Intellectuelle

Office de la Propriete Canadian CA 2288614 C 2004/05/11

Intellectual Prope
Office Pery (11)(21) 2 288 614

du Canada
Un organisme An agency of 12 BREVET CANADIEN
Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 1999/11/08 (51) CL.Int.”/Int.CI." GOBF 9/45
(41) Mise a la disp. pub./Open to Public Insp.: 2001/05/08 (72) Inventeurs/Inventors:
£ 1; _ BLAINEY, ROBERT JAMES, CA;
(45) Date de deéelivrance/lssue Date: 2004/05/11 ARCHAMBAULT ROCH GEORGES. CA

(73) Proprietaire/Owner:
IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(74) Agent: SAUNDERS, RAYMOND H.

(54) Titre : AFFECTATION DE BOUCLES POUR L'OPTIMISATION DE COMPILATEURS
(54) Title: LOOP ALLOCATION FOR OPTIMIZING COMPILERS

(57) Abrége/Abstract:

10

Nested Sourcs
Coda

.

12 16

PDG Builder — .. 1S Bullder
14
PDG
18

20) - P

13 Partitionar

22
Rartitioned I1G

24

l.oop Allacated
Code

Loop allocation for optimizing compilers includes the generation of a program dependence graph for a source code segment.
Control dependence graph representations of the nested loops, from Innermost to outermost, are generated and data
dependence graph representations are generated for each level of nested loop as constrained by the control dependence

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

OPIC - CIPO 191

CA 2288614 C 2004/05/11

anen 2 288 614
13) C

(57) Abréege(suite)/Abstract(continued):

graph. An interference graph Is generated with the nodes of the data dependence graph. Weights are generated for the edges of
the Interference graph reflecting the affinity between statements represented by the nodes joined by the edges. Nodes In the
Interference graph are given weights reflecting resource usage by the statements associated with the nodes. The interference
graph Is partitioned using a profitability test based on the weights of edges and nodes and on a correctness test based on the
reachabllity of nodes In the data dependence graph. Code Is emitted based on the partitioned interference graph.

10

CA 02288614 1999-11-08

LOOP ALLOCATION FOR OPTIMIZING COMPILERS
ABSTRACT

Loop allocation for optimizing compilers includes the generation of a program dependence graph
for a source code segment. Control dependence graph representations of the nested loops, trom
innermost to outermost, are generated and data dependence graph representations are generated for
each level of nested loop as constrained by the control dependence graph. An interference graph is
generated with the nodes of the data dependence graph. Weights are generated for the edges of the
interference graph reflecting the affinity between statements represented by the nodes joined by the
edges. Nodes in the interference graph are given weights reflecting resource usage by the statements
associated with the nodes. The interference graph is partitioned using a profitability test based on
the weights of edges and nodes and on a correctness test based on the reachability of nodes in the

data dependence graph. Code is emitted based on the partitioned interference graph.

CA9-1999-0031

10

15

20

23

CA 02288614 1999-11-08

LOOP ALLOCATION FOR OPTIMIZING COMPILERS

FIELD OF THE INVENTION

The present invention is directed to an improvement in computing systems and in particular to

computer systems which provide for optimized loop code generation in the compilation of computer

programes.

BACKGROUND OF THE INVENTION

Optimizing compilers permit efficient object code to be emitted given a particular piece of source
code to be compiled. Source code which includes loops is typically the subject of optimization in
compilers. For a given segment of source code containing loops and for a given target machine micro
architecture, cache geometry and parallel processing capability, the loop allocation of an optimizing
compiler will be used to attempt to determine a collection of object code loop nests which will give

efficient execution at an acceptable compilation-time cost.

Loop allocation optimization found in known compilers typically relies upon a set of ordered loop
allocation transformations, as well as optimizations for data locality and parallelism. For example,
loop source code may be optimized by emitting source code which minimizes off-chip access when
the loop object code is executed. Another optimization for loop source code 1s to emit object code

which may be executed in parallel by a multi-processor machine.

Typically, prior art optimizing compilers which carry out loop allocation include loop distribution
early in the set of transformations, followed by parallelism and data locality transformations and

finish with loop fusion and array contraction as a cleanup phase.

In prior art optimizing compilers, nested loops are optimized on a loop-by-loop basis. A prior art
approach to optimizing sibling loops is to merge such nests. This approach is described by Sarkar,
V. and Gao, G.R., “Optimization of Array Accesses by Collective Loop Transformations,” 5"

International Conference on Supercomputing, Cologne, Germany, June 1991, pp. 194-205. This

CA9-1999-003 1]

N

10

S

NP’
A

CA 02288614 2002-12-20

art approach involves a profitability and correctness test tor the merger ot the sibling loops. The
optimization determines first if fusion of the sibling loops is desirable (a profitability analysis).
Another prior art approach to loop optimization 1s to first distribute the loop code. to then optimize

the distributed code and then to fuse the code atter optimization.

