
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2015/120073 A1
13 August 2015 (13.08.2015) W I PO I P CT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 3/0488 (2013.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

PCT/US2015/0 14494 DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

4 February 2015 (04.02.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:
61/935,674 4 February 2014 (04.02.2014) US (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: TACTUAL LABS CO. [US/US]; 160 Woost- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

er Street, Penthouse B, New York, New York 10012 (US). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

(72) Inventors: WIGDOR, Daniel; 216 Wright Avenue, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

Toronto, Ontario M6R 1L3 (CA). SANDERS, Steven Le- DK, EE, ES, FI, FR, GB , R, H, R, IS, IS, ST, LU,

onard; 160 Wooster Street, Penthouse B, New York, New LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

York 10012 (US). COSTA, Ricardo Jorge Jota; 589-B SM, TR), OAPI (BF , SN, C , CG , CM, GA, GN, GQ,

Wellington Street West, Toronto, Ontario M5V 2R6 (CA). GW, KM, ML, MR, NE, SN, TD, TG).

FORLINES, Clifton; 395 Clinton Street, Toronto, Ontario Published:
M6G 2Z 1 (CA). - with international search report (Art. 21(3))

(74) Agents: KURTZ, Richard et al.; 450 So. Orange Ave.,
Suite 650, Orlando, Florida 32801 (US).

(54) Title: LOW-LATENCY VISUAL RESPONSE TO INPUT VIA PRE-GENERATION OF ALTERNATIVE GRAPHICAL
REPRESENTATIONS OF APPLICATION ELEMENTS AND INPUT HANDLING ON A GRAPHICAL PROCESSING UNIT

FIG. 17

O (57) Abstract: A method for providing a visual response to input with reduced latency in a computing device includes computing al
O ternative sets of intermediate data for a first graphical user interface element, each alternative set of intermediate data comprising

data useful to produce a visual representation of the graphical user interface element. The plurality of alternative sets of intermediate
data and a set of intermediate data for a second graphical user interface element are stored in memory. The method creates an index
identifying a first one of the plurality of alternative sets of intermediate data for the first graphical user interface element to use in
forming a final pixel image. The index, the first set of alternative intermediate data for the graphical user interface element, and the

f4 intermediate data for the second graphical user interface element are used to create a first final pixel image for display to a user, the
first final pixel image including the first and second graphical user interface elements. In response to user input, the index is modi
fied to include an identification of a second one of the plurality of alternative sets of intermediate data for the first graphical user in
terface element, and the modified index is used to create a final pixel image for display to a user.

WO 2015/120073 PCT/US2015/014494

LOW-LATENCY VISUAL RESPONSE TO INPUT VIA PRE-GENERATION OF
ALTERNATIVE GRAPHICAL REPRESENTATIONS OF APPLICATION ELEMENTS

AND INPUT HANDLING ON A GRAPHICAL PROCESSING UNIT

[0001] This application is a non-provisional of and claims priority to U.S. Provisional Patent

Application No. 61/935,674 filed February 4, 2014, the entire disclosure of which is incorporated

herein by reference.

[0002] This application relates to user interfaces such as the fast multi-touch sensors and other

interfaces disclosed in U.S. Patent Application No. 14/046,823 filed October 4, 2013 entitled

"Hybrid Systems And Methods For Low-Latency User Input Processing And Feedback," U.S.

Patent Application No. 13/841,436 filed March 15, 2013 entitled "Low-Latency Touch Sensitive

Device," U.S. Patent Application No. 14/046,819 filed October 4, 2013 entitled "Hybrid Systems

And Methods For Low-Latency User Input Processing And Feedback," U.S. Patent Application

No. 61/798,948 filed March 15, 2013 entitled "Fast Multi-Touch Stylus," U.S. Patent Application

No. 61/799,035 filed March 15, 2013 entitled "Fast Multi-Touch Sensor With User-Identification

Techniques," U.S. Patent Application No. 61/798,828 filed March 15, 2013 entitled "Fast Multi

Touch Noise Reduction," U.S. Patent Application No. 61/798,708 filed March 15, 2013 entitled

"Active Optical Stylus," U.S. Patent Application No. 61/710,256 filed October 5, 2012 entitled

"Hybrid Systems And Methods For Low-Latency User Input Processing And Feedback," U.S.

Patent Application No. 61/845,892 filed July 12, 2013 entitled "Fast Multi-Touch Post

Processing," U.S. Patent Application No. 61/845,879 filed July 12, 2013 entitled "Reducing

Control Response Latency With Defined Cross-Control Behavior," U.S. Patent Application No.

61/879,245 filed September 18, 2013 entitled "Systems And Methods For Providing Response

To User Input Using Information About State Changes And Predicting Future User Input," U.S.

Patent Application No. 61/880,887 filed September 21, 2013 entitled "Systems And Methods For

Providing Response To User Input Using Information About State Changes And Predicting

Future User Input," U.S. Patent Application No. 14/069,609 filed November 1, 2013 entitled

"Fast Multi-Touch Post Processing," U.S. Patent Application No. 61/887,615 filed October 7,

2013 entitled "Touch And Stylus Latency Testing Apparatus," U.S. Patent Application No.

61/928,069 filed January 16, 2014 entitled "Fast Multi-Touch Update Rate Throttling," U.S.

Patent Application No. 61/930,159 filed January 22, 2014 entitled "Dynamic Assignment Of

Possible Channels In A Touch Sensor," and U.S. Patent Application No. 61/932,047 filed

- 1 -

WO 2015/120073 PCT/US2015/014494

January 27, 2014 entitled "Decimation Strategies For Input Event Processing." The entire

disclosures of those applications are incorporated herein by reference.

[0003] This application includes material which is subject to copyright protection. The copyright

owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it

appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright

rights whatsoever.

FIELD

[0004] The present invention relates in general to the field of user input, and in particular to user

input systems which deliver a low-latency user experience.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The foregoing and other objects, features, and advantages of the disclosure will be

apparent from the following more particular description of embodiments as illustrated in the

accompanying drawings, in which reference characters refer to the same parts throughout the

various views. The drawings are not necessarily to scale, emphasis instead being placed upon

illustrating principles of the disclosed embodiments.

[0006] FIG. 1 illustrates a demonstration of the effect of drag latency at 100 ms, 50 ms, 10 ms,

and 1 ms in a touch user interface.

[0007] FIG. 2 shows an example of a user interface element for an inbox, where the element has

a low latency, low fidelity response to a touch user interaction, as well as a high-latency, high

fidelity response a touch user interaction.

[0008] FIG. 3 shows an example of a user interface of a sliding toggle element. A cursor 310

(represented by the box containing a "cross" character) can be dragged to the target 320 (second

empty box, on the right) to activate the UI Element. This element is enabled using both the low

latency and high-latency system to provide a touch interaction where moving elements are

accelerated 310, thus providing a low-latency experience.

[0009] FIG. 4 shows an illustrative embodiment of a basic architecture of a prototype high

performance touch system used in latency perception studies.

[0010] FIG. 5 shows results of latency perception studies using the prototype device of FIG. 4.

[0011] FIG. 6 shows an example of a user interface element for a button, where the element has a

low latency, low fidelity response to a touch user interaction, as well as a high-latency, high

fidelity response a touch user interaction.

-2-

WO 2015/120073 PCT/US2015/014494

[0012] FIG. 7 shows an example of a user interface element for resizable box, where the element

has a low latency, low fidelity response to a touch user interaction, as well as a high-latency,

high-fidelity response a touch user interaction.

[0013] FIG. 8 shows an example of a user interface element for a scrollable list, where the

element has a low latency, low fidelity response to a touch user interaction, as well as a high

latency, high-fidelity response to a touch user interaction.

[0014] FIG. 9 shows an illustrative embodiment of a basic architecture and information flow for

a low-latency input device.

[0015] FIG. 10 shows the UI for a volume control. When dragging the slider, a tooltip appears

showing a numeric representation of the current setting. This element is enabled using both the

low-latency and high-latency system to provide a touch interaction where moving elements are

accelerated, thus providing a low-latency experience.

[0016] FIG. 11 shows the system's response for pen input in prior art systems compared to an

embodiment of the UI for pen input in the present hybrid feedback user interface system. In the

hybrid system, the ink stroke has a low-latency response to pen input, as well as a high-latency

response to a pen user input.

[0017] FIG. 12 shows an embodiment of the system where data flows through two overlapping

paths through the components of the system to support both high- and low-latency feedback.

[0018] FIG. 13 shows a programming paradigm well known in the art called Model View

Controller.

[0019] FIG. 14 shows an embodiment of the system's architecture that supports developing and

running applications with blended high and low-latency responses to user input.

[0020] FIG. 15 is a block diagram illustrating GUI view and intermediate data hierarchies in

accordance with prior art.

[0021] FIG. 16 is a timeline view illustrating the execution of intermediate data.

[0022] FIG. 17 is a block diagram illustrating GUI view and intermediate data hierarchies.

[0023] FIGS. 18-19 are block diagrams illustrating GUI view and intermediate data hierarchies

in accordance with embodiments of the presently disclosed system and method.

[0024] FIGS. 20-23 are block diagrams illustrating operation of a GPU, CPU, input device

controller and display in accordance with embodiments of the presently disclosed system and

method.

-3 -

WO 2015/120073 PCT/US2015/014494

Detailed Description

[0025] The following description and drawings are illustrative and are not to be construed as

limiting. Numerous specific details are described to provide a thorough understanding. However,

in certain instances, well-known or conventional details are not described in order to avoid

obscuring the description. References to one or an embodiment in the present disclosure are not

necessarily references to the same embodiment; and, such references mean at least one.

[0026] Reference in this specification to "one embodiment" or "an embodiment" means that a

particular feature, structure, or characteristic described in connection with the embodiment is

included in at least one embodiment of the disclosure. The appearances of the phrase "in one

embodiment" in various places in the specification are not necessarily all referring to the same

embodiment, nor are separate or alternative embodiments mutually exclusive of other

embodiments. Moreover, various features are described which may be exhibited by some

embodiments and not by others. Similarly, various requirements are described which may be

requirements for some embodiments but not other embodiments.

[0027] This application relates to user interfaces such as the fast multi-touch sensors and other

interfaces disclosed in U.S. Patent Application No. 13/841,436 filed March 15, 2013 entitled

"Low-Latency Touch Sensitive Device," U.S. Patent Application No. 61/798,948 filed March 15,

2013 entitled "Fast Multi-Touch Stylus," U.S. Patent Application No. 61/799,035 filed March 15,

2013 entitled "Fast Multi-Touch Sensor With User-Identification Techniques," U.S. Patent

Application No. 61/798,828 filed March 15, 2013 entitled "Fast Multi-Touch Noise Reduction,"

U.S. Patent Application No. 61/798,708 filed March 15, 2013 entitled "Active Optical Stylus,"

U.S. Patent Application No. 61/710,256 filed October 5, 2012 entitled "Hybrid Systems And

Methods For Low-Latency User Input Processing And Feedback," U.S. Patent Application No.

61/845,892 filed July 12, 2013 entitled "Fast Multi-Touch Post Processing," U.S. Patent

Application No. 61/845,879 filed July 12, 2013 entitled "Reducing Control Response Latency

With Defined Cross-Control Behavior," and U.S. Patent Application No. 61/879,245 filed

September 18, 2013 entitled "Systems And Methods For Providing Response To User Input

Using Information About State Changes And Predicting Future User Input." The entire

disclosures of those applications are incorporated herein by reference.

