wo 2015/120073 A1 [I 0000 OO O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/120073 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

13 August 2015 (13.08.2015) WIPOIPCT
International Patent Classification: (81)
GO6F 3/0488 (2013.01)
International Application Number:

PCT/US2015/014494

International Filing Date:
4 February 2015 (04.02.2015)

Filing Language: English
Publication Language: English
Priority Data:

61/935,674 4 February 2014 (04.02.2014) US

Applicant: TACTUAL LABS CO. [US/US]; 160 Woost-
er Street, Penthouse B, New York, New York 10012 (US).

Inventors: WIGDOR, Daniel; 216 Wright Avenue,
Toronto, Ontario M6R 1L3 (CA). SANDERS, Steven Le-
onard; 160 Wooster Street, Penthouse B, New York, New
York 10012 (US). COSTA, Ricardo Jorge Jota; 589-B
Wellington Street West, Toronto, Ontario M5V 2R6 (CA).
FORLINES, Clifton; 395 Clinton Street, Toronto, Ontario
M6G 2Z1 (CA).

Agents: KURTZ, Richard et al.; 450 So. Orange Ave.,
Suite 650, Orlando, Florida 32801 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: LOW-LATENCY VISUAL RESPONSE TO INPUT VIA PRE-GENERATION OF ALTERNATIVE GRAPHICAL
REPRESENTATIONS OF APPLICATION ELEMENTS AND INPUT HANDLING ON A GRAPHICAL PROCESSING UNIT

G view Rierarchy:

%
B

&w - .
JEEES

FIG. 17

; Falnting 2
5

Intermediste Data

B

e Rty
sReheany

(57) Abstract: A method for providing a visual response to input with reduced latency in a computing device includes computing al -
ternative sets of intermediate data for a first graphical user interface element, each alternative set of intermediate data comprising
data useful to produce a visual representation of the graphical user interface element. The plurality of alternative sets of intermediate
data and a set of intermediate data for a second graphical user interface element are stored in memory. The method creates an index
identifying a first one of the plurality of alternative sets of intermediate data for the first graphical user interface element to use in
forming a final pixel image. The index, the first set of alternative intermediate data for the graphical user interface element, and the
intermediate data for the second graphical user interface element are used to create a first final pixel image for display to a user, the
first final pixel image including the first and second graphical user interface elements. In response to user input, the index is modi-
fied to include an identification of a second one of the plurality of alternative sets of intermediate data for the first graphical user in-
terface element, and the modified index is used to create a tinal pixel image for display to a user.

WO 2015/120073 PCT/US2015/014494

LOW-LATENCY VISUAL RESPONSE TO INPUT VIA PRE-GENERATION OF
ALTERNATIVE GRAPHICAL REPRESENTATIONS OF APPLICATION ELEMENTS
AND INPUT HANDLING ON A GRAPHICAL PROCESSING UNIT

[0001] This application is a non-provisional of and claims priority to U.S. Provisional Patent
Application No. 61/935,674 filed February 4, 2014, the entire disclosure of which is incorporated
herein by reference.

[0002] This application relates to user interfaces such as the fast multi-touch sensors and other
interfaces disclosed in U.S. Patent Application No. 14/046,823 filed October 4, 2013 entitled
"Hybrid Systems And Methods For Low-Latency User Input Processing And Feedback," U.S.
Patent Application No. 13/841,436 filed March 15, 2013 entitled "Low-Latency Touch Sensitive
Device," U.S. Patent Application No. 14/046,819 filed October 4, 2013 entitled "Hybrid Systems
And Methods For Low-Latency User Input Processing And Feedback," U.S. Patent Application
No. 61/798,948 filed March 15, 2013 entitled "Fast Multi-Touch Stylus," U.S. Patent Application
No. 61/799,035 filed March 15, 2013 entitled "Fast Multi-Touch Sensor With User-Identification
Techniques,” U.S. Patent Application No. 61/798,828 filed March 15, 2013 entitled "Fast Multi-
Touch Noise Reduction,” U.S. Patent Application No. 61/798,708 filed March 15, 2013 entitled
"Active Optical Stylus,” U.S. Patent Application No. 61/710,256 filed October 5, 2012 entitled
"Hybrid Systems And Methods For Low-Latency User Input Processing And Feedback," U.S.
Patent Application No. 61/845,892 filed July 12, 2013 entitled "Fast Multi-Touch Post
Processing,” U.S. Patent Application No. 61/845,879 filed July 12, 2013 entitled "Reducing
Control Response Latency With Defined Cross-Control Behavior," U.S. Patent Application No.
61/879,245 filed September 18, 2013 entitled "Systems And Methods For Providing Response
To User Input Using Information About State Changes And Predicting Future User Input,” U.S.
Patent Application No. 61/880,887 filed September 21, 2013 entitled "Systems And Methods For
Providing Response To User Input Using Information About State Changes And Predicting
Future User Input," U.S. Patent Application No. 14/069,609 filed November 1, 2013 entitled
"Fast Multi-Touch Post Processing,” U.S. Patent Application No. 61/887,615 filed October 7,
2013 entitled "Touch And Stylus Latency Testing Apparatus,” U.S. Patent Application No.
61/928,069 filed January 16, 2014 entitled "Fast Multi-Touch Update Rate Throttling," U.S.
Patent Application No. 61/930,159 filed January 22, 2014 entitled "Dynamic Assignment Of
Possible Channels In A Touch Sensor,” and U.S. Patent Application No. 61/932,047 filed

WO 2015/120073 PCT/US2015/014494

January 27, 2014 entitled "Decimation Strategies For Input Event Processing." The entire
disclosures of those applications are incorporated herein by reference.

[0003] This application includes material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it
appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright

rights whatsoever.

FIELD

[0004] The present invention relates in general to the field of user input, and in particular to user

input systems which deliver a low-latency user experience.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The foregoing and other objects, features, and advantages of the disclosure will be
apparent from the following more particular description of embodiments as illustrated in the
accompanying drawings, in which reference characters refer to the same parts throughout the
various views. The drawings are not necessarily to scale, emphasis instead being placed upon
illustrating principles of the disclosed embodiments.

[0006] FIG. 1 illustrates a demonstration of the effect of drag latency at 100 ms, 50 ms, 10 ms,
and 1 ms in a touch user interface.

[0007] FIG. 2 shows an example of a user interface element for an inbox, where the element has
a low latency, low fidelity response to a touch user interaction, as well as a high-latency, high-
fidelity response a touch user interaction.

[0008] FIG. 3 shows an example of a user interface of a sliding toggle element. A cursor 310
(represented by the box containing a “cross” character) can be dragged to the target 320 (second
empty box, on the right) to activate the Ul Element. This element is enabled using both the low
latency and high-latency system to provide a touch interaction where moving clements are
accelerated 310, thus providing a low-latency experience.

[0009] FIG. 4 shows an illustrative embodiment of a basic architecture of a prototype high-
performance touch system used in latency perception studies.

[0010] FIG. 5 shows results of latency perception studies using the prototype device of FIG. 4.
[0011] FIG. 6 shows an example of a user interface element for a button, where the element has a
low latency, low fidelity response to a touch user interaction, as well as a high-latency, high-

fidelity response a touch user interaction.

.

WO 2015/120073 PCT/US2015/014494

[0012] FIG. 7 shows an example of a user interface element for resizable box, where the element
has a low latency, low fidelity response to a touch user interaction, as well as a high-latency,
high-fidelity response a touch user interaction.

[0013] FIG. 8 shows an example of a user interface element for a scrollable list, where the
clement has a low latency, low fidelity response to a touch user interaction, as well as a high-
latency, high-fidelity response to a touch user interaction.

[0014] FIG. 9 shows an illustrative embodiment of a basic architecture and information flow for
a low-latency input device.

[0015] FIG. 10 shows the Ul for a volume control. When dragging the slider, a tooltip appears
showing a numeric representation of the current setting. This element is enabled using both the
low-latency and high-latency system to provide a touch interaction where moving elements are
accelerated, thus providing a low-latency experience.

[0016] FIG. 11 shows the system’s response for pen input in prior art systems compared to an
embodiment of the UI for pen input in the present hybrid feedback user interface system. In the
hybrid system, the ink stroke has a low-latency response to pen input, as well as a high-latency
response to a pen user input.

[0017] FIG. 12 shows an embodiment of the system where data flows through two overlapping
paths through the components of the system to support both high- and low-latency feedback.
[0018] FIG. 13 shows a programming paradigm well known in the art called Model View
Controller.

[0019] FIG. 14 shows an embodiment of the system’s architecture that supports developing and
running applications with blended high and low-latency responses to user input.

[0020] FIG. 15 is a block diagram illustrating GUI view and intermediate data hierarchies in
accordance with prior art.

[0021] FIG. 16 is a timeline view illustrating the execution of intermediate data.

[0022] FIG. 17 is a block diagram illustrating GUI view and intermediate data hierarchies.

[0023] FIGS. 18-19 are block diagrams illustrating GUI view and intermediate data hierarchies
in accordance with embodiments of the presently disclosed system and method.

[0024] FIGS. 20-23 are block diagrams illustrating operation of a GPU, CPU, input device
controller and display in accordance with embodiments of the presently disclosed system and

method.

WO 2015/120073 PCT/US2015/014494

Detailed Description

[0025] The following description and drawings are illustrative and are not to be construed as
limiting. Numerous specific details are described to provide a thorough understanding. However,
in certain instances, well-known or conventional details are not described in order to avoid
obscuring the description. References to one or an embodiment in the present disclosure are not
necessarily references to the same embodiment; and, such references mean at least one.

[0026] Reference in this specification to “one embodiment” or “an embodiment” means that a
particular feature, structure, or characteristic described in connection with the embodiment is
included in at least one embodiment of the disclosure. The appearances of the phrase “in one
embodiment” in various places in the specification are not necessarily all referring to the same
embodiment, nor are separate or alternative embodiments mutually exclusive of other
embodiments. Moreover, various features are described which may be exhibited by some
embodiments and not by others. Similarly, various requirements are described which may be
requirements for some embodiments but not other embodiments.

[0027] This application relates to user interfaces such as the fast multi-touch sensors and other
interfaces disclosed in U.S. Patent Application No. 13/841,436 filed March 15, 2013 entitled
“Low-Latency Touch Sensitive Device,” U.S. Patent Application No. 61/798,948 filed March 15,
2013 entitled “Fast Multi-Touch Stylus,” U.S. Patent Application No. 61/799,035 filed March 15,
2013 entitled “Fast Multi-Touch Sensor With User-Identification Techniques,” U.S. Patent
Application No. 61/798,828 filed March 15, 2013 entitled “Fast Multi-Touch Noise Reduction,”
U.S. Patent Application No. 61/798,708 filed March 15, 2013 entitled “Active Optical Stylus,”
U.S. Patent Application No. 61/710,256 filed October 5, 2012 entitled “Hybrid Systems And
Methods For Low-Latency User Input Processing And Feedback,” U.S. Patent Application No.
61/845,892 filed July 12, 2013 entitled “Fast Multi-Touch Post Processing,” U.S. Patent
Application No. 61/845,879 filed July 12, 2013 entitled “Reducing Control Response Latency
With Defined Cross-Control Behavior,” and U.S. Patent Application No. 61/879,245 filed
September 18, 2013 entitled “Systems And Methods For Providing Response To User Input
Using Information About State Changes And Predicting Future User Input.”” The entire
disclosures of those applications are incorporated herein by reference.

[0028] In various embodiments, the present disclosure is directed to systems and methods that
provide direct manipulation user interfaces with low latency. Direct physical manipulation of

pseudo “real world” objects is a common user interface metaphor employed for many types of

-4 -

WO 2015/120073 PCT/US2015/014494

input devices, such as those enabling direct-touch input, stylus input, in-air gesture input, as well
as indirect devices, including mice, trackpads, pen tablets, etc. For the purposes of the present
disclosure, latency in a user interface refers to the time it takes for the user to be presented with a
response to a physical input action. Tests have shown that users prefer low latencies and that
users can reliably perceive latency as low as 5-10 ms, as will be discussed in greater detail below.
[0029] FIG. 1 illustrates a demonstration of the effect of latency in an exemplary touch user
interface at 100 ms (ref. no. 110), 50 ms (ref. no. 120), 10 ms (ref. no. 130), and 1 ms (ref. no.
140) respectively. When dragging an object, increasing latency is reflected as an increasing
distance between the user’s finger and the object being dragged (in this case a square user
interface element). As can be seen, the effects of latency are pronounced at 100 ms (ref. no. 110)
and 50 ms (ref. no. 120), but become progressively less significant at 10 ms (ref. no. 130), and
virtually vanish at 1 ms (ref. no. 140). FIG 11 illustrates the effects of latency in an exemplary
stylus or pen user interface (1110, 1120). In this example, lag 1120 is visible as an increasing
distance between the stylus 1100 tip and the computed stroke 1110. With the introduction of low-
latency systems, the distance between the stylus 1100 tip and the computed stroke 1130 would be
significantly reduced.

