

US006555115B1

(12) **United States Patent**
Probst et al.

(10) **Patent No.:** US 6,555,115 B1
(45) **Date of Patent:** Apr. 29, 2003

(54) **COMPOUNDS AND METHODS FOR TREATMENT AND DIAGNOSIS OF CHLAMYDIAL INFECTION**

(75) Inventors: **Peter Probst**, Seattle, WA (US); **Ajay Bhatia**, Seattle, WA (US); **Yasir A. W. Skeiky**, Seattle, WA (US); **Shyian Jen**, Seattle, WA (US); **Erika Jean Stromberg**, Seattle, WA (US)

(73) Assignee: **Corixa Corporation**, Seattle, WA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: **09/410,568**

(22) Filed: **Oct. 1, 1999**

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/288,594, filed on Apr. 8, 1999, now Pat. No. 6,447,779, which is a continuation-in-part of application No. 09/208,277, filed on Dec. 8, 1998, now Pat. No. 6,166,177.

(51) **Int. Cl.⁷** **A61K 39/118**; A61K 39/02; A61K 38/00; C07K 2/00; A01N 37/18

(52) **U.S. Cl.** **424/263.1**; 424/234.1; 424/184.1; 424/185.1; 514/2; 530/300; 530/324; 530/325; 530/326; 530/350

(58) **Field of Search** 424/185.1, 184.1, 424/234.1, 263.1; 530/350, 300, 324, 325, 326; 514/2

(56) **References Cited**

U.S. PATENT DOCUMENTS

4,118,469 A	10/1978	Caldwell et al.	424/1
4,497,863 A	2/1985	Armstrong et al.	436/510
5,166,053 A	11/1992	Huguenel et al.	435/7.36
5,318,892 A	6/1994	Watanabe et al.	435/7.36
5,725,863 A	3/1998	Daniels et al.	424/263.1
6,166,177 A	* 12/2000	Probst et al.	
6,432,916 B1	* 8/2002	Probst et al.	514/2
6,447,779 B1	* 9/2002	Probst et al.	424/190.1
6,448,234 B1	* 9/2002	Fling	514/44
2002/0061848 A1	* 5/2002	Bhatia et al.	514/12
2002/0146776 A1	* 10/2002	Bhatia et al.	435/69.3

FOREIGN PATENT DOCUMENTS

EP	348725	*	3/1990
EP	0784 059 A	7/1997	
WO	WO 94/06827	*	3/1994
WO	WO 97/06263	2/1997	
WO	WO 98/02546	1/1998	
WO	WO 98/10789	3/1998	
WO	WO 99/27105	6/1999	
WO	WO 99/28475	6/1999	
WO	WO 99/28475 A	6/1999	
WO	WO 99/51748	10/1999	
WO	WO 00/34483	6/2000	
WO	WO 01/40474	6/2001	

OTHER PUBLICATIONS

Stephens et al., "Genome Sequence of an Obligate Intracellular Pathogen of Humans: *Chlamydia trachomatis*," *Science* 282: 754-759, 1998.

Levinson and Jawetz, *Medical Microbiology & Immunology*, 3d ed., Appleton & Lange, 1994, pp. 292-293.

GenBank Accession No. AE001273, "Genome sequence of an obligate intracellular pathogen of humans: *Chlamydia trachomatis*," Oct. 30, 1999.

GenBank Accession No. AE001323, "Genome sequence of an obligate intracellular pathogen of humans: *Chlamydia trachomatis*," Oct. 30, 1999.

GenBank Accession No. AE001324, "Genome sequence of an obligate intracellular pathogen of humans: *Chlamydia trachomatis*," Oct. 30, 1999.

GenBank Accession No. AE001335, "Genome sequence of an obligate intracellular pathogen of humans: *Chlamydia trachomatis*," Oct. 30, 1999.

GenBank Accession No. E71500, "Genome sequence of an obligate intracellular pathogen of humans: *Chlamydia trachomatis*," Oct. 8, 1999.

GenBank Accession No. H71501, "Genome sequence of an obligate intracellular pathogen of humans: *Chlamydia trachomatis*," Oct. 8, 1999.

GenBank Accession No. H71510, "Genome sequence of an obligate intracellular pathogen of humans: *Chlamydia trachomatis*," Oct. 8, 1999.

Rank et al., *Infect. And Immunity*, 58(8):2599-2605, 1990.

Genbank Accession No. AE001316.

Genbank Accession No. AE001320.

Genbank Accession No. AE001326.

Gu et al., "Chlamydia trachomatis RNA polymerase α subunit: sequence and structural analysis," *J. Bacteriology* 177:2594-2601, May 1995.

Sanderson et al., "Identification of a CD4 $^{+}$ T Cell-stimulating Antigen of Pathogenic Bacteria by Expression Cloning," *J. Exp. Med.* 182(6):1751-1757, 1995.

Scudiero et al., "Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines," *Cancer Research* 48:4827-4833, Sep. 1, 1988.

(List continued on next page.)

Primary Examiner—Nita Minnifield

(74) Attorney, Agent, or Firm—Seed Intellectual Property Law Group PLLC

(57) **ABSTRACT**

Compounds and methods for the diagnosis and treatment of Chlamydial infection are disclosed. The compounds provided include polypeptides that contain at least one antigenic portion of a Chlamydia antigen and DNA sequences encoding such polypeptides. Pharmaceutical compositions and vaccines comprising such polypeptides or DNA sequences are also provided, together with antibodies directed against such polypeptides. Diagnostic kits containing such polypeptides or DNA sequences and a suitable detection reagent may be used for the detection of Chlamydial infection in patients and in biological samples.

3 Claims, 11 Drawing Sheets

OTHER PUBLICATIONS

Baehr et al., "Mapping antigenic domains expressed by *chlamydia trachomatis* major outer membrane protein genes," *Proc Natl Acad Sci USA* 85(1):4000–4004, Jun. 1, 1988.

Brunham et al., "Chlamydia trachomatis antigens: role in immunity and pathogenesis," *Infectious Agents and Disease* 3(5):218–233, Oct. 1994.

Genbank Accession No. AE001361, Jul. 22, 1998.

Read et al N.A. Research 28/6: 1397–1406, 2000.*

Grimwood et al Infection & Immunity 69/4: 2383–2389, 2001.*

Pawlakowska et al Central-European J of Immunology, 24: 293–298, 1999.*

Kalman et al Nature Genetics 21: 385–389, 1999.*

Lu et al. Infection & Immunity 67/4: 1763–1769, 1999.*

Shirai et al, N. A. Research 28/12: 2311–2314, 2000.*

Zhong et al. J. Industrial Microbial & Biotechnology 19:71–76, 1997.*

Murdin et al Infection & Immunity 61/10: 4406–4414, 1993.*

Zhong et al. J. Immunology 151/7: 3728–3736, 1993.*

Pal et al, Infection & Immunity 65/8:3361–3369, 1997.*

Coulan et al, J. General Microbiology 136: 2013–2020, 1990.*

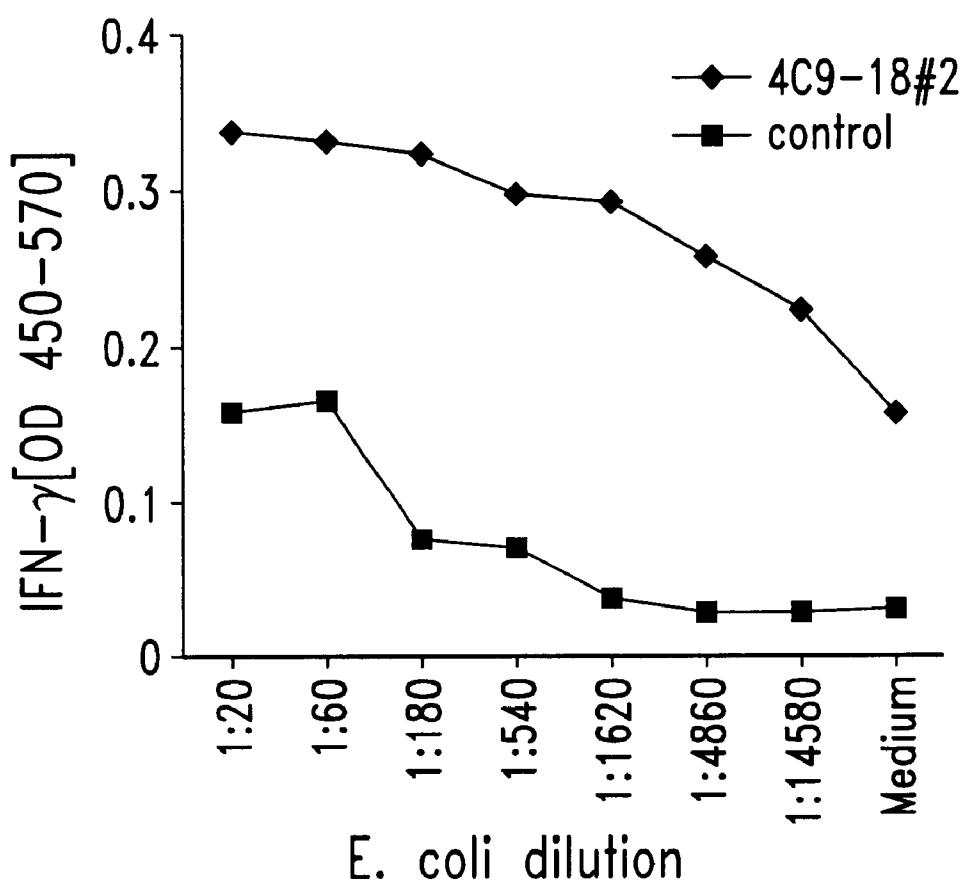
Kwon et al, Arthritis & Rheumatism 40/5: 945–954, 1997.*