Each ot the above approaches to optimization involves optimizations ol the loop code independent
of. or tollowing, loop distribution steps. Where nested loops are optimized on a loop-by-loop basis.
optimizing which may be possible due to relationships between code in ditterent nested loops may
be missed. Similarly. where the loop code is distributed. optimized and then tused, the optimization
is carried out on distributed portions of the code and interrelationships between those sections of

code may not be considered in the optimization.
[t is therefore desirable to have a computer system which carries out the loop allocation 1n an
optimized compiler without accomplishing the loop distribution step at an early point in the sequence

of loop transformations.

SUMMARY OF THE INVENTION

According to one aspect of the present invention. there is provided an improved system for the

optimization of loop code compilation.

According to another aspect of the present invention, there is provided a computer program product
storing computer readable program code. said computer readable program code for compiling a
source code segment. said computer program product. when executed by a computer. adapts said
computer to generate a program dependence graph for the source code segment. the program
dependence graph comprising a control dependence graph and a data dependence graph. each ot the
control dependence graph and the data dependence graph comprising nodes. each node in the data
dependence graph being associated with one or more statements 1n the source code segment, generate
an interference graph from the data dependence graph, comprising instruction means for deriving

nodes for the interference graph from the nodes in the data dependence graph, the nodes mn the

CA9-1999-0031

{-J

)
N

CA 02288614 2002-12-20

interterence graph thereby each being associated with one or more statements in the source code
segment, generate a node weight for each node in the interference graph. each node having a node
weight reflecting the resource usage for the one or more statements associated with the node.
cenerate edges for the interference graph. each edge connecting a pair ot nodes in the interterence
araph, generate an associated edge weight for each edge reflecting the desirability of maintaining the
one or more statements associated with each ot the pair of nodes connected by the edge within the
same loop. partition the interference graph into subgraphs based on the edge weights and the node

weights of the interterence graph. and emit code conforming to the partitioned interference graph.

According to another aspect of the present invention. there is provided the above computer program
product in which the instruction means for partitioning the interference graph comprises instruction
means for first conducting a profitability test to select a pair of nodes in the interterence graph,
instruction means for then conducting a correctness test on the selected pair, and instruction means
for merging the selected pair of nodes into a coalesced node where the correctness test is satistied

for the selected pair.

According to another aspect of the present invention. there 1s provided the above computer program
product in which the instruction means for conducting a protitability test comprises instruction
means for selecting the pair of nodes in the interference graph having the highest associated edge
weight, the selected pair of nodes having a sum of node weights lower than a pre-defined resource

limit for a target machine for the compiler.

According to another aspect of the present invention. there 1s provided the above computer program
product in which the instruction means for conducting a correctness test comprises instruction means
for comparing the selected pair of nodes in the interterence graph with nodes in the interterence
oraph corresponding to nodes in the data dependence graph defined to be reachable by the data
dependence graph from those nodes in the data dependence graph reachable from the nodes in the

data dependence graph corresponding to the selected pair of nodes in the interference graph.

(S

CA9-1999-0031

10

15

20

25

CA 02288614 1999-11-08

According to another aspect of the present invention, there is provided the above computer program
product in which the instruction means for comparing nodes comprises instruction means for
defining a test set by generating a merged reachability set by taking the union of the nodes reachable
from the selected pair of nodes, and removing the selected pair of nodes, and taking the union of the
nodes reachable from the merged reachability set, and comparing the intersection of the test set with

the union of the pair of selected nodes with the null set.

According to another aspect of the present invention, there is provided the above computer program
product in which each node in the interference graph has an associated reachability vector
representing which nodes in the interference graph are reachable from the node and in which set

operations to determine reachability of nodes are carried out using the reachability vectors.

According to another aspect of the present invention, there 1s provided the above computer program
product in which the instruction means for generating a program dependence graph comprises
instruction means for ordering the generation of the program dependence graph from an innermost

level of nested loops in the source code segment to an outermost level of nested loops 1n the source

code segment.

According to another aspect of the present invention, there is provided the above computer program
product in which the instruction means for generating a program dependence graph comprises
instruction means for generating the control dependence graph for a level of nested loops in the
source code segment and for then generating corresponding nodes for the data dependence graph for

the said level of nested loops, the corresponding nodes in the data dependence graph being defined

by constraints determined from the control dependence graph.

According to another aspect of the present invention, there is provided the above computer program
product in which the instruction means for generating a program dependence graph comprises
instruction means for determining pi blocks in the segment of source code and in which p1 blocks

are maintained in the generation of the program dependence graph from an inner level of nested

CA9-1999-0031 4

10

15

20

235

CA 02288614 1999-11-08

loops to a parent level of nested loops in the source code segment.