[0028] In various embodiments, the present disclosure is directed to systems and methods that

provide direct manipulation user interfaces with low latency. Direct physical manipulation of

pseudo "real world" objects is a common user interface metaphor employed for many types of

-4-

WO 2015/120073 PCT/US2015/014494

input devices, such as those enabling direct-touch input, stylus input, in-air gesture input, as well

as indirect devices, including mice, trackpads, pen tablets, etc. For the purposes of the present

disclosure, latency in a user interface refers to the time it takes for the user to be presented with a

response to a physical input action. Tests have shown that users prefer low latencies and that

users can reliably perceive latency as low as 5-10 ms, as will be discussed in greater detail below.

[0029] FIG. 1 illustrates a demonstration of the effect of latency in an exemplary touch user

interface at 100 ms (ref. no. 110), 50 ms (ref. no. 120), 10 ms (ref. no. 130), and 1 ms (ref. no.

140) respectively. When dragging an object, increasing latency is reflected as an increasing

distance between the user's finger and the object being dragged (in this case a square user

interface element). As can be seen, the effects of latency are pronounced at 100 ms (ref. no. 110)

and 50 ms (ref. no. 120), but become progressively less significant at 10 ms (ref. no. 130), and

virtually vanish at 1 ms (ref. no. 140). FIG 11 illustrates the effects of latency in an exemplary

stylus or pen user interface (1110, 1120). In this example, lag 1120 is visible as an increasing

distance between the stylus 1100 tip and the computed stroke 1110. With the introduction of low

latency systems, the distance between the stylus 1100 tip and the computed stroke 1130 would be

significantly reduced.

[0030] In an embodiment, the presently disclosed systems and methods provide a hybrid touch

user interface that provides immediate visual feedback with a latency of less than 10 ms, inter

woven or overlayed with additional visual responses at higher levels of latency. In some

embodiments, the designs of these two sets of responses may be designed to be visually unified,

so that the user is unable to distinguish them. In some embodiments, the "low latency" response

may exceed 10 ms in latency.

Causes of Latency

[0031] In various embodiments, latency in a user input device and the system processing its input

can have many sources, including:

(1) the physical sensor that captures touch events;

(2) the software that processes touch events and generates output for the display;

(3) the display itself;

(4) Data transmission between components, including bus;

(5) Data internal storage in either memory stores or short buffers;

(6) Interrupts and competition for system resources;

(7) Other sources of circuitry can introduce latency;

-5 -

WO 2015/120073 PCT/US2015/014494

(8) Physical restrictions, such as the speed of light, and its repercussions in circuitry

architecture.

(9) Mechanical restrictions, such as the time required for a resistive touch sensor to bend

back to its 'neutral' state.

[0032] In various embodiments, reducing system latency can be addressed through improving

latency in one or more of these components. In an embodiment, the presently disclosed systems

and methods provide an input device that may achieve 1 ms of latency or less by combining a

low-latency input sensor and display with a dedicated processing system. In an embodiment, the

presently disclosed systems and methods provide an input device that may achieve 5 ms of

latency or less by combining such low-latency input sensor and display with a dedicated

processing system. In a further embodiment, the presently disclosed systems and methods

provide an input device that may achieve 0.1 ms of latency or less by combining such low

latency input sensor and display with a dedicated processing system. In a further embodiment,

the presently disclosed systems and methods provide an input device that may achieve 10 ms of

latency or less by combining such low-latency input sensor and display with a dedicated

processing system. In an embodiment, in order to achieve such extremely low latencies, the

presently disclosed systems and methods may replace conventional operating system (OS)

software and computing hardware with a dedicated, custom-programmed field programmable

gate array (FPGA) or application-specific integrated circuit (ASIC). In an embodiment, the

FPGA or ASIC replaces the conventional OS and computing hardware to provide a low latency

response, while leaving a traditional OS and computing hardware in place to provide a higher

latency response (which is used in addition in addition to the low latency response). In another

embodiment, some or all of the function of the FPGA or ASIC described may be replaced by

integrating additional logic into existing components such as but not limited to the graphics

processing unit (GPU), input device controller, central processing unit (CPU), or system on a

chip (SoC). The low-latency logic can be encoded in hardware, or in software stored-in and/or

executed by those or other components. In embodiments where multiple components are

required, communication and/or synchronization may be facilitated by the use of shared memory.

In any of these embodiments, responses provided at high or low latency may be blended together,

or only one or the other might be provided in response to any given input event.

[0033] In various embodiments, the disclosed systems and methods provide what is referred to

herein as "hybrid feedback." In a hybrid feedback system, some of the basic system responses to

-6-

WO 2015/120073 PCT/US2015/014494

input are logically separated from the broader application logic. The result provides a system

with a nimble input processor, capable of providing nearly immediate system feedback to user

input events, with more feedback based on application logic provided at traditional levels of

latency. In some embodiments, these system responses are provided visually. In various

embodiments, the low-latency component of a hybrid feedback system may be provided through

audio or vibro-tactile feedback. In some embodiments, the nearly immediate feedback might be

provided in the same modality as the application-logic feedback. In some embodiments, low

latency feedback may be provided in different modalities, or multiple modalities. An example of

an all-visual embodiment is shown in FIG. 2, in this case showing the use of a touch input

device. In particular, FIG. 2 shows the result after a user has touched and then dragged an icon

210 representing an inbox. When the user touches the icon 210, a border 220 or other suitable

primitive may be displayed. In an embodiment, in an all-visual low-latency feedback, a suitable

low-fidelity representation may be selected due to its ease of rendering. In an embodiment, a

low-latency feedback may be provided using one or more primitives that can provide a suitable

low-fidelity representation. In an embodiment, if the user drags the icon to another place on the

touch display 200, a low fidelity border 230 is displayed and may be manipulated (e.g., moved)

with a low latency of, for example, 1 ms. Simultaneously, the movement of the icon 210 may be

shown with higher latency. In an embodiment, the difference in response between the nearly

immediate low-latency response and the likely slower application-logic feedback can be

perceived by a user. In another embodiment, this difference in response between the low-latency

response and a traditional response is blended and less noticeable or not noticeable to a user. In

an embodiment, the nearly immediate feedback may be provided at a lower fidelity than the

traditional-path application-logic feedback. In an embodiment, in at least some cases, the low

latency response may be provided at similar or even higher fidelity than the application-logic

feedback. In an embodiment, the form of low-latency nearly immediate feedback is dictated by

application logic, or logic present in the system software (such as the user interface toolkit). For

example, in an embodiment, application logic may pre-render a variety of graphical primitives

that can then be used by a low-latency subsystem. Similarly, in an embodiment, a software

toolkit may provide the means to develop graphical primitives that can be rendered in advance of

being needed by the low latency system. In an embodiment, low-latency responses may be

predetermined, or otherwise determined without regard to application and/or system software

logic. In an embodiment, individual pre-rendered or partially rendered low-latency responses, or

-7-

WO 2015/120073 PCT/US2015/014494

packages of pre-rendered or partially rendered low-latency responses can be pre-loaded into a

memory so as to be accessible to the low-latency subsystem in advance of being needed for use

in response to a user input event.

[0034] In an embodiment, the modality of low-latency output might be auditory. In an

embodiment, the low-latency system may be used, for example, to send microphone input

quickly to the audio output system, which may provide users with an "echo" of their own voice

being spoken into the system. Such a low-latency output may provide the impression of having

the same type of echo characteristics as traditional analog telephones, which allow a user to hear

their own voice. In an embodiment, low-latency auditory feedback might be provided in response

to user input events (e.g., touch, gesture, pen input, oe oral inputs), with a higher latency

response provided visually.

[0035] Another illustrative embodiment of a system that employs the present method and system

is shown in FIG. 3. In the illustrative system, a cursor 310 (represented by the box containing a

"cross" character) can be dragged anywhere on a device's screen 300. When cursor 310 is

dragged to target box 320, the UI action is accepted. If the cursor 310 is dragged elsewhere on

the screen 300, the action is rejected. In an embodiment, when dragged, the cursor 310 is drawn

with low latency, and thus tracks the user's finger without perceptible latency. In an embodiment,

the target 320 can be drawn with higher latency without impacting user perception. Similarly, in

an embodiment, the response 330 of "REJECT" or "ACCEPT" may occur perceptibly later, and

thus it can be drawn at a higher latency, e.g., not using the low latency subsystem, without

impacting user perception.

[0036] It should be understood that the illustrated embodiment is exemplary. The principles

illustrated in FIG. 3 may be applied to any kind of UI element, including all UI elements that are

now known, or later developed in the art. Similarly, the principals illustrated in FIG. 3 can be

used with substantially any kind of input event on various types of input devices and/or output

devices. For example, in an embodiment, in addition to a "touch" event as illustrated above, input

events can include, without limitation, in-air or on-surface gestures, speech, voluntary (or

involuntary eye movement, and pen. In an embodiment, once a gesture takes place, the response

of any UI element may be bifurcated, where a low-latency response (e.g., a low-fidelity

representation of a UI element is presented and responds quickly, for example, in 0.01 ms.), and

a non-low-latency response (e.g., a further refined representation of the UI element) is provided

with latency commonly exhibited by a system that does not provide accelerated input. In an

-8-

WO 2015/120073 PCT/US2015/014494

embodiment, responses may not be split in a hybrid system, and may instead be entirely low

latency, with application logic not responsible for the low-latency response otherwise executing

with higher latency.

[0037] In an embodiment, touch and/or gesture input events can be achieved using a variety of

technologies, including, without limitation, resistive, direct illumination, frustrated total-internal

reflection, diffuse illumination, projected capacitive, capacitive coupling, acoustic wave, and

sensor-in-pixel. In an embodiment, pen input can be enabled using resistive, visual, capacitive,

magnetic, infrared, optical imaging, dispersive signal, acoustic pulse, or other techniques. In an

embodiment, gestural input may also be enabled using visual sensors or handheld objects

(including those containing sensors, and those used simply for tracking), or without handheld

objects, such as with 2D and 3D sensors. Combinations of the sensors or techniques for

identifying input events are also contemplated, as are combinations of event types (i.e., touch,

pen, gesture, retna movement, etc.) One property technologies to identify or capture input events

share is that they contribute to the latency between user action and the system's response to that

action. The scale of this contribution varies across technologies and implementations.

[0038] In a typical multitouch system, there is a path of information flow between the input

device and the display that may involve communications, the operating system, UI toolkits, the

application layer, and/or ultimately, the audio or graphics controller. Each of these can add

latency. Moreover, latency introduced by an operating system, especially a non-real time

operating system, is variable. Windows, iOS, OSX, Android, etc. are not real time operating

systems, and thus, using these operating systems, there is no guarantee that a response will

happen within a certain time period. If the processor is heavily loaded, for example, latency may

increase dramatically. Further, some operations are handled at a very low level in the software

stack and have high priority. For example, the mouse pointer is typically highly optimized so that

even when the processor is under heavy load, the perceived latency is relatively low. In contrast,

an operation such as resizing a photo with two fingers on a touch or gestural system is generally

much more computationally intensive as it may require constant resealing of the image at the

application and/or UI toolkit levels. As a result, such operations are rarely able to have a low

perceived latency when the processor is under heavy load.

[0039] In a typical multitouch system, the display system (including the graphics system as well

as the display itself) may also contribute to latency. Systems with high frame rates may obscure

the actual latency through the system. For example, a 60 Hz monitor may include one or more

-9-

WO 2015/120073 PCT/US2015/014494

frames of buffer in order to allow for sophisticated image processing effects. Similarly some

display devices, such as projectors, include double-buffering in the electronics, effectively

doubling the display latency. The desire for 3D televisions and reduced motion artifacts is

driving the development of faster LCDs, however, the physics of the liquid crystals themselves

make performance of traditional LCD's beyond 480 Hz unlikely. In an embodiment, the low

latency system described herein may use an LCD display. In contrast to the performance of an

LCD display, OLED or AMOLED displays are capable of response times well below Ims.