Zhong et al, JBC 269/39: 24183–24188, 1994.*

Hayes et al, J. General Microbiology 136: 1559–1566, 1990.*

Peterson et al, Molecular Immunology 33/4–5: 335–339, 1996.*

Peterson et al Infection & Immunity 64/8: 3354–3359, 1996.*


Su et al, Vaccine 13/11: 1023–1032, 1995.*

Su et al Vaccine 11/11: 1159–1166, 1993.*

Allen et al Eur. J Immunol. 23: 1169–1172, 1993.*

Hayes et al, J. Gen. Microbiology 137: 1557–1564, 1991.*

* cited by examiner

Fig. 1

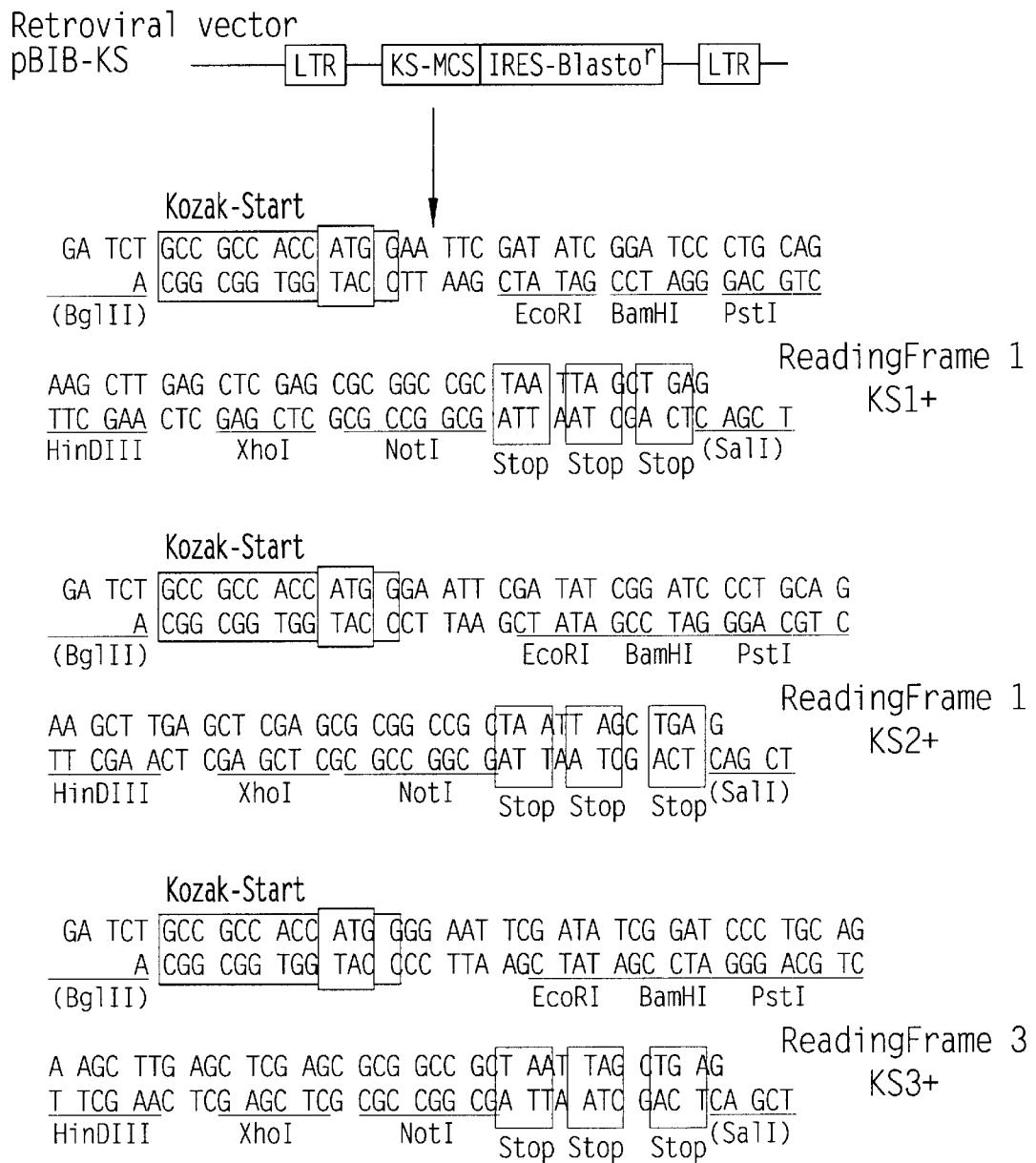


Fig. 2

Chlamydia C17.8 Peptide Screen

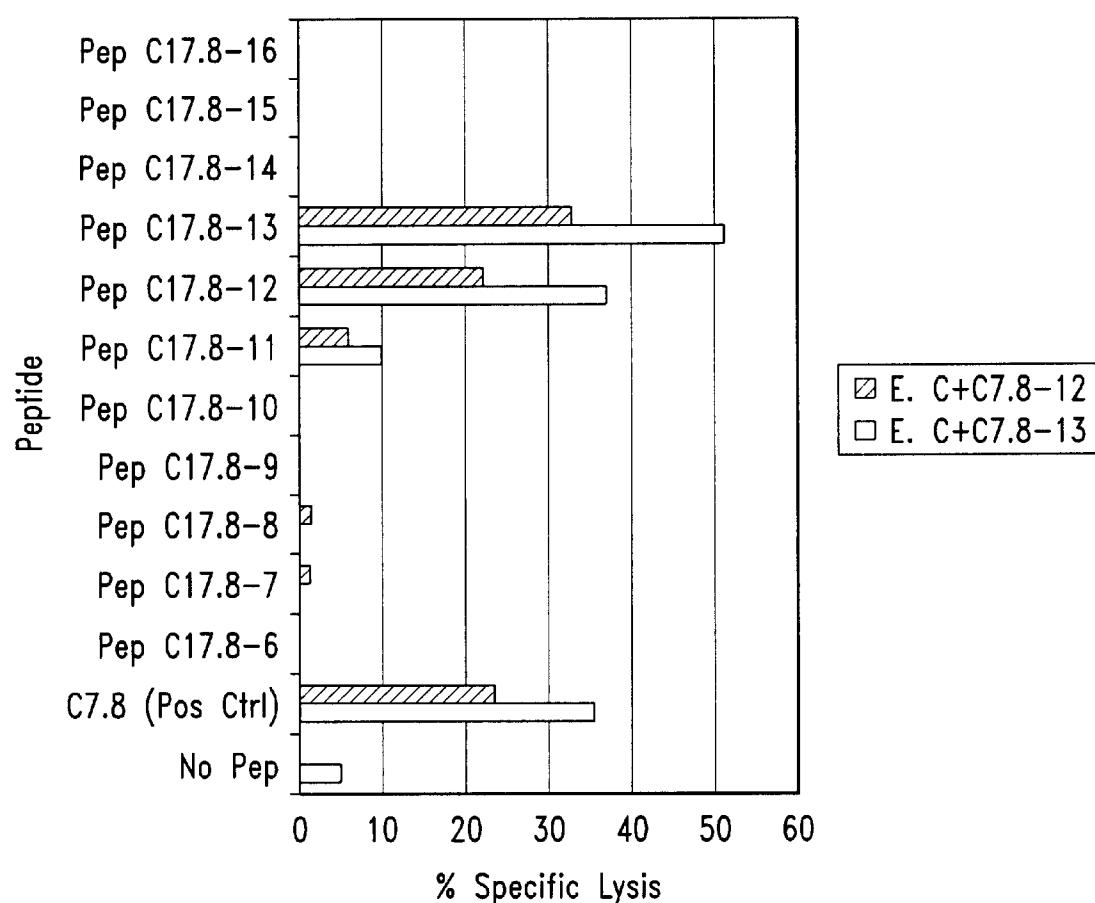
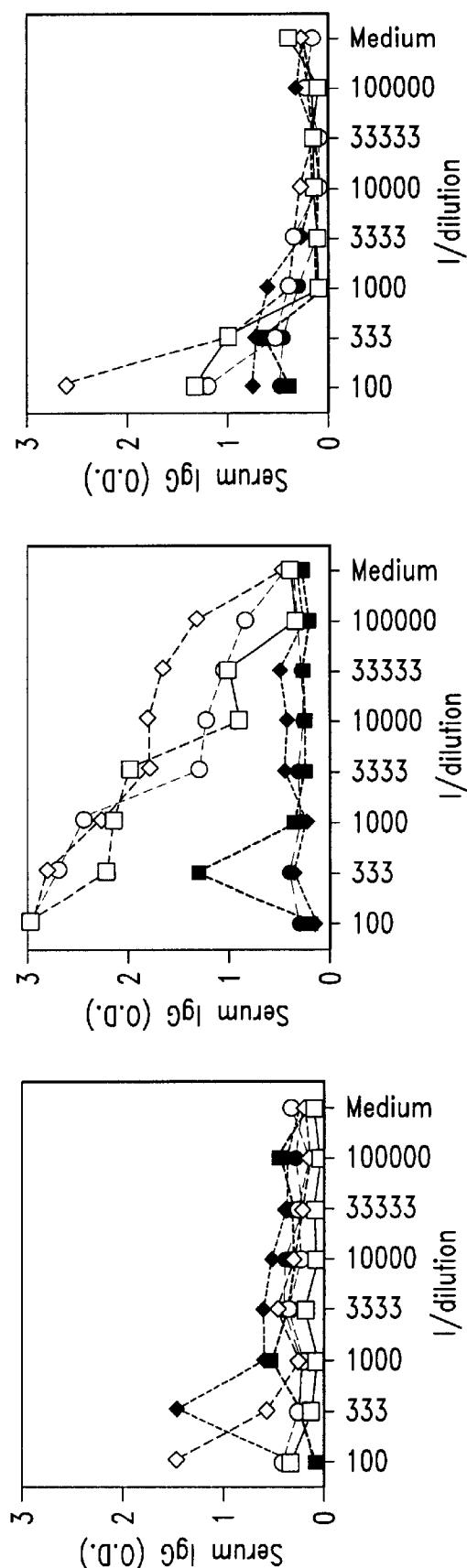
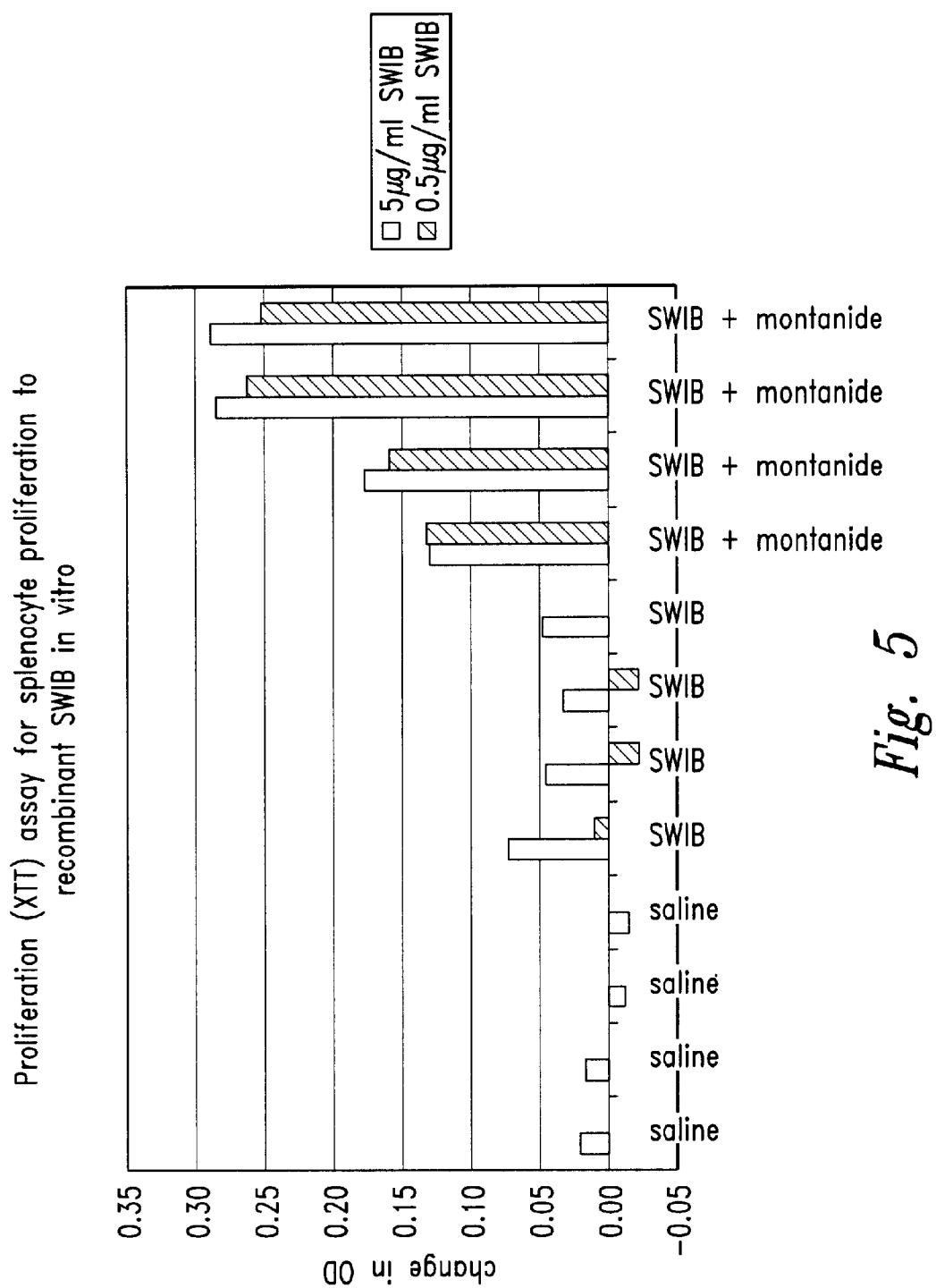