According to another aspect of the present invention, there is provided the above computer program
product in which the means for emitting code comprises instruction means for generating optimized
object code including one or more techniques selected from the set of techniques comprising scalar

expansion, usage of temporary storage, array contraction, and strip mining.

According to another aspect of the present invention, there 1s provided the above computer program
product of in which the instruction means for emitting code comprises means for generating

optimized object code by optimizing for parallelism and for data locality.

According to another aspect of the present invention, there is provided a method for compiling a

source code segment, the method comprising the following steps:

1. generating a program dependence graph for the source code segment, the program dependence
graph comprising a control dependence graph and a data dependence graph, each of the control
dependence graph and the data dependence graph comprising nodes, each node in the data

dependence graph being associated with one or more statements in the source code segment,

2. causing a computer to generate an interference graph from the data dependence graph, by
deriving nodes for the interference graph from the nodes in the data dependence graph, the
nodes in the interference graph thereby each being associated with one or more statements

in the source code segment and

generating a node weight for each node in the interference graph, each node having a node
weight reflecting the resource usage for the one or more statements associated with the node,
generating edges for the interference graph, each edge connecting a pair of nodes in the

interference graph,

CA9-1999-0031 >

" meey - — - -

10

15

20

235

CA 02288614 1999-11-08

generating an associated edge weight for each edge reflecting the desirability of maintaining
the one or more statements associated with each of the pair of nodes connected by the edge

within the same loop,

3. partitioning the interference graph into subgraphs based on the edge weights and the node weights

of the interference graph, and

4. emitting code conforming to the partitioned interference graph.

According to another aspect of the present invention, there is provided the above method in which

the step of partitioning the interference graph comprises the steps of

1. conducting a profitability test to select a pair of nodes in the interference graph,

2. conducting a correctness test on the selected pair, and

3. merging the selected pair of nodes into a coalesced node where the correctness test is satisfied for

the selected pair.

According to another aspect of the present invention, there is provided the above method in which
the step of conducting the profitability test comprises selecting the pair of nodes in the interference
graph having the highest associated edge weight, the selected pair of nodes having a sum of node

weights lower than a pre-defined resource limit for a target machine for the compiler.

According to another aspect of the present invention, there is provided the above method in which

conducting a correctness test comprises the steps of comparing the selected pair of nodes in the
interference graph with nodes in the interference graph corresponding to nodes in the data
dependence graph defined to be reachable by the data dependence graph from those nodes in the data

dependence graph reachable from the nodes in the data dependence graph corresponding to the

CA9-1999-0031 6

10

15

20

235

CA 02288614 1999-11-08

selected pair of nodes in the interference graph.

According to another aspect of the present invention, there is provided a computer program product

tangibly embodying a program of instructions executable by a computer to perform the above

method steps.

According to another aspect of the present invention, there 1s provided a system for compilation of
a source code segment. The system has means to generate a program dependence graph for the
source code segment. The program dependence graph includes a control dependence graph and a
data dependence graph. Each of the control dependence graph and the data dependence graph have
nodes, each node in the data dependence graph is associated with one or more statements in the
source code segment. There is also means to generate an interference graph from the data
dependence graph, with means for deriving nodes for the interference graph from the nodes in the
data dependence graph. The nodes in the interference graph are thereby each associated with one or
more statements in the source code segment. There is means for generating a node weight for each
node in the interference graph, each node having a node weight reflecting the resource usage for the
one or more statements associated with the node. There 1s also means for generating edges for the
interference graph, each edge connecting a pair of nodes in the interference graph, with means for
generating an associated edge weight for each edge reflecting the desirability of maintaining the one
or more statements associated with each of the pair of nodes connected by the edge within the same
loop. There 1s also provided means for partitioning the interference graph into subgraphs based on
the edge weights and the node weights of the interference graph, and means for emitting code

conforming to the partitioned interference graph.

According to another aspect of the present invention, there is provided the above system in which
the means for partitioning the interference graph comprises means for first conducting a profitability
test to select a pair of nodes 1n the interference graph, means for then conducting a correctness test
on the selected pair, and means for merging the selected pair of nodes into a coalesced node where

the correctness test 1s satisfied for the selected pair.

CA9-1999-0031 7

10

15

20

25

CA 02288614 1999-11-08

According to another aspect of the present invention, there is provided the above system in which
the means for conducting a profitability test comprises means for selecting the pair of nodes in the
interference graph having the highest associated edge weight, the selected pair of nodes having a sum

of node weights lower than a pre-defined resource limit for a target machine for the compiler.

