hybrid efficacy yield. Additional molecular analysis for the events was also done. The hybrid plants containing the transgenic event derived glyphosate tolerance from the male parent in the cross. The hybrid Efficacy 1 and 2 field trials were conducted at twelve locations across two states and the hybrid Efficacy 3 field trials were conducted at thirty-three locations across four states. In these field trials, the glyphosate formulation was Roundup PowerMAX 4.5SL, the dicamba formulation was Clarity 4SL, and the glufosinate formulation was Ignite 280 2.34SL. Herbicide applications for the Efficacy 1 and Efficacy 2 trials (with crosses to two separate inbred lines) were: (1) non-treated control; (2) glufosinate at 0.4 lb ai/ac applied at VE-V2 followed by V6; (3) glufosinate at 0.8 lb ai/ac applied at VE-V2 followed by V6; (4) dicamba at 0.5 lbs ae/ac applied at V4 followed by V8; (5) dicamba at 1.0 lbs ae/ac applied at V4 followed by V8; and (6) glyphosate at 2.251bs ae/ac plus dicamba at 1.0 lbs ae/ac applied at V4 followed by V8. Herbicide applications for the Efficacy 3 trial (representing hybrid from a cross with a third inbred line) were: (1) non-treated control; (2) dicamba at 0.5 lbs ae/ac applied at VE-V2 followed by glufosinate at 0.4 lb ai/ac applied at V6; and (3) dicamba at 1.0 lbs ae/ac applied at VE-V2 followed by glufosinate at 0.8 lb ai/ac applied at V6. Injury ratings were taken 10 to 14 days after herbicide application and for multiple plants containing the same event were used to select events for advancements. Yield and agronomic data was collected.
To compare the hybrid injury ratings for the two events, meta-analysis of the multiple hybrid efficacy field trials was completed. (Table 4) Injury rating was scored at V8 (where V8 analysis encompasses the cumulative injury from V2, V4, V6, and V8 herbicide applications) with a statistical least significant difference (LSD at p<0.05). Tester 1, Tester 2, and Tester 3 represent crosses with 3 independent inbred maize parent lines, which were used to generate the hybrid for the indicated field trial. For each of the trials, no statistical difference in injury rating was found between hybrids generated using a transgenic maize parent containing either of the two events.

<table>
<thead>
<tr>
<th>Field Trial</th>
<th>Transgenic Maize</th>
<th>V8 Injury</th>
<th>LSD (P<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1 combined SA and US</td>
<td>MON 87419</td>
<td>0.43</td>
<td>0.3</td>
</tr>
<tr>
<td>Year 1 combined SA and US</td>
<td>EVENT 2</td>
<td>0.49</td>
<td>0.3</td>
</tr>
<tr>
<td>SA Year 2 Hybrid Efficacy</td>
<td>MON 87419</td>
<td>2.58</td>
<td>3</td>
</tr>
<tr>
<td>SA Year 2 Hybrid Efficacy</td>
<td>EVENT 2</td>
<td>1.98</td>
<td>3</td>
</tr>
<tr>
<td>US Year 2 Hybrid Tester 1</td>
<td>MON 87419</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US Year 2 Hybrid Tester 1</td>
<td>EVENT 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US Year 2 Hybrid Tester 2</td>
<td>MON 87419</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US Year 2 Hybrid Tester 2</td>
<td>EVENT 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US Year 2 Hybrid Tester 3</td>
<td>MON 87419</td>
<td>0.31</td>
<td>0.42</td>
</tr>
<tr>
<td>US Year 2 Hybrid Tester 3</td>
<td>EVENT 2</td>
<td>0.12</td>
<td>0.42</td>
</tr>
</tbody>
</table>

A meta-analysis of the hybrid efficacy yield (bushels/acre) from the multiple efficacy field trials was completed comparing yield from hybrids containing each of the two events. (Table 5) For each of the trials, no statistical difference in hybrid efficacy yield was found between hybrids generated using a transgenic maize parent containing either of the two events.