[0030] In an embodiment, the presently disclosed systems and methods provide a hybrid touch
user interface that provides immediate visual feedback with a latency of less than 10 ms, inter-
woven or overlayed with additional visual responses at higher levels of latency. In some
embodiments, the designs of these two sets of responses may be designed to be visually unified,
so that the user is unable to distinguish them. In some embodiments, the “low latency” response
may exceed 10 ms in latency.

Causes of Latency

[0031] In various embodiments, latency in a user input device and the system processing its input
can have many sources, including:

(1) the physical sensor that captures touch events;

(2) the software that processes touch events and generates output for the display;

3) the display itself;

4) Data transmission between components, including bus;

(5) Data internal storage in either memory stores or short buffers;
(6) Interrupts and competition for system resources;

(7) Other sources of circuitry can introduce latency;

-5-

WO 2015/120073 PCT/US2015/014494

(8) Physical restrictions, such as the speed of light, and its repercussions in circuitry
architecture.
) Mechanical restrictions, such as the time required for a resistive touch sensor to bend

back to its ‘neutral’ state.

[0032] In various embodiments, reducing system latency can be addressed through improving
latency in one or more of these components. In an embodiment, the presently disclosed systems
and methods provide an input device that may achieve 1 ms of latency or less by combining a
low-latency input sensor and display with a dedicated processing system. In an embodiment, the
presently disclosed systems and methods provide an input device that may achieve 5 ms of
latency or less by combining such low-latency input sensor and display with a dedicated
processing system. In a further embodiment, the presently disclosed systems and methods
provide an input device that may achieve 0.1 ms of latency or less by combining such low-
latency input sensor and display with a dedicated processing system. In a further embodiment,
the presently disclosed systems and methods provide an input device that may achieve 10 ms of
latency or less by combining such low-latency input sensor and display with a dedicated
processing system. In an embodiment, in order to achieve such extremely low latencies, the
presently disclosed systems and methods may replace conventional operating system (OS)
software and computing hardware with a dedicated, custom-programmed field programmable
gate array (FPGA) or application-specific integrated circuit (ASIC). In an embodiment, the
FPGA or ASIC replaces the conventional OS and computing hardware to provide a low latency
response, while leaving a traditional OS and computing hardware in place to provide a higher
latency response (which is used in addition in addition to the low latency response). In another
embodiment, some or all of the function of the FPGA or ASIC described may be replaced by
integrating additional logic into existing components such as but not limited to the graphics
processing unit (GPU), input device controller, central processing unit (CPU), or system on a
chip (SoC). The low-latency logic can be encoded in hardware, or in software stored-in and/or
executed by those or other components. In embodiments where multiple components are
required, communication and/or synchronization may be facilitated by the use of shared memory.
In any of these embodiments, responses provided at high or low latency may be blended together,
or only one or the other might be provided in response to any given input event.

[0033] In various embodiments, the disclosed systems and methods provide what is referred to

herein as “hybrid feedback.” In a hybrid feedback system, some of the basic system responses to

-6 -

WO 2015/120073 PCT/US2015/014494

input are logically separated from the broader application logic. The result provides a system
with a nimble input processor, capable of providing nearly immediate system feedback to user
input events, with more feedback based on application logic provided at traditional levels of
latency. In some embodiments, these system responses are provided visually. In various
embodiments, the low-latency component of a hybrid feedback system may be provided through
audio or vibro-tactile feedback. In some embodiments, the nearly immediate feedback might be
provided in the same modality as the application-logic feedback. In some embodiments, low-
latency feedback may be provided in different modalities, or multiple modalities. An example of
an all-visual embodiment is shown in FIG. 2, in this case showing the use of a touch input
device. In particular, FIG. 2 shows the result after a user has touched and then dragged an icon
210 representing an inbox. When the user touches the icon 210, a border 220 or other suitable
primitive may be displayed. In an embodiment, in an all-visual low-latency feedback, a suitable
low-fidelity representation may be selected due to its ease of rendering. In an embodiment, a
low-latency feedback may be provided using one or more primitives that can provide a suitable
low-fidelity representation. In an embodiment, if the user drags the icon to another place on the
touch display 200, a low fidelity border 230 is displayed and may be manipulated (e.g., moved)
with a low latency of, for example, 1 ms. Simultancously, the movement of the icon 210 may be
shown with higher latency. In an embodiment, the difference in response between the nearly
immediate low-latency response and the likely slower application-logic feedback can be
perceived by a user. In another embodiment, this difference in response between the low-latency
response and a traditional response is blended and less noticeable or not noticeable to a user. In
an embodiment, the nearly immediate feedback may be provided at a lower fidelity than the
traditional-path application-logic feedback. In an embodiment, in at least some cases, the low
latency response may be provided at similar or even higher fidelity than the application-logic
feedback. In an embodiment, the form of low-latency nearly immediate feedback is dictated by
application logic, or logic present in the system software (such as the user interface toolkit). For
example, in an embodiment, application logic may pre-render a variety of graphical primitives
that can then be used by a low-latency subsystem. Similarly, in an embodiment, a software
toolkit may provide the means to develop graphical primitives that can be rendered in advance of
being needed by the low latency system. In an embodiment, low-latency responses may be
predetermined, or otherwise determined without regard to application and/or system software

logic. In an embodiment, individual pre-rendered or partially rendered low-latency responses, or

-7 -

WO 2015/120073 PCT/US2015/014494

packages of pre-rendered or partially rendered low-latency responses can be pre-loaded into a
memory so as to be accessible to the low-latency subsystem in advance of being needed for use
in response to a user input event.

[0034] In an embodiment, the modality of low-latency output might be auditory. In an
embodiment, the low-latency system may be used, for example, to send microphone input
quickly to the audio output system, which may provide users with an “echo” of their own voice
being spoken into the system. Such a low-latency output may provide the impression of having
the same type of echo characteristics as traditional analog telephones, which allow a user to hear
their own voice. In an embodiment, low-latency auditory feedback might be provided in response
to user input events (e.g., touch, gesture, pen input, oe oral inputs), with a higher latency
response provided visually.

[0035] Another illustrative embodiment of a system that employs the present method and system
is shown in FIG. 3. In the illustrative system, a cursor 310 (represented by the box containing a
“cross” character) can be dragged anywhere on a device’s screen 300. When cursor 310 is
dragged to target box 320, the UI action is accepted. If the cursor 310 is dragged elsewhere on
the screen 300, the action is rejected. In an embodiment, when dragged, the cursor 310 is drawn
with low latency, and thus tracks the user’s finger without perceptible latency. In an embodiment,
the target 320 can be drawn with higher latency without impacting user perception. Similarly, in
an embodiment, the response 330 of “REJECT” or “ACCEPT” may occur perceptibly later, and
thus it can be drawn at a higher latency, e.g., not using the low latency subsystem, without
impacting user perception.

[0036] It should be understood that the illustrated embodiment is exemplary. The principles
illustrated in FIG. 3 may be applied to any kind of UI element, including all UI elements that are
now known, or later developed in the art. Similarly, the principals illustrated in FIG. 3 can be
used with substantially any kind of input event on various types of input devices and/or output
devices. For example, in an embodiment, in addition to a “touch” event as illustrated above, input
events can include, without limitation, in-air or on-surface gestures, speech, voluntary (or
involuntary eye movement, and pen. In an embodiment, once a gesture takes place, the response
of any Ul element may be bifurcated, where a low-latency response (e.g., a low-fidelity
representation of a Ul element is presented and responds quickly, for example, in 0.01 ms.), and
a non-low-latency response (e.g., a further refined representation of the Ul element) is provided

with latency commonly exhibited by a system that does not provide accelerated input. In an

-8 -

WO 2015/120073 PCT/US2015/014494

embodiment, responses may not be split in a hybrid system, and may instead be entirely low
latency, with application logic not responsible for the low-latency response otherwise executing
with higher latency.

[0037] In an embodiment, touch and/or gesture input events can be achieved using a variety of
technologies, including, without limitation, resistive, direct illumination, frustrated total-internal
reflection, diffuse illumination, projected capacitive, capacitive coupling, acoustic wave, and
sensor-in-pixel. In an embodiment, pen input can be enabled using resistive, visual, capacitive,
magnetic, infrared, optical imaging, dispersive signal, acoustic pulse, or other techniques. In an
embodiment, gestural input may also be enabled using visual sensors or handheld objects
(including those containing sensors, and those used simply for tracking), or without handheld
objects, such as with 2D and 3D sensors. Combinations of the sensors or techniques for
identifying input events are also contemplated, as are combinations of event types (i.e., touch,
pen, gesture, retna movement, etc.) One property technologies to identify or capture input events
share is that they contribute to the latency between user action and the system’s response to that
action. The scale of this contribution varies across technologies and implementations.

[0038] In a typical multitouch system, there is a path of information flow between the input
device and the display that may involve communications, the operating system, Ul toolkits, the
application layer, and/or ultimately, the audio or graphics controller. Each of these can add
latency. Moreover, latency introduced by an operating system, especially a non-real time
operating system, is variable. Windows, i10S, OSX, Android, etc. are not real time operating
systems, and thus, using these operating systems, there is no guarantee that a response will
happen within a certain time period. If the processor is heavily loaded, for example, latency may
increase dramatically. Further, some operations are handled at a very low level in the software
stack and have high priority. For example, the mouse pointer is typically highly optimized so that
even when the processor is under heavy load, the perceived latency is relatively low. In contrast,
an operation such as resizing a photo with two fingers on a touch or gestural system is generally
much more computationally intensive as it may require constant rescaling of the image at the
application and/or Ul toolkit levels. As a result, such operations are rarely able to have a low
perceived latency when the processor is under heavy load.

[0039] In a typical multitouch system, the display system (including the graphics system as well
as the display itself) may also contribute to latency. Systems with high frame rates may obscure

the actual latency through the system. For example, a 60 Hz monitor may include one or more

-9.-

WO 2015/120073 PCT/US2015/014494

frames of buffer in order to allow for sophisticated image processing effects. Similarly some
display devices, such as projectors, include double-buffering in the electronics, effectively
doubling the display latency. The desire for 3D televisions and reduced motion artifacts is
driving the development of faster LCDs, however, the physics of the liquid crystals themselves
make performance of traditional LCD’s beyond 480 Hz unlikely. In an embodiment, the low
latency system described herein may use an LCD display. In contrast to the performance of an
LCD display, OLED or AMOLED displays are capable of response times well below 1ms.
Accordingly, in an embodiment, the high performance touch (or gesture) system described herein
may be implemented on displays having fast response times, including, without limitation
displays based on one or more of the following technologies: OLED, AMOLED, plasma,
electrowetting, color-field-sequential LCD, optically compensated bend-mode (OCB or Pi-Cell)
LCD, clectronic ink, ctc.

Latency Perception Studies

[0040] Studies were undertaken to determine what latencies in a direct touch interface users
perceive as essentially instantaneous. A prototype device represented in a block diagram in FIG.
4 shows an illustrative embodiment of a basic architecture of a prototype high-performance touch
system 400. In an embodiment, the high-speed input device 420 is a multi-touch resistive touch
sensor having an active area of 24 cm x 16 cm, and clectronics that allow for very high-speed
operation. The delay through this sensor is slightly less than 1 ms. In an embodiment, touch data
may be transmitted serially over an optical link.