According to another aspect of the present invention, there 1s provided the above system 1n which
the means for conducting a correctness test comprises means for comparing the selected pair of
nodes 1n the interference graph with nodes in the interference graph corresponding to nodes in the
data dependence graph defined to be reachable by the data dependence graph from those nodes 1n
the data dependence graph reachable from the nodes in the data dependence graph corresponding to

the selected pair of nodes in the interference graph.

According to another aspect of the present invention, there is provided the above system in which
the means for comparing nodes comprises means for defining a test set by generating a merged
reachability set by taking the union of the nodes reachable from the selected pair of nodes, and
removing the selected pair of nodes, and taking the union of the nodes reachable from the merged

reachability set, and comparing the intersection of the test set with the union of the pair of selected

nodes with the null set.

According to another aspect of the present invention, there is provided the above system in which
each node in the interference graph has an associated reachability vector representing which nodes
in the interference graph are reachable from the node and in which set operations to determine

reachability of nodes are carried out using the reachability vectors.

Advantages of the present invention include improvements in optimization across loops and nests
of loops. In addition, the manipulation of graph representations of the code permits application of

known heuristic-based graph partitioning techniques to the loop allocation compilation.

CA9-1999-0031 3

10

15

20

25

CA 02288614 1999-11-08

BRIEF DESCRIPTION OF THE DRAWINGS

The preferred embodiment of the invention is shown in the drawings, wherein:

Figure 1 is a block diagram illustrating the process flow of the optimizing compiler of the
preferred embodiment.

Figure 2 is a graph diagram illustrating an example partitioned interference graph as

generated by the preferred embodiment.

Figure 3 is a graph diagram illustrating an example data dependence graph as generated by

the preferred embodiment.

In the drawings, the preferred embodiment of the invention is illustrated by way of example. It is to
be expressly understood that the description and drawings are only for the purpose of illustration and

as an aid to understanding, and are not intended as a definition of the limits of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The system of the preferred embodiment is illustrated in Figure 1 which shows the flow of the loop
allocation of the preferred embodiment in a block schematic diagram. Nested source code 10 1s used
by PDG (program dependence graph) builder 12 to create the program dependence graph shown as
PDG 14. An interference graph (IG) is then created by 1G builder 16 and is shown in Figure 1 as IG
18. The next step in the loop allocation of the preferred embodiment is IG partitioning 20 which
takes as input both PDG 14 and IG 18 to create partitioned IG 22. This last partitioned graph, shown
in Figure 1 as partitioned IG 22 is used to define loop allocated code 24.

As is described in more detail below, approaching loop allocation in an optimizing compiler by using
the transformation ordering of the preferred embodiment results in natural optimization within and
across loop nests. As the description of the preferred embodiment sets out, the preferred embodiment
accomplishes an early maximal loop fusion. The compiler of the preferred embodiment also
incorporates known techniques for generating optimized object code. These include scalar
expansion, usage of temporary storage including registers (through the application of temporary

vector allocation), array contraction and strip-mining. In the preferred embodiment, these techniques

CA9-1999-0031 9

10

15

20

25

CA 02288614 1999-11-08

are used before transformations for parallelism and data locality are performed. The description set
out below does not describe such techniques in detail as they are known to those skilled 1n the art

and may be utilized in conjunction with the loop allocation of the preferred embodiment as will be

understood by those skilled in the art.

As indicated in Figure 1, the loop allocation of the preferred embodiment creates PDG 14 from
nested source code 10. PDG builder 12 starts with the innermost nested loop and moves outwards.
The construction of such a PDG is known in the art and 1s described, for example, in Ferrante, J.,
Ottenstein, K. and Warren, J., “The program dependence graph and its use in optimization,” ACM
Trans. Program. Lang. Syst., 1987, pp. 319-349. Although referred to as a single graph, there are two
components to a program dependence graph such as PDG 14 shown in Figure 1: a control
dependence graph (CDG) and a data dependence graph (DDG). In the CDG, the nodes are detined
to be blocks of code (branch-free segments of the code) and edges are ordering constraints for the
blocks (for example, evaluation of conditions). In the DDG, the nodes are individual statements (or
as set out below, aggregate statements specified by the CDG) and the edges are data dependencies

(tflow dependence, anti-dependence and output dependence).

A program dependence graph (PDG) represents semantic information for a source code segment and
isused in optimizing compilers to determine whether a transformation involving a reordering of code
is permissible. In the preferred embodiment, the CDG for a given PDG (or portion of PDQG) is
generated first. Because the CDG defines required control dependencies, the CDG is used to create
aggregate blocks of statements in nodes in the DDG. Where the CDG requires that statements are

maintained together, they are included together in the nodes of the DDG.