<table>
<thead>
<tr>
<th>Field Trial</th>
<th>Hybrid Maize</th>
<th>Yield (Bu/ac)</th>
<th>LSD (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1 combined SA and US</td>
<td>MON 87419</td>
<td>171.07</td>
<td>4</td>
</tr>
<tr>
<td>Year 1 combined SA and US</td>
<td>EVENT 2</td>
<td>172.90</td>
<td>4</td>
</tr>
</tbody>
</table>
Pressure testing field trials were also conducted with hybrid transgenic maize containing either one of the two events. In the pressure tests, either glufosinate (Ignite 280, 2.34SL) or dicamba (Clarity 4SL) herbicide was applied at non-commercially high rates. For typical field trials, the IX rate for glufosinate was 0.4 lb ai/ac and the IX rate for dicamba was 0.5 lb ae/ac. For the glufosinate pressure testing field trials, glufosinate was applied at VE-V2 followed by V4 followed by V8 at the following rates: (1) 1 lb ai/ac (2.5X); (2) 2 lb ai/ac (5X); (3) 4 lb ai/ac (10X); and (4) 8 lb ai/ac (20X). For the dicamba pressure testing field trials, dicamba was applied at VE-V2 followed by V4 followed by V8 at the following rates: (1) 2 lb ae/ac (4X); (2) 4 lb ae/ac (8X); (3) 8 lb ae/ac (16X); and (4) 16 lb ae/ac (32X). At the end of the season, the hybrid pressure testing field trials were harvested and yield (bushels/acre or bu/ac) was determined. An analysis of the yield data compared hybrids containing either of the two events. For each of the trials, no statistical difference in yield at any of the herbicide application rates was found between hybrids generated using a transgenic maize parent containing either of the two events.

Table 6. Yield from hybrid pressure testing efficacy field trials.

<table>
<thead>
<tr>
<th>Field Trial</th>
<th>Transgenic Hybrid Maize</th>
<th>Yield (Bu/ac)</th>
<th>LSD (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glufosinate Pressure Test 2.5-20X</td>
<td>MON 87419</td>
<td>207.31</td>
<td>40</td>
</tr>
<tr>
<td>Glufosinate Pressure Test 2.5-20X</td>
<td>EVENT 2</td>
<td>201.65</td>
<td>40</td>
</tr>
<tr>
<td>Dicamba Pressure Test 4-32X</td>
<td>MON 87419</td>
<td>239.93</td>
<td>40</td>
</tr>
<tr>
<td>Dicamba Pressure Test 4-32X</td>
<td>EVENT 2</td>
<td>234.60</td>
<td>40</td>
</tr>
</tbody>
</table>

Hybrid agronomic field trials were conducted in 3 sets with 15 locations per set at 21 locations across 3 states and were run during the same season with the hybrid efficacy field trials. Agronomic measures were collected throughout the field trial season, and at the end of the
season agronomic yield was determined. Meta-analysis across the multi-season, multi-location hybrid agronomic field trials was used to compare the yield of the hybrid control and the hybrids containing the either one of the two events. No statistical difference in hybrid agronomic yield was found either between the transgenic hybrids or as compared to the hybrid controls (Table 7).

Table 7. Meta-analysis of yield from hybrid agronomic field trials.

<table>
<thead>
<tr>
<th>Field Trial</th>
<th>Hybrid Maize</th>
<th>Yield (Bu/ac)</th>
<th>LSD (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1 combined SA and US</td>
<td>Control</td>
<td>180.28</td>
<td>6</td>
</tr>
<tr>
<td>Year 1 combined SA and US</td>
<td>MON 87419</td>
<td>179.01</td>
<td>6</td>
</tr>
<tr>
<td>Year 1 combined SA and US</td>
<td>EVENT 2</td>
<td>184.88</td>
<td>6</td>
</tr>
<tr>
<td>SA Year 2</td>
<td>Control</td>
<td>231.70</td>
<td>10</td>
</tr>
<tr>
<td>SA Year 2</td>
<td>MON 87419</td>
<td>232.47</td>
<td>10</td>
</tr>
<tr>
<td>SA Year 2</td>
<td>EVENT 2</td>
<td>225.07</td>
<td>10</td>
</tr>
<tr>
<td>US Year 2 Tester 1</td>
<td>Control</td>
<td>185.80</td>
<td>17.40</td>
</tr>
<tr>
<td>US Year 2 Tester 1</td>
<td>MON 87419</td>
<td>187.09</td>
<td>17.40</td>
</tr>
<tr>
<td>US Year 2 Tester 1</td>
<td>EVENT 2</td>
<td>192.28</td>
<td>17.40</td>
</tr>
<tr>
<td>US Year 2 Tester 2</td>
<td>Control</td>
<td>219.12</td>
<td>12.83</td>
</tr>
<tr>
<td>US Year 2 Tester 2</td>
<td>MON 87419</td>
<td>219.56</td>
<td>12.83</td>
</tr>
<tr>
<td>US Year 2 Tester 2</td>
<td>EVENT 2</td>
<td>221.22</td>
<td>12.83</td>
</tr>
<tr>
<td>US Year 2 Tester 3</td>
<td>Control</td>
<td>197.62</td>
<td>8.66</td>
</tr>
<tr>
<td>US Year 2 Tester 3</td>
<td>MON 87419</td>
<td>191.49</td>
<td>8.66</td>
</tr>
<tr>
<td>US Year 2 Tester 3</td>
<td>EVENT 2</td>
<td>195.48</td>
<td>8.66</td>
</tr>
</tbody>
</table>

[0082] Inbred efficacy field trials were conducted using a randomized complete block design at 6 locations, 1 state. In these field trials, the dicamba formulation was Clarity 4SL, and the glufosinate formulation was Ignite 280 2.34SL. The herbicide application for the inbred efficacy field trials were glufosinate at 0.8 lb ai/ac and dicamba at 2.0 lbs ae/ac applied at VE-V2 followed by glufosinate at 0.8 lb ai/ac and dicamba at 2.0 lbs ae/ac applied at V8. At the end of the season, yield was measured. For each of the trials, a statistical difference in inbred efficacy yield was found when comparing inbred yield harvested from these trials from transgenic maize containing either of the two events (Table 8). These data indicate the superior performance of transgenic maize containing the maize MON 87419 event.
Table 8. Meta-analysis of yield from inbred efficacy field trials.