Accordingly, in an embodiment, the high performance touch (or gesture) system described herein

may be implemented on displays having fast response times, including, without limitation

displays based on one or more of the following technologies: OLED, AMOLED, plasma,

electrowetting, color-field-sequential LCD, optically compensated bend-mode (OCB or Pi-Cell)

LCD, electronic ink, etc.

Latency Perception Studies

[0040] Studies were undertaken to determine what latencies in a direct touch interface users

perceive as essentially instantaneous. A prototype device represented in a block diagram in FIG.

4 shows an illustrative embodiment of a basic architecture of a prototype high-performance touch

system 400. In an embodiment, the high-speed input device 420 is a multi-touch resistive touch

sensor having an active area of 24 cm x 16 cm, and electronics that allow for very high-speed

operation. The delay through this sensor is slightly less than 1 ms. In an embodiment, touch data

may be transmitted serially over an optical link.

[0041] In the illustrative testing system, the display 460 is a DLP Discovery 4100 kit based on

Texas Instruments' Digital Light Processing technology. The illustrative testing system utilizes

front-projection onto the touch sensor thus eliminating parallax error that might disturb a user's

perception of finger and image alignment. The DLP projector employed uses a Digital

Micromirror Device (DMD), a matrix of mirrors which effectively turns pixels on or off at very

high speed. The high speed of the mirrors may be used to change the percentage time on vs. off

to create the appearance of continuous colored images. In an embodiment, where only simple

binary images are used, these can be produced at an even higher rate. In the illustrative testing

system, the projector development system displays 32,000 binary frames/second at 1024x768

resolution with latency under 40 pts. In the illustrative testing system to achieve this speed, the

video data is streamed to the DMD at 25.6 Gbps.

- 10 -

WO 2015/120073 PCT/US2015/014494

[0042] In the illustrative testing system, to achieve minimal latency, all touch processing is

performed on a dedicated FPGA 440 -no PC or operating system is employed between the touch

input and the display of low latency output. The DLP kit's onboard XC5VLX50 application

FPGA may be used for processing the touch data and rendering the video output. A USB serial

connection to the FPGA allows parameters to be changed dynamically. In the illustrative testing

system, latency can be adjusted from 1 ms to several hundred ms with 1 ms resolution. Different

testing modes can be activated, and a port allows touch data to be collected for analysis.

[0043] In the illustrative testing system, to receive touch data from the sensor 420, the system

communicates through a custom high-speed UART. To minimize latency, a baud rate of 2 Mbps

can be used, which represents a high baud rate that can be used without losing signal integrity

due to high frequency noise across the communication channel. In the illustrative testing system,

the individual bytes of compressed touch data are then processed by a touch detection finite state

machine implemented on the FPGA 440. The finite-state machine (FSM) simultaneously decodes

the data and performs a center-of-mass blob-detection algorithm to identify the coordinates of the

touches. In the illustrative testing system, the system is pipelined such that each iteration of the

FSM operates on the last received byte such that no buffering of the touch data occurs.

[0044] In the illustrative testing system, the touch coordinates are then sent to a 10-stage variable

delay block. Each delay stage is a simple FSM with a counter and takes a control signal that

indicates the number of clock cycles to delay the touch coordinate, allowing various levels of

latency. The delay block latches the touch sample at the start of the iteration and waits for the

appropriate number of cycles before sending the sample and latching the next. The delay block

therefore lowers the sample rate by a factor of the delay count. In an embodiment, to keep the

sample rate at a reasonable level, 10 delay stages can be used, so that, for example, to achieve

100 ms of latency, the block waits 10 ms between samples for a sample rate of 100 Hz. In the

illustrative testing system, to run basic applications, a MicroBlaze soft processor is used to render

the display.

[0045] In an embodiment, the testing system may use a hard coded control FSM in place of the

MicroBlaze for improved performance. In an embodiment another soft processor may be used. In

the illustrative testing system, the MicroBlaze is a 32-bit Harvard architecture RISC processor

optimized to be synthesized in Xilinx FPGAs. The MicroBlaze soft processor instantiation allows

the selection of only the cores, peripherals, and memory structures required. In the illustrative

testing system, in addition to the base MicroBlaze configuration, an interrupt controller can be

- 11 -

WO 2015/120073 PCT/US2015/014494

used, for example, GPIOs for the touch data, a GPIO to set the variable latency, a BRAM

memory controller for the image buffer, and a UART unit to communicate with a PC. In the

illustrative testing system, the MicroBlaze is clocked at 100 MHz. The MicroBlaze uses an

interrupt system to detect valid touch coordinates. A touch ready interrupt event is generated

when valid touch data arrives on the GPIOs from the delay block, and the corresponding image is

written to the image buffer. Because of the non-uniform nature of an interrupt-based system, the

exact latency cannot be computed, but, by design, it is insignificant in comparison to the 1 ms

latency due to the input device.

[0046] In the illustrative testing system, the image buffer is synthesized in on-chip BRAM

blocks. These blocks can provide a dual-port high-speed configurable memory buffer with

enough bandwidth to support high frame-rate display. In the illustrative testing system, the

image buffer is clocked at 200 MHz with a bus width of 128 bits for a total bandwidth of 25.6

Gbps, as needed by the DLP. Finally, the DMD controller continuously reads out frames from the

image buffer and generates the signals with appropriate timing to control the DMD.

[0047] In the illustrative testing system, user input is sent simultaneously to a traditional PC, and

is processed to produce a traditional, higher latency, response. This higher latency response is

output by a traditional data projector, aligned to overlap with the projected lower latency

response.

[0048] Studies were conducted to determine the precise level of performance that users are able

to perceive when performing common tasks on a touch screen interface. To that end, studies were

conducted to determine the just-noticeable difference (JND) of various performance levels. JND

is the measure of the difference between two levels of a stimulus which can be detected by an

observer. In this case, the JND is defined as the threshold level at which a participant is able to

discriminate between two unequal stimuli - one consistently presented at the same level, termed

the reference, and one whose value is changed dynamically throughout the experiment, termed

the probe. A commonly accepted value for the JND at some arbitrary reference value is a probe

at which a participant can correctly identify the reference 75% of the time. A probe value that

cannot be distinguished from the reference with this level of accuracy is considered to be "not

noticeably different" from the reference.

[0049] Studies were conducted to determine the JND level of the probe latency when compared

to a maximum performance of 1 ms of latency, which served as the reference. While such a

determination does not provide an absolute value for the maximum perceptible performance, it

- 12 -

WO 2015/120073 PCT/US2015/014494

can serve as our "best case" floor condition against which other levels of latency can be

measured, given that it was the fastest speed our prototype could achieve. It was found

participants are able to discern latency values that are significantly lower (< 20 ms) which typical

current generation hardware (e.g., current tablet and touch computer) provides (~50-200 ms).

[0050] Ten right-handed participants (3 female) were recruited from the local community. Ages

ranged between 24 and 40 (mean 27.80, standard deviation 4.73). All participants had prior

experience with touch screen devices, and all participants owned one or more touch devices

(such as an iOS- or Android- based phone or tablet). Participants were repeatedly presented with

pairs of latency conditions: the reference value (1 ms) and the probe (between 1 and 65 ms of

latency). Participants dragged their finger from left to right, then right to left on the touch screen

display. While any dragging task would have been suitable, left/right movements reduce

occlusion in high-latency cases. Participants were asked to move in both directions to ensure

they did not "race through" the study. Beneath the user's contact point, the system rendered a

solid white 2 cm x 2 cm square as seen in FIG. 1. The speed of movement was left to be decided

by the participants. The order of the conditions was randomized for each pair. The study was

designed as a two-alternative forced-choice experiment; participants were instructed to choose,

within each trial, which case was the reference (1 ms) value and were not permitted to make a

"don't know" or "unsure" selection. After each pair, participants informed the experimenter

which of the two was "faster".

[0051] In order for each trial to converge at a desired JND level of 75%, the amount of added

latency was controlled according to an adaptive staircase algorithm. Each correct identification of

the reference value caused a decrease in the amount of latency in the probe, while each incorrect

response caused the probe's latency to increase. In order to reach the 75 % confidence level,

increases and decreases followed the simple weighted up-down method described by Kaernbach

(Kaernbach, C. 1991. Perception & Psychophysics 49, 227-229), wherein increases had a three

fold multiplier applied to the base step size, and decreases were the base step size (initially 8 ms).

[0052] When a participant responded incorrectly after a correct response, or correctly after an

incorrect response, this was termed a reversal as it caused the direction of the staircase

(increasing or decreasing) to reverse. The step size, initially 8 ms, was halved at each reversal, to

a minimum step size of 1 ms. This continued until a total of 10 reversals occurred, resulting in a

convergence at 75% correctness. Each participant completed eight staircase "runs." Four of these

started at the minimum probe latency (1 ms) and four at the maximum (65 ms). The higher

- 13 -

WO 2015/120073 PCT/US2015/014494

starting value of the staircase was chosen because it roughly coincides with commercial

offerings, and because pilot testing made it clear that this value would be differentiated from the

1 ms reference with near 100% accuracy, avoiding ceiling effects. Staircases were run two at a

time in interleaved pairs to prevent response biases that would otherwise be caused by the

participants' ability to track their progress between successive stimuli. Staircase conditions for

each of these pairs were selected at random without replacement from possibilities (2 starting

levels x 4 repetitions). The entire experiment, including breaks between staircases, was

completed by each participant within a single 1-hour session.

[0053] The study was designed to find the just-noticeable difference (JND) level for latency

values greater than 1 ms. This JND level is commonly agreed to be the level where the

participant is able to correctly identify the reference 75% of the time. Participant JND levels

ranged from 2.38 ms to 11.36 ms, with a mean JND across all participants of 6.04 ms (standard

deviation 4.33 ms). JND levels did not vary significantly across the 8 runs of the staircase for

each participant. Results for each participant appear in FIG. 5.

[0054] The results show participants were able to discern differences in latency far below the

typical threshold of consumer devices (50-200 ms). It is noted that participants were likely often

determining latency by estimating the distance between the onscreen object and their finger as it

was moved around the touch screen; this is an artifact of input primitives used in Uls

(specifically, dragging). Testing a different input primitive (tapping, for example) would exhibit

different perceptions of latency. Results confirm that an order-of magnitude improvement in

latency would be noticed and appreciated by users of touch devices.

An Architecture for a Low-Latency Direct Touch Input Device

[0055] In an embodiment, a software interface may be designed that enables application

developers to continue to use toolkit-based application design processes, but enable those toolkits

to provide feedback at extremely low latencies, given the presence of a low-latency system. In an

embodiment, the systems and methods outlined in the present disclosure may be implemented on

the model-view-controller ("MVC") model of UI development, upon which many UI toolkits are

based. An MVC permits application logic to be separated from the visual representation of the

application. In an embodiment, an MVC may include, a second, overlaid de facto view for the

application. In particular, in an embodiment, touch input receives an immediate response from

the UI controls, which is based in part on the state of the application at the time the touch is

- 14 -

WO 2015/120073 PCT/US2015/014494

made. The goal is to provide nearly immediate responses that are contextually linked to the

underlying application.

[0056] Previous work on application independent visual responses to touch are completely

separate from even the visual elements of the UI, adding visual complexity. In an embodiment,

according to the systems and methods outlined herein, a set of visual responses are more fully

integrated into the UI elements themselves so as to reduce visual complexity. Thus, in an

embodiment, where the particular visuals shown provide a de facto "mouse pointer" for touch,

the goal is to integrate high performance responses into the controls themselves, providing a

more unified visualization. None the less, in an embodiment, the systems and methods allow the

rendering of context-free responses by the low-latency subsystem, which are later merged with

responses from the high-latency subsystem. In an embodiment, visuals need not be presented in

the same rendering pipeline as the rest of the system's response. Instead, a system or method

which utilizes hybrid feedback as discussed herein may present lower latency responses to user

input in addition to the higher latency responses generated by the traditional system.