Fig. 3

Antibody Production in Chlamydia Antigen Immunized C5BL/6 Mice

PRIMER SEQUENCES-CP SWIB AND CP S13

CP SWIB Nde (5' primer)

5' GATATACATATGCATACCATCACCATCACATGAGTCAAAAAAATAAAACTCT

CP SWIB EcoRI (3' primer)

5' CTCGAGGAATTCTTATTTACAATATGTTGGA

CP S13 Nde (5' primer)

5' GATATACATATGCATACCATCACCATCACATGCCACGCATCATTGGAATGAT

CP S13 EcoRI (3' primer)

5' CTCGAGGAATTCTTATTTCTTACCTGC

Fig. 6

T cell line TCL-8 EBCD responds to *E. coli* expressing ribosomal S13 from *C. trachomatis* and from *C. pneumoniae*

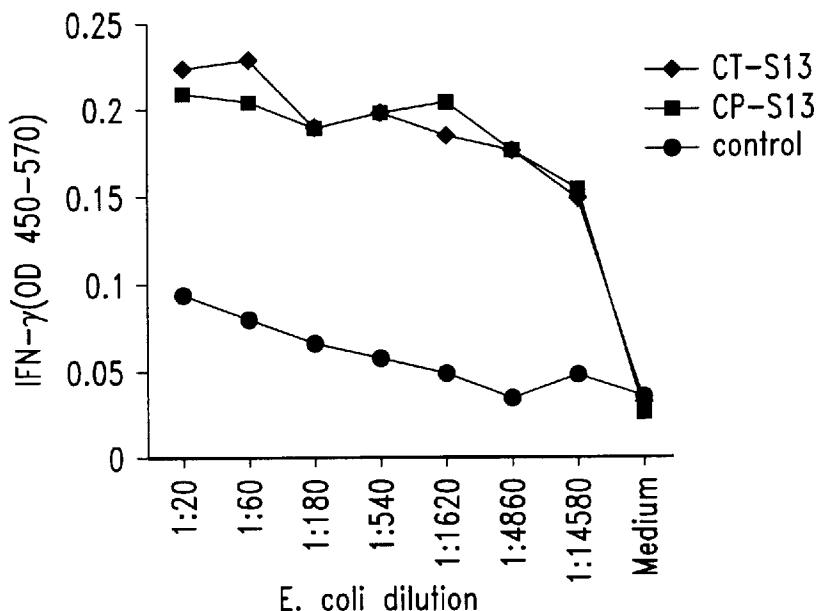


Fig. 7A

T cell line TCL-8 EBCD responds to *E. coli* expressing SWIB from *C. trachomatis* but not from *C. pneumoniae*

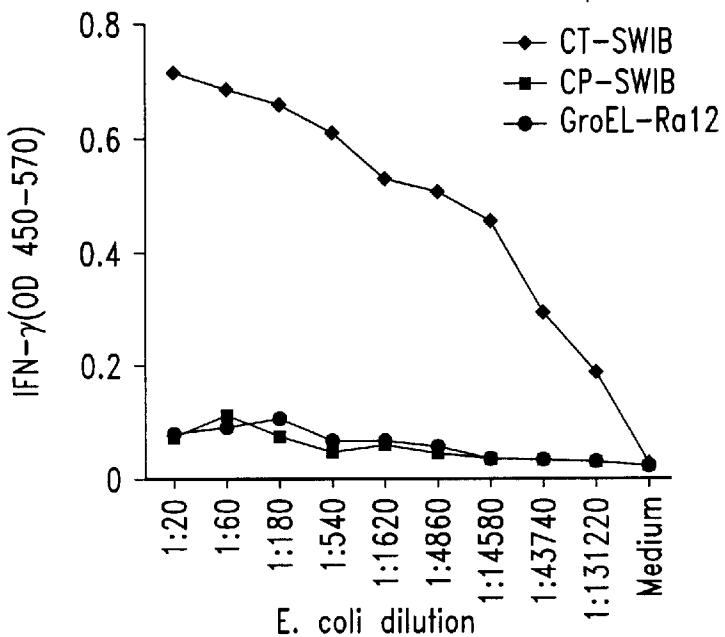
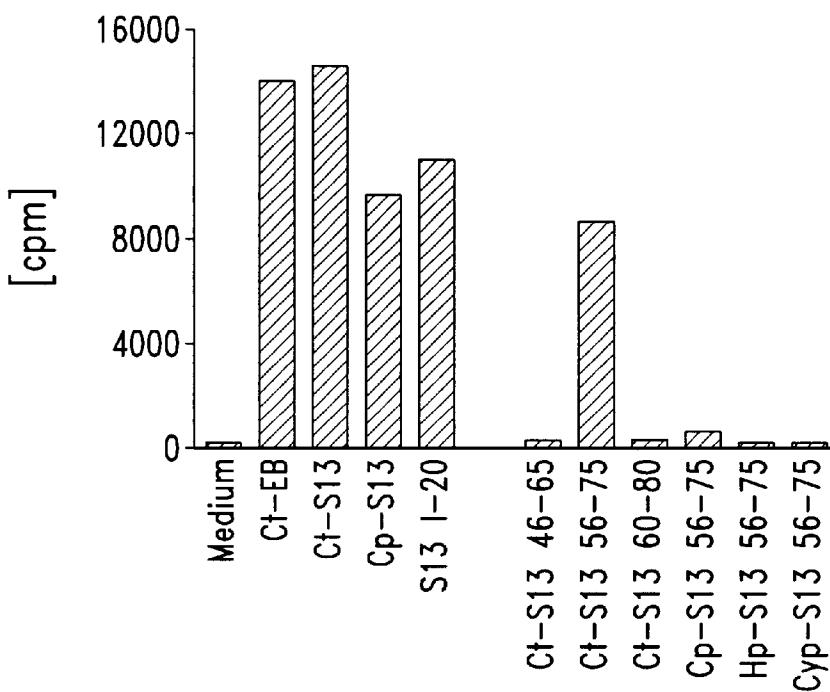
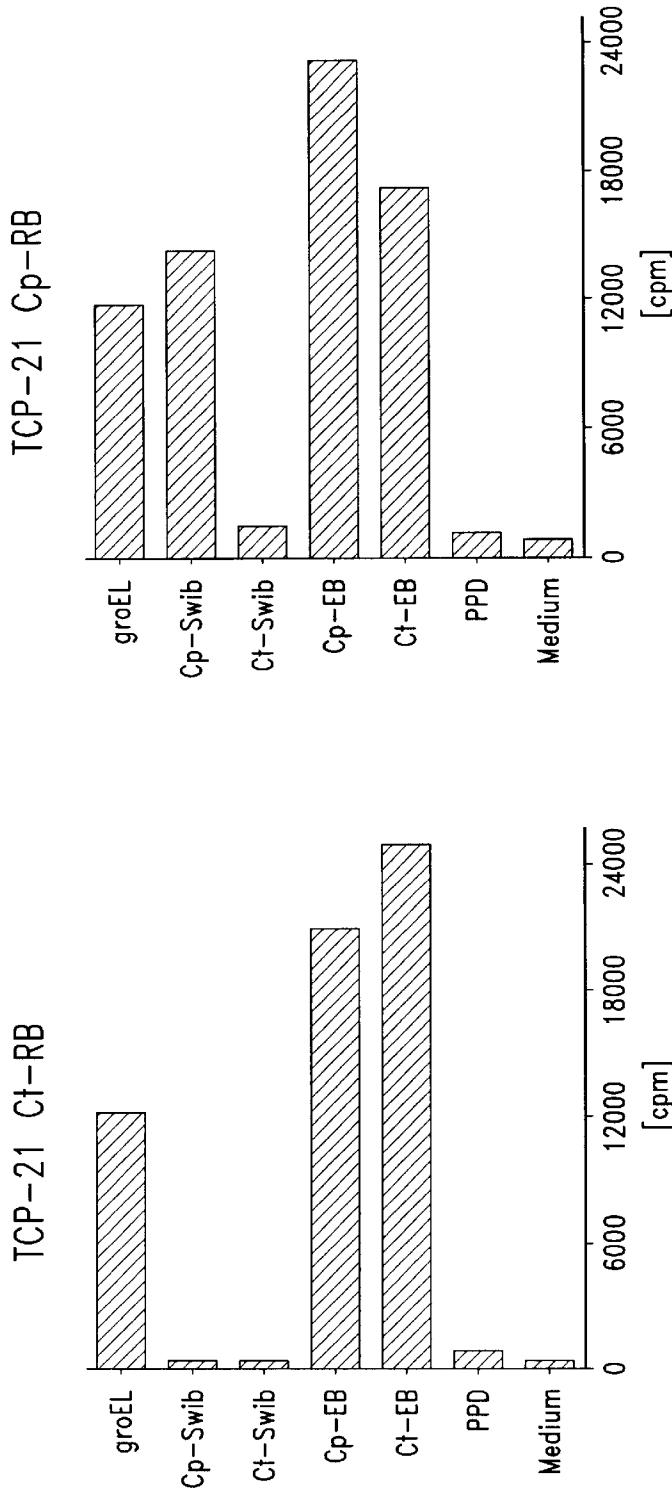