[0041] In the illustrative testing system, the display 460 is a DLP Discovery 4100 kit based on
Texas Instruments’ Digital Light Processing technology. The illustrative testing system utilizes
front-projection onto the touch sensor thus eliminating parallax error that might disturb a user’s
perception of finger and image alignment. The DLP projector employed uses a Digital
Micromirror Device (DMD), a matrix of mirrors which effectively turns pixels on or off at very
high speed. The high speed of the mirrors may be used to change the percentage time on vs. off
to create the appearance of continuous colored images. In an embodiment, where only simple
binary images are used, these can be produced at an even higher rate. In the illustrative testing
system, the projector development system displays 32,000 binary frames/second at 1024x768
resolution with latency under 40 ps. In the illustrative testing system to achieve this speed, the

video data is streamed to the DMD at 25.6 Gbps.

-10 -

WO 2015/120073 PCT/US2015/014494

[0042] In the illustrative testing system, to achieve minimal latency, all touch processing is
performed on a dedicated FPGA 440 —no PC or operating system is employed between the touch
input and the display of low latency output. The DLP kit’s onboard XC5VLXS50 application
FPGA may be used for processing the touch data and rendering the video output. A USB serial
connection to the FPGA allows parameters to be changed dynamically. In the illustrative testing
system, latency can be adjusted from 1 ms to several hundred ms with 1 ms resolution. Different
testing modes can be activated, and a port allows touch data to be collected for analysis.

[0043] In the illustrative testing system, to receive touch data from the sensor 420, the system
communicates through a custom high-speed UART. To minimize latency, a baud rate of 2 Mbps
can be used, which represents a high baud rate that can be used without losing signal integrity
due to high frequency noise across the communication channel. In the illustrative testing system,
the individual bytes of compressed touch data are then processed by a touch detection finite state
machine implemented on the FPGA 440. The finite-state machine (FSM) simultaneously decodes
the data and performs a center-of-mass blob-detection algorithm to identify the coordinates of the
touches. In the illustrative testing system, the system is pipelined such that each iteration of the
FSM operates on the last received byte such that no buffering of the touch data occurs.

[0044] In the illustrative testing system, the touch coordinates are then sent to a 10-stage variable
delay block. Each delay stage is a simple FSM with a counter and takes a control signal that
indicates the number of clock cycles to delay the touch coordinate, allowing various levels of
latency. The delay block latches the touch sample at the start of the iteration and waits for the
appropriate number of cycles before sending the sample and latching the next. The delay block
therefore lowers the sample rate by a factor of the delay count. In an embodiment, to keep the
sample rate at a reasonable level, 10 delay stages can be used, so that, for example, to achieve
100 ms of latency, the block waits 10 ms between samples for a sample rate of 100 Hz. In the
illustrative testing system, to run basic applications, a MicroBlaze soft processor is used to render
the display.

[0045] In an embodiment, the testing system may use a hard coded control FSM in place of the
MicroBlaze for improved performance. In an embodiment another soft processor may be used. In
the illustrative testing system, the MicroBlaze is a 32-bit Harvard architecture RISC processor
optimized to be synthesized in Xilinx FPGAs. The MicroBlaze soft processor instantiation allows
the selection of only the cores, peripherals, and memory structures required. In the illustrative

testing system, in addition to the base MicroBlaze configuration, an interrupt controller can be

-11 -

WO 2015/120073 PCT/US2015/014494

used, for example, GPIOs for the touch data, a GPIO to set the variable latency, a BRAM
memory controller for the image buffer, and a UART unit to communicate with a PC. In the
illustrative testing system, the MicroBlaze is clocked at 100 MHz. The MicroBlaze uses an
interrupt system to detect valid touch coordinates. A touch ready interrupt event is generated
when valid touch data arrives on the GPIOs from the delay block, and the corresponding image is
written to the image buffer. Because of the non-uniform nature of an interrupt-based system, the
exact latency cannot be computed, but, by design, it is insignificant in comparison to the 1 ms
latency due to the input device.

[0046] In the illustrative testing system, the image buffer is synthesized in on-chip BRAM
blocks. These blocks can provide a dual-port high-speed configurable memory buffer with
enough bandwidth to support high frame-rate display. In the illustrative testing system, the
image buffer is clocked at 200 MHz with a bus width of 128 bits for a total bandwidth of 25.6
Gbps, as needed by the DLP. Finally, the DMD controller continuously reads out frames from the
image buffer and generates the signals with appropriate timing to control the DMD.

[0047] In the illustrative testing system, user input is sent simultaneously to a traditional PC, and
is processed to produce a traditional, higher latency, response. This higher latency response is
output by a traditional data projector, aligned to overlap with the projected lower latency
response.

[0048] Studies were conducted to determine the precise level of performance that users are able
to perceive when performing common tasks on a touch screen interface. To that end, studies were
conducted to determine the just-noticeable difference (JND) of various performance levels. IND
is the measure of the difference between two levels of a stimulus which can be detected by an
observer. In this case, the JND is defined as the threshold level at which a participant is able to
discriminate between two unequal stimuli — one consistently presented at the same level, termed
the reference, and one whose value is changed dynamically throughout the experiment, termed
the probe. A commonly accepted value for the JND at some arbitrary reference value is a probe
at which a participant can correctly identify the reference 75% of the time. A probe value that
cannot be distinguished from the reference with this level of accuracy is considered to be “not
noticeably different” from the reference.

[0049] Studies were conducted to determine the JND level of the probe latency when compared
to a maximum performance of 1 ms of latency, which served as the reference. While such a

determination does not provide an absolute value for the maximum perceptible performance, it

12 -

WO 2015/120073 PCT/US2015/014494

can serve as our “best case” floor condition against which other levels of latency can be
measured, given that it was the fastest speed our prototype could achieve. It was found
participants are able to discern latency values that are significantly lower (< 20 ms) which typical
current generation hardware (e.g., current tablet and touch computer) provides (~50-200 ms).

[0050] Ten right-handed participants (3 female) were recruited from the local community. Ages
ranged between 24 and 40 (mean 27.80, standard deviation 4.73). All participants had prior
experience with touch screen devices, and all participants owned one or more touch devices
(such as an i0S- or Android- based phone or tablet). Participants were repeatedly presented with
pairs of latency conditions: the reference value (1 ms) and the probe (between 1 and 65 ms of
latency). Participants dragged their finger from left to right, then right to left on the touch screen
display. While any dragging task would have been suitable, left/right movements reduce
occlusion in high-latency cases. Participants were asked to move in both directions to ensure
they did not “race through” the study. Beneath the user’s contact point, the system rendered a
solid white 2 cm x 2 cm square as seen in FIG. 1. The speed of movement was left to be decided
by the participants. The order of the conditions was randomized for each pair. The study was
designed as a two-alternative forced-choice experiment; participants were instructed to choose,
within each trial, which case was the reference (1 ms) value and were not permitted to make a

3

“don’t know” or “unsure” selection. After each pair, participants informed the experimenter
which of the two was “faster”.

[0051] In order for each trial to converge at a desired JND level of 75%, the amount of added
latency was controlled according to an adaptive staircase algorithm. Each correct identification of
the reference value caused a decrease in the amount of latency in the probe, while each incorrect
response caused the probe’s latency to increase. In order to reach the 75 % confidence level,
increases and decreases followed the simple weighted up-down method described by Kaernbach
(Kaernbach, C. 1991. Perception & Psychophysics 49, 227-229), wherein increases had a three-
fold multiplier applied to the base step size, and decreases were the base step size (initially 8 ms).
[0052] When a participant responded incorrectly after a correct response, or correctly after an
incorrect response, this was termed a reversal as it caused the direction of the staircase
(increasing or decreasing) to reverse. The step size, initially 8 ms, was halved at each reversal, to
a minimum step size of 1 ms. This continued until a total of 10 reversals occurred, resulting in a

convergence at 75% correctness. Each participant completed eight staircase “runs.” Four of these

started at the minimum probe latency (1 ms) and four at the maximum (65 ms). The higher

- 13-

WO 2015/120073 PCT/US2015/014494

starting value of the staircase was chosen because it roughly coincides with commercial
offerings, and because pilot testing made it clear that this value would be differentiated from the
1 ms reference with near 100% accuracy, avoiding ceiling effects. Staircases were run two at a
time in interleaved pairs to prevent response biases that would otherwise be caused by the
participants’ ability to track their progress between successive stimuli. Staircase conditions for
cach of these pairs were selected at random without replacement from possibilities (2 starting
levels x 4 repetitions). The entire experiment, including breaks between staircases, was
completed by each participant within a single 1-hour session.

[0053] The study was designed to find the just-noticeable difference (JND) level for latency
values greater than 1 ms. This JND level is commonly agreed to be the level where the
participant is able to correctly identify the reference 75% of the time. Participant JND levels
ranged from 2.38 ms to 11.36 ms, with a mean JND across all participants of 6.04 ms (standard
deviation 4.33 ms). JND levels did not vary significantly across the 8 runs of the staircase for
each participant. Results for each participant appear in FIG. 5.

[0054] The results show participants were able to discern differences in latency far below the
typical threshold of consumer devices (50-200 ms). It is noted that participants were likely often
determining latency by estimating the distance between the onscreen object and their finger as it
was moved around the touch screen; this is an artifact of input primitives used in Uls
(specifically, dragging). Testing a different input primitive (tapping, for example) would exhibit
different perceptions of latency. Results confirm that an order-of magnitude improvement in
latency would be noticed and appreciated by users of touch devices.

An Architecture for a Low-Latency Direct Touch Input Device

[0055] In an embodiment, a software interface may be designed that enables application
developers to continue to use toolkit-based application design processes, but enable those toolkits
to provide feedback at extremely low latencies, given the presence of a low-latency system. In an
embodiment, the systems and methods outlined in the present disclosure may be implemented on
the model-view-controller (“MVC”) model of UI development, upon which many UI toolkits are
based. An MVC permits application logic to be separated from the visual representation of the
application. In an embodiment, an MVC may include, a second, overlaid de facto view for the
application. In particular, in an embodiment, touch input receives an immediate response from

the UI controls, which is based in part on the state of the application at the time the touch is

- 14 -

WO 2015/120073 PCT/US2015/014494

made. The goal is to provide nearly immediate responses that are contextually linked to the
underlying application.

[0056] Previous work on application independent visual responses to touch are completely
separate from even the visual elements of the Ul, adding visual complexity. In an embodiment,
according to the systems and methods outlined herein, a set of visual responses are more fully
integrated into the Ul elements themselves so as to reduce visual complexity. Thus, in an
embodiment, where the particular visuals shown provide a de facto “mouse pointer” for touch,
the goal is to integrate high performance responses into the controls themselves, providing a
more unified visualization. None the less, in an embodiment, the systems and methods allow the
rendering of context-free responses by the low-latency subsystem, which are later merged with
responses from the high-latency subsystem. In an embodiment, visuals need not be presented in
the same rendering pipeline as the rest of the system’s response. Instead, a system or method
which utilizes hybrid feedback as discussed herein may present lower latency responses to user
input in addition to the higher latency responses generated by the traditional system.

[0057] Thus, in an embodiment, accelerated input interactions are designed such that the
traditional direct-touch software runs as it would normally, with high-latency responses, while an
additional set of feedback, customized for the Ul element, is provided at a lower latency; with a
target of user-imperceptible latency. In an embodiment, these two layers are combined by
superimposing two or more images. In an embodiment, two combined images may include one
projected image from the low-latency touch device, and a second from a traditional projector
connected to a desktop computer running custom touch software, receiving input from the low-
latency subsystem.

[0058] The two projector solution described above is meant only to serve as one particular
embodiment of the more general idea of combining a low latency response and a traditional
response. In an embodiment, the visual output from the low and high-latency sub-systems are
logically combined in the display buffer or elsewhere in the system before being sent to the
display, and thus, displayed. In an embodiment, transparent, overlapping displays present the
low and high-latency output to the user. In an embodiment, the pixels of a display are interlaced
so that some are controlled by the low latency subsystem, and some are controlled by the high-
latency sub-system; through interlacing, these displays may appear to a user to overlap. In an
embodiment, frames presented on a display are interlaced such that some frames are controlled

by the low latency subsystem and some frames are controlled by the high-latency sub-system;

-15-

WO 2015/120073 PCT/US2015/014494

through frame interlacing, the display may appear to a user to contain a combined image. In an

embodiment, the low-latency response may be generated predominantly or entirely in hardware.

In an embodiment, the low-latency response may be generated from input sensor data received

directly from the input sensor. In an embodiment, the low-latency response is displayed by

having a high bandwidth link to the display hardware.