[0057] Thus, in an embodiment, accelerated input interactions are designed such that the

traditional direct-touch software runs as it would normally, with high-latency responses, while an

additional set of feedback, customized for the UI element, is provided at a lower latency; with a

target of user-imperceptible latency. In an embodiment, these two layers are combined by

superimposing two or more images. In an embodiment, two combined images may include one

projected image from the low-latency touch device, and a second from a traditional projector

connected to a desktop computer running custom touch software, receiving input from the low

latency subsystem.

[0058] The two projector solution described above is meant only to serve as one particular

embodiment of the more general idea of combining a low latency response and a traditional

response. In an embodiment, the visual output from the low and high-latency sub-systems are

logically combined in the display buffer or elsewhere in the system before being sent to the

display, and thus, displayed. In an embodiment, transparent, overlapping displays present the

low and high-latency output to the user. In an embodiment, the pixels of a display are interlaced

so that some are controlled by the low latency subsystem, and some are controlled by the high

latency sub-system; through interlacing, these displays may appear to a user to overlap. In an

embodiment, frames presented on a display are interlaced such that some frames are controlled

by the low latency subsystem and some frames are controlled by the high-latency sub-system;

- 15 -

WO 2015/120073 PCT/US2015/014494

through frame interlacing, the display may appear to a user to contain a combined image. In an

embodiment, the low-latency response may be generated predominantly or entirely in hardware.

In an embodiment, the low-latency response may be generated from input sensor data received

directly from the input sensor. In an embodiment, the low-latency response is displayed by

having a high bandwidth link to the display hardware.

[0059] In designing a user interface for a low-latency subsystem, one or more of the following

constraints may be considered:

* Information: any information or processing needed from the high-latency subsystem in

order to form the system's response to input will, necessarily, have high latency, unless

such information or processing is e.g., pre-rendered or pre-served.

* Performance: the time allowed for formation of responses in low latency is necessarily

limited. Even with hardware acceleration, the design of responses must be carefully

performance-driven to guarantee responses meet the desired low latency.

* Fidelity: the fidelity of the rendered low-latency image may be indistinguishable from the

higher-latency rendering (indeed, it may be pre-rendered by the high latency system);

additional constraints may be placed on fidelity to improve performance, such as, e.g.,

that visuals are only monochromatic, and/or limited to visual primitives, and/or that the

duration or characteristics of audio or haptic responses are limited. Constraints of this

type may be introduced by various elements of the system, including acceleration

hardware or by the output hardware (such as the display, haptic output device, or

speakers).

* Non-Interference: in embodiments where responses are hybridized combinations, some of

the application's response may be generated in the low-latency layer, and some in the

high-latency layer, a consideration may be how the two are blended, e.g., to provide a

seamless response to the user's input. In an embodiment, low-latency responses do not

interfere with any possible application response, which will necessarily occur later. In an

embodiment, interference may occur between a low-latency response and the traditional

response, but the interference may be handled through design, or through blending of the

responses.

[0060] In an embodiment, a design process was conducted to create a set of visual UI controls

with differentiated low and high latency visual responses to touch. A metaphor was sought which

would enable a seamless transition between the two layers of response. These visualizations

- 16 -

WO 2015/120073 PCT/US2015/014494

included such information as object position and state. The designs were culled based on

feasibility using the above-described constraints. The final design of such embodiment was based

on a heads-up display (HUD) metaphor, similar to the visualizations used in military aircraft. The

HUD was suitable, since traditional HUDs are geometrically simple, and it is relatively easy to

implement a geometrically simple display at an authentic fidelity. The HUD represents just one

example of two visual layers being combined, though in many HUDs, a computerized display is

superimposed on video or the "real world" itself. Accordingly, a HUD is generally designed to be

non-interfering.

[0061] Based on the HUD metaphor, an exemplary set of touch event and UI element-specific

low-latency layer visualizations were developed for a set of UI elements found in many direct

touch systems. These exemplary elements are both common and representative; their interactions

(taps, drags, two-finger pinching) cover the majority of the interaction space used in current

direct-touch devices. The low-latency responses developed in such an embodiment are described

in Table 1, and they are shown in FIG. 6-8.

Element Touch Down Touch Move Touch Up

Button Bounds outlined (none) If within bounds, 2 "d

(FIG. 6) 610 outline 620, else none

Draggable/Resizable Bounds outlined Outline changes and moves with Outline 710 fades when

(FIG. 7) 710 input position 720 and/or scales with high-latency layer

input gesture 730 catches up

Scrollable List List item If scroll gesture, list edges If list item selection,

(FIG. 8) outlined 810 highlight 830 to scroll distance. outline 820 scales

If during scroll gesture, edge down and fades

highlights 840) fade as high

latency layer catches up

Table 1: Accelerated visuals for each element and touch event, which compliment standard high

latency responses to touch input.

[0062] These three elements represent broad coverage of standard UI toolkits for touch input.

Most higher-order UI elements are composed of these simpler elements (e.g. radio buttons and

- 17 -

WO 2015/120073 PCT/US2015/014494

checkboxes are both "buttons," a scrollbar is a "draggable/resizable" with constrained translation

and rotation). The accelerated input system and method described herein depends on the

marriage of visuals operating at two notably different latency levels; this latency difference has

been incorporated into the design of low-latency visualizations. In an embodiment, users may be

informed of the state of both systems, with a coherent synchronization as the visual layers come

into alignment. In an embodiment, a user may be able to distinguish between the high and low

latency portions of system feedback. In an embodiment, the visual elements are blended in a

manner that provides no apparent distinction between the low-latency response and the

traditional response.

[0063] In an embodiment, an application developer utilizes a toolkit to build their application

through the normal process of assembling GUI controls. Upon execution, the UI elements

bifurcate their visualizations, with high- and low- latency visualizations rendered and overlaid on

a single display. An embodiment of information flow through such a system is as shown in FIG.

9. Information flows into the system from an input device 910 and is initially processed by an

input processing unit (IPU) 920, programmed via an IPU software toolkit 930. UI events are then

processed in parallel by two subsystems, a low-latency, low fidelity subsystem 940, and a high

latency subsystem 950 such as, for example, conventional software running in a conventional

software stack. In an embodiment, the low-latency, low fidelity subsystem 940 may be

implemented in hardware, such as the FPGA 440 of FIG. 4.

[0064] The bifurcation described in this embodiment creates a fundamental communication

problem where any parameterization of the initial responses provided by the low-latency

subsystem 940 required by application logic must be defined before the user begins to give input.

Any response which requires processing at the time of presentation by the application will

introduce a dependency of the low-latency system 940 upon the high-latency system 950, and

may therefore introduce lag back into the system. In an embodiment, later stages of the low

latency system's 940 response to input may depend on the high latency subsystem 950. In an

embodiment, dependency of the later stages of a low-latency subsystem's 940 response to input

on the high latency subsystem 950 is managed such that the dependency does not introduce

additional latency. In an embodiment the dependency would be avoided entirely.

[0065] In an embodiment, UI element logic may be built into the low-latency subsystem.

Between user inputs, the application executing in the high-latency subsystem 950, has the

opportunity to provide parameters for the low-latency subsystem's 940 model of the UI elements.

- 18 -

WO 2015/120073 PCT/US2015/014494

Thus, in an embodiment, the MVC model of UI software design may be extended by providing a

separate controller responsible for low-latency feedback. In an embodiment, in the software

design, one or more of the following can be specified for each control:

* Element type (e.g., button, draggable object, scrollable list, etc.).

* Bounding dimensions (e.g., x position, y position, width, height, etc.).

* Conditional: additional primitive information (e.g., size of list items in the case of a

scrollable list, etc.).

[0066] In an embodiment, logic for a given element-type's response to touch input is stored

in the low-latency subsystem 940. Further parameterization of the low-latency sub-system's

responses to user input could be communicated in the same manner, allowing a greater degree of

customization. In an embodiment, sensor data is processed to generate events (or other processed

forms of the input stream), which are then separately distributed to the low-latency subsystem

940 and to the high-latency subsystem 950. Events may be generated at different rates for the

low-latency subsystem 940 and high-latency subsystem 950, because the low-latency subsystem

is capable of processing events faster than the high-latency subsystem, and sending events to the

high-latency sub-system at a high rate may overwhelm that subsystem. The low- and high

latency subsystems' response to user input is therefore independent but coordinated. In an

embodiment, one subsystem acts as the "master," setting state of the other subsystem between

user inputs. In an embodiment, the relationship between the low- and high- latency subsystems

includes synchronization between the two subsystems. In an embodiment, the relationship

between the low- and high- latency subsystems includes the ability of the high-latency subsystem

to offload processing to the low-latency subsystem 940. In an embodiment, the relationship

between the low- and high- latency subsystems includes the ability of the low-latency subsystem

940 to reduce its processing Load and/or utilize the high-latency subsystem 950 for pre

processing or pre-rendering. In an embodiment, a second graphical processing and output

system's response is dependent upon a first graphical processing and output system, and state

information is passed from the first graphical processing and output system to the second

graphical processing and output system. In such embodiments, information passed from the first

graphical processing and output system to the second graphical processing and output system is

comprised of one or more pieces of data describing one or more of the graphical elements in the

user interface. This data may be, e.g., the size, the location, the appearance, alternative

appearances, response to user input, and the type of graphical elements in the user interface. The

- 19 -

WO 2015/120073 PCT/US2015/014494

data passed from the first graphical processing and output system to the second graphical

processing and output system may be stored in high-speed memory available to the second

graphical processing and output system. The passed data may describe the appearance and/or

behavior of a button, a slider, a draggable and/or resizable GUI element, a scrollable list, a

spinner, a drop-down list, a menu, a toolbar, a combo box, a movable icon, a fixed icon, a tree

view, a grid view, a scroll bar, a scrollable window, or a user interface element.

[0067] In an embodiment, an input processing system performs decimation on the user input

signals before they are received by one or both of the first or second graphical processing and

output systems. The decimated input signals or non-decimated signals are chosen from the set of

all input signals based on information about the user interface sent from the first graphical

processing and output system. The decimation of input signals may be performed by logically

combining the set of input signals into a smaller set of input signals. Logical combination of

input signals may be performed through windowed averaging. The decimation considers the

time of the user input signals when reducing the size of the set of input signals. The logical

combination of input signals can be performed through weighted averaging. In an embodiment,

the user input signals received by the first and second graphical processing and output systems

have been differentially processed.

[0068] In an embodiment, communication between the high-latency and low-latency layers

may be important. Some points which are considered in determining how the high- and low

latency subsystems remain synchronized are described below:

Latency differences: Low-latency responses may use information about the latency

difference between the high- and low- latency layers in order to synchronize responses. In

an embodiment, these latency values are static, and thus preprogrammed into the FPGA.

In an embodiment where latency levels may vary in either subsystem, it may be

advantageous to fix the latency level at an always-achievable constant rather than having

a dynamic value that may become unsynchronized, or provide an explicit synchronization

mechanism. In an embodiment where latency levels may vary in either subsystem, a

dynamic value may be used, however, care should be taken to avoid becoming

unsynchronized. In an embodiment where latency levels may vary in either subsystem,

an explicit synchronization mechanism may be provided between the subsystems 940,

950.