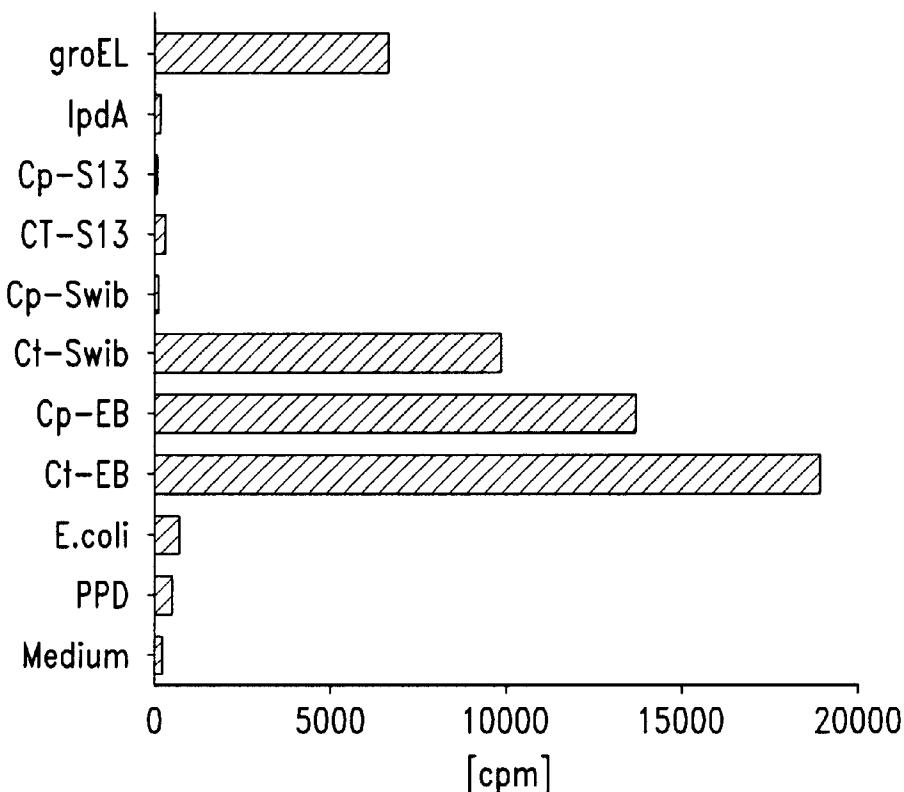
Fig. 7B


Identification of T cell epitopes in chlamydial ribosomal S13 protein with TCL8 EB/DC

Proliferative responses were determined by stimulating 2.5×10^4 T cells in the presence of 1×10^4 monocyte-derived dendritic cells and Ct-EB ($1 \mu\text{g}/\text{ml}$), Ct-, CpS13 ($2 \mu\text{g}/\text{ml}$) or the respective peptide ($0.2 \mu\text{g}/\text{ml}$). Assay was harvested after 4 days with a ^3H -thymidine pulse for the last 18h.

Fig. 8

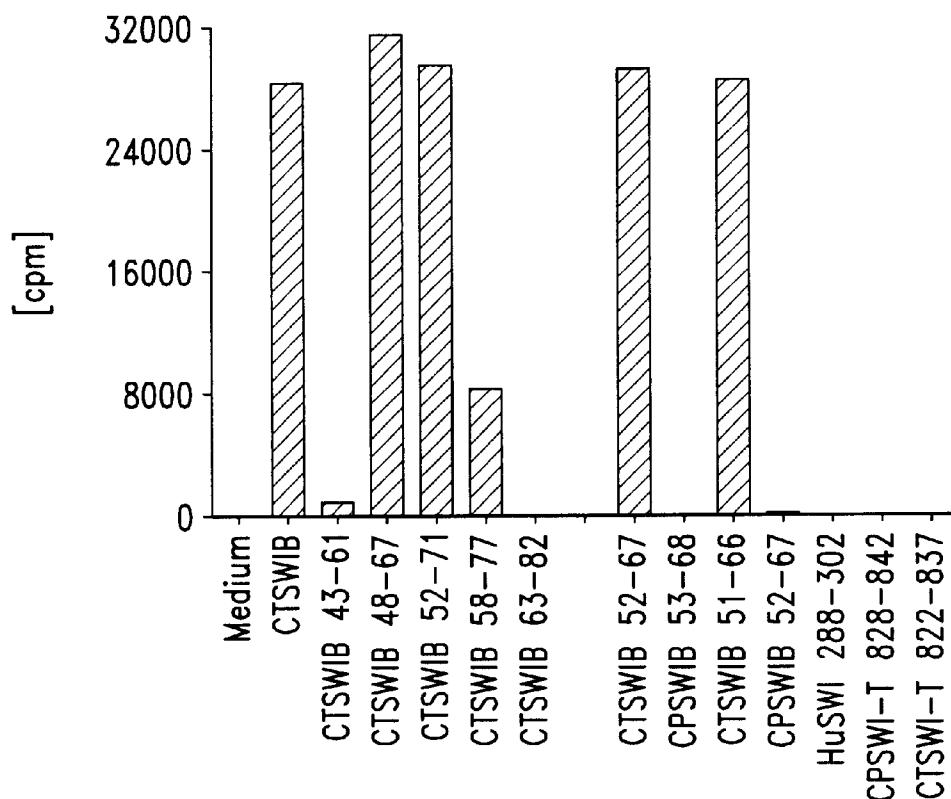
CP-21 T cells generated against *C. pneumoniae* infected DC responded to recombinant Cp-Swib but not Ct-Swib



T cells lines were generated against monocyte-derived dendritic cells infected for 72h with *C. trachomatis* LGV II (Ct-RB) or *C. pneumoniae* (Cp-RB) respectively. Proliferative responses were determined by stimulating 2.5×10^4 T cells in the presence of 1×10^4 monocyte-derived dendritic cells and the respective antigen Ct-groEL 2 μ g/ml, Cp-groEL 2 μ g/ml, Ct-Swib 2 μ g/ml, Cp-EB 1 μ g/ml. Assay was harvested after 4 days with a 3 H-thymidine pulse for the last 18h.

Fig. 9A

Fig. 9B


A primary T cell line (TCT-10 EB) from an asymptomatic donor has a *C. trachomatis*-specific Swib response

T cell line TCT-10 EB was generated by stimulating PBMC with 1 μ g/ml killed *C. trachomatis* LGV2 elementary body (EB). Proliferative responses were determined by stimulating 2.5×10^4 T cells in the presence of 1×10^4 monocyte-derived dendritic cells and the respective antigen. Assay was harvested after 4 days with a 3 H-thymidine pulse for the last 18h.

Fig. 10

Identification of T cell epitope in *C. trachomatis* Swib
with TCL-10 EB

Proliferative responses were determined by stimulating 2.5×10^4 T cells in the presence of 1×10^4 monocyte-derived dendritic cells and Ct-Swib 2 g/ml or the respective peptide 0.2 μ g/ml. Assay was harvested after 4 days with a 3 H-thymidine pulse for the last 18h.

Fig. 11

1

**COMPOUNDS AND METHODS FOR
TREATMENT AND DIAGNOSIS OF
CHLAMYDIAL INFECTION**

REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 09/288,594, filed Apr. 8, 1999, now U.S. Pat. No. 6,447,779, which is a continuation-in-part of U.S. patent application Ser. No. 09/208,277, filed Dec. 8, 1998 now U.S. Pat. No. 6,166,177.

TECHNICAL FIELD

The present invention relates generally to the detection and treatment of Chlamydial infection. In particular, the invention is related to polypeptides comprising a Chlamydia antigen and the use of such polypeptides for the serodiagnosis and treatment of Chlamydial infection.

BACKGROUND OF THE INVENTION

Chlamydiae are intracellular bacterial pathogens that are responsible for a wide variety of important human and animal infections. *Chlamydia trachomatis* is one of the most common causes of sexually transmitted diseases and can lead to pelvic inflammatory disease (PID), resulting in tubal obstruction and infertility. *Chlamydia trachomatis* may also play a role in male infertility. In 1990, the cost of treating PID in the US was estimated to be \$4 billion. Trachoma, due to ocular infection with *Chlamydia trachomatis*, is the leading cause of preventable blindness worldwide. *Chlamydia pneumonia* is a major cause of acute respiratory tract infections in humans and is also believed to play a role in the pathogenesis of atherosclerosis and, in particular, coronary heart disease. Individuals with a high titer of antibodies to *Chlamydia pneumonia* have been shown to be at least twice as likely to suffer from coronary heart disease as seronegative individuals. Chlamydial infections thus constitute a significant health problem both in the US and worldwide.

Chlamydial infection is often asymptomatic. For example, by the time a woman seeks medical attention for PID, irreversible damage may have already occurred resulting in infertility. There thus remains a need in the art for improved vaccines and pharmaceutical compositions for the prevention and treatment of Chlamydia infections. The present invention fulfills this need and further provides other related advantages.

SUMMARY OF THE INVENTION

The present invention provides compositions and methods for the diagnosis and treatment of Chlamydia infection. In one aspect, polypeptides are provided comprising an immunogenic portion of a Chlamydia antigen, or a variant of such an antigen. In one embodiment, the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of (a) a sequence of SEQ ID NO: 1, 15, 21-25, 44-64, 66-76 or 79-88; (b) the complements of said sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions. In a specific embodiment, a polypeptide comprising an amino acid sequence of SEQ ID NO: 5 is provided.

In a related aspect, polynucleotide sequences encoding the above polypeptides, recombinant expression vectors comprising one or more of these polynucleotide sequences and host cells transformed or transfected with such expression vectors are also provided.

2

In another aspect, the present invention provides fusion proteins comprising an inventive polypeptide, or, alternatively, an inventive polypeptide and a known Chlamydia antigen. In yet another aspect, the present invention provides antibodies, both polyclonal and monoclonal, that bind to the polypeptides described above.

Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more Chlamydia polypeptides disclosed herein, or a polynucleotide molecule encoding such a polypeptide, and a physiologically acceptable carrier. The invention also provides vaccines comprising one or more of the disclosed polypeptides and a non-specific immune response enhancer, together with vaccines comprising one or more polynucleotide sequences encoding such polypeptides and a non-specific immune response enhancer.

In yet another aspect, methods are provided for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above pharmaceutical compositions or vaccines.