<table>
<thead>
<tr>
<th>Field Trial</th>
<th>Inbred Maize</th>
<th>Yield (Bu/ac)</th>
<th>LSD (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>year 2 US Inbred</td>
<td>MON 87419</td>
<td>110.95</td>
<td>7</td>
</tr>
<tr>
<td>year 2 US Inbred</td>
<td>EVENT 2</td>
<td>98.89</td>
<td>7</td>
</tr>
</tbody>
</table>

Inbred agronomic field trials were run during the same season with the US Year 1 efficacy field trials, SA Year 1 efficacy field trials, and US Year 2 efficacy field trials (11 locations, 1 state). The plots were set up in randomized complete block design conducted at multiple locations, and the trials included controls of a comparable inbred to the transgenic inbred lines. Meta-analysis across the multi-season, multi-location inbred agronomic field trials was conducted comparing yield for the paired control and the transgenic inbreds generated using either of the two events. No statistical difference in inbred agronomic yield was found between the control and transgenic maize containing the MON 87419 event (Table 9). In contrast, there was a statistically significant decrease in yield in transgenic maize containing the event 2 when compared to either control or transgenic maize containing the MON 87419 event. These data further indicated the superior performance of transgenic maize containing the maize MON 87419 event.

Table 9. Meta-analysis of yield from inbred agronomic field trials.

<table>
<thead>
<tr>
<th>Field Trial</th>
<th>Inbred Maize</th>
<th>Total (Bu/ac)</th>
<th>LSD (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>year 1 US Inbred</td>
<td>Control</td>
<td>65.87</td>
<td>31</td>
</tr>
<tr>
<td>year 1 US Inbred</td>
<td>MON 87419</td>
<td>60.33</td>
<td>31</td>
</tr>
<tr>
<td>year 1 US Inbred</td>
<td>EVENT 2</td>
<td>43.10</td>
<td>31</td>
</tr>
<tr>
<td>year 2 SA Inbred</td>
<td>Control</td>
<td>95.88</td>
<td>7</td>
</tr>
<tr>
<td>year 2 SA Inbred</td>
<td>MON 87419</td>
<td>98.77</td>
<td>7</td>
</tr>
<tr>
<td>year 2 SA Inbred</td>
<td>EVENT 2</td>
<td>75.85</td>
<td>7</td>
</tr>
<tr>
<td>year 2 US Inbred</td>
<td>Control</td>
<td>108.90</td>
<td>6</td>
</tr>
<tr>
<td>year 2 US Inbred</td>
<td>MON 87419</td>
<td>109.22</td>
<td>6</td>
</tr>
<tr>
<td>year 2 US Inbred</td>
<td>EVENT 2</td>
<td>96.88</td>
<td>6</td>
</tr>
</tbody>
</table>

Example 2: Characterization of the DNA sequence of the maize MON 87419 event

This example describes the extensive molecular characterization that was conducted on the maize MON 87419 event. The transgene insert of the maize MON 87419 event
contains, from the 5’ to 3’ orientation: (i) the promoter (P-ANDge.Ubql), leader, and intron (L-I-
ANDge.Ubql) of the ubiquitin gene (Ubq) from Andropogon gerardii; operably linked to the pat
gene from Streptomyces viridochromogenes (CR-STRvi.pat) that encodes a phosphinothricin N-
acetyltransferase (PAT) that confers tolerance to glufosinate herbicide; operably linked to the
polyadenylation signal (also known as a terminator that directs polyadenylation of mRNA) from
the RASB precursor gene of Oryza sativa (T-Os.Ara5) and (ii) the promoter for the full length
transcript of Peanut Chlorotic Streak Virus with a duplicated enhancer region (PC1SV); operably
linked to the leader of the light harvesting complex b1 gene from Triticum aestivum (L-
Ta.Lhcb1); operably linked to the first intron from the actin 1 gene from Oryza sativa (I-
Os.Act1); operably linked to the N-terminal chloroplast transit peptide from the Petunia x
hybrida 5-enolpyruvylshikimate-3-phosphate synthase gene (TS-Ph.ShkG-CTP4); operably
linked to the dmo gene Stenotrophomonas maltophilia optimized for monocot expression(CR-
STEma.DMO) that encodes a dicamba monooxygenase (DMO) that confers tolerance to dicamba
herbicide; operably linked to the heat shock protein 17 polyadenylation signal from Triticum
aestivum (T-Ta.Hspl7). The 5’ end of the transgene insert was flanked by the Right border of
Agrobacterium tumifaciens and the 3’ end of the transgene insert was flanked by the Left border
of Agrobacterium tumifaciens.