-20 -

WO 2015/120073 PCT/US2015/014494

" Hit testing: Hit testing decisions are often conditional on data regarding the visual

hierarchy and properties of visible UI elements. In an embodiment, this consideration can

be resolved by disallowing overlapping bounding rectangles, requiring a flat, 'hit test

friendly' map of the UI. In an embodiment separate hit testing may provide the necessary

information (object state, z-order, and listeners) to the low-latency subsystem. In an

embodiment both the low- and high-latency subsystems may conduct hit testing in

parallel. In an embodiment the low-latency subsystem conducts hit testing, and provides

the results to the high-latency subsystem.

* Conditional responses: Many interface visualizations are conditional not only on

immediate user input, but on further decision-making logic defined in the application

logic.

[0069] Two illustrative examples of conditional response logic are as follows: Consider a credit

card purchase submission button, which is programmed to be disabled (to prevent double billing)

when pressed, but only upon validation of the data entered into the form. In such a case, the

behavior of the button is dependent not only on an immediate user interaction, but is further

conditional on additional information and processing. Consider also linked visualizations, such

as the one shown in FIG. 10. In this case, feedback is provided to the user not only by the UI

element they are manipulating 1010, but also by a second UI element 1020. These examples

could be programmed directly into a low-latency subsystem.

[0070] In an embodiment, the division between the high- and low- latency subsystems may be

independent of any user interface elements. Indeed, the division of responsibility between the

subsystems can be customized based on any number of factors, and would still be possible in

systems that lack a user interface toolkit, or indeed in a system which included mechanisms to

develop applications both within and without the use of a UI toolkit which might be available. In

an embodiment, the division of responsibility between the two subsystems can be dynamically

altered while the subsystems are running. In an embodiment, the UI toolkit itself may be

included within the low-latency subsystem. The ability to customize responses can be provided

to application developers in a number of ways without departing from the systems and methods

herein described. In an embodiment, responses may be customized as parameters to be adjusted

in UI controls. In an embodiment, responses may be customized by allowing for the ability to

provide instructions directly to the low-latency subsystem, in code which itself executes in the

- 21 -

WO 2015/120073 PCT/US2015/014494

low-latency subsystem, or in another high- or low-latency component. In an embodiment, the

state of the low-latency subsystem could be set using data generated by application code, e.g., at

runtime.

[0071] While many of the examples described above are provided in the context of a touch input,

other embodiments are contemplated, including, without limitation, pen input, mouse input,

indirect touch input (e.g., a trackpad), in-air gesture input, oral input and/or other input

modalities. The architecture described would be equally applicable to any sort of user input

event, including, without limitation, mixed input events (i.e., supporting input from more than

one modality). In an embodiment, mixed input devices may result in the same number of events

being generated for processing by each of the low- and high- latency subsystems. In an

embodiment, mixed input devices would be differentiated in the number of events generated,

thus, for example, touch input might have fewer events than pen input. In an embodiment, each

input modality comprises its own low-latency subsystem. In an embodiment, in systems

comprising multiple low-latency subsystems for multiple input modalities, the subsystems might

communicate to coordinate their responses. In an embodiment, in systems comprising multiple

low-latency subsystems for multiple input modalities, the multiple subsystems may share a

common memory area to enable coordination.

Input Processing

[0072] In an embodiment of the invention, low-latency input data from the input hardware is

minimally processed into a rapid stream of input events. This stream of events is sent directly to

the low-latency sub-system for further processing. Events from this same stream may then be

deleted, or the stream may be otherwise reduced or filtered, before being sent to the high-latency

subsystem. Events may be generated at different rates for the low-latency subsystem 940 and

high-latency subsystem 950 because the low-latency subsystem is capable of processing events

faster than the high-latency subsystem, and sending events to the high-latency sub-system at a

high rate may overwhelm that subsystem. The low- and high-latency subsystems' response to

user input may therefore be independent but coordinated.

[0073] The reduction of events can be optimized. In an embodiment, representative events may

be selected among candidate events based on criteria associated with one or more of the

application, the UI element, the input device, etc. An example of this for pen input when the user

is drawing digital ink strokes might include selecting events which fit best to the user's drawn

stroke. Another example for speech input is to favor events where subsequent events in the

- 22 -

WO 2015/120073 PCT/US2015/014494

output stream would have similar volume, thereby "evening out" the sound coming from the

microphone. Another example for touch input is to favor events which would result in the output

event stream having a consistent speed, providing more "smooth" output. This form of

intelligent reduction acts as an intelligent filter, without reducing performance of the high-latency

subsystem. In an embodiment, new events (e.g., consolidated events or pseudo-events) could be

generated which represent an aggregate of other events in the input stream. In an embodiment,

new events (e.g., corrected events, consolidated events or pseudo-events) may be generated that

represent a more desirable input stream, e.g., a correction or smoothing. For example, for in-air

gesture input, for every 10 events from the high-speed input device, the high-latency subsystem

may be sent the same number or fewer events which provide an "average" of actual input events,

thus smoothing the input and removing jitter. New events could also be generated which are an

amalgam of multiple "desired" levels of various parameters of an input device. For example, if

the intelligent reductions of the tilt and pressure properties of a stylus would result in the

selection of different events, a single, new, event object could be created (or one or more existing

event objects modified) to include the desired values for each of these properties.

[0074] In an embodiment, an IPU or low-latency subsystem system might be used to provide the

high-latency system with processed input information. One or more of methods could be used to

coordinate the activities of the two subsystems. These include:

a. In an embodiment, the low-latency subsystem can respond to all user input

immediately, but wait for the user to stop the input (e.g. lifting a finger or pen,

terminating a gesture) before providing the input to the high-latency system. This

has an advantage of avoiding clogging the system during user interaction while

still processing the totality of the data.

b. In an embodiment, the low-latency system can provide a reduced estimate of input

in near real-time; and may optionally store a complete input queue that can be

available to the high-latency system upon request.

c. In an embodiment, user feedback may be divided into two steps. The first, a low

latency feedback, would provide a rough, immediate representation of user input

1130 in FIG. 11. The second, a high-latency system response 1140, could replace

the first 1130, whenever the high-latency system is able to compute a refined

response, for example after lift-off of the pen 1150 tip. Alternatively, the high

-23 -

WO 2015/120073 PCT/US2015/014494

latency feedback could be continuously "catching up" to (and possibly

subsuming) the low latency feedback.

d. In an embodiment, the low-latency system can infer simple gesture actions from

the input stream, and thus generate gesture events which are included in the input

queue in addition to, or replacing, the raw events.

e. In an embodiment, an IPU or low-latency subsystem can use multiple input

positions to predict future input positions. This prediction can be passed along to

the high-latency subsystem to reduce its effective latency.

f. In an embodiment, algorithms which may benefit from additional samples, or

earlier detection, are executed in the IPU or low-latency subsystem. In an

embodiment, the execution of these events can be limited in time. For example,

the initial 50 events can be used to classify an input as a particular finger, or to

differentiate between finger and pen inputs. In an embodiment, these algorithms

can run continuously.

g. In an embodiment, the process of the low-latency subsystem passing a stream of

events to the high-latency subsystem might be delayed in order to receive and

process additional sequential or simultaneous related inputs which might

otherwise be incorrectly regarded as unrelated inputs. For example, the letter "t" is

often drawn as two separate, but related, strokes. In the normal course, the portion

of the input stream passed from the low-latency to the high-latency system would

include a "pen up" signal at the end of drawing the first line. In an embodiment,

the reduction process waits for the very last frame of input within the sample

window to pass along an "up" event, in case the pen is again detected on the

display within the window, thus obviating the need for the event.

- 24 -

WO 2015/120073 PCT/US2015/014494

Hardware Architecture

[0075] In an embodiment, data flows through two overlapping paths through the components

of the system to support both high- and low- latency feedback. FIG. 12 shows one such system,

which includes an Input Device 1210, an IPU 1220, a System Bus 1230, a CPU 1240 and a GPU

1280 connected to a Display 1290. A User 1200 performs input using the Input Device 1210.

This input is sensed by the IPU 1220 which in various embodiments can be either an FPGA,

ASIC, or additional software and hardware logic integrated into a GPU 1280, MPU or SoC. At

this point, the control flow bifurcates and follows two separate paths through the system. For

low-latency responses to input, the IPU 1220 sends input events through the System Bus 1230 to

the GPU 1280, bypassing the CPU 1240. The GPU 1280 then rapidly displays feedback to the

User 1200. For high-latency response to input, the IPU 1220 sends input events through the

System Bus 1230 to the CPU 1240, which is running the graphical application and which may

interact with other system components. The CPU 1240 then sends commands via the System

Bus 1230 to the GPU 1280 in order to provide graphical feedback to the User 1200. The low

latency path from Input Device 1210 to IPU 1220 to System Bus 1230 to GPU 1280 is primarily

hardware, and operates with low-latency. The high-latency path from Input Device 1210 to IPU

1220 to System Bus 1230 to CPU 1240 back to System Bus 1230 to GPU 1280 is high-latency

due to the factors described earlier in this description. In a related embodiment, the Input Device

1210 communicates directly with the GPU 1280 and bypasses the System Bus 1230.

[0076] FIG. 13 shows a familiar programing paradigm called Model View Controller. In this

paradigm, the User 1300 performs input on the Controller 1310, which in turn manipulates the

Model 1320 based on this input. Changes in the Model 1320 result in changes to the View 1330,

which is observed by the User 1300. Some of the latency addressed by the present invention is

due to latency in the input, communication among these components, and display of the graphics

generated by the View 1330 component.

[0077] FIG. 14 shows an embodiment of an architecture that supports developing and

running applications on a system with blended high- and low- latency responses to user input.

The User 1400 performs input with the input device 1410. This input is received by the IPU

1420. The IPU 1420 sends input events simultaneously to the Controller 1430 running in the

high-latency subsystem via traditional mechanisms and to the ViewModel(L) 1490 running in the

low-latency subsystem. Input is handled by the Controller 1430, which manipulates the Model

1440 running in the high-latency subsystem, which may interact with data in volatile memory

- 25 -

WO 2015/120073 PCT/US2015/014494

1450, fixed storage 1470, network resources 1460, etc. (all interactions that introduce lag). Input

events received by the ViewModel(L) 1490 result in changes to the ViewModel(L) which are

reflected in changes to the View(L) 1491, which is seen by the User 1400. Changes to the Model

1440 result in changes to the high-latency subsystem's View(H) 1480, which is also seen by the

User 1400. In an embodiment, these two types of changes seen by the user are shown on the

same display. In an embodiment, these two types of changes are reflected to the user via other

output modalities (such as, e.g., sound or vibration). In an embodiment, between inputs, the

Model 1440 updates the state of the ViewModel(L) 1490 and View(L) 1491 so that the

ViewModel(L) 1490 contains the needed data to present the GUI's components in the correct

location on the system's display and so that the ViewModel(L) 1490 can correctly interpret input

from the IPU 1420 in the context of the current state of the Model 1440; and so that the View(L)

1491 can correctly generate graphics for display in the context of the current state of the Model

1440.

[0078] By way of example, consider a touch-sensitive application with a button that among

its functions responds to a user's touch by changing its appearance indicating that it has been

activated. When the application is run, the application reads the location, size, and details of the

appearance of the button from memory and compiled application code. The View(H) 1480 code

generates the necessary graphics which are presented to the user to display this button. The

Model 1440 updates the state of the ViewModel(L) 1490 to record that this graphical element is a

button, and that it should change appearances from a "normal" appearance to a "pressed"

appearance when touched. The Model 1440 also updates the state of the View(L) 1491 to record

the correct appearance for the "normal" and "pressed" states in the ViewModel(L) 1490. This

appearance may be a description of low-fidelity graphical elements, or a complete raster to

display. In this example, the "pressed" state is represented by a displaying a white box around

the button's position.