[0059] In designing a user interface for a low-latency subsystem, one or more of the following

constraints may be considered:

Information: any information or processing needed from the high-latency subsystem in
order to form the system’s response to input will, necessarily, have high latency, unless
such information or processing is e.g., pre-rendered or pre-served.

Performance: the time allowed for formation of responses in low latency is necessarily
limited. Even with hardware acceleration, the design of responses must be carefully
performance-driven to guarantee responses meet the desired low latency.

Fidelity: the fidelity of the rendered low-latency image may be indistinguishable from the
higher-latency rendering (indeed, it may be pre-rendered by the high latency system);
additional constraints may be placed on fidelity to improve performance, such as, e.g.,
that visuals are only monochromatic, and/or limited to visual primitives, and/or that the
duration or characteristics of audio or haptic responses are limited. Constraints of this
type may be introduced by various elements of the system, including acceleration
hardware or by the output hardware (such as the display, haptic output device, or
speakers).

Non-Interference: in embodiments where responses are hybridized combinations, some of
the application’s response may be generated in the low-latency layer, and some in the
high-latency layer, a consideration may be how the two are blended, e.g., to provide a
seamless response to the user’s input. In an embodiment, low-latency responses do not
interfere with any possible application response, which will necessarily occur later. In an
embodiment, interference may occur between a low-latency response and the traditional
response, but the interference may be handled through design, or through blending of the

reSponscs.

[0060] In an embodiment, a design process was conducted to create a set of visual Ul controls

with differentiated low and high latency visual responses to touch. A metaphor was sought which

would enable a seamless transition between the two layers of response. These visualizations

- 16 -

WO 2015/120073 PCT/US2015/014494

included such information as object position and state. The designs were culled based on
feasibility using the above-described constraints. The final design of such embodiment was based
on a heads-up display (HUD) metaphor, similar to the visualizations used in military aircraft. The
HUD was suitable, since traditional HUDs are geometrically simple, and it is relatively easy to
implement a geometrically simple display at an authentic fidelity. The HUD represents just one
example of two visual layers being combined, though in many HUDs, a computerized display is
superimposed on video or the “real world” itself. Accordingly, a HUD is generally designed to be
non-interfering,.

[0061] Based on the HUD metaphor, an exemplary set of touch event and UI element-specific
low-latency layer visualizations were developed for a set of Ul elements found in many direct-
touch systems. These exemplary elements are both common and representative; their interactions
(taps, drags, two-finger pinching) cover the majority of the interaction space used in current
direct-touch devices. The low-latency responses developed in such an embodiment are described

in Table 1, and they are shown in FIG. 6-8.

Element Touch Down Touch Move Touch Up
Button Bounds outlined | (none) If within bounds, 2"
(FIG. 6) 610 outline 620, else none
Draggable/Resizablel Bounds outlined | Outline changes and moves with Outline 710 fades when
(FIG. 7) 710 input position 720 and/or scales with | high-latency layer
input gesture 730 catches up
Scrollable List List item If scroll gesture, list edges If list item selection,
(FIG. 8) outlined 810 highlight 830 to scroll distance. | outline 820 scales
If during scroll gesture, edge down and fades
highlights 840) fade as high-
latency layer catches up

Table 1: Accelerated visuals for each element and touch event, which compliment standard high
latency responses to touch input.
[0062] These three elements represent broad coverage of standard Ul toolkits for touch input.

Most higher-order Ul elements are composed of these simpler elements (e.g. radio buttons and

-17 -

WO 2015/120073 PCT/US2015/014494

checkboxes are both “buttons,” a scrollbar is a “draggable/resizable” with constrained translation
and rotation). The accelerated input system and method described herein depends on the
marriage of visuals operating at two notably different latency levels; this latency difference has
been incorporated into the design of low-latency visualizations. In an embodiment, users may be
informed of the state of both systems, with a coherent synchronization as the visual layers come
into alignment. In an embodiment, a user may be able to distinguish between the high and low
latency portions of system feedback. In an embodiment, the visual elements are blended in a
manner that provides no apparent distinction between the low-latency response and the
traditional response.

[0063] In an embodiment, an application developer utilizes a toolkit to build their application
through the normal process of assembling GUI controls. Upon execution, the Ul elements
bifurcate their visualizations, with high- and low- latency visualizations rendered and overlaid on
a single display. An embodiment of information flow through such a system is as shown in FIG.
9. Information flows into the system from an input device 910 and is initially processed by an
input processing unit (IPU) 920, programmed via an IPU software toolkit 930. UI events are then
processed in parallel by two subsystems, a low-latency, low fidelity subsystem 940, and a high-
latency subsystem 950 such as, for example, conventional software running in a conventional
software stack. In an embodiment, the low-latency, low fidelity subsystem 940 may be
implemented in hardware, such as the FPGA 440 of FIG. 4.

[0064] The bifurcation described in this embodiment creates a fundamental communication
problem where any parameterization of the initial responses provided by the low-latency
subsystem 940 required by application logic must be defined before the user begins to give input.
Any response which requires processing at the time of presentation by the application will
introduce a dependency of the low-latency system 940 upon the high-latency system 950, and
may therefore introduce lag back into the system. In an embodiment, later stages of the low-
latency system’s 940 response to input may depend on the high latency subsystem 950. In an
embodiment, dependency of the later stages of a low-latency subsystem’s 940 response to input
on the high latency subsystem 950 is managed such that the dependency does not introduce
additional latency. In an embodiment the dependency would be avoided entirely.

[0065] In an embodiment, Ul element logic may be built into the low-latency subsystem.
Between user inputs, the application executing in the high-latency subsystem 950, has the

opportunity to provide parameters for the low-latency subsystem’s 940 model of the UI elements.

- 18 -

WO 2015/120073 PCT/US2015/014494

Thus, in an embodiment, the MVC model of Ul software design may be extended by providing a
separate controller responsible for low-latency feedback. In an embodiment, in the software
design, one or more of the following can be specified for each control:

¢ Element type (e.g., button, draggable object, scrollable list, etc.).

e Bounding dimensions (e.g., X position, y position, width, height, etc.).

e Conditional: additional primitive information (e.g., size of list items in the case of a

scrollable list, etc.).

[0066] In an embodiment, logic for a given element-type’s response to touch input is stored
in the low-latency subsystem 940. Further parameterization of the low-latency sub-system's
responses to user input could be communicated in the same manner, allowing a greater degree of
customization. In an embodiment, sensor data is processed to generate events (or other processed
forms of the input stream), which are then separately distributed to the low-latency subsystem
940 and to the high-latency subsystem 950. Events may be generated at different rates for the
low-latency subsystem 940 and high-latency subsystem 950, because the low-latency subsystem
is capable of processing events faster than the high-latency subsystem, and sending events to the
high-latency sub-system at a high rate may overwhelm that subsystem. The low- and high-
latency subsystems’ response to user input is therefore independent but coordinated. In an
embodiment, one subsystem acts as the “master,” setting state of the other subsystem between
user inputs. In an embodiment, the relationship between the low- and high- latency subsystems
includes synchronization between the two subsystems. In an embodiment, the relationship
between the low- and high- latency subsystems includes the ability of the high-latency subsystem
to offload processing to the low-latency subsystem 940. In an embodiment, the relationship
between the low- and high- latency subsystems includes the ability of the low-latency subsystem
940 to reduce its processing Load and/or utilize the high-latency subsystem 950 for pre-
processing or pre-rendering. In an embodiment, a second graphical processing and output
system’s response is dependent upon a first graphical processing and output system, and state
information is passed from the first graphical processing and output system to the second
graphical processing and output system. In such embodiments, information passed from the first
graphical processing and output system to the second graphical processing and output system is
comprised of one or more pieces of data describing one or more of the graphical elements in the
user interface. This data may be, e.g., the size, the location, the appearance, alternative

appearances, response to user input, and the type of graphical elements in the user interface. The

-19-

WO 2015/120073 PCT/US2015/014494

data passed from the first graphical processing and output system to the second graphical
processing and output system may be stored in high-speed memory available to the second
graphical processing and output system. The passed data may describe the appearance and/or
behavior of a button, a slider, a draggable and/or resizable GUI element, a scrollable list, a
spinner, a drop-down list, a menu, a toolbar, a combo box, a movable icon, a fixed icon, a tree
view, a grid view, a scroll bar, a scrollable window, or a user interface element.

[0067] In an embodiment, an input processing system performs decimation on the user input
signals before they are received by one or both of the first or second graphical processing and
output systems. The decimated input signals or non-decimated signals are chosen from the set of
all input signals based on information about the user interface sent from the first graphical
processing and output system. The decimation of input signals may be performed by logically
combining the set of input signals into a smaller set of input signals. Logical combination of
input signals may be performed through windowed averaging. The decimation considers the
time of the user input signals when reducing the size of the set of input signals. The logical
combination of input signals can be performed through weighted averaging. In an embodiment,
the user input signals received by the first and second graphical processing and output systems
have been differentially processed.

[0068] In an embodiment, communication between the high-latency and low-latency layers
may be important. Some points which are considered in determining how the high- and low-

latency subsystems remain synchronized are described below:

e Latency differences: Low-latency responses may use information about the latency
difference between the high- and low- latency layers in order to synchronize responses. In
an embodiment, these latency values are static, and thus preprogrammed into the FPGA.
In an embodiment where latency levels may vary in either subsystem, it may be
advantageous to fix the latency level at an always-achievable constant rather than having
a dynamic value that may become unsynchronized, or provide an explicit synchronization
mechanism. In an embodiment where latency levels may vary in either subsystem, a
dynamic value may be used, however, care should be taken to avoid becoming
unsynchronized. In an embodiment where latency levels may vary in either subsystem,
an explicit synchronization mechanism may be provided between the subsystems 940,

950.

-20 -

WO 2015/120073 PCT/US2015/014494

e Hit testing: Hit testing decisions are often conditional on data regarding the visual
hierarchy and properties of visible Ul elements. In an embodiment, this consideration can
be resolved by disallowing overlapping bounding rectangles, requiring a flat, ‘hit test
friendly’ map of the UL. In an embodiment separate hit testing may provide the necessary
information (object state, z-order, and listeners) to the low-latency subsystem. In an
embodiment both the low- and high-latency subsystems may conduct hit testing in
parallel. In an embodiment the low-latency subsystem conducts hit testing, and provides
the results to the high-latency subsystem.

e Conditional responses: Many interface visualizations are conditional not only on
immediate user input, but on further decision-making logic defined in the application

logic.

[0069] Two illustrative examples of conditional response logic are as follows: Consider a credit-
card purchase submission button, which is programmed to be disabled (to prevent double billing)
when pressed, but only upon validation of the data entered into the form. In such a case, the
behavior of the button is dependent not only on an immediate user interaction, but is further
conditional on additional information and processing. Consider also linked visualizations, such
as the one shown in FIG. 10. In this case, feedback is provided to the user not only by the Ul
clement they are manipulating 1010, but also by a second UI element 1020. These examples
could be programmed directly into a low-latency subsystem.

[0070] In an embodiment, the division between the high- and low- latency subsystems may be
independent of any user interface clements. Indeed, the division of responsibility between the
subsystems can be customized based on any number of factors, and would still be possible in
systems that lack a user interface toolkit, or indeed in a system which included mechanisms to
develop applications both within and without the use of a Ul toolkit which might be available. In
an embodiment, the division of responsibility between the two subsystems can be dynamically
altered while the subsystems are running. In an embodiment, the Ul toolkit itself may be
included within the low-latency subsystem. The ability to customize responses can be provided
to application developers in a number of ways without departing from the systems and methods
herein described. In an embodiment, responses may be customized as parameters to be adjusted
in Ul controls. In an embodiment, responses may be customized by allowing for the ability to

provide instructions directly to the low-latency subsystem, in code which itself executes in the

221 -

WO 2015/120073 PCT/US2015/014494

low-latency subsystem, or in another high- or low-latency component. In an embodiment, the
state of the low-latency subsystem could be set using data generated by application code, ¢.g., at
runtime.

[0071] While many of the examples described above are provided in the context of a touch input,
other embodiments are contemplated, including, without limitation, pen input, mouse input,
indirect touch input (e.g., a trackpad), in-air gesture input, oral input and/or other input
modalities. The architecture described would be equally applicable to any sort of user input
event, including, without limitation, mixed input events (i.e., supporting input from more than
one modality). In an embodiment, mixed input devices may result in the same number of events
being generated for processing by cach of the low- and high- latency subsystems. In an
embodiment, mixed input devices would be differentiated in the number of events generated,
thus, for example, touch input might have fewer events than pen input. In an embodiment, each
input modality comprises its own low-latency subsystem. In an embodiment, in systems
comprising multiple low-latency subsystems for multiple input modalities, the subsystems might
communicate to coordinate their responses. In an embodiment, in systems comprising multiple
low-latency subsystems for multiple input modalities, the multiple subsystems may share a
common memory area to enable coordination.