[0085] Southern blot analysis was conducted to confirm that transgenic maize containing
the maize MON 87419 event contained a single, intact copy of the entire transgene insert without
any vector backbone. Flank sequences were isolated from both the 5’ and 3’ ends of the insert,
and the respective junctions were determined using inverse PCR and/or genome walking
techniques. The chromosomal location of the insert of the maize MON 87419 event was
determined using inverse PCR to amplify genomic DNA outside of the site of interest. The flank
sequences for the maize MON 87419 event were mapped to the known maize genome physical
assembly and the maize MON 87419 event was confirmed to not be within any known genes.
This sequence information was used to design event specific endpoint TAQMAN® assays to
identify the presence of the maize MON 87419 event in a sample. The insertion site sequence
information was also used for bioinformatics analysis of the chromosomal location of the event.
Insertion site integrity was determined by PCR across the wild-type allele using primers specific
to the flanking regions of the maize MON 87419 event. The wild-type insertion site was used to
map to the maize reference genome the unique site of transgene integration for the maize
MON 87419 event. To ensure that no alterations or mutations were introduced to any region of the transgene during transformation, the entire transgene insert of the maize MON 87419 even was isolated from the plant and sequenced.

[0086] N-terminal protein sequencing of the expressed PAT and DMO proteins was performed using immunopurified protein extracts from transgenic maize grain containing the maize MON 87419 event. This sequence was then used to confirm the authentic N-terminal amino acid sequence. Western analysis was conducted on protein extracts from grain of transgenic maize containing the maize MON 87419 event. This confirmed that a single expected-sized protein was being produced for PAT and for DMO, respectively. ELISAs were developed to determine protein levels in various transgenic maize tissue types (leaf, seed, roots, and pollen) for the PAT or DMO protein expressed from the maize MON 87419 event. Northern analysis was conducted on poly-A RNA isolated from grain of transgenic maize containing the maize MON 87419 event. This confirmed the transcript size and number for the *pat* and *dmo* mRNA products. RNA expression levels were also measured by real-time PCR using samples from transgenic maize containing the maize MON 87419 event.

Example 3: Event specific endpoint TAQMAN® assays

[0087] This example describes an event specific endpoint TAQMAN® thermal amplification method developed to identify transgenic maize containing the maize MON 87419 event in a sample. The DNA primers used in the endpoint assay are primers SQ26644 (SEQ ID NO: 11), SQ26645 (SEQ ID NO: 12), and 6-FAM™ labeled probe PB11207 (SEQ ID NO: 13). 6-FAM™ is a fluorescent dye product of Applied Biosystems (Foster City, CA) attached to the DNA probe. For TAQMAN® MGB™ probes, the 5’ exonuclease activity of Taq DNA polymerase cleaves the probe from the 5’-end, between the fluorophore and quencher. When hybridized to the target DNA strand, quencher and fluorophore are separated enough to produce a fluorescent signal, thus releasing fluorescence. SQ26644 and SQ26645 when used with these reaction methods and PB11207 produce a DNA amplicon that is diagnostic for the maize MON 87419 event. The controls for this analysis should include a positive control containing the maize MON 87419 event, a negative control from non-transgenic maize, and a negative control that contains no template DNA. Additionally, a control for the PCR reaction should optimally include Internal Control Primers and an Internal Control Probe, specific to a single copy gene in
the maize genome. These assays are optimized for use with either an Applied Biosystems GeneAmp® PCR System 9700 (run at maximum speed) or MJ Research DNA Engine PTC-225 thermal cycler, but other equipment may be used.