The PDG is calculated starting at the innermost nest of loops in the code to be represented by the
PDG. The PDG computes ©t blocks which are subgraphs of the DDG in which each node is reachable
from each other node (strongly connected regions). In the generation of the PDG, = blocks are

contributed up to the next level of the graph, when the parent loop is being processed. Once the top

level of the PDG is created, then a partitioning, or interference, graph is built, as is described below.

CA9-1999-0031 10

10

15

20

25

CA 02288614 1999-11-08

As 1s shown in Figure 1, once PDG14 is created for source code 10, the interference graph 1G 18 is
created by IG builder 16. The graph of IG 18 is induced from the nodes of the DDG of PDG 14. The
interference graph takes the nodes from the DDG of PDG 14, but not the edges. Thus IG 14 has
nodes corresponding to the statements of nested source code 10. IG 18 is an undirected graph (the
edges of the graph have no direction). Edges for IG 18 are created by IG builder 16 by giving a
weight for each edge between nodes based on the desirability of keeping the two statements (or
blocks of statements), represented by the two nodes at the ends of the edge, in the same loop. In
addition, each node in IG 18 is given a weight by IG builder 16. This weight is determined by a
heuristic in IG builder 16 which determines the resources used by the statement corresponding to
the node 1in IG 18. For example, the number of linear streams in memory, or the number of registers
used by the statement will affect the weight given to the node for that statement in IG 18, as

determined by the heuristic of IG builder 16, for the given target machine.

An example of the determination of the weight for an edge between two nodes in IG 18 is shown for

the following two statements:

A®) = B() + C@)
D(i)=B(i) + E®i)

Because B(1) 1s a data stream shared by the two statements there will be an affinity between the two
statements (there will be efficiencies achieved by keeping the two statements in the same loop) and
the weight of the edge between the two nodes representing the two statements will be adjusted by
IG builder 16, accordingly. Other factors will be apparent to those skilled in the art as being relevant
to the weights accorded to the edges in IG 18. For example, complimentary use of execution
resources such as the balanced use of different pipelines in a target machine, may be included by IG

builder 16 in determining the weights in IG 18.

As 1s shown 1n Figure 1, the nodes of IG 18 are then partitioned, or merged, into super nodes in

partitioned IG 22. This is also referred to as a coalescing of nodes in IG 18. It will be apparent to

CA9-1999-0031 11

10

15

20

235

CA 02288614 1999-11-08

those skilled in the art that partitioned IG 22 may be implemented as a modified IG 18, rather than

a separate data structure, as is shown in the block diagram of Figure 1.

Figure 2 1s a graph diagram showing an example interference graph which has been partitioned or
merged into a partitioned interference graph (as shown in Figure 1 as partitioned interference graph
22). The interference graph of Figure 2 has nodes 30, 32, 34, 36, 38 which correspond to statements
A, B, C, D, E respectively. The interference graph in Figure 2 has weights assigned to the edges
between nodes 30, 32 (a weight of 5), between nodes 32, 34 (15) , between nodes 32, 36 (10),
between nodes 34, 36 (2) and between nodes 36, 38 (12). In addition, each of the nodes has been
assigned a weight (for example 300 for node 30). The graph of Figure 2 is partitioned by selecting
the edges of the graph in order of their relative weights. In the example of Figure 2, the nodes 32,
34 have the edge between them with the highest weight (15). The graph is therefore partitioned to
create a merged node 40 comprising nodes 32,34. The next partition is performed on nodes 36, 38,

which share an edge with the next highest weight, to create supernode 42.

The partitioning of an interference graph in the compiler of the preferred embodiment also includes
a calculation based on the combination of the node weights in the merged node. For a given target
machine, the loop allocation of the preferred embodiment has a specified resource limit or limits.
This 1s retlected in a weight (which may be implemented as a vector of weights) which is used as

a limit in the merging or coalescing of nodes into supernodes in the interference graph.

The resource limit for a merged node will be used to determine the desirability of merging two nodes
which have been identified as candidates for merger due to the affinity weight found on the edge
between the two nodes in the interference graph. If the resource limit is exceeded by the merged
node’s weight then the merge is not desirable. The resource limit is therefore used in a profitability
test for the merger of nodes in the graph. Thus even where there is an affinity for statements being
kept in the same loop, the profitability test encompasses a check to determine if keeping the

statements 1n the same loop will result in the resource limit being exceeded for the target machine.

CA9-1999-0031 12

10

15

20

25

o 0 O o Salia e A S B MEERRG o T . ET—r—e——

CA 02288614 1999-11-08

In the example of Figure 2, the supernode 42 has a merged weight of 600. If the resource limit for

the target machine i1s 550, for example, supernode 42 will not be created.