[0079] A User touches the touch-screen display, and input data describing that touch is

received less than Ims later by the IPU 1420. The IPU 1420 creates an input event representing

a touch-down event from the input data and sends this input event to the application Controller

1430. The Controller 1430 manipulates the Model 1440. In this case, the Controller 1430 is

indicating to the Model 1440 that the button has been touched and that the application should

perform whatever commands are associated with this button. At the same time that the IPU 1420

sends an event to the Controller 1430, it sends an event to the ViewModel(L) 1490 indicating

- 26 -

WO 2015/120073 PCT/US2015/014494

that the button has been touched. The ViewModel(L) 1490 was previously instructed by the

Model 1440 as to what to do in the case of a touch, and in this case it responds to the touch event

by changing its state to "pressed". The View(L) 1491 responds to this change by displaying a

white box around the button, feedback that corresponds to its "pressed" appearance. The change

to the Model 1440 that the button is touched causes an update of View(H) 1480, so that it too

reflects that button is now touched. The User, who see the output of both View(H) 1480 and

View(L) 1491, sees the immediate feedback of their touch by View(L) 1491 followed a fraction

of a second later by the feedback from View(H) 1480.

[0080] Throughout the text of this application, the word "event" is used to describe

information describing attributes of user input. This term is used generally, and thus includes

embodiments in which event driven architectures are employed (with actual event objects being

passed between software elements), as well as more basic input streams in which the "event"

being described is simply present in the stream of information. Such events may be, e.g., non

object-orient types of events or object-oriented types events.

Low-Latency Visual Response To Input Via Pre-Generation Of Alternative Graphical
Representations Of Application Elements And Input Handling On A Graphical Processing
Unit

Background

[0081] FIG. 15 is a block diagram illustrating graphical user interface (GUI) view and

intermediate data hierarchies in accordance with prior art. An application running on a CPU

includes a number of GUI elements, typically, although not necessarily, arranged in a tree. These

"views" (also called widgets, components, elements, etc.) may include familiar elements such as

sliders, windows, buttons, panels, etc., each of which has a current state and associated

application code to run when the element is acted upon by user input.

[0082] When the application updates any of its states and the changes to the visual

appearance of the application need to be displayed to the user, the application performs a "paint"

command (also called draw, render, etc. in some systems), which walks this tree (or other data

structure: e.g., 'scene graph') and produces intermediate drawing data from the GUI elements in

the application. This intermediate data may consist of individual bitmaps (a.k.a. rasters, pixel

- 27 -

WO 2015/120073 PCT/US2015/014494

data) for each element in the application, may consist of drawing instructions to produce the final

pixel (rendered) appearance of each element in the application, or may consist of any

representation that allows a computer to produce pixels (or other fundamental graphical primitive

as appropriate for the display technology) on a display that represent the application's visual

appearance in memory (pixel data, DisplayLists, drawing instructions, vector data, etc.). In the

example shown in Figure 15, this intermediate data consists of drawing instructions that are

executed to produce the final pixel appearance of the GUI elements. This intermediate data

resides in memory and may be accessible to either the computer's CPU or dedicated graphical

processing unit (GPU) or both.

[0083] To produce the final rendered GUI, this intermediate data is executed or copied into a

pixel buffer that is sent to the display and visible to the user. See Figure 16.

[0084] In a system that includes both a CPU and a GPU for rendering, the process of

handling user input and generating/updating the intermediate data (performed by the CPU)

typically takes considerably longer than the process of executing the intermediate instructions to

produce the final pixel buffer (performed by the GPU).

[0085] Figure 17 shows how changes to the visual appearance of GUI elements are made

visible to the user. In this example, the application running on the CPU has received input from

the user that requires a change in the visual appearance of "View G". For this example, assume

that View G is a button and that the user has pressed it, requiring the button to appear "pressed"

on the display. The user input modifies the state of View G in the application, which triggers the

"paint" command which produces updated intermediate data for G. To produce the final rendered

GUI (including the new visual appearance of G), the intermediate data is executed or copied into

a pixel buffer that is sent to the display and visible to the user. This display includes the modified

appearance of View G.

[0086] While modem operating systems perform many steps to efficiently update only the

intermediate data that requires updating, the process of receiving user input, modifying

application state, and generating this intermediate data is still time consuming and introduces

-28-

WO 2015/120073 PCT/US2015/014494

latency into the visual response to user input. Therefore it is desirable to create a system that

improves upon the time required to display the visual response to input to the user of a GUI.

Low-Latency Visual Response To Input Via Pre-Generation Of Alternative Graphical
Representations Of Application Elements

[0087] We describe herein an invention in which the elements in a GUI are used to generate

one or more intermediate data that correspond to one or more possible visual states for the GUI

element. These multiple visual representations are paired with control logic that chooses the

appropriate intermediate data to use when rendering the final pixel image to display to the user.

[0088] Figure 18 shows an embodiment of the present invention, in which each GUI element

in the application's GUI produces one or more intermediate data depending on the type of

element and the number of possible visual states of that element. In this example, View G and

View H are the only views in this GUI that have multiple possible visual appearances, and View

G generates two alternative intermediate data corresponding to two alternative visual

appearances and View H generates three intermediate data for three possible visible appearances.

In the preferred embodiment, the invention records an index that corresponds to the current

alternative to use when executing the intermediate data to produce the final pixel buffer that is

displayed to the user.

[0089] Figure 19 shows the intermediate data with an updated index for View G. In this

example, assume that View G is a button and that the "Drawing Instructions G" give instructions

for drawing its unpressed appearance and that the "Alt Drawing Instructions G" give instructions

for drawing its pressed appearance. In this example, when the user presses the button, the system

updates the index for G such that the "Alt Drawing Instructions G" is selected. This selection

ensures that View G appears correctly when the intermediate data is then executed or copied into

a pixel buffer that is sent to the display and visible to the user. Because the drawing instructions

for the elements in the GUI were pre-computed, the visual response to user input can occur very

rapidly with low latency as there is no need to perform the time-consuming "paint" operation at

that time.

- 29 -

WO 2015/120073 PCT/US2015/014494

[0090] Other examples of states of UI Views which might be tied to alternative drawing

instructions include the current/maximized state of a window, pressed-unpressed states of any UI

element, UI elements as they might appear when being affected by another element (eg: if one

View is to pass over another and show a drop-shadow, the appearance of that shadow on the

Views 'below' it), or alternative 'skins' that might apply in context (eg: undamaged and damaged

versions of UI objects that might get 'hit' in a game). Indeed, any property of a View which might

affect its visual appearance might be tied and pre-computed. Further still, properties whose

values interact might provide still more alternative renderings (e.g., disabled and unpressed,

disabled and pressed, etc.). Properties with a large number of possible values might be pre

computed with values which are known to be likely, for example based on whether a given

alternative appearance represents a state that can be transitioned to from the current state

directly), based on past user behavior, based on behavior of other users, or as explicitly indicated

by the developer of the application.

[0091] In these examples, the view being drawn with alternative elements is a 'leaf node in

the tree. In some embodiments of the invention, the relevant view might be a non-leaf node, such

as view E in Fig. 18 and Fig. 19. In such circumstances, the child nodes (and indeed, all

descendants when the recursive nature of this example is appreciated) might or might not have

alternative drawing instructions which are tied to the alternative drawing instructions of their

parents. For example, if View E were a UI panel containing a collection of Views H, I, and J, one

alternative drawing instruction for E might include giving it a 'disabled' appearance. Typically

though not always in a GUI, if a parent View is set to disabled, then child views are as well.

Thus, the alternative drawing instructions for View E that give it a 'disabled' appearance might

contain a pointer to similar alternative instructions for Views H,I, and J to give them a similarly

disabled appearance. This pointer (or other indicator) might be stored in some central registry, or

any number of other places that would be known to the reader. In some embodiments, the root of

a View tree (often but not always the Window in which it is contained) may be pre-computed,

and thus some subset (or all) of the Views within the tree may be pre-computed as well. This

would facilitate fast switching of the foreground window.

- 30 -

WO 2015/120073 PCT/US2015/014494

[0092] It should be appreciated that maintaining alternative drawing instructions may at some

point become arduous. These instructions might be stored for later retrieval, for example at the

time the application is compiled/prepared for distribution, at the time it is loaded onto the device,

at the time that the program is first executed, at the time that a View is first placed into the scene,

or at idle moments where spare computation cycles are available.

[0093] It should also be appreciated that alternative drawing instructions may include (or be

included in) animations. Animation of changes to the UT is known to assist the user with

understanding transitions between states. In some embodiments, whole sets of alternative

instructions may be pre-determined to speed animation.

[0094] In some embodiments, specific Views might be rendered *without* repainting any

other Views (e.g., parent or children). This might require that the system render only the portion

of the View not occluded by other views. The limiting of the portion of the element to be painted

might be included in the relevant drawing instructions (and/or alternative drawing instructions).

In some embodiments, whole alternative instructions may be included depending on differing

areas of occlusion.

Input Handling In A Graphical Processing Unit

[0095] While the described invention significantly reduces latency in the visual response to

user input, the computer's CPU is still responsible for receiving user input events from an input

device, dispatching these events to the correct application, performing hit testing to send the

event to the correct element in the GUI, running callbacks that may execute any amount of code

as well as change the visual appearance of GUI elements, and so on.

[0096] Figure 20 shows a notional diagram outlining the steps taken to display the visual

response to user input in the prior art. While individual systems in the prior art vary from the

exact steps outlined in Figure 20, they all follow the basic pattern of receiving and handling input

in the CPU, updating the properties of graphical elements in the CPU, generating intermediate

data in the CPU, and then handing off the final rendering to the GPU. For the purpose of this

disclosure, one should assume that our invention applies to all of these variations.

-31 -

WO 2015/120073 PCT/US2015/014494

[0097] Figure 21 shows an embodiment in which input events are sent not only to the CPU,

but also to the GPU, where they are used to perform low-latency response to user input. In the

GPU, a "Hit Testing" operation is first performed to determine which graphical element needs to

be updated on the display. For graphical elements with multiple appearances (in Figure 21, we

see an element that has three alternative appearances, each represented with a separate set of

intermediate data), an "Interim Data Picker" operation then determines which set of intermediate

data to use when drawing the GUI and passing pixels to the display that is visible to the user.

[0098] Because the GPU and CPU run in parallel, these steps in the GPU can be performed

very rapidly as the CPU works to "catch up" and perform the programmatic side effects of user

input that are not related to the change in the visual appearance of GUI elements. The end result

is a low-latency visual response to user input.

[0099] Though the figure shows some duplication between the CPU and GPU (e.g., hit

testing is performed in both places), in some embodiments, this duplication is eliminated without

reducing performance by performing those operations in the GPU, and passing their results back

to the CPU. For example, input might be passed ONLY to the GPU, and hit testing might be

done only in the GPU, with the result passed to the CPU for further processing.

[0100] We have described the use of the invention to rapidly switch among alternative

appearances of a GUI element in response to user input. Figure 22 illustrates the rapid alteration

of the visual appearance of a GUI element through the direct modification of its intermediate data

structure in the GPU. Many common alterations of the appearance of a GUI element occur

through the alteration of their location (e.g. scrolling, dragging, panning), size (e.g. resizing or

scaling an element), rotation, skewing, or other visual property. As such, in this embodiment of

the invention, the GPU receives user input and performs hit testing to determine which GUI

element is being input upon by the user. Next, the interim data of the element being acted upon is

directly modified in the GPU. For example, in the case of vertical scrolling, the Y position of the

element can be directly updated in this step, eliminating the need to regenerate the entire interim

data for that element. After the update, the execution of the interim data can continue and the

GUI can be rendered and displayed on screen for the user to view.