[0088] An example of conditions useful with Endpoint TAQMAN® assay method useful for detection of the maize MON 87419 event is as follows. Step 1: 18 megohm water adjusted for final volume of 10 μl. Step 2: 5.0 μl of 2X Universal Master Mix (dNTPs, enzyme, buffer) to a 1X final concentration. Step 3: 0.5 μl Event Primer-1 (SQ26644) and Event Primer-2 (SQ26645). Mix (resuspended in 18 megohm water to a concentration of 20 μM for each primer) to 1.0 μM final concentration (for example in a microcentrifuge tube, the following should be added to achieve 500 μl at a final concentration of 20 μM: 100 μl of Primer SQ26644 at a concentration of 100 μM; 100 μl of Primer SQ26645 at a concentration of 100 μM; 300 μl of 18 megohm water). Step 4: 0.2 μl Event 6-FAM™ MGB Probe PB11207 (lOuM) (resuspended in 18 megohm water to a concentration of 10 μM to 0.2 μM final concentration. Step 5: 0.5 μl Internal Control Primer-1 and Internal Control Primer-2 Mix (resuspended in 18 megohm water to a concentration of 20 μM for each primer) to 1.0 μM final concentration. Step 6: 0.2 μl Internal Control VIC™ Probe (lOuM) to 0.2 μM final concentration (resuspended in 18 megohm water to a concentration of 10 μM). Step 7: 3.0 μl Extracted DNA (template) for each sample with one each of the following comprising 1. Leaf Samples to be analyzed; 2. Negative control (non-transgenic DNA); 3. Negative water control (no template); 4. Positive control transgenic maize containing the maize MON 87419 event DNA. Step 8: Thermocycler Conditions as follows: One Cycle at 50°C for 2 minutes; One Cycle at 95°C for 10 minutes; Ten Cycles of 95°C for 15 seconds then 64°C for 1 minute with (-1°C/cycle); Thirty Cycles of 95°C for 15 seconds then 54°C 1 minute, optional additional 10 to 20 cycles (95°C for 15 seconds then 64°C for 1 minute (-1°C/cycle) may provide more distinct population separation during EndPoint TaqMan® analysis); final cycle of 10°C.

Example 4: Zygosity assay

[0089] A zygosity assay may be used to determine whether or not a plant comprising the maize MON 87419 event is heterozygous or homozygous for the event or the wild-type allele. An amplification reaction assay can be designed using the sequence information provided herein. For example, such a PCR assay would include design of at least three primers: primer-1, primer-
2, and primer-3, where primer-1 is specific to maize genomic DNA on the 3' flank of the maize MON 87419 event; primer-2 is specific to the maize MON 87419 event transgene insert; and primer-3 is specific to the wild-type allele. When used as a primer pair in an amplification reaction, primer-1 with primer-2 will produce a PCR amplicon specific for the maize MON 87419 event. When used as a primer pair in an amplification reaction, primer-1 with primer-3 will produce a PCR amplicon specific for wild-type allele. In a PCR reaction performed on maize genomic DNA, the respective PCR amplicons generated from (primer-1 + primer-2) and (primer-1 + primer-3) will differ in sequence and size of the amplicon. When the three primers are included in a PCR reaction with DNA extracted from a plant homozygous for the maize MON 87419 event, only the primer-1 + primer-2 amplicon will be generated. When the three primers are included in a PCR reaction with DNA extracted from a plant heterozygous for the maize MON 87419 event, both the primer-1 + primer-2 amplicon and the primer-1 + primer-3 amplicon will be generated. When the three primers are mixed together in a PCR reaction with DNA extracted from a plant that is null for the maize MON 87419 event (that is wild-type), only the primer-1 + primer-3 amplicon will be generated.

[0090] Another method to determine zygosity of a maize plant for the maize MON 87419 event is an endpoint TAQMAN® thermal amplification reaction. For this type of assay, in addition to primers as described above, the assay would include two fluorescently labeled probes. Probe-1 would be specific for the maize MON 87419 event, and probe-2 would be specific for a maize plant that is null for the maize MON 87419 event (wild-type), and where the two probes contain different fluorescent labels, for example the 6-FAM™-label or VIC™-label. When used in an endpoint TAQMAN® thermal amplification reaction, primer-1 + primer-2 + probe-1 will produce a first fluorescent signal specific for the maize MON 87419 event. When used in an endpoint TAQMAN® thermal amplification reaction, primer-1 + primer-3 + probe-2 will produce a second fluorescent signal specific for wild-type maize. When the three primers and two probes are included in an endpoint TAQMAN® thermal amplification reaction with DNA extracted from a plant homozygous for the maize MON 87419 event, only the first fluorescent signal (specific to primer-1 + primer-2 + probe-1) will be generated. When the three primers are included in an endpoint TAQMAN® thermal amplification reaction with DNA extracted from a plant heterozygous for the maize MON 87419 event, both the first fluorescent signal (specific to primer-1 + primer-2 + probe-1) and the second fluorescent signal (specific to
primer-1 + primer-3 + probe-2) will be generated. When the three primers are mixed together in an endpoint TAQMAN® thermal amplification reaction with DNA extracted from a plant which is null for the maize MON 87419 event (wild-type), only the second fluorescent signal (specific to primer-1 + primer-3 + probe-2) will be generated.