The edge atfinity weight and the resource limit test for merger of nodes in the interference graph are
measures of the profitability of merging the nodes in the graph. This is a mechanism for determining
whether the statements represented by the nodes in the graph are to be kept in the same loop in the
emitted code. If the profitability test 1s passed, the next test carried out in the loop allocation of the

preferred embodiment is to determine the correctness of the merger of the nodes.

In the preferred embodiment, the correctness test for the merger of two nodes is carried out by
reference to the reachability of the nodes in the DDG. The DDG is a directed graph and may be used
to determine whether the merger of the nodes will violate any of the constraints which are reflected
in the DDG. The reachability of the nodes in the DDG reflects constraints on ordering of the

statements which are subject to the proposed merger in the interference graph.

The calculation of reachability is carried out in the preferred embodiment by determining a
reachability bit vector for each node in the DDG. An example DDG is shown in the graph of Figure
3.Nodes 50, 52, 54, 56, 58 in Figure 3 represent statements A, B, C, D, E, respectively. The universe
for the bit vector is therefore the set A, B, C, D, E. The reachability of node 52 (statement B) 1s the
set B, C, D, E, in the example of Figure 3. The reachability bit vector for a selected node is a bit
vector which has five bits, each bit corresponding to the reachability of the corresponding node in
the graph from the selected node. For example, the reachability bit vector for node 52 1s (0,1, 1, 1,
1), representing the fact that node 52 (statement B) is reachable from nodes 52, 54, 56, 58, but not

from node 50 (in terms of statements, it is reachable from statements B, C, D, E, but not from A).

Using a bit vector to represent the reachability of nodes in the DDG permits operations to be carried
out on the bit vectors in a single operation for each of the 32 nodes in the graph for many
implementing computers. For example, a 32-bit machine is capable of storing a DDG reachability

bit vector for a graph of up to 32 nodes.

CA9-1999-0031 13

10

15

20

25

30

CA 02288614 1999-11-08

The correctness test for merging two subgraphs in an interference graph may be described using the

following steps, where R(n) is the set of nodes reachable from node n:

Let G1 and G2 be two subgraphs of the interference graph
Let S = (R(G1) u R(G2)) - (G] u G2)
LetT = u.Rgi) (the union over 1 1n S:R(1))

1 €

The merger will be correct if T N (G1 u G2) == @. The above steps will determine whether the
proposed merger will result in a violation of the constraint of the DDG by determining whether the
proposed merger (G1 u G2) will result in nodes being reachable by the merged node (set T) which
are 1n the merged set (Gl u G2). Because reachability in the DDG is an indication of a semantic
constraint that the statement of a reachable node follow a statement of a given node, if T N (G1 u
G2) 1s not null, the merged node will result in statements in the merged node being constrained to
follow the merged node, a contradictory conclusion which indicates that the constraints of the DDG

are violated by the proposed merged supernode (or subgraph).

After the partitioning or coalescing of subgraphs, the reachability vectors are updated as follows:

GNEW = G1 u G2 (where G1 and G2 are coalesced.)
R(GNEW) = R(G1) u R(G2)
For each other subgraph D,
if R(D) N (G1 uG2) != o,
then
R(D) = R(D) u R(GNEW)

The above operations are carried out by the preferred embodiment to ensure that the reachability
vectors are maintained correctly following the partitioning of the interference graph. As is described
above, the use of reachability vectors provides a correctness test which defines whether a merger of

nodes 1n the interference graph which has been identified as profitable is in fact permitted by the

CA9-1999-0031 14

10

15

20

25

CA 02288614 1999-11-08

constraints represented in the DDG.

Following the graph partitioning set out above, the optimizing compiler of the preferred embodiment
uses known techniques to emit optimized code, such as scalar expansion, usage of temporary storage,
array contraction and strip-mining. The generation of both the PDG and the interference graph for
a given segment of source code, and then the coalescing of subgraphs in the interference graph
permit the optimization to occur across loops and nests of loops. In addition, the manipulation of

graph representations of the code permits application of known heuristic-based graph partitioning

techniques to the loop allocation compilation.

The detailed descriptions may have been presented in terms of program procedures executed on a
computer or network of computers. These procedural descriptions and representations are the means
used by those skilled in the art to most effectively convey the substance of their work to others

skilled in the art. They may be implemented in hardware or software, or a combination of the two.

A procedure 1s here, and generally, conceived to be a self-consistent sequence of steps leading to a
desired result. These steps are those requiring physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and otherwise manipulated. It proves convenient at
times, principally for reasons of common usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, objects, attributes or the like. It should be noted, however, that
all of these and similar terms are to be associated with the appropriate physical quantities and are

merely convenient labels applied to these quantities.

Further, the manipulations performed are often referred to in terms, such as adding or comparing,
which are commonly associated with mental operations performed by a human operator. No such
capability of a human operator is necessary, or desirable in most cases, in any of the operations
described herein which form part of the present invention; the operations are machine operations.