In yet a further aspect, methods for the treatment of Chlamydia infection in a patient are provided, the methods comprising obtaining peripheral blood mononuclear cells (PBMC) from the patient, incubating the PBMC with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated T cells and administering the incubated T cells to the patient. The present invention additionally provides methods for the treatment of Chlamydia infection that comprise incubating antigen presenting cells with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated antigen presenting cells and administering the incubated antigen presenting cells to the patient. In certain embodiments, the antigen presenting cells are selected from the group consisting of dendritic cells, macrophages, monocytes, B-cells, and fibroblasts. Compositions for the treatment of Chlamydia infection comprising T cells or antigen presenting cells that have been incubated with a polypeptide or polynucleotide of the present invention are also provided.

In further aspects of the subject invention, methods and diagnostic kits are provided for detecting Chlamydia infection in a patient. In one embodiment, the method comprises: (a) contacting a biological sample with at least one of the polypeptides or fusion proteins disclosed herein; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide or fusion protein, thereby detecting Chlamydia infection in the biological sample. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. In one embodiment, the diagnostic kits comprise one or more of the polypeptides or fusion proteins disclosed herein in combination with a detection reagent. In yet another embodiment, the diagnostic kits comprise either a monoclonal antibody or a polyclonal antibody that binds with a polypeptide of the present invention.

The present invention also provides methods for detecting Chlamydia infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that amplifies in the presence of the oligonucleotide primers. In one embodiment, the oligonucleotide primer comprises at least about 10 contiguous nucleotides of a polynucleotide

3

sequence peptide disclosed herein, or of a sequence that hybridizes thereto.

In a further aspect, the present invention provides a method for detecting Chlamydia infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that hybridizes to the oligonucleotide probe. In one embodiment, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide sequence disclosed herein, or a sequence that hybridizes thereto.

These and other aspects of the present invention will become apparent upon reference to the following detailed description. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

Sequence Identifiers

SEQ ID NO: 1 is the determined DNA sequence for the *C. trachomatis* clone 1-B1-66.

SEQ ID NO: 2 is the determined DNA sequence for the *C. trachomatis* clone 4-D7-28.

SEQ ID NO: 3 is the determined DNA sequence for the *C. trachomatis* clone 3-G3-10.

SEQ ID NO: 4 is the determined DNA sequence for the *C. trachomatis* clone 10-C10-31.

SEQ ID NO: 5 is the predicted amino acid sequence for 1-B1-66.

SEQ ID NO: 6 is the predicted amino acid sequence for 4-D7-28.

SEQ ID NO: 7 is a first predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 8 is a second predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 9 is a third predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 10 is a fourth predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 11 is a fifth predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 12 is the predicted amino acid sequence for 10-C10-31.

SEQ ID NO: 13 is the amino acid sequence of the synthetic peptide 1-B1-66/48-67.

SEQ ID NO: 14 is the amino acid sequence of the synthetic peptide 1-B1-66/58-77.

SEQ ID NO: 15 is the determined DNA sequence for the *C. trachomatis* serovar LGV II clone 2C7-8.

SEQ ID NO: 16 is the determined DNA sequence for a first putative open reading frame from *C. trachomatis* serovar D

SEQ ID NO: 17 is the predicted amino acid sequence encoded by the first putative open reading frame from *C. trachomatis* serovar D

SEQ ID NO: 18 is the amino acid sequence of the synthetic peptide CtC7.8-12

SEQ ID NO: 19 is the amino acid sequence of the synthetic peptide CtC7.8-13

SEQ ID NO: 20 is the predicted amino acid sequence encoded by a second putative open reading from *C. trachomatis* serovar D

SEQ ID NO: 21 is the determined DNA sequence for clone 4C9-18 from *C. trachomatis* LGV II

4

SEQ ID NO: 22 is the determined DNA sequence homologous to Lipoamide Dehydrogenase from *C. trachomatis* LGV II

SEQ ID NO: 23 is the determined DNA sequence homologous to Hypothetical protein from *C. trachomatis* LGV II

SEQ ID NO: 24 is the determined DNA sequence homologous to Ubiquinone Mehtyltransferase from *C. trachomatis* LGV II

SEQ ID NO: 25 is the determined DNA sequence for clone 4C9-18#2 BL21 pLySS from *C. trachomatis* LGV II

SEQ ID NO: 26 is the predicted amino acid sequence for 4C9-18#2 from *C. trachomatis* LGV II

SEQ ID NO: 27 is the determined DNA sequence for Cp-SWIB from *C. pneumonia* strain TWAR

SEQ ID NO: 28 is the predicted amino acid sequence for Cp-SWIB from *C. pneumonia* strain TWAR

SEQ ID NO: 29 is the determined DNA sequence for Cp-S13 from *C. pneumonia* strain TWAR

SEQ ID NO: 30 is the predicted amino acid sequence for Cp-S13 from *C. pneumonia* strain TWAR

SEQ ID NO: 31 is the amino acid sequence for a 10 mer consensus peptide from CtC7.8-12 and CtC7.8-13

SEQ ID NO: 32 is the predicted amino acid sequence for clone 2C7-8 from *C. trachomatis* LGV II

SEQ ID NO: 33 is the determined DNA sequence of a clone from *C. trachomatis* serovar D which shows homology to clone 2C7-8

SEQ ID NO: 34 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 33

SEQ ID NO: 35 is the DNA sequence for C.p. SWIB Nde (5' primer) from *C. pneumonia*

SEQ ID NO: 36 is the DNA sequence for C.p. SWIB EcoRI (3' primer) from *C. pneumonia*

SEQ ID NO: 37 is the DNA sequence for C.p. S13 Nde (5' primer) from *C. pneumonia*

SEQ ID NO: 38 is the DNA sequence for C.p. S13 EcoRI (3' primer) from *C. pneumonia*

SEQ ID NO: 39 is the amino acid sequence for CtSwib 52-67 peptide from *C. trachomatis* LGV II

SEQ ID NO: 40 is the amino acid sequence for CpSwib 53-68 peptide from *C. pneumonia*

SEQ ID NO: 41 is the amino acid sequence for HuSwib 288-302 peptide from Human SWI domain

SEQ ID NO: 42 is the amino acid sequence for CtSWI-T 822-837 peptide from the topoisomerase-SWIB fusion of *C. trachomatis*

SEQ ID NO: 43 is the amino acid sequence for CpSWI-T 828-842 peptide from the topoisomerase-SWIB fusion of *C. pneumonia*

SEQ ID NO: 44 is a first determined DNA sequence for the *C. trachomatis* LGV II clone 19783.3,jen.seq (1>509)CTL2#11-3', representing the 3' end.

SEQ ID NO: 45 is a second determined DNA sequence for the *C. trachomatis* LGV II clone 19783.4,jen.seq (1>481)CTL2#11-5', representing the 5' end.

SEQ ID NO: 46 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19784CTL2_12consensus.seq(1>427)CTL2#12.

SEQ ID NO: 47 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19785.4,jen.seq(1>600) CTL2#16-5', representing the 5' end.

SEQ ID NO: 48 is a first determined DNA sequence for the *C. trachomatis* LGV II clone 19786.3.jen.seq (1>600)CTL2#18-3', representing the 3' end. 5

SEQ ID NO: 49 is a second determined DNA sequence for the *C. trachomatis* LGV II clone 19786.4.jen.seq (1>600)CTL2#18-5', representing the 5' end. 10

SEQ ID NO: 50 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19788CTL2_21consensus.seq(1>406)CTL2#21. 15

SEQ ID NO: 51 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19790CTL2_23consensus.seq(1>602)CTL2#23. 20

SEQ ID NO: 52 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19791CTL2_24consensus.seq(1>145)CTL2#24. 25

SEQ ID NO: 53 is the determined DNA sequence for the *C. trachomatis* LGV II clone CTL2#4. 30

SEQ ID NO: 54 is the determined DNA sequence for the *C. trachomatis* LGV II clone CTL2#8b. 35

SEQ ID NO: 55 is the determined DNA sequence for the *C. trachomatis* LGV II clone 15-G1-89, sharing homology to the lipoamide dehydrogenase gene CT557. 40

SEQ ID NO: 56 is the determined DNA sequence for the *C. trachomatis* LGV II clone 14-H1-4, sharing homology to the thiol specific antioxidant gene CT603. 45

SEQ ID NO: 57 is the determined DNA sequence for the *C. trachomatis* LGV II clone 12-G3-83, sharing homology to the hypothetical protein CT622. 50

SEQ ID NO: 58 is the determined DNA sequence for the *C. trachomatis* LGV II clone 12-B3-95, sharing homology to the lipoamide dehydrogenase gene CT557. 55

SEQ ID NO: 59 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-H4-28, sharing homology to the dnaK gene CT396. 60

SEQ ID NO: 60 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-H3-68, sharing partial homology to the PGP6-D virulence protein and L1 ribosomal gene CT318. 65

SEQ ID NO: 61 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-G1-34, sharing partial homology to the malate dehydrogenase gene CT376 and to the glycogen hydrolase gene CT042. 70

SEQ ID NO: 62 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-G10-46, sharing homology to the hypothetical protein CT610. 75

SEQ ID NO: 63 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-C12-91, sharing homology to the OMP2 gene CT443. 80

SEQ ID NO: 64 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-A3-93, sharing homology to the HAD superfamily gene CT103. 85

SEQ ID NO: 65 is the determined amino acid sequence for the *C. trachomatis* LGV II clone 14-H1-4, sharing homology to the thiol specific antioxidant gene CT603. 90

SEQ ID NO: 66 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#9. 95

SEQ ID NO: 67 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#7. 100

SEQ ID NO: 68 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#6. 105

SEQ ID NO: 69 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#5. 110

SEQ ID NO: 70 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#2. 115

SEQ ID NO: 71 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#1. 120

SEQ ID NO: 72 is a first determined DNA sequence for the *C. trachomatis* LGV II clone 23509.2CtL2#3-5', representing the 5' end. 125

SEQ ID NO: 73 is a second determined DNA sequence for the *C. trachomatis* LGV II clone 23509.1CtL2#3-3', representing the 3' end. 130

SEQ ID NO: 74 is a first determined DNA sequence for the *C. trachomatis* LGV II clone 22121.2CtL2#10-5', representing the 5' end. 135

SEQ ID NO: 75 is a second determined DNA sequence for the *C. trachomatis* LGV II clone 22121.1CtL2#10-3', representing the 3' end. 140

SEQ ID NO: 76 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19787.6CtL2#19-5', representing the 5' end. 145

SEQ ID NO: 77 is the determined DNA sequence for the *C. pneumoniae* LGV II clone CpS13-His. 150

SEQ ID NO: 78 is the determined DNA sequence for the *C. pneumoniae* LGV II clone Cp_SWIB-His. 155