[0091] Another method to determine zygosity of a plant for the maize MON 87419 event would be Southern analysis. One of skill in art would understand how to design Southern hybridization probe(s) specific for the maize MON 87419 event and a second southern hybridization probe specific for a maize plant which is null for the maize MON 87419 event (wild-type). With Southern analysis, a signal detected only from the first Southern hybridization probe will be indicative of a plant homozygous for the maize MON 87419 event; a signal detected from both the first Southern hybridization probe and the second Southern hybridization probe will be indicative of a plant heterozygous for the maize MON 87419 event; and a signal detected only from the second Southern hybridization probe will be indicative that the DNA was extracted from a plant that is null for the maize MON 87419 event (wild-type).
What is claimed is:

Claim 1. A recombinant DNA molecule comprising a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO: 10.

Claim 2. The recombinant DNA molecule of claim 1, wherein the DNA molecule is from a transgenic maize plant or seed comprising the maize MON 87419 event, a representative sample of seed comprising said event having been deposited as ATCC Accession No. PTA-120860.

Claim 3. The recombinant DNA molecule of claim 1, wherein the DNA molecule is an amplicon diagnostic for the presence of DNA from the maize MON 87419 event.

Claim 4. The recombinant DNA molecule of claim 1, wherein the DNA molecule is in a maize plant, cell, seed, progeny plant, or plant part from transgenic maize comprising the maize MON 87419 event, a representative sample of seed comprising said event having been deposited as ATCC PTA-120860.

Claim 5. A DNA molecule comprising a sufficient length of contiguous DNA sequence of SEQ ID NO: 10 to function as a DNA probe that hybridizes under stringent hybridization conditions with a DNA sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10, wherein the DNA molecule does not hybridize under the stringent hybridization conditions with a DNA sequence not comprising a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10, and wherein said DNA molecule comprises SEQ ID NO: 1 or SEQ ID NO:2.

Claim 6. A pair of DNA molecules comprising a first DNA molecule and a second DNA molecule, wherein the first DNA molecule is a fragment of SEQ ID NO:9 and the second DNA molecule is a fragment of the maize genomic DNA of the maize MON 87419 event, and wherein the first and second DNA molecules each comprise a DNA sequence of sufficient length of contiguous nucleotides to function as DNA primers when used together in an amplification reaction with DNA containing the maize MON 87419 event to produce an amplicon diagnostic
for the maize MON 87419 event in a sample, wherein said amplicon comprises SEQ ID NO:1 or
SEQ ID NO:2.

Claim 7. A method of detecting the presence of the maize MON 87419 event in a sample
of DNA, the method comprising:
 a) contacting the sample with the DNA molecule of claim 5;
 b) subjecting the sample and the DNA molecule to stringent hybridization conditions; and
 c) detecting hybridization of the DNA molecule to a target DNA molecule in the sample,
wherein the hybridization of the DNA molecule to the target DNA molecule indicates the
presence of the maize MON 87419 event in the sample of DNA.

Claim 8. A method of detecting the presence of the maize MON 87419 event in a sample
of DNA, the method comprising:
 a) contacting the sample with the pair of DNA molecules of claim 6;
 b) performing an amplification reaction sufficient to produce a DNA amplicon comprising a
sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3,
SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, and SEQ ID NO:8; and
 c) detecting the presence of the DNA amplicon in the reaction,
wherein the presence of the DNA amplicon in the reaction indicates the presence of the
maize MON 87419 event in the sample of DNA.

Claim 9. A DNA detection kit comprising:
 a) a DNA molecule comprising SEQ ID NO:1 or SEQ ID NO:2; or
 b) a pair of DNA molecules comprising a first DNA molecule and a second DNA molecule,
wherein the first DNA molecule is a fragment of SEQ ID NO:9 and the second DNA
molecule is a fragment of the maize genomic DNA of the maize MON 87419 event, and
wherein the first and second DNA molecules each comprise a DNA sequence of sufficient
length of contiguous nucleotides to function as DNA primers when used together in an
amplification reaction with DNA containing the maize MON 87419 event to produce an
amplicon diagnostic for the maize MON 87419 event in a sample, wherein said amplicon
comprises SEQ ID NO:1 or SEQ ID NO:2.

Claim 10. A transgenic maize plant, seed, cell, plant part, or commodity product comprising
a DNA molecule having a DNA sequence selected from the group consisting of SEQ ID NO:1,
SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10.

Claim 11. The transgenic maize plant, seed, or cell of claim 10, wherein the plant, seed, or cell is tolerant to glufosinate or dicamba, or glufosinate and dicamba herbicides.

Claim 12. A transgenic maize plant, seed, cell, plant part, or commodity product comprising the maize MON 87419 event, a representative sample of seed comprising said event having been deposited as ATCC Accession No. PTA-120860.

Claim 13. The transgenic maize plant or seed of claim 12, wherein the maize plant or seed is a hybrid having at least one parent plant comprising the maize MON 87419 event.

Claim 14. A method for controlling weeds in an area comprising planting transgenic maize comprising the maize MON 87419 event in an area and applying an effective dose of dicamba, or glufosinate, or dicamba and glufosinate herbicides to control the weeds in the area without injuring the transgenic maize.