Usetul machines for performing the operations of the present invention include general purpose

CA9-1999-0031 135

10

15

20

25

CA 02288614 1999-11-08

digital computers or similar devices.

Each step of the method may be executed on any general computer, such as a mainframe computer,
personal computer or the like and pursuant to one or more, or a part of one or more, program
modules or objects generated from any programming language, such as C++, Java, Fortran or the
like. And still further, each step, or a file or object or the like implementing each step, may be

executed by special purpose hardware or a circuit module designed for that purpose.

In the case of diagrams depicted herein, they are provided by way of example. There may be
variations to these diagrams or the steps (or operations) described herein without departing from the
spirit of the invention. For instance, in certain cases, the steps may be performed in differing order,
or steps may be added, deleted or modified. All of these variations are considered to comprise part

of the present invention as recited in the appended claims.

The invention may be implemented as an article of manufacture comprising a computer usable
medium having computer readable program code means therein for executing the method steps of
the invention, a program storage device readable by a machine, tangibly embodying a program of
instructions executable by a machine to perform the method steps of the invention, or a computer
program product. Such an article of manufacture, program storage device or computer program
product may include, but is not limited to, CD-ROMs, diskettes, tapes, hard drives, computer RAM
or ROM and/or the electronic, magnetic, optical, biological or other similar embodiment of the
program. Indeed, the article of manufacture, program storage device or computer program product
may include any solid or fluid transmission medium, magnetic or optical, or the like, for storing or
transmitting signals readable by a machine for controlling the operation of a general or special
purpose programmable computer according to the method of the invention and/or to structure its

components in accordance with a system of the invention.

The invention may also be implemented in a system. A system may comprise a computer that

includes a processor and a memory device and optionally, a storage device, an output device such

CA9-1999-0031 16

10

15

CA 02288614 1999-11-08

as a video display and/or an input device such as a keyboard or computer mouse. Moreover, a system
may comprise an interconnected network of computers. Computers may equally be in stand-alone
form (such as the traditional desktop personal computer) or integrated into another apparatus (such
a cellular telephone). The system may be specially constructed for the required purposes to perform,
for example, the method steps of the invention or it may comprise one or more general purpose
computers as selectively activated or reconfigured by a computer program in accordance with the
teachings herein stored in the computer(s). The procedures presented herein are not inherently related
to a particular computer system or other apparatus. The required structure for a variety of these

systems will appear from the description given.

While this invention has been described in relation to preferred embodiments, it will be understood
by those skilled in the art that changes in the details of construction, arrangement of parts,
compositions, processes, structures and materials selection may be made without departing from the
spirit and scope of this invention. Many modifications and variations are possible in light of the
above teaching. Thus, it should be understood that the above described embodiments have been
provided by way of example rather than as a limitation and that the specification and drawing(s) are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

CA9-1999-0031 17

-2
N

CA 02288614 2002-12-20

The embodiments of the invention in which an exclusive property or privilege is claimed are detined

as tollows:

1. A computer program product storing computer readable program code. said computer
readable program code for compiling a source code segment, said computer program product, when
executed by a computer, adapts said computer to:

oenerate a program dependence graph for the source code segment, the program dependence
oraph comprising a control dependence graph and a data dependence graph, each ot the control
dependence graph and the data dependence graph comprising nodes. each node in the data
dependence graph being associated with one or more statements in the source code segment.

oenerate an interference graph from the data dependence graph. comprising instruction means
for deriving nodes tor the interference graph from the nodes in the data dependence graph. the nodes
in the interterence graph thereby cach being associated with one or more statements in the source
code segment,

venerate a node weight for each node in the interference graph. each node having a node
weight reflecting the resource usage for the one or more statements associated with the node.

cenerate edges for the interference graph. each edge connecting a pair ot nodes m the
interference graph.

oenerate an associated edge weight for cach edge reflecting the desirability of maintaining
the one or more statements associated with each ot the pair of nodes connected by the edge within
the same loop.

partition the interference graph into subgraphs based on the edge weights and the node
welghts of the interference graph. and

emit code conforming to the partitioned interference graph.

2. The computer program product of claim | wherein said instructions adapting said
computer to partition the interference graph comprises instructions for adapting said computer (o
conduct a profitability test to select a pair of nodes in the interference graph: conduct a correctness

test on the selected pair: and merge the selected pair of nodes into a coalesced node where the

CA9-1999-0031 | 8

L

[0

15

CA 02288614 2002-12-20

correctness test is satisfied for the selected pair.