SEQ ID NO: 79 is the determined DNA sequence for the *C. trachomatis* LGV II clone 23-G7-68, sharing partial homology to the L11, L10 and L1 ribosomal protein. 160

SEQ ID NO: 80 is the determined DNA sequence for the *C. trachomatis* LGV II clone 22-F8-91, sharing homology to the pmpC gene. 165

SEQ ID NO: 81 is the determined DNA sequence for the *C. trachomatis* LGV II clone 21-E8-95, sharing homology to the CT610-CT613 genes. 170

SEQ ID NO: 82 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19-F12-57, sharing homology to the CT858 and recA genes. 175

SEQ ID NO: 83 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19-F12-53, sharing homology to the CT445 gene encoding glutamyl tRNA synthetase. 180

SEQ ID NO: 84 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19-A5-54, sharing homology to the cryptic plasmid gene. 185

SEQ ID NO: 85 is the determined DNA sequence for the *C. trachomatis* LGV II clone 17-E11-72, sharing partial homology to the OppC_2 and pmpD genes. 190

SEQ ID NO: 86 is the determined DNA sequence for the *C. trachomatis* LGV II clone 17-C1-77, sharing partial homology to the CT857 and CT858 open reading frames. 195

SEQ ID NO: 87 is the determined DNA sequence for the *C. trachomatis* LGV II clone 15-H2-76, sharing partial homology to the pmpD and SycE genes, and to the CT089 ORF. 200

SEQ ID NO: 88 is the determined DNA sequence for the *C. trachomatis* LGV II clone 15-A3-26, sharing homology to the CT858 ORF. 205

SEQ ID NO: 89 is the determined amino acid sequence for the *C. pneumoniae* clone Cp_SWIB-His. 210

SEQ ID NO: 90 is the determined amino acid sequence for the *C. trachomatis* LGV II clone CtL2_LPDA_FL. 215

SEQ ID NO: 91 is the determined amino acid sequence for the *C. pneumoniae* clone CpS13-His. 220

SEQ ID NO: 92 is the determined amino acid sequence for the *C. trachomatis* LGV II clone CtL2_TSA_FL. 225

SEQ ID NO: 93 is the amino acid sequence for Ct-Swib 43-61 peptide from *C. trachomatis* LGV II. 230

SEQ ID NO: 94 is the amino acid sequence for Ct-Swib 48-67 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 95 is the amino acid sequence for Ct-Swib 52-71 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 96 is the amino acid sequence for Ct-Swib 58-77 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 97 is the amino acid sequence for Ct-Swib 63-82 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 98 is the amino acid sequence for Ct-Swib 51-66 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 99 is the amino acid sequence for Cp-Swib 52-67 peptide from *C. pneumoniae*.

SEQ ID NO: 100 is the amino acid sequence for Cp-Swib 37-51 peptide from *C. pneumoniae*.

SEQ ID NO: 101 is the amino acid sequence for Cp-Swib 32-51 peptide from *C. pneumoniae*.

SEQ ID NO: 102 is the amino acid sequence for Cp-Swib 37-56 peptide from *C. pneumoniae*.

SEQ ID NO: 103 is the amino acid sequence for Ct-Swib 36-50 peptide from *C. trachomatis*.

SEQ ID NO: 104 is the amino acid sequence for Ct-S13 46-65 peptide from *C. trachomatis*.

SEQ ID NO: 105 is the amino acid sequence for Ct-S13 60-80 peptide from *C. trachomatis*.

SEQ ID NO: 106 is the amino acid sequence for Ct-S13 1-20 peptide from *C. trachomatis*.

SEQ ID NO: 107 is the amino acid sequence for Ct-S13 46-65 peptide from *C. trachomatis*.

SEQ ID NO: 108 is the amino acid sequence for Ct-S13 56-75 peptide from *C. trachomatis*.

SEQ ID NO: 109 is the amino acid sequence for Cp-S13 56-75 peptide from *C. pneumoniae*.

DESCRIPTION OF THE FIGURES

FIG. 1 illustrates induction of INF- γ from a Chlamydia-specific T cell line activated by target cells expressing clone 4C9-18#2.

FIG. 2 illustrates retroviral vectors pBIB-KS1,2,3 modified to contain a Kosak translation initiation site and stop codons.

FIG. 3 shows specific lysis in a chromium release assay of P815 cells pulsed with Chlamydia peptides CtC7.8-12 (SEQ ID NO: 18) and CtC7.8-13 (SEQ ID NO: 19).

FIG. 4 shows antibody isotype titers in C57B/16 mice immunized with *C. trachomatis* SWIB protein.

FIG. 5 shows Chlamydia-specific T-cell proliferative responses in splenocytes from C3H mice immunized with *C. trachomatis* SWIB protein.

FIG. 6 illustrates the 5' and 3' primer sequences designed from *C. pneumoniae* which were used to isolate the SWIB and S13 genes from *C. pneumoniae*.

FIGS. 7A and 7B show induction of IFN- γ from a human anti-chlamydia T-cell line (TCL-8) capable of cross-reacting to *C. trachomatis* and *C. pneumoniae* upon activation by monocyte-derived dendritic cells expressing chlamydial proteins.

FIG. 8 shows the identification of T cell epitopes in Chlamydial ribosomal S13 protein with T-cell line TCL 8 EB/DC.

FIG. 9 illustrates the proliferative response of CP-21 T-cells generated against *C. pneumoniae*-infected dendritic cells to recombinant *C. pneumoniae*-SWIBprotein, but not *C. trachomatis* SWIB protein.

FIG. 10 shows the *C. trachomatis*-specific SWIB proliferative responses of a primary T-cell line (TCT-10 EB) from an asymptomatic donor.

FIG. 11 illustrates the identification of T-cell epitope in *C. trachomatis* SWIB with an antigen specific T-cell line (TCL-10 EB).

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the diagnosis and treatment of Chlamydial infection. In one aspect, the compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a Chlamydia antigen, or a variant thereof.

In specific embodiments, the subject invention discloses polypeptides comprising an immunogenic portion of a Chlamydia antigen, wherein the Chlamydia antigen comprises an amino acid sequence encoded by a polynucleotide molecule including a sequence selected from the group consisting of (a) nucleotide sequences recited in SEQ ID NO: 1-4, 15, 21-25, 44-64, 66-76 and 79-88 (b) the complements of said nucleotide sequences, and (c) variants of such sequences.

As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an immunogenic portion of one of the inventive antigens may consist entirely of the immunogenic portion, or may contain additional sequences. The additional sequences may be derived from the native Chlamydia antigen or may be heterologous, and such sequences may (but need not) be immunogenic.

The term "polynucleotide(s)," as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all such operable anti-sense fragments.

An "immunogenic portion" of an antigen is a portion that is capable of reacting with sera obtained from a Chlamydia-infected individual (i.e., generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). Such immunogenic portions generally comprise at least about 5 amino acid residues, more preferably at least about 10, and most preferably at least about 20 amino acid residues. Methods for preparing and identifying immunogenic portions of antigens of known sequence are well known in the art and include those summarized in Paul, *Fundamental Immunology*, 3rd ed., Raven Press, 1993, pp. 243-247. Examples of immunogenic portions of antigens contemplated by the present invention include, for example, the T cell stimulating epitopes pro-

vided in SEQ ID NO: 9, 10, 18, 19, 31 and 39. Polypeptides comprising at least an immunogenic portion of one or more Chlamydia antigens as described herein may generally be used, alone or in combination, to detect Chlamydial infection in a patient.

The compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotide molecules. Such variants include, but are not limited to, naturally occurring allelic variants of the inventive sequences. In particular, variants include other Chlamydiae serovars, such as serovars D, E and F, as well as the several LGV serovars which share homology to the inventive polypeptide and polynucleotide molecules described herein. Preferably, the serovar homologues show 95-99% homology to the corresponding polypeptide sequence(s) described herein.

A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. In a preferred embodiment, variant polypeptides differ from an identified sequence by substitution, deletion or addition of five amino acids or fewer. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described below) to the identified polypeptides.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydrophobic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gin, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydrophobic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (DNA, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants as discussed below, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity (determined as described below) to the recited sequence.

The polypeptides provided by the present invention include variants that are encoded by polynucleotide

sequences which are substantially homologous to one or more of the polynucleotide sequences specifically recited herein. "Substantial homology," as used herein, refers to polynucleotide sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-65° C. 5×SSC, overnight or, in the event of cross-species homology, at 45° C. with 0.5×SSC; followed by washing twice at 65° C. for 20 minutes with each of 2×, 0.5× and 0.2×SSC containing 0.1% SDS. Such hybridizing polynucleotide sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode a polypeptide that is the same as a polypeptide of the present invention.

Two nucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, Wis.), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M. O. (1978) A model of evolutionary change in proteins—Matrices for detecting distant relationships. In Dayhoff, M. O. (ed.) *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, Washington D.C. Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) *Unified Approach to Alignment and Phylogenies* pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, Calif.; Higgins, D. G. and Sharp, P. M. (1989) Fast and sensitive multiple sequence alignments on a microcomputer *CABIOS* 5:151-153; Myers, E. W. and Muller W. (1988) Optimal alignments in linear space *CABIOS* 4:11-17; Robinson, E. D. (1971) *Comb. Theor* 11:105; Santou, N. Nes, M. (1987) The neighbor joining method. A new method for reconstructing phylogenetic trees *Mol. Biol. Evol.* 4:406-425; Sneath, P. H. A. and Sokal, R. R. (1973) *Numerical Taxonomy—the Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, Calif.; Wilbur, W. J. and Lipman, D. J. (1983) Rapid similarity searches of nucleic acid and protein data banks *Proc. Natl. Acad. Sci. USA* 80:726-730.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e. gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

Also included in the scope of the present invention are alleles of the genes encoding the nucleotide sequences recited in herein. As used herein, an "allele" or "allelic sequence" is an alternative form of the gene which may result from at least one mutation in the nucleic acid sequence. Alleles may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone or in combination with the others, one or more times in a given sequence. In specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a Chlamydia antigen (or a variant of such an antigen), that comprises one or more of the amino acid sequences encoded by (a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 1-4, 15 21-25, 44-64, 66-76 and 79-88; (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b). As discussed in the Examples below, several of the Chlamydia antigens disclosed herein recognize a T cell line that recognizes both *Chlamydia trachomatis* and *Chlamydia pneumoniae* infected monocyte-derived dendritic cells, indicating that they may represent an immunoreactive epitope shared by *Chlamydia trachomatis* and *Chlamydia pneumoniae*. The antigens may thus be employed in a vaccine for both *C. trachomatis* genital tract infections and for *C. pneumoniae* infections. Further characterization of these Chlamydia antigens from *Chlamydia trachomatis* and *Chlamydia pneumoniae* to determine the extent of cross-reactivity is provided in Example 6. Additionally, Example 4 describes cDNA fragments (SEQ ID NO: 15, 16 and 33) isolated from *C. trachomatis* which encode proteins (SEQ ID NO: 17-19 and 32) capable of stimulating a Chlamydia-specific murine CD8+ T cell line.