Input Processing

[0072] In an embodiment of the invention, low-latency input data from the input hardware is
minimally processed into a rapid stream of input events. This stream of events is sent directly to
the low-latency sub-system for further processing. Events from this same stream may then be
deleted, or the stream may be otherwise reduced or filtered, before being sent to the high-latency
subsystem. Events may be generated at different rates for the low-latency subsystem 940 and
high-latency subsystem 950 because the low-latency subsystem is capable of processing events
faster than the high-latency subsystem, and sending events to the high-latency sub-system at a
high rate may overwhelm that subsystem. The low- and high-latency subsystems’ response to
user input may therefore be independent but coordinated.

[0073] The reduction of events can be optimized. In an embodiment, representative events may
be selected among candidate events based on criteria associated with one or more of the
application, the Ul element, the input device, etc. An example of this for pen input when the user
is drawing digital ink strokes might include selecting events which fit best to the user’s drawn

stroke. Another example for speech input is to favor events where subsequent events in the

22

WO 2015/120073 PCT/US2015/014494

output stream would have similar volume, thereby “evening out” the sound coming from the
microphone. Another example for touch input is to favor events which would result in the output
event stream having a consistent speed, providing more “smooth” output. This form of
intelligent reduction acts as an intelligent filter, without reducing performance of the high-latency
subsystem. In an embodiment, new events (e.g., consolidated events or pseudo-events) could be
generated which represent an aggregate of other events in the input stream. In an embodiment,
new events (e.g., corrected events, consolidated events or pseudo-events) may be generated that
represent a more desirable input stream, ¢.g., a correction or smoothing. For example, for in-air
gesture input, for every 10 events from the high-speed input device, the high-latency subsystem
may be sent the same number or fewer events which provide an “average” of actual input events,
thus smoothing the input and removing jitter. New events could also be generated which are an
amalgam of multiple “desired” levels of various parameters of an input device. For example, if
the intelligent reductions of the tilt and pressure properties of a stylus would result in the
selection of different events, a single, new, event object could be created (or one or more existing
event objects modified) to include the desired values for each of these properties.

[0074] In an embodiment, an IPU or low-latency subsystem system might be used to provide the
high-latency system with processed input information. One or more of methods could be used to
coordinate the activities of the two subsystems. These include:

a. In an embodiment, the low-latency subsystem can respond to all user input
immediately, but wait for the user to stop the input (e.g. lifting a finger or pen,
terminating a gesture) before providing the input to the high-latency system. This
has an advantage of avoiding clogging the system during user interaction while
still processing the totality of the data.

b. In an embodiment, the low-latency system can provide a reduced estimate of input
in near real-time; and may optionally store a complete input queue that can be
available to the high-latency system upon request.

¢. In an embodiment, user feedback may be divided into two steps. The first, a low-
latency feedback, would provide a rough, immediate representation of user input
1130 in FIG. 11. The second, a high-latency system response 1140, could replace
the first 1130, whenever the high-latency system is able to compute a refined

response, for example after lift-off of the pen 1150 tip. Alternatively, the high

_23.

WO 2015/120073 PCT/US2015/014494

latency feedback could be continuously “catching up” to (and possibly
subsuming) the low latency feedback.

d. In an embodiment, the low-latency system can infer simple gesture actions from
the input stream, and thus generate gesture events which are included in the input
queue in addition to, or replacing, the raw events.

¢. In an embodiment, an IPU or low-latency subsystem can use multiple input
positions to predict future input positions. This prediction can be passed along to
the high-latency subsystem to reduce its effective latency.

f. In an embodiment, algorithms which may benefit from additional samples, or
carlier detection, are executed in the IPU or low-latency subsystem. In an
embodiment, the execution of these events can be limited in time. For example,
the initial 50 events can be used to classify an input as a particular finger, or to
differentiate between finger and pen inputs. In an embodiment, these algorithms
can run continuously.

g. In an embodiment, the process of the low-latency subsystem passing a stream of
events to the high-latency subsystem might be delayed in order to receive and
process additional sequential or simultancous related inputs which might
otherwise be incorrectly regarded as unrelated inputs. For example, the letter "t" is
often drawn as two separate, but related, strokes. In the normal course, the portion
of the input stream passed from the low-latency to the high-latency system would
include a “pen up” signal at the end of drawing the first line. In an embodiment,
the reduction process waits for the very last frame of input within the sample
window to pass along an “up” event, in case the pen is again detected on the

display within the window, thus obviating the need for the event.

-4 -

WO 2015/120073 PCT/US2015/014494

Hardware Architecture

[0075] In an embodiment, data flows through two overlapping paths through the components
of the system to support both high- and low- latency feedback. FIG. 12 shows one such system,
which includes an Input Device 1210, an IPU 1220, a System Bus 1230, a CPU 1240 and a GPU
1280 connected to a Display 1290. A User 1200 performs input using the Input Device 1210.
This input is sensed by the IPU 1220 which in various embodiments can be ecither an FPGA,
ASIC, or additional software and hardware logic integrated into a GPU 1280, MPU or SoC. At
this point, the control flow bifurcates and follows two separate paths through the system. For
low-latency responses to input, the IPU 1220 sends input events through the System Bus 1230 to
the GPU 1280, bypassing the CPU 1240. The GPU 1280 then rapidly displays feedback to the
User 1200. For high-latency response to input, the IPU 1220 sends input events through the
System Bus 1230 to the CPU 1240, which is running the graphical application and which may
interact with other system components. The CPU 1240 then sends commands via the System
Bus 1230 to the GPU 1280 in order to provide graphical feedback to the User 1200. The low-
latency path from Input Device 1210 to IPU 1220 to System Bus 1230 to GPU 1280 is primarily
hardware, and operates with low-latency. The high-latency path from Input Device 1210 to IPU
1220 to System Bus 1230 to CPU 1240 back to System Bus 1230 to GPU 1280 is high-latency
due to the factors described earlier in this description. In a related embodiment, the Input Device
1210 communicates directly with the GPU 1280 and bypasses the System Bus 1230.

[0076] FIG. 13 shows a familiar programing paradigm called Model View Controller. In this
paradigm, the User 1300 performs input on the Controller 1310, which in turn manipulates the
Model 1320 based on this input. Changes in the Model 1320 result in changes to the View 1330,
which is observed by the User 1300. Some of the latency addressed by the present invention is
due to latency in the input, communication among these components, and display of the graphics
generated by the View 1330 component.

[0077] FIG. 14 shows an embodiment of an architecture that supports developing and
running applications on a system with blended high- and low- latency responses to user input.
The User 1400 performs input with the input device 1410. This input is received by the IPU
1420. The IPU 1420 sends input events simultancously to the Controller 1430 running in the
high-latency subsystem via traditional mechanisms and to the ViewModel(L) 1490 running in the
low-latency subsystem. Input is handled by the Controller 1430, which manipulates the Model

1440 running in the high-latency subsystem, which may interact with data in volatile memory

-25-

WO 2015/120073 PCT/US2015/014494

1450, fixed storage 1470, network resources 1460, etc. (all interactions that introduce lag). Input
events received by the ViewModel(L) 1490 result in changes to the ViewModel(L) which are
reflected in changes to the View(L) 1491, which is seen by the User 1400. Changes to the Model
1440 result in changes to the high-latency subsystem’s View(H) 1480, which is also seen by the
User 1400. In an embodiment, these two types of changes seen by the user are shown on the
same display. In an embodiment, these two types of changes are reflected to the user via other
output modalities (such as, e.g., sound or vibration). In an embodiment, between inputs, the
Model 1440 updates the state of the ViewModel(L) 1490 and View(L) 1491 so that the
ViewModel(L) 1490 contains the needed data to present the GUI’s components in the correct
location on the system’s display and so that the ViewModel(L) 1490 can correctly interpret input
from the IPU 1420 in the context of the current state of the Model 1440; and so that the View(L)
1491 can correctly generate graphics for display in the context of the current state of the Model
1440.

[0078] By way of example, consider a touch-sensitive application with a button that among
its functions responds to a user’s touch by changing its appearance indicating that it has been
activated. When the application is run, the application reads the location, size, and details of the
appearance of the button from memory and compiled application code. The View(H) 1480 code
generates the necessary graphics which are presented to the user to display this button. The
Model 1440 updates the state of the ViewModel(L) 1490 to record that this graphical element is a
button, and that it should change appearances from a “normal” appearance to a “pressed”
appearance when touched. The Model 1440 also updates the state of the View(L) 1491 to record
the correct appearance for the “normal” and “pressed” states in the ViewModel(L) 1490. This
appearance may be a description of low-fidelity graphical elements, or a complete raster to
display. In this example, the “pressed” state is represented by a displaying a white box around
the button’s position.

[0079] A User touches the touch-screen display, and input data describing that touch is
received less than 1ms later by the IPU 1420. The IPU 1420 creates an input event representing
a touch-down event from the input data and sends this input event to the application Controller
1430. The Controller 1430 manipulates the Model 1440. In this case, the Controller 1430 is
indicating to the Model 1440 that the button has been touched and that the application should
perform whatever commands are associated with this button. At the same time that the IPU 1420

sends an event to the Controller 1430, it sends an event to the ViewModel(L) 1490 indicating

-26 -

WO 2015/120073 PCT/US2015/014494

that the button has been touched. The ViewModel(L) 1490 was previously instructed by the
Model 1440 as to what to do in the case of a touch, and in this case it responds to the touch event
by changing its state to “pressed”. The View(L) 1491 responds to this change by displaying a
white box around the button, feedback that corresponds to its “pressed” appearance. The change
to the Model 1440 that the button is touched causes an update of View(H) 1480, so that it too
reflects that button is now touched. The User, who see the output of both View(H) 1480 and
View(L) 1491, sees the immediate feedback of their touch by View(L) 1491 followed a fraction
of a second later by the feedback from View(H) 1480.

[0080] Throughout the text of this application, the word “event” is used to describe
information describing attributes of user input. This term is used generally, and thus includes
embodiments in which event driven architectures are employed (with actual event objects being
passed between software elements), as well as more basic input streams in which the “event”
being described is simply present in the stream of information. Such events may be, e.g., non-

object-orient types of events or object-oriented types events.

Low-Latency Visual Response To Input Via Pre-Generation Of Alternative Graphical
Representations Of Application Elements And Input Handling On A Graphical Processing
Unit

Background

[0081] FIG. 15 is a block diagram illustrating graphical user interface (GUI) view and
intermediate data hierarchies in accordance with prior art. An application running on a CPU
includes a number of GUI elements, typically, although not necessarily, arranged in a tree. These
“views” (also called widgets, components, elements, etc.) may include familiar elements such as
sliders, windows, buttons, panels, etc., each of which has a current state and associated
application code to run when the element is acted upon by user input.

[0082] When the application updates any of its states and the changes to the visual
appearance of the application need to be displayed to the user, the application performs a “paint”
command (also called draw, render, etc. in some systems), which walks this tree (or other data
structure: e.g., 'scene graph') and produces intermediate drawing data from the GUI elements in

the application. This intermediate data may consist of individual bitmaps (a.k.a. rasters, pixel

_27 -

WO 2015/120073 PCT/US2015/014494

data) for ecach element in the application, may consist of drawing instructions to produce the final
pixel (rendered) appearance of each clement in the application, or may consist of any
representation that allows a computer to produce pixels (or other fundamental graphical primitive
as appropriate for the display technology) on a display that represent the application’s visual
appearance in memory (pixel data, DisplayLists, drawing instructions, vector data, etc.). In the
example shown in Figure 15, this intermediate data consists of drawing instructions that are
executed to produce the final pixel appearance of the GUI elements. This intermediate data
resides in memory and may be accessible to either the computer’s CPU or dedicated graphical
processing unit (GPU) or both.

[0083] To produce the final rendered GUI, this intermediate data is executed or copied into a
pixel buffer that is sent to the display and visible to the user. See Figure 16.