Claim 15. The method of claim 14, wherein the effective dose of glufosinate herbicide is a total of about 0.1 pounds acid equivalent per acre to about 16 pounds acid equivalent per acre of glufosinate herbicide over a growing season.

Claim 16. The method of claim 14, wherein the effective dose of glufosinate herbicide is a total of about 0.4 pounds acid equivalent per acre to about 1.59 pounds acid equivalent per acre of glufosinate herbicide over a growing season.

Claim 17. The method of claim 14, wherein the effective dose of dicamba herbicide is a total of about 0.1 pounds acid equivalent per acre to about 16 pounds acid equivalent per acre of dicamba herbicide over a growing season.

Claim 18. The method of claim 14, wherein the effective dose of dicamba herbicide is a total of about 0.5 pounds acid equivalent per acre to about 2 pounds acid equivalent per acre of dicamba herbicide over a growing season.
Claim 19. A method of producing a transgenic maize plant that is tolerant to glufosinate and dicamba herbicides, the method comprising:
 a) sexually crossing a transgenic maize plant comprising the maize MON 87419 event with itself or a second maize plant;
 b) collecting the seed produced;
 c) growing the seed to produce progeny plants;
 d) treating the progeny plants with glufosinate, or dicamba, or glufosinate and dicamba herbicides; and
 e) selecting a progeny plant that is tolerant to glufosinate and dicamba herbicides.

Claim 20. A method of growing a transgenic maize plant that is tolerant to glufosinate and dicamba herbicides, the method comprising:
 a) planting a maize seed comprising event MON 87419;
 b) allowing a plant to grow from said seed; and
 c) treating the plant with glufosinate, or dicamba, or glufosinate and dicamba herbicides.

Claim 21. A method of producing a plant that tolerates application of glufosinate and dicamba herbicides, the method comprising:
 a) providing a DNA construct comprising the transgene insert shown in Figure 1;
 b) introducing the DNA construct into a maize plant cell; and
 c) regenerating the maize plant cell to produce a maize plant such that the plant tolerates application of glufosinate and dicamba herbicides.

Claim 22. The method of claim 21, wherein the transgene insert comprises SEQ ID NO:9.

Claim 23. The method of claim 21, wherein introduction of the DNA construct into the maize plant cell results in a sequence selected from SEQ ID NO:1-8 and 10 as part of the genome of the maize cell.

Claim 25. A progeny plant, seed, or part of the maize plant of claim 24.
A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) A01H 5/00; C12N 15/82, 5/00, 5/04 (2015.01)

CPC C12N 15/8274, 14/415, 15/8216

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

CPC: C12N 15/8274, 14/415, 15/8216

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

CPC: C12N 15/8274, 14/415, 15/8216 (text search)

USPC: 809/278, 300, 300.1, 435/408, 375, 413 (text search)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Electronic data bases: PatBase; Google Scholar; Google Patents

Search terms: plant, transgenic, maize, herbicide resistant or tolerant, dicamba monoxygenase (DMO), Stenotrophomonas maltophilia, dicamba (3,6-dichloro-2-methoxybenzoic acid), probe, amplicon, transgenic event MON 87419, ATCC PTA-120860, SEQ ID NOs: 1, 2

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- Document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- Document member of the same patent family

Date of the actual completion of the international search: 27 July 2015 (27.07.2015)

Date of mailing of the international search report: AUG 2015

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300

Authorized officer: Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos.:**
 - because they relate to subject matter not required to be searched by this Authority, namely:

2. **Claims Nos.:**
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **Claims Nos.:**
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

--- go to Extra Sheet for continuation ---

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. ☒ As only some of the required additional search fees were timely paid by the applicant, this international search report **covers** only those claims for which fees were paid, specifically claims Nos.:
 - 1-13 limited to SEQ ID Nos: 1, 2 (claims 1-13)

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- ☒ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- □ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- □ No protest accompanied the payment of additional search fees.
1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>✔</td>
<td>forming part of the international application as filed:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>✔</td>
<td>in the form of an Annex C/ST.25 text file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>on paper or in the form of an image file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td></td>
<td>furnished together with the international application under PCT Rule 13(er.1(a) for the purposes of international search only in the form of an Annex C/ST.25 text file.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td></td>
<td>furnished subsequent to the international filing date for the purposes of international search only:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in the form of an Annex C/ST.25 text file (Rule liter. 1(a)).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>on paper or in the form of an image file (Rule liter. 1(b) and Administrative Instructions, Section 713).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that forming part of the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:

GenCore ver 6.4.1 SEQ ID NOs: 1, 2, 9, 10 examined in search report
This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I: Claims 1-13, drawn to a recombinant DNA molecule composition comprising a sequence selected from the group consisting of SEQ ID NO: 1-10, where the recombinant sequence is found in a transgenic maize plant.