In general, Chlamydia antigens, and polynucleotide sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, polynucleotide molecules encoding Chlamydia antigens may be isolated from a Chlamydia genomic or cDNA expression library by screening with a Chlamydia-specific T cell line as described below, and sequenced using techniques well known to those of skill in the art. Antigens may be produced recombinantly, as described below, by inserting a polynucleotide sequence that encodes the antigen into an expression vector and expressing the antigen in an appropriate host. Antigens may be evaluated for a desired property, such as the ability to react with sera obtained from a Chlamydia-infected individual as described herein, and may be sequenced using, for example, traditional Edman chemistry. See Edman and Berg, *Eur. J. Biochem.* 80:116-132, 1967.

Polynucleotide sequences encoding antigens may also be obtained by screening an appropriate Chlamydia cDNA or genomic DNA library for polynucleotide sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y. (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

An amplified portion may be used to isolate a full length gene from a suitable library (e.g., a Chlamydia cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with ^{32}P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.

Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using techniques well known in the art (see, for example, Mullis et al., *Cold Spring Harbor Symp. Quant. Biol.* 51:263, 1987, Erlich ed., *PCR Technology*, Stockton Press, NY, 1989), and software well known in the art may also be employed. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68° C. to 72° C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.

One such amplification technique is inverse PCR (see Triglia et al., *Nucl. Acids Res.* 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Additional techniques include capture PCR (Lagerstrom et al., *PCR Methods Appl.* 1:111-19, 1991) and walking PCR (Parker et al., *Nucl. Acids. Res.* 19:3055-60, 1991). Transcription-Mediated Amplification, or TMA is another method that may be utilized for the amplification of DNA, rRNA, or mRNA, as described in Patent No. PCT/US91/03184. This autocata-

lytic and isothermal non-PCR based method utilizes two primers and two enzymes: RNA polymerase and reverse transcriptase. One primer contains a promoter sequence for RNA polymerase. In the first amplification, the promoter-primer hybridizes to the target rRNA at a defined site. Reverse transcriptase creates a DNA copy of the target rRNA by extension from the 3' end of the promoter-primer. The RNA in the resulting complex is degraded and a second primer binds to the DNA copy. A new strand of DNA is synthesized from the end of the primer by reverse transcriptase creating double stranded DNA. RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription. Each of the newly synthesized RNA amplicons re-enters the TMA process and serves as a template for a new round of replication leading to the exponential expansion of the RNA amplicon. Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence.

Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division, Foster City, Calif., and may be operated according to the manufacturer's instructions.

As noted above, immunogenic portions of Chlamydia antigens may be prepared and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunogenic properties. The representative ELISAs described herein may generally be employed in these screens. An immunogenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen. In other words, an immunogenic portion of a Chlamydia antigen generates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.

Portions and other variants of Chlamydia antigens may be generated by synthetic or recombinant means. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the polynucleotide sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a polynucleotide sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into cul-

ture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in an isolated, substantially pure, form. Preferably, the polypeptides are at least about 80% pure more preferably at least about 90% pure and most preferably at least about 99% pure.

In a further aspect, the present invention provides fusion proteins comprising either a first and a second inventive polypeptide, or an inventive polypeptide and a known Chlamydia antigen, together with variants of such fusion proteins. The fusion proteins of the present invention may include a linker peptide between the polypeptides.

A DNA sequence encoding a fusion protein of the present invention may be constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding, for example, the first and second polypeptides, into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation, (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene* 40:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA* 83:8258-8562, 1986; U.S. Pat. Nos. 4,935,233 and 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. As an alternative to the use of a peptide linker sequence (when desired), one can utilize non-essential N-terminal amino acid regions (when present) on the first and second polypeptides to separate the functional domains and prevent steric hindrance.

In another aspect, the present invention provides methods for using one or more of the above polypeptides or fusion

proteins (or polynucleotides encoding such polypeptides or fusion proteins) to induce protective immunity against Chlamydial infection in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat Chlamydial infection.

In this aspect, the polypeptide, fusion protein or polynucleotide molecule is generally present within a pharmaceutical composition or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Vaccines may comprise one or more of the above polypeptides and a non-specific immune response enhancer, such as an adjuvant or a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other Chlamydia antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.

Alternatively, a vaccine may contain polynucleotides encoding one or more polypeptides or fusion proteins as described above, such that the polypeptide is generated in situ. In such vaccines, the polynucleotides may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary polynucleotide sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the polynucleotides may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective) virus. Techniques for incorporating polynucleotides into such expression systems are well known to those of ordinary skill in the art. The polynucleotides may also be "naked," as described, for example, in Ulmer et al., *Science* 259:1745-1749, 1993 and reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked polynucleotides may be increased by coating the polynucleotides onto biodegradable beads, which are efficiently transported into the cells.

In a related aspect, a polynucleotide vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known Chlamydia antigen. For example, administration of polynucleotides encoding a polypeptide of the present invention, either "naked" or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.

Polypeptides and polynucleotides disclosed herein may also be employed in adoptive immunotherapy for the treatment of Chlamydial infection. Adoptive immunotherapy may be broadly classified into either active or passive immunotherapy. In active immunotherapy, treatment relies on the in vivo stimulation of the endogenous host immune system with the administration of immune response-modifying agents (for example, vaccines, bacterial adjuvants, and/or cytokines).

In passive immunotherapy, treatment involves the delivery of biologic reagents with established immune reactivity

(such as effector cells or antibodies) that can directly or indirectly mediate anti-Chlamydia effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T lymphocytes (for example, CD8+ cytotoxic T-lymphocyte, CD4+ T-helper, tumor-infiltrating lymphocytes), killer cells (such as Natural Killer cells, lymphokine-activated-killer cells), B cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens. The polypeptides disclosed herein may also be used to generate antibodies or anti-idiotypic antibodies (as in U.S. Pat. No. 4,918,164), for passive immunotherapy.

The predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells in vitro. Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition in vivo are well known in the art. These in vitro culture conditions typically utilize intermittent stimulation with antigen, often in the presence of cytokines, such as IL-2, and non-dividing feeder cells. As noted above, the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to generate sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast, or B-cells, may be pulsed with immunoreactive polypeptides, or polynucleotide sequence(s) may be introduced into antigen presenting cells, using a variety of standard techniques well known in the art. For example, antigen presenting cells may be transfected or transduced with a polynucleotide sequence, wherein said sequence contains a promoter region appropriate for increasing expression, and can be expressed as part of a recombinant virus or other expression system. Several viral vectors may be used to transduce an antigen presenting cell, including pox virus, vaccinia virus, and adenovirus; also, antigen presenting cells may be transfected with polynucleotide sequences disclosed herein by a variety of means, including gene-gun technology, lipid-mediated delivery, electroporation, osmotic shock, and particulate delivery mechanisms, resulting in efficient and acceptable expression levels as determined by one of ordinary skill in the art. For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term in vivo. Studies have demonstrated that cultured T-cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever, M., et al, "Therapy With Cultured T Cells: Principles Revisited," *Immunological Reviews*, 157:177, 1997).

The polypeptides disclosed herein may also be employed to generate and/or isolate chlamydial-reactive T-cells, which can then be administered to the patient. In one technique, antigen-specific T-cell lines may be generated by in vivo immunization with short peptides corresponding to immunogenic portions of the disclosed polypeptides. The resulting antigen specific CD8+ or CD4+ T-cell clones may be isolated from the patient, expanded using standard tissue culture techniques, and returned to the patient.

Alternatively, peptides corresponding to immunogenic portions of the polypeptides may be employed to generate chlamydia reactive T cell subsets by selective in vitro stimulation and expansion of autologous T cells to provide antigen-specific T cells which may be subsequently transferred to the patient as described, for example, by Chang et al, (*Crit. Rev. Oncol. Hematol.*, 22(3), 213, 1996). Cells of the immune system, such as T cells, may be isolated from the

peripheral blood of a patient, using a commercially available cell separation system, such as Isolex™ System, available from Nexell Therapeutics, Inc. Irvine, Calif. The separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells. The population of antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.

In other embodiments, T-cell and/or antibody receptors specific for the polypeptides disclosed herein can be cloned, expanded, and transferred into other vectors or effector cells for use in adoptive immunotherapy. In particular, T cells may be transfected with the appropriate genes to express the variable domains from chlamydia specific monoclonal antibodies as the extracellular recognition elements and joined to the T cell receptor signaling chains, resulting in T cell activation, specific lysis, and cytokine release. This enables the T cell to redirect its specificity in an MHC-independent manner. See for example, Eshhar, Z., *Cancer Immunol Immunother*, 45(3-4):131-6, 1997 and Hwu, P., et al, *Cancer Res*, 55(15):3369-73, 1995. Another embodiment may include the transfection of chlamydia antigen specific alpha and beta T cell receptor chains into alternate T cells, as in Cole, D J, et al, *Cancer Res*, 55(4):748-52, 1995.

In a further embodiment, syngeneic or autologous dendritic cells may be pulsed with peptides corresponding to at least an immunogenic portion of a polypeptide disclosed herein. The resulting antigen-specific dendritic cells may either be transferred into a patient, or employed to stimulate T cells to provide antigen-specific T cells which may, in turn, be administered to a patient. The use of peptide-pulsed dendritic cells to generate antigen-specific T cells and the subsequent use of such antigen-specific T cells to eradicate disease in a murine model has been demonstrated by Cheever et al, *Immunological Reviews*, 157:177, 1997.

Additionally, vectors expressing the disclosed polynucleotides may be introduced into stem cells taken from the patient and clonally propagated in vitro for autologous transplant back into the same patient.

Routes and frequency of administration of pharmaceutical compositions and vaccines, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from Chlamydial infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced in situ by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 μ g. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier

preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.

Any of a variety of non-specific immune response enhancers may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, Mich.); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, N.J.); SBAS2 and SBAS7 Adjuvants (SmithKline Beecham, London, England), aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate, salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quill A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

In certain vaccine formulations, an adjuvant composition designed to induce an immune response that is predominantly of the Th1 type may be indicated. Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Ribi ImmunoChem Research Inc. (Hamilton, Mont.) (see U.S. Pat. Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555. Another preferred adjuvant is a saponin, preferably QS21, which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and a saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprises an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210. Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient.