- 32 -

WO 2015/120073 PCT/US2015/014494

[0101] In some embodiments, updates are limited to graphical transformations. In some

embodiments, these transformations might be dependent on application logic. In some

embodiments, this logic might be available only to the CPU, thus requiring 'check-in' which

slows down interaction, or performing operations once in the GPU, but then later replacing them

by the results of paint operations in the CPU. In other embodiments, mechanisms might exist to

place application logic in the GPU by the developer of the application. Such mechanisms might

include properties set on UI elements (eg: the maximum extent of a transformation, or a

conditional operation such as allowing transformation in one direction but not another), the

selection from among a set of predefined recipes, or indeed providing instructions, either in the

GPU's own programming language, or another language which is translated to 'native'

instructions. These instructions, specified by the application developer, could be executed

following hit testing. In effect, these would amount to a form of event handling performed within

the GPU.

[0102] In some embodiments, input handled by the GPU and CPU might result in

conflicts. For example, the user might scroll past the end of a list if the GPU is not aware of its

extents, which the CPU would catch in event handling and prevent. However, because GPU code

executes more quickly than CPU, this prevention would come after the scrolling had occurred. In

some embodiments, basic logic about common U Views would be encoded as instructions for

the GPU, preventing many such conflicts from occurring in the first place. However, in

embodiments where application developers are able to write CPU code to change the appearance

and/or behavior of a View, conflicts may be inevitable. In such embodiments, mechanisms might

be included to mitigate them. These might include providing an 'event' callback to one or both of

CPU and GPU portions to allow the developer to specify how conflicts should be handled. These

might also include policies (either prescribed or developer-selectable) about they are handled.

These policies might include the invocation of animations or other graphical effects to transition

from the 'illegal' GPU-created state to the 'proper' CPU-created state (or vice versa).

[01031 Other examples of conflicts might include processing of the input stream. For

example, some interactive systems include mechanisms for processing input to determine if a

gesture has occurred. In some embodiments, the gesture-detection mechanism might reside in the

GPU, in others in the CPU, in others, both places, in others, in another position within the

system. Conflict resolution in this instance might use similar mechanisms to those described

- 33 -

WO 2015/120073 PCT/US2015/014494

above. If a gesture is detected, that fact is encoded in state information, and propagated to one or

both of the CPU and GPU representations. In some embodiments, this state information might be

passed directly or through other means of copying memory. In other embodiments, it might be

propagated through the passing of instructions for execution to one or both of the CPU and GPU.

[0104] As hit testing and the modification of the intermediate data are operations that can

be performed extremely quickly on a GPU, the result of this invention is the low-latency visual

response to user input to modify the visual properties of GUI elements.

[01051 Figure 23 shows an alternative embodiment in which the GPU modifies the

interim data in response to a running animation rather than in response to user input. In this case,

a process "Property Animation" performs updates to the interim data at regular time intervals to

affect a visual change in the appearance of the GUI element over time. After each update, the

GPU executes the interim data and the display is updated for the user to view. This embodiment

frees the CPU from running the animation, and thus the animation is not hindered when the

CPU's resources are consumed by other facets of the OS.

[01061 In general, any modification of the actual or apparent state of a View (that is, the

state shown to the user) by one 'side' of the CPU/GPU will require some degree of coordination

between the two sides. In some embodiments, this coordination takes place by passing state

information between the two, possibly using conflict resolution mechanisms (such as those

described above) to determine and set the 'correct' state, and to transition what is shown on screen

to that correct state, if needed. In other embodiments, state conflicts are resolved by the passing

of instructions from one side to the other (or by some conflict resolution unit). In other

embodiments, the state might simply be copied whole from one side to the other. In still other

embodiments, multiple instances of an application might be instantiated, each with a different

state, with one of those instances 'selected' to overwrite current state (for example according to

the policies described above).

[01071 The present system and methods are described above with reference to block

diagrams and operational illustrations of methods and devices comprising a computer system

capable of receiving and responding to user input. It is understood that each block of the block

diagrams or operational illustrations, and combinations of blocks in the block diagrams or

operational illustrations, may be implemented by means of analog or digital hardware and

- 34 -

WO 2015/120073 PCT/US2015/014494

computer program instructions. These computer program instructions may be provided to a

processor of a general purpose computer, special purpose computer, ASIC, or other

programmable data processing apparatus, such that the instructions, which execute via the

processor of the computer or other programmable data processing apparatus, implements the

functions/acts specified in the block diagrams or operational block or blocks. In some alternate

implementations, the functions/acts noted in the blocks may occur out of the order noted in the

operational illustrations. For example, two blocks shown in succession may in fact be executed

substantially concurrently or the blocks may sometimes be executed in the reverse order,

depending upon the functionality/acts involved.

[0108] While the invention has been particularly shown and described with reference to a

preferred embodiment thereof, it will be understood by those skilled in the art that various

changes in form and details may be made therein without departing from the spirit and scope of

the invention.

- 35 -

WO 2015/120073 PCT/US2015/014494

What is claimed is:

1. A method for providing a visual response to input with reduced latency in a computing device,

comprising:

computing a plurality of alternative sets of intermediate data for a first graphical user

interface element, each alternative set of intermediate data comprising data useful to produce a

visual representation of the graphical user interface element;

storing the plurality of alternative sets of intermediate data for the first graphical user

interface element in a memory;

storing at least one set of intermediate data for a second graphical user interface element

in the memory;

creating an index identifying a first one of the plurality of alternative sets of intermediate

data for the first graphical user interface element to use in forming a final pixel image;

using the index, the first set of alternative intermediate data for the graphical user

interface element, and the intermediate data for the second graphical user interface element to

create a first final pixel image for display to a user, the first final pixel image including the first

and second graphical user interface elements;

receiving user input from a user input device;

in response to the user input, modifying the index to include an identification of a second

one of the plurality of alternative sets of intermediate data for the first graphical user interface

element;

using the modified index, the second alternative set of intermediate data for the first

graphical user interface element, and the intermediate data for the second graphical user interface

element to create a final pixel image for display to a user, the final pixel image including the first

and second graphical user interface elements.

2. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative sets of drawing instructions.

- 36 -

WO 2015/120073 PCT/US2015/014494

3. The method of claim 2, wherein the step of using the first set of alternative intermediate data to

create a first final pixel image for display to a user comprises executing a first alternative set of

drawing instructions.

4. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative sets of pixel data.

5. The method of claim 4, wherein the step of using the first set of alternative intermediate data to

create a first final pixel image for display to a user comprises copying a set of rendered

representations of pixels to a pixel buffer.

6. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative sets of properties of a view of the first graphical user interface element

which affects its visual appearance.

7. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative sets of vector data.

8. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative sets of raster data.

9. The method of claim 1, wherein the plurality of alternative sets of intermediate data comprises

a plurality of alternative display lists.

10. The method of claim 1, wherein the first user interface element is a button, the first

alternative set of intermediate data comprises a representation of the button in a non-pressed

state, and the second alternative set of intermediate data comprises a representation of the button

in a pressed state.

- 37 -

WO 2015/120073 PCT/US2015/014494

11. The method of claim 1, wherein the first user interface element is a window, the first

alternative set of intermediate data comprises a representation of the window in a non-maximized

state, and the second alternative set of intermediate data comprises a representation of the

window in a maximized state.

12. The method of claim 1, wherein the first alternative set of intermediate data comprises a

representation of the first user interface element when not being affected by another user

interface element and the second alternative set of intermediate data comprises a representation

of the first user interface element when being affected by the other user interface element.

13. The method of claim 1, wherein the first user interface element has a plurality of alternative

visual states and the second user interface element has a single visual state.

14. The method of claim 1, wherein the first and second user interface elements each have a

plurality of alternative visual states.

15. The method of claim 1, wherein the first user interface element is a button, the first

alternative set of intermediate data comprises a representation of the button in a disabled state,

and the second alternative set of intermediate data comprises a representation of the button in an

enabled state.

16. The method of claim 1, further comprising more than two alternative sets of intermediate

data.

17. The method of claim 1, wherein the second alternative set of intermediate data comprises a

pointer to alternative instructions for a third graphical user interface element.

- 38 -

WO 2015/120073 PCT/US2015/014494

18. The method of claim 17, wherein the third graphical user interface element is a child of the

first graphical user interface element.

19. The method of claim 1, wherein at least one of the first alternative set of intermediate data

and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is scrolling.

20. The method of claim 1, wherein at least one of the first alternative set of intermediate data

and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is panning.

21. The method of claim 1, wherein at least one of the first alternative set of intermediate data

and the second alternative set of intermediate data comprises a representation of the first user

interface element when the first user interface element is being dragged.

22. The method of claim 1, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a graphics processing unit.

23. The method of claim 1, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a central processing unit.

24. The method of claim 1, wherein the step of creating an index is performed by a graphics

processing unit.

25. The method of claim 1, wherein the step of creating an index is performed by a central

processing unit.

- 39 -

WO 2015/120073 PCT/US2015/014494

26. The method of claim 1, wherein the step of using the index is performed by a graphics

processing unit.

27. The method of claim 1, wherein the step of using the index is performed by a central

processing unit.

28. The method of claim 1, wherein the first user interface element is the visible region of a scroll

view, the first alternative set of intermediate data comprises a representation of the next region of

the scrollview, and the second alternative set of intermediate data comprises a representation of

the previous region of the scrollview.

29. The method of claim 1, wherein the alternative set of intermediate data comprises

representations of at least one selected from the set consisting of: a button in a non-pressed state,

a button in a pressed state, a control in a checked state, a control in an unchecked state, a button

in an enabled state, a button in a disabled state, an element in an active state, an element in an

inactive state, an element in a hovered over state, an element in a not hovered over state, an

element in an expanded state, an element in a not expanded state, an element with focus, an

element without focus, an element in a visible state, and an element in an invisible state.

30. The method of claim 1, wherein the alternative sets of intermediate data comprise

representations in different areas of the display.

31. The method of claim 1, wherein the alternative sets of intermediate data comprise

representations of different shapes or sizes of the user interface element.

32. The method of claim 1, wherein the alternative set of intermediate data comprises a previous

state of the user interface element.

- 40 -

WO 2015/120073 PCT/US2015/014494

33. The method of claim 1, wherein the alternative set of intermediate data comprises a possible

future state of the user interface element.

34. A method for providing a visual response to input with reduced latency in a computing

device, comprising:

rendering a plurality of alternative sets of intermediate data for a first graphical user

interface element, each alternative set of intermediate data representing an alternative visual

representation of the graphical user interface element;

storing the plurality of alternative sets of intermediate data for the first graphical user

interface element in a memory;

storing at least one set of intermediate data for a second graphical user interface element

in the memory;

creating an index identifying a first one of the plurality of alternative sets of intermediate

data for the first graphical user interface element to use in forming a final pixel image;

using the index, the first set of alternative intermediate data for the graphical user

interface element, and the intermediate data for the second graphical user interface element to

create a first final pixel image for display to a user, the first final pixel image including the first

and second graphical user interface elements;

receiving user input from a user input device;

in response to the user input, modifying the index to include an identification of a second

one of the plurality of alternative sets of intermediate data for the first graphical user interface

element;

using the modified index, the second alternative set of intermediate data for the first

graphical user interface element, and the intermediate data for the second graphical user interface

element to create a final pixel image for display to a user, the final pixel image including the first

and second graphical user interface elements.

- 41 -

WO 2015/120073 PCT/US2015/014494

35. The method of claim 34, wherein the step of using the first set of alternative intermediate data

to create a first final pixel image for display to a user comprises copying a set of rendered

representations of pixels to a pixel buffer.