[0084] In a system that includes both a CPU and a GPU for rendering, the process of
handling user input and generating/updating the intermediate data (performed by the CPU)
typically takes considerably longer than the process of executing the intermediate instructions to
produce the final pixel buffer (performed by the GPU).

[0085] Figure 17 shows how changes to the visual appearance of GUI elements are made
visible to the user. In this example, the application running on the CPU has received input from
the user that requires a change in the visual appearance of “View G”. For this example, assume
that View G is a button and that the user has pressed it, requiring the button to appear “pressed”
on the display. The user input modifies the state of View G in the application, which triggers the
“paint” command which produces updated intermediate data for G. To produce the final rendered
GUI (including the new visual appearance of G), the intermediate data is executed or copied into
a pixel buffer that is sent to the display and visible to the user. This display includes the modified
appearance of View G.

[0086] While modern operating systems perform many steps to efficiently update only the
intermediate data that requires updating, the process of receiving user input, modifying

application state, and generating this intermediate data is still time consuming and introduces

-28 -

WO 2015/120073 PCT/US2015/014494

latency into the visual response to user input. Therefore it is desirable to create a system that

improves upon the time required to display the visual response to input to the user of a GUL

Low-Latency Visual Response To Input Via Pre-Generation Of Alternative Graphical
Representations Of Application Elements

[0087] We describe herein an invention in which the elements in a GUI are used to generate
one or more intermediate data that correspond to one or more possible visual states for the GUI
element. These multiple visual representations are paired with control logic that chooses the
appropriate intermediate data to use when rendering the final pixel image to display to the user.
[0088] Figure 18 shows an embodiment of the present invention, in which each GUI element
in the application’s GUI produces one or more intermediate data depending on the type of
element and the number of possible visual states of that element. In this example, View G and
View H are the only views in this GUI that have multiple possible visual appearances, and View
G generates two alternative intermediate data corresponding to two alternative visual
appearances and View H generates three intermediate data for three possible visible appearances.
In the preferred embodiment, the invention records an index that corresponds to the current
alternative to use when executing the intermediate data to produce the final pixel buffer that is
displayed to the user.

[0089] Figure 19 shows the intermediate data with an updated index for View G. In this
example, assume that View G is a button and that the “Drawing Instructions G” give instructions
for drawing its unpressed appearance and that the “Alt Drawing Instructions G give instructions
for drawing its pressed appearance. In this example, when the user presses the button, the system
updates the index for G such that the “Alt Drawing Instructions G” is selected. This selection
ensures that View G appears correctly when the intermediate data is then executed or copied into
a pixel buffer that is sent to the display and visible to the user. Because the drawing instructions
for the elements in the GUI were pre-computed, the visual response to user input can occur very
rapidly with low latency as there is no need to perform the time-consuming “paint” operation at

that time.

-29.

WO 2015/120073 PCT/US2015/014494

[0090] Other examples of states of Ul Views which might be tied to alternative drawing
instructions include the current/maximized state of a window, pressed-unpressed states of any Ul
element, Ul elements as they might appear when being affected by another element (eg: if one
View is to pass over another and show a drop-shadow, the appearance of that shadow on the
Views 'below' it), or alternative 'skins' that might apply in context (eg: undamaged and damaged
versions of Ul objects that might get 'hit' in a game). Indeed, any property of a View which might
affect its visual appearance might be tied and pre-computed. Further still, properties whose
values interact might provide still more alternative renderings (e.g., disabled and unpressed,
disabled and pressed, etc.). Properties with a large number of possible values might be pre-
computed with values which are known to be likely, for example based on whether a given
alternative appearance represents a state that can be transitioned to from the current state
directly), based on past user behavior, based on behavior of other users, or as explicitly indicated
by the developer of the application.

[0091] In these examples, the view being drawn with alternative elements is a 'leaf' node in
the tree. In some embodiments of the invention, the relevant view might be a non-leaf node, such
as view E in Fig. 18 and Fig. 19. In such circumstances, the child nodes (and indeed, all
descendants when the recursive nature of this example is appreciated) might or might not have
alternative drawing instructions which are tied to the alternative drawing instructions of their
parents. For example, if View E were a Ul panel containing a collection of Views H, I, and J, one
alternative drawing instruction for E might include giving it a 'disabled' appearance. Typically
though not always in a GUI, if a parent View is set to disabled, then child views are as well.
Thus, the alternative drawing instructions for View E that give it a 'disabled’ appearance might
contain a pointer to similar alternative instructions for Views H,I, and J to give them a similarly
disabled appearance. This pointer (or other indicator) might be stored in some central registry, or
any number of other places that would be known to the reader. In some embodiments, the root of
a View tree (often but not always the Window in which it is contained) may be pre-computed,
and thus some subset (or all) of the Views within the tree may be pre-computed as well. This

would facilitate fast switching of the foreground window.

-30 -

WO 2015/120073 PCT/US2015/014494

[0092] It should be appreciated that maintaining alternative drawing instructions may at some
point become arduous. These instructions might be stored for later retrieval, for example at the
time the application is compiled/prepared for distribution, at the time it is loaded onto the device,
at the time that the program is first executed, at the time that a View is first placed into the scene,
or at idle moments where spare computation cycles are available.

[0093] It should also be appreciated that alternative drawing instructions may include (or be
included in) animations. Animation of changes to the Ul is known to assist the user with
understanding transitions between states. In some embodiments, whole sets of alternative
instructions may be pre-determined to speed animation.

[0094] In some embodiments, specific Views might be rendered *without* repainting any
other Views (e.g., parent or children). This might require that the system render only the portion
of the View not occluded by other views. The limiting of the portion of the element to be painted
might be included in the relevant drawing instructions (and/or alternative drawing instructions).
In some embodiments, whole alternative instructions may be included depending on differing

areas of occlusion.

Input Handling In A Graphical Processing Unit

[0095] While the described invention significantly reduces latency in the visual response to
user input, the computer’s CPU is still responsible for receiving user input events from an input
device, dispatching these events to the correct application, performing hit testing to send the
event to the correct element in the GUI, running callbacks that may execute any amount of code
as well as change the visual appearance of GUI elements, and so on.

[0096] Figure 20 shows a notional diagram outlining the steps taken to display the visual
response to user input in the prior art. While individual systems in the prior art vary from the
exact steps outlined in Figure 20, they all follow the basic pattern of receiving and handling input
in the CPU, updating the properties of graphical elements in the CPU, generating intermediate
data in the CPU, and then handing off the final rendering to the GPU. For the purpose of this

disclosure, one should assume that our invention applies to all of these variations.

-31 -

WO 2015/120073 PCT/US2015/014494

[0097] Figure 21 shows an embodiment in which input events are sent not only to the CPU,
but also to the GPU, where they are used to perform low-latency response to user input. In the
GPU, a “Hit Testing” operation is first performed to determine which graphical element needs to
be updated on the display. For graphical elements with multiple appearances (in Figure 21, we
sec an element that has three alternative appearances, each represented with a separate set of
intermediate data), an “Interim Data Picker” operation then determines which set of intermediate
data to use when drawing the GUI and passing pixels to the display that is visible to the user.
[0098] Because the GPU and CPU run in parallel, these steps in the GPU can be performed
very rapidly as the CPU works to “catch up” and perform the programmatic side effects of user
input that are not related to the change in the visual appearance of GUI elements. The end result
is a low-latency visual response to user input.

[0099] Though the figure shows some duplication between the CPU and GPU (e.g., hit
testing is performed in both places), in some embodiments, this duplication is eliminated without
reducing performance by performing those operations in the GPU, and passing their results back
to the CPU. For example, input might be passed ONLY to the GPU, and hit testing might be

done only in the GPU, with the result passed to the CPU for further processing.

[0100] We have described the use of the invention to rapidly switch among alternative
appearances of a GUI element in response to user input. Figure 22 illustrates the rapid alteration
of the visual appearance of a GUI element through the direct modification of its intermediate data
structure in the GPU. Many common alterations of the appearance of a GUI element occur
through the alteration of their location (e.g. scrolling, dragging, panning), size (¢.g. resizing or
scaling an element), rotation, skewing, or other visual property. As such, in this embodiment of
the invention, the GPU receives user input and performs hit testing to determine which GUI
element is being input upon by the user. Next, the interim data of the element being acted upon is
directly modified in the GPU. For example, in the case of vertical scrolling, the Y position of the
element can be directly updated in this step, eliminating the need to regenerate the entire interim
data for that element. After the update, the execution of the interim data can continue and the

GUI can be rendered and displayed on screen for the user to view.

-32.-

WO 2015/120073 PCT/US2015/014494

[0101] In some embodiments, updates are limited to graphical transformations. In some
embodiments, these transformations might be dependent on application logic. In some
embodiments, this logic might be available only to the CPU, thus requiring 'check-in' which
slows down interaction, or performing operations once in the GPU, but then later replacing them
by the results of paint operations in the CPU. In other embodiments, mechanisms might exist to
place application logic in the GPU by the developer of the application. Such mechanisms might
include properties set on Ul elements (eg: the maximum extent of a transformation, or a
conditional operation such as allowing transformation in one direction but not another), the
selection from among a set of predefined recipes, or indeed providing instructions, either in the
GPU's own programming language, or another language which is translated to 'native'
instructions. These instructions, specified by the application developer, could be executed
following hit testing. In effect, these would amount to a form of event handling performed within

the GPU.

[0102] In some embodiments, input handled by the GPU and CPU might result in
conflicts. For example, the user might scroll past the end of a list if the GPU is not aware of its
extents, which the CPU would catch in event handling and prevent. However, because GPU code
executes more quickly than CPU, this prevention would come after the scrolling had occurred. In
some embodiments, basic logic about common UI Views would be encoded as instructions for
the GPU, preventing many such conflicts from occurring in the first place. However, in
embodiments where application developers are able to write CPU code to change the appearance
and/or behavior of a View, conflicts may be inevitable. In such embodiments, mechanisms might
be included to mitigate them. These might include providing an 'event' callback to one or both of
CPU and GPU portions to allow the developer to specify how conflicts should be handled. These
might also include policies (either prescribed or developer-selectable) about they are handled.
These policies might include the invocation of animations or other graphical effects to transition

from the 'illegal' GPU-created state to the "proper' CPU-created state (or vice versa).

[0103] Other examples of conflicts might include processing of the input stream. For
example, some interactive systems include mechanisms for processing input to determine if a
gesture has occurred. In some embodiments, the gesture-detection mechanism might reside in the
GPU, in others in the CPU, in others, both places, in others, in another position within the

system. Conflict resolution in this instance might use similar mechanisms to those described

-33.-

WO 2015/120073 PCT/US2015/014494

above. If a gesture is detected, that fact is encoded in state information, and propagated to one or
both of the CPU and GPU representations. In some embodiments, this state information might be
passed directly or through other means of copying memory. In other embodiments, it might be

propagated through the passing of instructions for execution to one or both of the CPU and GPU.

[0104] As hit testing and the modification of the intermediate data are operations that can
be performed extremely quickly on a GPU, the result of this invention is the low-latency visual

response to user input to modify the visual properties of GUI elements.

[0105] Figure 23 shows an alternative embodiment in which the GPU modifies the
interim data in response to a running animation rather than in response to user input. In this case,
a process “Property Animation” performs updates to the interim data at regular time intervals to
affect a visual change in the appearance of the GUI element over time. After each update, the
GPU executes the interim data and the display is updated for the user to view. This embodiment
frees the CPU from running the animation, and thus the animation is not hindered when the

CPU’s resources are consumed by other facets of the OS.

[0106] In general, any modification of the actual or apparent state of a View (that is, the
state shown to the user) by one 'side' of the CPU/GPU will require some degree of coordination
between the two sides. In some embodiments, this coordination takes place by passing state
information between the two, possibly using conflict resolution mechanisms (such as those
described above) to determine and set the 'correct’ state, and to transition what is shown on screen
to that correct state, if needed. In other embodiments, state conflicts are resolved by the passing
of instructions from one side to the other (or by some conflict resolution unit). In other
embodiments, the state might simply be copied whole from one side to the other. In still other
embodiments, multiple instances of an application might be instantiated, each with a different
state, with one of those instances 'selected' to overwrite current state (for example according to

the policies described above).