3. The computer program product of claim 2 wherein said instructions for adapting said
computer to conduct a profitability test comprises instructions for adapting said computer to select
the pair of nodes in the interference graph having the highest associated edge weight. the selected
pair of nodes having a sum of node weights lower than a pre-defined resource limit for a target

machine for the compiler.

4. The computer program product of claim 2 or claim 3 wherein the instructions tor
adapting said computer to conduct a correctness test comprises instructions for adapting said
computer to:

compare the selected pair of nodes in the interference graph with nodes in the interference
oraph corresponding to nodes in the data dependence graph defined to be reachable by the data
dependence graph from those nodes in the data dependence graph reachable trom the nodes in the

data dependence graph corresponding to the selected pair of nodes in the interference graph.

5. The computer program product of claim 4 wherein instructions for adapting said
computer to compare nodes comprises instructions for adapting said computer (o define a test set by
senerating a merged reachability set by taking the union of the nodes reachable from the selected pair
of nodes. and removing the selected pair of nodes, and taking the union of the nodes reachable from
the merged reachability set. and comparing the intersection of the test set with the union of the pair

of selected nodes with the null set.

6. The computer program product of claim 5 in which each node in the interterence graph
has an associated reachability vector representing which nodes in the interference graph are reachable
from the node and in which set operations to determine reachability of nodes are carried out using

the reachability vectors.

CA9-1999-0031 19

AN

10

CA 02288614 2002-12-20

7. The computer program product ot claim 6 wherein instructions for adapting said
computer to generate a program dependence graph comprises instructions for adapting said computer
to generate the control dependence graph for a level of nested loops in the source code segment and
senerate corresponding nodes for the data dependence graph for the said level ot nested loops. the
corresponding nodes in the data dependence graph being defined by constraints determined from the

control dependence graph.

8. The computer program product of any one of claims 1 to 6 wherein instructions for
adapting said computer to generate a program dependence graph comprises instructions foradapting
said computer to order the generation of the program dependence graph from an innermost level of
nested loops in the source code segment to an outermost level of nested loops in the source code

segment.

9. The computer program product of claim 8 wherein instructions for adapting said
computer to generate a program dependence graph comprises instructions for adapting sald computer
to determine pi blocks in the segment of source code and in which pi blocks are maintained n the
oeneration of the program dependence graph from an inner level of nested loops to a parent level of

nested loops 1n the source code segment.

10. The computer program product of claim 9 wherein instructions for adapting said
computer to emit code comprises instructions for adapting said computer to generate optimized

object code by optimizing tor parallelism and for data locality.

11. The computer program product of any one of claims 1 to 10 wherein instructions for
adapting said computer to emit code comprises instructions tor adapting sald computer to generate
optimized object code including one or more techniques selected from the set of techniques

comprising scalar expansion, usage of temporary storage, array contraction, and strip mining.

CA9-1999-0051 20

CA 02288614 2002-12-20

12. A loop allocation optimizing compiler comprising,

means for generating a program dependence graph for a source code segment, the program
dependence graph comprising a control dependence graph and a data dependence graph, each ot the
control dependence graph and the data dependence graph comprising nodes, each node in the data

d dependence graph being associated with one or more statements in the source code segment.
means for generating an interference graph trom the data dependence graph. comprising
means for deriving nodes for the interference graph from the nodes in the data

dependence graph. the nodes in the interference graph thereby each being associated with one

or more statements 1n the source code segment.

10 means for generating a node weight for each node in the interterence graph, each
node having a node weight reflecting the resource usage for the one or more statements
assoclated with the node,

means for generating edges for the interference graph. cach edge connecting a pair
of nodes in the interterence graph,

15 means for generating an associated edge weight for each edge retlecting the
desirability of maintaining the one or more statements associated with each of the pair of
nodes connected by the edge within the same loop.
means for partitioning the interference graph into subgraphs based on the edge weights and

the node weights of the interterence graph. comprising means ftor tirst conducting a profitability test

20 to select a pair of nodes in the interference graph. means for then conducting a correctness test on

the selected pair. and means for merging the selected pair of nodes into a coalesced node where the

correctness test 1s satisfied tor the selected

CA9-1999-0031 21

12
PDG Builder

20
|G Partitioner

S

CA

02288614 1999-11-08

Figure 1

10

Nested Source
Code

22
Partitioned 1G

24

L.oop Allocated
Code

16
|G Builder

CA 02288614 1999-11-08

Figure 2
40
30 32
A 5 B
300 200
15
10
o 6
C 2 D
12
38
E
100

42

P

o4

50

CA

02288614 1999-11-08

Figure 3

52

56

58

/ 10
Nested Source
Code

X
12 16
PDG Builder - |G Builder

14
PDG
18

20 -
|G Partitioner \ G

22
Partitioned I1G

24

l.oop Allacated
Code

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - abstract drawing