36. The method of claim 34, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative sets of vector data.

37. The method of claim 34, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative sets of raster data.

38. The method of claim 34, wherein the first user interface element is a button, the first

alternative set of intermediate data comprises a representation of the button in a non-pressed

state, and the second alternative set of intermediate data comprises a representation of the button

in a pressed state.

39. The method of claim 34, wherein the first user interface element is a window, the first

alternative set of intermediate data comprises a representation of the window in a non-maximized

state, and the second alternative set of intermediate data comprises a representation of the

window in a maximized state.

40. The method of claim 34, wherein the first alternative set of intermediate data comprises a

representation of the first user interface element when not being affected by another user

interface element and the second alternative set of intermediate data comprises a representation

of the first user interface element when being affected by the other user interface element.

41. The method of claim 34, wherein the first user interface element has a plurality of alternative

visual states and the second user interface element has a single visual state.

- 42 -

WO 2015/120073 PCT/US2015/014494

42. The method of claim 34, wherein the first and second user interface elements each have a

plurality of alternative visual states.

43. The method of claim 34, wherein the first user interface element is a button, the first

alternative set of intermediate data comprises a representation of the button in a disabled state,

and the second alternative set of intermediate data comprises a representation of the button in an

enabled state.

44. The method of claim 34, further comprising more than two alternative sets of intermediate

data.

45. The method of claim 34, wherein the second alternative set of intermediate data comprises a

pointer to alternative instructions for a third graphical user interface element.

46. The method of claim 45, wherein the third graphical user interface element is a child of the

first graphical user interface element.

47. The method of claim 34, wherein at least one of the first alternative set of intermediate data

and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is scrolling.

48. The method of claim 34, wherein at least one of the first alternative set of intermediate data

and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is panning.

49. The method of claim 34, wherein at least one of the first alternative set of intermediate data

and the second alternative set of intermediate data comprises a representation of the first user

interface element when the first user interface element is being dragged.

- 43 -

WO 2015/120073 PCT/US2015/014494

50. The method of claim 34, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a graphics processing unit.

51. The method of claim 34, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a central processing unit.

52. The method of claim 34, wherein the step of creating an index is performed by a graphics

processing unit.

53. The method of claim 34, wherein the step of creating an index is performed by a central

processing unit.

54. The method of claim 34, wherein the step of using the index is performed by a graphics

processing unit.

55. The method of claim 34, wherein the step of using the index is performed by a central

processing unit.

56. The method of claim 34, wherein the first user interface element is the visible region of a

scroll view, the first alternative set of intermediate data comprises a representation of the next

region of the scrollview, and the second alternative set of intermediate data comprises a

representation of the previous region of the scrollview.

57. The method of claim 34, wherein the alternative set of intermediate data comprises

representations of at least one selected from the set consisting of: a button in a non-pressed state,

a button in a pressed state, a control in a checked state, a control in an unchecked state, a button

in an enabled state, a button in a disabled state, an element in an active state, an element in an

- 44 -

WO 2015/120073 PCT/US2015/014494

inactive state, an element in a hovered over state, an element in a not hovered over state, an

element in an expanded state, an element in a not expanded state, an element with focus, an

element without focus, an element in a visible state, and an element in an invisible state.

58. The method of claim 34, wherein the alternative sets of intermediate data comprise

representations in different areas of the display.

59. The method of claim 34, wherein the alternative sets of intermediate data comprise

representations of different shapes or sizes of the user interface element.

60. The method of claim 34, wherein the alternative set of intermediate data comprises a

previous state of the user interface element.

61. The method of claim 34, wherein the alternative set of intermediate data comprises a

possible future state of the user interface element.

62. A method for providing a visual response to input with reduced latency in a computing

device, comprising:

computing a plurality of alternative sets of intermediate data for a first graphical user

interface element, each alternative set of intermediate data comprising drawing instructions for

rendering an alternative visual representation of the graphical user interface element;

storing the plurality of alternative sets of intermediate data for the first graphical user

interface element in a memory;

storing at least one set of intermediate data for a second graphical user interface element

in the memory;

creating an index identifying a first one of the plurality of alternative sets of intermediate

data for the first graphical user interface element to use in forming a final pixel image;

- 45 -

WO 2015/120073 PCT/US2015/014494

using the index, the first set of alternative intermediate data for the graphical user

interface element, and the intermediate data for the second graphical user interface element to

render a first final pixel image for display to a user, the first final pixel image including the first

and second graphical user interface elements;

receiving user input from a user input device;

in response to the user input, modifying the index to include an identification of a second

one of the plurality of alternative sets of intermediate data for the first graphical user interface

element;

using the modified index, the second alternative set of intermediate data for the first

graphical user interface element, and the intermediate data for the second graphical user interface

element to create a final pixel image for display to a user, the final pixel image including the first

and second graphical user interface elements.

63. The method of claim 62, wherein the step of using the first set of alternative intermediate data

to create a first final pixel image for display to a user comprises executing a first alternative set of

drawing instructions.

64. The method of claim 62, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative sets of vector data.

65. The method of claim 62, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative sets of raster data.

66. The method of claim 62, wherein the plurality of alternative sets of intermediate data

comprises a plurality of alternative display lists.

67. The method of claim 62, wherein the first user interface element is a button, the first

alternative set of intermediate data comprises a representation of the button in a non-pressed

- 46 -

WO 2015/120073 PCT/US2015/014494

state, and the second alternative set of intermediate data comprises a representation of the button

in a pressed state.

68. The method of claim 62, wherein the first user interface element is a window, the first

alternative set of intermediate data comprises a representation of the window in a non-maximized

state, and the second alternative set of intermediate data comprises a representation of the

window in a maximized state.

69. The method of claim 62, wherein the first alternative set of intermediate data comprises a

representation of the first user interface element when not being affected by another user

interface element and the second alternative set of intermediate data comprises a representation

of the first user interface element when being affected by the other user interface element.

70. The method of claim 62, wherein the first user interface element has a plurality of alternative

visual states and the second user interface element has a single visual state.

71. The method of claim 62, wherein the first and second user interface elements each have a

plurality of alternative visual states.

72. The method of claim 62, wherein the first user interface element is a button, the first

alternative set of intermediate data comprises a representation of the button in a disabled state,

and the second alternative set of intermediate data comprises a representation of the button in an

enabled state.

73. The method of claim 62, further comprising more than two alternative sets of intermediate

data.

- 47 -

WO 2015/120073 PCT/US2015/014494

74. The method of claim 62, wherein the second alternative set of intermediate data comprises a

pointer to alternative instructions for a third graphical user interface element.

75. The method of claim 74, wherein the third graphical user interface element is a child of the

first graphical user interface element.

76. The method of claim 62, wherein at least one of the first alternative set of intermediate data

and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is scrolling.

77. The method of claim 62, wherein at least one of the first alternative set of intermediate data

and the second alternative set of intermediate data comprises a representation of the first user

interface element when the user is panning.

78. The method of claim 62, wherein at least one of the first alternative set of intermediate data

and the second alternative set of intermediate data comprises a representation of the first user

interface element when the first user interface element is being dragged.

79. The method of claim 62, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a graphics processing unit.

81. The method of claim 62, wherein the step of computing a plurality of alternative sets of

intermediate data is performed by a central processing unit.

82. The method of claim 62, wherein the step of creating an index is performed by a graphics

processing unit.

-48-

WO 2015/120073 PCT/US2015/014494

83. The method of claim 62, wherein the step of creating an index is performed by a central

processing unit.

84. The method of claim 62, wherein the step of using the index is performed by a graphics

processing unit.

85. The method of claim 62, wherein the step of using the index is performed by a central

processing unit.

86. The method of claim 62, wherein the first user interface element is the visible region of a

scroll view, the first alternative set of intermediate data comprises a representation of the next

region of the scrollview, and the second alternative set of intermediate data comprises a

representation of the previous region of the scrollview.

87. The method of claim 62, wherein the alternative set of intermediate data comprises

representations of at least one selected from the set consisting of: a button in a non-pressed state,

a button in a pressed state, a control in a checked state, a control in an unchecked state, a button

in an enabled state, a button in a disabled state, an element in an active state, an element in an

inactive state, an element in a hovered over state, an element in a not hovered over state, an

element in an expanded state, an element in a not expanded state, an element with focus, an

element without focus, an element in a visible state, and an element in an invisible state.

88. The method of claim 62, wherein the alternative sets of intermediate data comprise

representations in different areas of the display.

89. The method of claim 62, wherein the alternative sets of intermediate data comprise

representations of different shapes or sizes of the user interface element.

- 49 -

WO 2015/120073 PCT/US2015/014494

90. The method of claim 62, wherein the alternative set of intermediate data comprises a

previous state of the user interface element.

91. The method of claim 62, wherein the alternative set of intermediate data comprises a

possible future state of the user interface element.

92. A method for operating a GPU in conjunction with a CPU to provide a visual response to

input with reduced latency in a computing device, comprising:

receiving, in a graphical processing unit, data representing user input;

hit testing the data representing user input in the graphical processing unit to identify a

graphical user interface element to be updated as a result of the user input;

identifying, in the graphical processing unit, a first set of intermediate data among a

plurality of alternative sets of intermediate data for the graphical user interface element;

using the identified alternative set of intermediate data to update the graphical user

interface element.

93. The method of claim 90, wherein the step of using the identified alternative set of

intermediate data to update the graphical user interface element is performed by the graphical

processing unit.

94. The method of claim 93, wherein the step of using the identified alternative set of

intermediate data to update the graphical user interface element is performed by the central

processing unit.

95. A method for operating a GPU in conjunction with a CPU to provide a visual response to

input with reduced latency in a computing device, comprising:

receiving, in a graphical processing unit, data representing user input;

- 50 -

WO 2015/120073 PCT/US2015/014494

hit testing the data representing user input in the graphical processing unit to identify a

graphical user interface element to be updated as a result of the user input;

identifying a first set of intermediate data among a plurality of alternative sets of

intermediate data for the graphical user interface element;

using the identified alternative set of intermediate data to update the graphical user

interface element.

96. A method for operating processing units to provide a visual response to a running animation

in a computing device, comprising:

processing, in at least one processing unit, a property animation;

identifying, in the at least one processing unit, a first set of intermediate data among a

plurality of alternative sets of intermediate data for the property animation;

using the identified alternative set of intermediate data to update the intermediate data for

the property animation;

executing the updated interim data for the property animation in the graphical processing

unit.

97. The method of claim 96, where at least one of the at least processing units is a GPU.

98. The method of claim 96, where the at least one processing units comprise a plurality of cores

of the same CPU.

99. A method for providing an auditory response to input with reduced latency in a computing

device, comprising:

computing a plurality of alternative sets of intermediate data for a first user interface element,

each alternative set of intermediate data comprising data useful to produce an auditory output

with respect to that user interface element;

storing the plurality of alternative sets of intermediate data for the first user interface element in a

memory;

-51 -

WO 2015/120073 PCT/US2015/014494

storing at least one set of intermediate data for a second user interface element in the memory;

creating an index identifying a first one of the plurality of alternative sets of intermediate data for

the first user interface element to use in forming a final sound;

using the index, the first set of alternative intermediate data for the user interface element, and

the intermediate data for the second graphical user interface element to create a first final sound

for display to a user, the first final sound including the sounds of the first and second user

interface elements;

receiving user input from a user input device;

in response to the user input, modifying the index to include an identification of a second

one of the plurality of alternative sets of intermediate data for the first user interface element;

using the modified index, the second alternative set of intermediate data for the first user

interface element, and the intermediate data for the second user interface element to create a final

sound for output to a user, the final sound including the sounds from the first and second user

interface elements.

- 52 -

	Abstract
	Description
	Claims
	Drawings