[0107] The present system and methods are described above with reference to block
diagrams and operational illustrations of methods and devices comprising a computer system
capable of receiving and responding to user input. It is understood that each block of the block
diagrams or operational illustrations, and combinations of blocks in the block diagrams or

operational illustrations, may be implemented by means of analog or digital hardware and

-34 -

WO 2015/120073 PCT/US2015/014494

computer program instructions. These computer program instructions may be provided to a
processor of a general purpose computer, special purpose computer, ASIC, or other
programmable data processing apparatus, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, implements the
functions/acts specified in the block diagrams or operational block or blocks. In some alternate
implementations, the functions/acts noted in the blocks may occur out of the order noted in the
operational illustrations. For example, two blocks shown in succession may in fact be executed
substantially concurrently or the blocks may sometimes be executed in the reverse order,

depending upon the functionality/acts involved.

[0108] While the invention has been particularly shown and described with reference to a
preferred embodiment thereof, it will be understood by those skilled in the art that various
changes in form and details may be made therein without departing from the spirit and scope of

the invention.

-35-

WO 2015/120073 PCT/US2015/014494

What 1s claimed is:

1. A method for providing a visual response to input with reduced latency in a computing device,

comprising:

computing a plurality of alternative sets of intermediate data for a first graphical user
interface element, each alternative set of intermediate data comprising data useful to produce a

visual representation of the graphical user interface element;

storing the plurality of alternative sets of intermediate data for the first graphical user

interface element in a memory;

storing at least one set of intermediate data for a second graphical user interface element

in the memory;

creating an index identifying a first one of the plurality of alternative sets of intermediate

data for the first graphical user interface element to use in forming a final pixel image;

using the index, the first set of alternative intermediate data for the graphical user
interface element, and the intermediate data for the second graphical user interface element to
create a first final pixel image for display to a user, the first final pixel image including the first

and second graphical user interface elements;
receiving user input from a user input device;

in response to the user input, modifying the index to include an identification of a second
one of the plurality of alternative sets of intermediate data for the first graphical user interface

clement;

using the modified index, the second alternative set of intermediate data for the first
graphical user interface element, and the intermediate data for the second graphical user interface
element to create a final pixel image for display to a user, the final pixel image including the first

and second graphical user interface elements.

2. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative sets of drawing instructions.

-36 -

WO 2015/120073 PCT/US2015/014494

3. The method of claim 2, wherein the step of using the first set of alternative intermediate data to
create a first final pixel image for display to a user comprises executing a first alternative set of

drawing instructions.

4. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative sets of pixel data.

5. The method of claim 4, wherein the step of using the first set of alternative intermediate data to
create a first final pixel image for display to a user comprises copying a set of rendered

representations of pixels to a pixel buffer.

6. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises
a plurality of alternative sets of properties of a view of the first graphical user interface element

which affects its visual appearance.

7. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative sets of vector data.

8. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative sets of raster data.

9. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative display lists.

10. The method of claim 1, wherein the first user interface element is a button, the first
alternative set of intermediate data comprises a representation of the button in a non-pressed
state, and the second alternative set of intermediate data comprises a representation of the button

in a pressed state.

-37-

WO 2015/120073 PCT/US2015/014494

11. The method of claim 1, wherein the first user interface element is a window, the first
alternative set of intermediate data comprises a representation of the window in a non-maximized
state, and the second alternative set of intermediate data comprises a representation of the

window 1n a maximized state.

12. The method of claim 1, wherein the first alternative set of intermediate data comprises a
representation of the first user interface element when not being affected by another user
interface element and the second alternative set of intermediate data comprises a representation

of the first user interface element when being affected by the other user interface element.

13. The method of claim 1, wherein the first user interface element has a plurality of alternative

visual states and the second user interface element has a single visual state.

14. The method of claim 1, wherein the first and second user interface elements each have a

plurality of alternative visual states.

15. The method of claim 1, wherein the first user interface element is a button, the first
alternative set of intermediate data comprises a representation of the button in a disabled state,
and the second alternative set of intermediate data comprises a representation of the button in an

enabled state.

16. The method of claim 1, further comprising more than two alternative sets of intermediate

data.

17. The method of claim 1, wherein the second alternative set of intermediate data comprises a

pointer to alternative instructions for a third graphical user interface element.

-38 -

WO 2015/120073 PCT/US2015/014494

18. The method of claim 17, wherein the third graphical user interface element is a child of the

first graphical user interface element.

19. The method of claim 1, wherein at least one of the first alternative set of intermediate data
and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is scrolling.

20. The method of claim 1, wherein at least one of the first alternative set of intermediate data
and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is panning.

21. The method of claim 1, wherein at least one of the first alternative set of intermediate data
and the second alternative set of intermediate data comprises a representation of the first user

interface element when the first user interface element is being dragged.

22. The method of claim 1, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a graphics processing unit.

23. The method of claim 1, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a central processing unit.

24. The method of claim 1, wherein the step of creating an index is performed by a graphics

processing unit.

25. The method of claim 1, wherein the step of creating an index is performed by a central

processing unit.

-39.

WO 2015/120073 PCT/US2015/014494

26. The method of claim 1, wherein the step of using the index is performed by a graphics

processing unit.

27. The method of claim 1, wherein the step of using the index is performed by a central

processing unit.

28. The method of claim 1, wherein the first user interface element is the visible region of a scroll
view, the first alternative set of intermediate data comprises a representation of the next region of
the scrollview, and the second alternative set of intermediate data comprises a representation of

the previous region of the scrollview.

29. The method of claim 1, wherein the alternative set of intermediate data comprises
representations of at least one selected from the set consisting of: a button in a non-pressed state,
a button in a pressed state, a control in a checked state, a control in an unchecked state, a button
in an cnabled state, a button in a disabled state, an clement in an active state, an clement in an
inactive state, an eclement in a hovered over state, an clement in a not hovered over state, an
clement in an expanded state, an element in a not expanded state, an element with focus, an

clement without focus, an clement in a visible state, and an element in an invisible state.

30. The method of claim 1, wherein the alternative sets of intermediate data comprise

representations in different areas of the display.

31. The method of claim 1, wherein the alternative sets of intermediate data comprise

representations of different shapes or sizes of the user interface element.

32. The method of claim 1, wherein the alternative set of intermediate data comprises a previous

state of the user interface element.

- 40 -

WO 2015/120073 PCT/US2015/014494

33. The method of claim 1, wherein the alternative set of intermediate data comprises a possible

future state of the user interface element.

34. A method for providing a visual response to input with reduced latency in a computing

device, comprising:

rendering a plurality of alternative sets of intermediate data for a first graphical user
interface element, each alternative set of intermediate data representing an alternative visual

representation of the graphical user interface element;

storing the plurality of alternative sets of intermediate data for the first graphical user

interface element in a memory;

storing at least one set of intermediate data for a second graphical user interface element

in the memory;

creating an index identifying a first one of the plurality of alternative sets of intermediate

data for the first graphical user interface element to use in forming a final pixel image;

using the index, the first set of alternative intermediate data for the graphical user
interface element, and the intermediate data for the second graphical user interface element to
create a first final pixel image for display to a user, the first final pixel image including the first

and second graphical user interface elements;
receiving user input from a user input device;

in response to the user input, modifying the index to include an identification of a second
one of the plurality of alternative sets of intermediate data for the first graphical user interface

clement;

using the modified index, the second alternative set of intermediate data for the first
graphical user interface element, and the intermediate data for the second graphical user interface
element to create a final pixel image for display to a user, the final pixel image including the first

and second graphical user interface elements.

-4] -

WO 2015/120073 PCT/US2015/014494

35. The method of claim 34, wherein the step of using the first set of alternative intermediate data
to create a first final pixel image for display to a user comprises copying a set of rendered

representations of pixels to a pixel buffer.

36. The method of claim 34, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative sets of vector data.

37. The method of claim 34, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative sets of raster data.

38. The method of claim 34, wherein the first user interface element is a button, the first
alternative set of intermediate data comprises a representation of the button in a non-pressed
state, and the second alternative set of intermediate data comprises a representation of the button

in a pressed state.

39. The method of claim 34, wherein the first user interface clement is a window, the first
alternative set of intermediate data comprises a representation of the window in a non-maximized
state, and the second alternative set of intermediate data comprises a representation of the

window 1n a maximized state.

40. The method of claim 34, wherein the first alternative set of intermediate data comprises a
representation of the first user interface element when not being affected by another user
interface element and the second alternative set of intermediate data comprises a representation

of the first user interface element when being affected by the other user interface element.

41. The method of claim 34, wherein the first user interface element has a plurality of alternative

visual states and the second user interface element has a single visual state.

-4 -

WO 2015/120073 PCT/US2015/014494

42. The method of claim 34, wherein the first and second user interface elements each have a

plurality of alternative visual states.

43. The method of claim 34, wherein the first user interface element is a button, the first
alternative set of intermediate data comprises a representation of the button in a disabled state,
and the second alternative set of intermediate data comprises a representation of the button in an

enabled state.

44. The method of claim 34, further comprising more than two alternative sets of intermediate

data.

45. The method of claim 34, wherein the second alternative set of intermediate data comprises a

pointer to alternative instructions for a third graphical user interface element.

46. The method of claim 45, wherein the third graphical user interface element is a child of the

first graphical user interface element.

47. The method of claim 34, wherein at least one of the first alternative set of intermediate data
and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is scrolling.

48. The method of claim 34, wherein at least one of the first alternative set of intermediate data
and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is panning.

49. The method of claim 34, wherein at least one of the first alternative set of intermediate data
and the second alternative set of intermediate data comprises a representation of the first user

interface element when the first user interface element is being dragged.

-43 -

WO 2015/120073 PCT/US2015/014494

50. The method of claim 34, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a graphics processing unit.

51. The method of claim 34, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a central processing unit.

52. The method of claim 34, wherein the step of creating an index is performed by a graphics

processing unit.

53. The method of claim 34, wherein the step of creating an index is performed by a central

processing unit.

54. The method of claim 34, wherein the step of using the index is performed by a graphics

processing unit.

55. The method of claim 34, wherein the step of using the index is performed by a central

processing unit.

56. The method of claim 34, wherein the first user interface element is the visible region of a
scroll view, the first alternative set of intermediate data comprises a representation of the next
region of the scrollview, and the second alternative set of intermediate data comprises a

representation of the previous region of the scrollview.

57. The method of claim 34, wherein the alternative set of intermediate data comprises
representations of at least one selected from the set consisting of: a button in a non-pressed state,
a button in a pressed state, a control in a checked state, a control in an unchecked state, a button

in an cnabled state, a button in a disabled state, an clement in an active state, an clement in an

_44 -

WO 2015/120073 PCT/US2015/014494

inactive state, an eclement in a hovered over state, an clement in a not hovered over state, an
clement in an expanded state, an element in a not expanded state, an element with focus, an

clement without focus, an clement in a visible state, and an element in an invisible state.

58. The method of claim 34, wherein the alternative sets of intermediate data comprise

representations in different areas of the display.

59. The method of claim 34, wherein the alternative sets of intermediate data comprise

representations of different shapes or sizes of the user interface element.

60. The method of claim 34, wherein the alternative set of intermediate data comprises a

previous state of the user interface element.

61. The method of claim 34, wherein the alternative set of intermediate data comprises a

possible future state of the user interface element.

62. A method for providing a visual response to input with reduced latency in a computing

device, comprising:

computing a plurality of alternative sets of intermediate data for a first graphical user
interface element, each alternative set of intermediate data comprising drawing instructions for

rendering an alternative visual representation of the graphical user interface element;

storing the plurality of alternative sets of intermediate data for the first graphical user

interface element in a memory;

storing at least one set of intermediate data for a second graphical user interface element

in the memory;

creating an index identifying a first one of the plurality of alternative sets of intermediate

data for the first graphical user interface element to use in forming a final pixel image;

-45 -

WO 2015/120073 PCT/US2015/014494

using the index, the first set of alternative intermediate data for the graphical user
interface element, and the intermediate data for the second graphical user interface element to
render a first final pixel image for display to a user, the first final pixel image including the first

and second graphical user interface elements;
receiving user input from a user input device;

in response to the user input, modifying the index to include an identification of a second
one of the plurality of alternative sets of intermediate data for the first graphical user interface

clement;

using the modified index, the second alternative set of intermediate data for the first
graphical user interface element, and the intermediate data for the second graphical user interface
element to create a final pixel image for display to a user, the final pixel image including the first

and second graphical user interface elements.