The recombinant DNA molecule composition will be searched to the extent that the polynucleotide comprises the first named sequence, SEQ ID NO: 1. It is believed that claims 1-13 read on this first named invention and thus these claims will be searched without fee to the extent that they encompass SEQ ID NO: 1 [NOTE, SEQ ID NOs: 3, 7 and 10 are included in the first invention, because SEQ ID NOs: 3, 7 and 10 each comprise SEQ ID NO: 1] Additional recombinant DNA molecules will be searched upon payment of additional fees. Applicant must specify the claims that encompass any additional elected target gene(s). Applicants must further indicate, if applicable, the claims which read on the first named invention if different than what was indicated above for this group. Failure to clearly identify how any paid additional invention fees are to be applied to the "+" group(s) will result in only the first claimed invention to be searched/examined. An exemplary election would be: SEQ ID NO: 2 (claims 1-13).

Group II: Claims 14-18 and 20, drawn to a method selectively growing transgenic maize comprising the maize MON 87419 event in an area and applying an effective dose of dicamba and glufosinate herbicides to control the weeds in the area without injuring or inhibiting the growth of the transgenic maize plant.

Group III: Claim 19, drawn to a method of producing a transgenic maize plant that is tolerant to glufosinate and/or dicamba herbicides by sexually crossing a transgenic maize plant comprising maize MON87419 event with itself or a second plant.

Group IV: Claims 21-25 drawn to a method of producing a transgenic maize plant that is tolerant to glufosinate and/or dicamba herbicides by introducing a DNA construct comprising a specific transgene into a maize plant cell and regenerating the maize plant cell into a plant and selecting for herbicide tolerance.

The inventions listed as Groups I, II-IV do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Special Technical Features:

Group I has the special technical feature of being a composition, not required by Groups II-IV.

Groups II-IV have the special technical feature of being a method, not required by Group I.

Among the inventions listed as Groups I-IV are the specific sequences recited therein. The inventions do not share a special technical feature, because no significant structural similarities can readily be ascertained among sequences.

Group II has the special technical feature of growing a plant that is tolerant to the herbicides glufosinate and/or dicamba, not required by Groups III or IV.

Group III has the special technical feature of growing a transgenic maize plant that is tolerant to glufosinate or dicamba herbicides by sexually crossing a transgenic maize plant comprising maize MON87419 event with itself or a second maize plant, not required by Groups II or IV.

Group IV has the special technical feature of generating a transgenic maize plant that is tolerant to the herbicides glufosinate and/or dicamba by introducing a DNA construct comprising a specific transgene into a maize plant cell and regenerating the maize plant cell to produce a plant, not required by Groups II or III.

Common Technical Feature:

1. Groups I, II-IV share the common technical feature of a transgenic maize plant.

2. Groups II-IV share the common technical feature of a transgenic maize plant that is tolerant to glufosinate or/and dicamba.

However, said common technical feature does not represent a contribution over the prior art, and is anticipated by US 2012/0222153 A1 to CUI et al. (hereinafter "CUI").

As to common technical feature #1, CUI teaches a transgenic maize plant (para [0009]: This invention relates in part to plant breeding and herbicide tolerant plants. This invention includes a novel aad-1 transformation event in corn plants comprising a polynucleotide sequence, as described herein; inserted into a specific site within the genome of a corn cell).
As to common technical feature #2, Cui teaches a transgenic maize plant that is tolerant to glufosinate (para [0009], [0068]; "The subject AAD-1 enzyme enables transgenic expression resulting in tolerance to combinations of herbicides that would control nearly all broadleaf and grass weeds. AAD-1 can serve as an excellent herbicide tolerant crop (HTC) trait to stack with other HTC traits (e.g., glyphosate resistance, glufosinate resistance)"); para [0011];" The additional traits may be stacked into the plant genome via plant breeding, re-transformation of the transgenic plant containing com event DAS-40278-9, or addition of new traits through targeted integration via homologous recombination").

Concerning Group I+ claims, Cui teaches a transgenic maize plant or plant parts (para [0009], [0008]), where the presence of the transgene can be detected by stringent hybridization with a DNA probe of defined sequence, or generating a "junctional" amplicon by amplification (para [0084]; As one skilled in the art will recognize in light of this disclosure, preferred embodiments of detection kits, for example, can include probes and/or primers directed to and/or comprising "junction sequences" or "transition sequences" (where the corn genomic flanking sequence meets the insert sequence). For example, this includes a polynucleotide probes, primers, and/or amplicons designed to identify one or both junction sequences (where the insert meets the flanking sequence").

As the common technical feature was known in the art at the time of the invention, this cannot be considered a common special technical feature that would otherwise unify the groups. The inventions lack unity with one another.

Therefore, Groups I+, II-IV lack unity of invention under PCT Rule 13 because they do not share a same or corresponding special technical feature.