63. The method of claim 62, wherein the step of using the first set of alternative intermediate data
to create a first final pixel image for display to a user comprises executing a first alternative set of

drawing instructions.

64. The method of claim 62, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative sets of vector data.

65. The method of claim 62, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative sets of raster data.

66. The method of claim 62, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative display lists.

67. The method of claim 62, wherein the first user interface element is a button, the first

alternative set of intermediate data comprises a representation of the button in a non-pressed

- 46 -

WO 2015/120073 PCT/US2015/014494

state, and the second alternative set of intermediate data comprises a representation of the button

in a pressed state.

68. The method of claim 62, wherein the first user interface clement is a window, the first
alternative set of intermediate data comprises a representation of the window in a non-maximized
state, and the second alternative set of intermediate data comprises a representation of the

window 1n a maximized state.

69. The method of claim 62, wherein the first alternative set of intermediate data comprises a
representation of the first user interface element when not being affected by another user
interface element and the second alternative set of intermediate data comprises a representation

of the first user interface element when being affected by the other user interface element.

70. The method of claim 62, wherein the first user interface element has a plurality of alternative

visual states and the second user interface element has a single visual state.

71. The method of claim 62, wherein the first and second user interface elements cach have a

plurality of alternative visual states.

72. The method of claim 62, wherein the first user interface element is a button, the first
alternative set of intermediate data comprises a representation of the button in a disabled state,
and the second alternative set of intermediate data comprises a representation of the button in an

enabled state.

73. The method of claim 62, further comprising more than two alternative sets of intermediate

data.

-47 -

WO 2015/120073 PCT/US2015/014494

74. The method of claim 62, wherein the second alternative set of intermediate data comprises a

pointer to alternative instructions for a third graphical user interface element.

75. The method of claim 74, wherein the third graphical user interface element is a child of the

first graphical user interface element.

76. The method of claim 62, wherein at least one of the first alternative set of intermediate data
and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is scrolling.

77. The method of claim 62, wherein at least one of the first alternative set of intermediate data
and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is panning.

78. The method of claim 62, wherein at least one of the first alternative set of intermediate data
and the second alternative set of intermediate data comprises a representation of the first user

interface element when the first user interface element is being dragged.

79. The method of claim 62, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a graphics processing unit.

81. The method of claim 62, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a central processing unit.

82. The method of claim 62, wherein the step of creating an index is performed by a graphics

processing unit.

- 48 -

WO 2015/120073 PCT/US2015/014494

83. The method of claim 62, wherein the step of creating an index is performed by a central

processing unit.

84. The method of claim 62, wherein the step of using the index is performed by a graphics

processing unit.

85. The method of claim 62, wherein the step of using the index is performed by a central

processing unit.

86. The method of claim 62, wherein the first user interface element is the visible region of a
scroll view, the first alternative set of intermediate data comprises a representation of the next
region of the scrollview, and the second alternative set of intermediate data comprises a

representation of the previous region of the scrollview.

87. The method of claim 62, wherein the alternative set of intermediate data comprises
representations of at least one selected from the set consisting of: a button in a non-pressed state,
a button in a pressed state, a control in a checked state, a control in an unchecked state, a button
in an cnabled state, a button in a disabled state, an clement in an active state, an clement in an
inactive state, an eclement in a hovered over state, an clement in a not hovered over state, an
clement in an expanded state, an element in a not expanded state, an element with focus, an

clement without focus, an clement in a visible state, and an element in an invisible state.

88. The method of claim 62, wherein the alternative sets of intermediate data comprise

representations in different areas of the display.

89. The method of claim 62, wherein the alternative sets of intermediate data comprise

representations of different shapes or sizes of the user interface element.

- 49 .

WO 2015/120073 PCT/US2015/014494

90. The method of claim 62, wherein the alternative set of intermediate data comprises a

previous state of the user interface element.

91. The method of claim 62, wherein the alternative set of intermediate data comprises a

possible future state of the user interface element.

92. A method for operating a GPU in conjunction with a CPU to provide a visual response to

input with reduced latency in a computing device, comprising:
receiving, in a graphical processing unit, data representing user input;

hit testing the data representing user input in the graphical processing unit to identify a

graphical user interface element to be updated as a result of the user input;

identifying, in the graphical processing unit, a first set of intermediate data among a

plurality of alternative sets of intermediate data for the graphical user interface element;

using the identified alternative set of intermediate data to update the graphical user

interface element.

93. The method of claim 90, wherein the step of using the identified alternative set of
intermediate data to update the graphical user interface element is performed by the graphical

processing unit.

94. The method of claim 93, wherein the step of using the identified alternative set of
intermediate data to update the graphical user interface element is performed by the central

processing unit.

95. A method for operating a GPU in conjunction with a CPU to provide a visual response to

input with reduced latency in a computing device, comprising:

receiving, in a graphical processing unit, data representing user input;

-50 -

WO 2015/120073 PCT/US2015/014494

hit testing the data representing user input in the graphical processing unit to identify a

graphical user interface element to be updated as a result of the user input;

identifying a first set of intermediate data among a plurality of alternative sets of

intermediate data for the graphical user interface element;

using the identified alternative set of intermediate data to update the graphical user

interface element.

96. A method for operating processing units to provide a visual response to a running animation

in a computing device, comprising:
processing, in at least one processing unit, a property animation;

identifying, in the at least one processing unit, a first set of intermediate data among a

plurality of alternative sets of intermediate data for the property animation;

using the identified alternative set of intermediate data to update the intermediate data for

the property animation;

executing the updated interim data for the property animation in the graphical processing

unit.

97. The method of claim 96, where at least one of the at least processing units is a GPU.

98. The method of claim 96, where the at least one processing units comprise a plurality of cores

of the same CPU.

99. A method for providing an auditory response to input with reduced latency in a computing

device, comprising:

computing a plurality of alternative sets of intermediate data for a first user interface element,
cach alternative set of intermediate data comprising data useful to produce an auditory output

with respect to that user interface element;

storing the plurality of alternative sets of intermediate data for the first user interface element in a

memory;

-51 -

WO 2015/120073 PCT/US2015/014494

storing at least one set of intermediate data for a second user interface element in the memory;

creating an index identifying a first one of the plurality of alternative sets of intermediate data for

the first user interface element to use in forming a final sound;

using the index, the first set of alternative intermediate data for the user interface element, and
the intermediate data for the second graphical user interface element to create a first final sound
for display to a user, the first final sound including the sounds of the first and second user

interface elements;
receiving user input from a user input device;

in response to the user input, modifying the index to include an identification of a second

one of the plurality of alternative sets of intermediate data for the first user interface element;

using the modified index, the second alternative set of intermediate data for the first user
interface element, and the intermediate data for the second user interface element to create a final
sound for output to a user, the final sound including the sounds from the first and second user

interface elements.

-5

WO 2015/120073

1/20

PCT/US2015/014494

FIG. 1

WO 2015/120073

2/20

=

INBOX

200
Y

[emmn]
N

PCT/US2015/014494

FIG. 2

WO 2015/120073 PCT/US2015/014494

3/20

310320

(&%)
—
Lemms]

FIG. 3

PCT/US2015/014494

WO 2015/120073

4/20

SIN €0°.

{030IA Sd4 000¢€

097 "]

d0193r0dd

v Ol

SIW 10,
‘ONISSFI0Yd ¥OdA

A

LHOM
WLI9Id

007

0rr "]

\RLE

SIN.
31V I1dINYS ZHY |

Jd 104INOJ 0L

A

02y "]

EWIE(C
1NNl

Q33dS
HOH

WO 2015/120073 PCT/US2015/014494

5/20

|
PARTICIPANT
FIG. 5

(SIN) INTYA JONTONIANOD NY3IW

WO 2015/120073 PCT/US2015/014494

6/20

TOUCH UP

FIG. 6

TOUCH DOWN

INBOX

610~

OFF
|
INBOX

DRAG

TOUCH DOWN

OFF

WO 2015/120073

RESIZE

730
N

7/20

PCT/US2015/014494

FIG. 7

PCT/US2015/014494

WO 2015/120073

8/20

LNV _._w

8 Ol

\

1INV LIS 40 10uNNSd! WFHO0T

§NOILAO TN S NSdI N30T

T3V LIS 40100 WNSdl N30T \ N_9N0ILdO

TE AT S O L ERO]

[TV S 0100 _\,_Dmm__,_“mw% N ,n\ mmzo_zo

. INOLLAO qm_\,_i_m%?h_mwﬂ__,_ﬂ%%%

T, RAANSd N30T I :

N ENOILO SIEL ma__,_ﬂ,_%_w%..w
N (3 IELIEAS a0t U

D 7 NOILdO ool

Ot WIS 000 A AER0T-

| NOILJO

ETIN
\

\

Ny (S NOLGO
™ L5V 115 90 Tr 05d] 380 T}~ 028
L ~~ NOILO-u™~018
L3V IS YO TOT WIS W30
£ NOLLdO
L3V IS YO TOT WIS 30T
ZNOLLdO
E IS EN e
| NOLLO

dN HONOL

d-HILYJ AONALYT-HOH

L
L3V LIS 40700 WNSdI W3H0T
¢ NOILdO

13AY LIS 40700 WNSdI W3H0T
¢NOILdO

13AY LIS 40700 WNSdI W3H0T
| NOILdO

7 NOILdO]N-018

NMOQ HONOL

dN T1043S

L3NV LIS 4070Q WNSdl W30
9NOLLJO

L3NV LIS 4070Q WNSdl W30
G NOILdO

L3NV LIS 4070Q WNSdl W30
7NOILdO

L3V LIS 40100 WNSdl W30
£ NOILdO

L3NV LIS 4070Q WNSdl W30
¢NOILdO

L3NV LIS 4070Q WNSdl W30
| NOILdO

PCT/US2015/014494

WO 2015/120073

9/20

S13Xid

AV1dSId

S13Xid

6 Ol

096

\

(YOVLS FYYMLAOS TYLINIANOD)
W3LSASENS

AINILYTHIH

A
Y
A

W3ALSASENS
AON3LYTMO1

/

0v6

SIN3AS

SIN3AS

026

\

(ndl) LINN
ONISSID0Ud LNdN

S3ILY43d0Yd

LIM100L
J4YML40S Nd|

[
0£6

~SINvad

30IA30 LNdNI

/

016

WO 2015/120073

10/20

1020~

7

MIXER

FIG. 10

PCT/US2015/014494

WO 2015/120073 PCT/US2015/014494

11/20

PEN INPUT IN PRIOR ART TOUCH USER INTERFACE 1100

PEN INPUT USING HYBRID SYSTEMS AND METHODS

1130

WO 2015/120073 PCT/US2015/014494
12/20
1250
/
1260 DOR 1270
/ :: 1240 /
INTERNALSTORAGE | Pl | NETWORK
0 o B 0
A
1230
' /
SYSTEM BUS
:
I
DDR < > GPU PU
; o8~ 1220
S A
1250 4 \‘\\
1200~ DISPLAY INPUTDEVICE N 1910

FIG. 12

WO 2015/120073 PCT/US2015/014494

13/20

1320
MODEL
UPDATES MANIPULATES
- 1310
/
VIEW CONTROLER
SEES USES
1300

FIG. 13

PCT/US2015/014494

WO 2015/120073

14/20

vl Ol

™
535N g3 o
5335
N I TE T 5335 T <
I ~T6)
. 1
07— Nd SIVINAINVA A
| ~06¢)
AONALYHMOT SALYINAINYIA
AONILYTHOH ! i
0eh) SaLYadN
N —
$3LY0dN
SALYININVIA S30YadN
500N
Oyl ="
un—] oS 400 gy OfYEOMLIN

097

WO 2015/120073 PCT/US2015/014494

15/20

NN Nty

(PRIOR ART)

N \\t\\.\rz-' \\Q

WO 2015/120073 PCT/US2015/014494

16/20

§\\

T
. §

\\\\\\

\

\?

WO 2015/120073 PCT/US2015/014494

17/20

Painting >

WO 2015/120073 PCT/US2015/014494

18/20

‘szi S

§

Painting &

\\\ AN \\\ \ N

WO 2015/120073 PCT/US2015/014494

19/20

N

N \a N R AN
. \\\\

WO 2015/120073 PCT/US2015/014494

20/20

N

- =

- Display.

N

	Abstract
	Description
	Claims
	Drawings