The compositions described herein may be administered as part of a sustained release formulation (i.e., a formulation such as a capsule or sponge that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix

and/or contained within a reservoir surrounded by a rate controlling membrane. Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. The amount of active compound contained within a sustained release formulation depends upon the site of implantation the rate and expected duration of release and the nature of the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects per se and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

In another aspect, the present invention provides methods for using the polypeptides described above to diagnose Chlamydial infection. In this aspect, methods are provided for detecting Chlamydial infection in a biological sample, using one or more of the above polypeptides, either alone or in combination. For clarity, the term "polypeptide" will be used when describing specific embodiments of the inventive diagnostic methods. However, it will be clear to one of skill in the art that the fusion proteins of the present invention may also be employed in such methods.

As used herein, a "biological sample" is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urine. More preferably, the sample is a blood, serum or plasma sample obtained from a patient. The polypeptides are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to Chlamydia antigens which may be indicative of Chlamydia-infection.

In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (i.e., one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with Chlamydia. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested.

A variety of assay formats are known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody

may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well 15 in a microtiter plate, or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Pat. No. 5,359,681.

The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art. In the context of the present invention, the term

25 "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a 30 membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a 35 well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 μ g, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

Covalent attachment of polypeptide to a solid support 40 may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

45 In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that 50 remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin (BSA) or Tween 20TM (Sigma Chemical Co., St. Louis, Mo.) may be employed. The

immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to detect the presence of antibody within an HGE-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, Calif., and Pierce, Rockford, Ill.).

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of anti-Chlamydia antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for Chlamydia-infection. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value

may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for Chlamydial infection.

In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-Chlamydia antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 μ g, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (e.g., one drop) of patient serum or blood.

Of course, numerous other assay protocols exist that are suitable for use with the polypeptides of the present invention. The above descriptions are intended to be exemplary only. One example of an alternative assay protocol which may be usefully employed in such methods is a Western blot, wherein the proteins present in a biological sample are separated on a gel, prior to exposure to a binding agent. Such techniques are well known to those of skill in the art.

In yet another aspect, the present invention provides antibodies to the polypeptides of the present invention. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). The polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined sched-

ule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide or antigenic epitope may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide or epitope of interest may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide or antigenic epitope of interest). Such cell lines may be produced, for example, from spleen-cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide or antigenic epitope. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides or antigenic epitopes of this invention may be used in the purification process in, for example, an affinity chromatography step.

Antibodies may be used in diagnostic tests to detect the presence of Chlamydia antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting Chlamydial infection in a patient.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify Chlamydia-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a polypeptide of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a polypeptide of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

As used herein, the term "oligonucleotide primer/probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers

and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. 5 Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al. *Ibid*, Ehrlich, *Ibid*). Primers or probes may thus be used to detect Chlamydia-specific sequences in biological samples. DNA probes or primers comprising oligonucleotide sequences described above may be used alone or in combination with each other.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLE 1

Isolation of DNA Sequences Encoding Chlamydia Antigens

Chlamydia antigens of the present invention were isolated 25 by expression cloning of a genomic DNA library of *Chlamydia trachomatis* LGV II essentially as described by Sanderson et al. (*J. Exp. Med.*, 1995, 182:1751-1757) and were shown to induce PBMC proliferation and IFN- γ in an immunoreactive T cell line.

A Chlamydia-specific T cell line was generated by stimulating PBMCs from a normal donor with no history of chlamydial genital tract infection with elementary bodies of *Chlamydia trachomatis* LGV II. This T cell line, referred to 30 as TCL-8, was found to recognize both *Chlamydia trachomatis* and *Chlamydia pneumonia* infected monocyte-derived dendritic cells.

A randomly sheared genomic library of *Chlamydia trachomatis* LGV II was constructed in Lambda ZAP 40 (Stratagene, La Jolla, Calif.) and the amplified library plated out in 96 well microtiter plates at a density of 30 clones/well. Bacteria were induced to express recombinant protein in the presence of 2 mM IPTG for 3 h, then pelleted and resuspended in 200 μ l of RPMI 10% FBS. 10 μ l of the induced 45 bacterial suspension was transferred to 96 well plates containing autologous monocyte-derived dendritic cells. After a 2 h incubation, dendritic cells were washed to remove free *E. coli* and Chlamydia-specific T cells were added. Positive *E. coli* pools were identified by determining IFN- γ production 50 and proliferation of the T cells in response to the pools.

Four positive pools were identified, which were broken down to yield four pure clones (referred to as 1-B1-66, 4-D7-28, 3-G3-10 and 10-C10-31), with insert sizes of 481 bp, 183 bp, 110 bp and 1400 bp, respectively. The determined DNA sequences for 1-B1-66, 4-D7-28, 3-G3-10 and 55 10-C10-31 are provided in SEQ ID NO: 1-4, respectively. Clone 1-B1-66 is approximately in region 536690 of the *C. trachomatis* genome (NCBI *C. trachomatis* database). Within clone 1-B1-66, an open reading frame (ORF) has 60 been identified (nucleotides 115-375) that encodes a previously identified 9 kDa protein (Stephens, et al. Genbank Accession No. AE001320), the sequence of which is provided in SEQ ID NO: 5). Clone 4-D7-28 is a smaller region of the same ORF (amino acids 22-82 of 1-B1-66). Clone 65 3-G3-10 is approximately in region 74559 of the *C. trachomatis* genome. The insert is cloned in the antisense orientation with respect to its orientation in the genome. The

clone 10-C10-31 contains an open reading frame that corresponds to a previously published sequence for S13 ribosomal protein from *Chlamydia trachomatis* (Gu, L. et al. *J. Bacteriology*, 177:2594-2601, 1995). The predicted protein sequences for 4-D7-28 and 10-C10-31 are provided in SEQ ID NO: 6 and 12, respectively. Predicted protein sequences for 3-G3-10 are provided in SEQ ID NO: 7-11.

In a related series of screening studies, an additional T cell line was used to screen the genomic DNA library of *Chlamydia trachomatis* LGV II described above. A Chlamydia-specific T cell line (TCT-1) was derived from a patient with a chlamydial genital tract infection by stimulating patient PBMC with autologous monocyte-derived dendritic cells infected with elementary bodies of *Chlamydia trachomatis* LGV II. One clone, 4C9-18 (SEQ ID NO: 21), containing a 1256 bp insert, elicited a specific immune response, as measured by standard proliferation assays, from the Chlamydia-specific T cell line TCT-1. Subsequent analysis revealed this clone to contain three known sequences: lipoamide dehydrogenase (Genbank Accession No. AE001326), disclosed in SEQ ID NO: 22; a hypothetical protein CT429 (Genbank Accession No. AE001316), disclosed in SEQ ID NO: 23; and part of an open reading frame of ubiquinone methyltransferase CT428 (Genbank Accession No. AE001316), disclosed in SEQ ID NO: 24.

In further studies involving clone 4C9-18 (SEQ ID NO: 21), the full-length amino acid sequence for lipoamide dehydrogenase (SEQ ID NO: 22) from *C. trachomatis* (LGV II) was expressed in clone CtL2-LPDA-FL, as disclosed in SEQ ID NO: 90.

To further characterize the open reading frame containing the T cell stimulating epitope(s), a cDNA fragment containing nucleotides 1-695 of clone 4C9-18 with a cDNA sequence encoding a 6X-Histidine tag on the amino terminus was subcloned into the NdeI/EcoRI site of the pET17b vector (Novagen, Madison, Wis.), referred to as clone 4C9-18#2 BL21 pLysS (SEQ ID NO: 25, with the corresponding amino acid sequence provided in SEQ ID NO: 26) and transformed into *E. coli*. Selective induction of the transformed *E. coli* with 2 mM IPTG for three hours resulted in the expression of: a 26 kDa protein from clone 4C9-18#2 BL21 pLysS, as evidenced by standard Coomassie-stained SDS-PAGE. To determine the immunogenicity of the protein encoded by clone 4C9-18#2 BL21 pLysS, *E. coli* expressing the 26 kDa protein were titrated onto 1×10^4 monocyte-derived dendritic cells and incubated for two hours. The dendritic cell cultures were washed and 2.5×10^4 T cells (TCT-1) added and allowed to incubate for an additional 72 hours, at which time the level of IFN- γ in the culture supernatant was determined by ELISA. As shown in FIG. 1, the T-cell line TCT-1 was found to respond to induced cultures as measured by IFN- γ , indicating a Chlamydia-specific T-cell response against the lipoamide dehydrogenase sequence. Similarly, the protein encoded by clone 4C9-18#2 BL21 pLysS was shown to stimulate the TCT-1 T-cell line by standard proliferation assays. Subsequent studies to identify additional *Chlamydia trachomatis* antigens using the above-described CD4+ T-cell expression cloning technique yielded additional clones. The TCT-1 and TCL-8 Chlamydia-specific T-cell lines, as well as the TCP-21 T-cell line were utilized to screen the *Chlamydia trachomatis* LGVII genomic library. The TCP-21 T-cell line was derived from a patient having a humoral immune response to *Chlamydia pneumoniae*. The TCT-1 cell line identified 37 positive pools, the TCT-3 cell line identified 41 positive pools and the TCP-21 cell line identified 2 positive pools. The following clones were derived from 10 of these

positive pools. Clone 11-A3-93 (SEQ ID NO: 64), identified by the TCP-21 cell line, is a 1339 bp genomic fragment sharing homology to the HAD superfamily (CT103). The second insert in the same clone shares homology with the fab I gene (CT104) present on the complementary strand. Clone 11-C12-91 (SEQ ID NO: 63), identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of *C. pneumoniae*.

Clone 11-G10-46, (SEQ ID NO: 62), identified using the TCT-3 cell line, contains a 688 bp insert that shares homology to the hypothetical protein CT610. Clone 11-G1-34, (SEQ ID NO: 61), identified using the TCT-3 cell line has two partial open reading frames (ORF) with an insert size of 1215 bp. One ORF shares homology to the malate dehydrogenase gene (CT376), and the other ORF shares homology to the glycogen hydrolase gene (CT042). Clone 11-H3-68, (SEQ ID NO: 60), identified using the TCT-3 cell line, has two ORFs with a total insert size of 1180 bp. One partial ORF encodes the plasmid-encoded PGP6-D virulence protein while the second ORF is a complete ORF for the L1 ribosomal gene (CT318). Clone 11-H4-28, (SEQ ID NO: 59), identified using the TCT-3 cell line, has an insert size of 552 bp and is part of the ORF for the dnaK gene (CT396). Clone 12-B3-95, (SEQ ID NO: 58), identified using the TCT-1 cell line, has an insert size of 463 bp and is a part of the ORF for the lipoamide dehydrogenase gene (CT557). Clones 15-G1-89 and 12-B3-95 are identical, (SEQ ID NO: 55 and 58, respectively), identified using the TCT-1 cell line, has an insert size of 463 bp and is part of the ORF for the lipoamide dehydrogenase gene (CT557). Clone 12-G3-83, (SEQ ID NO: 57), identified using the TCT-1 cell line has an insert size of 1537 bp and has part of the ORF for the hypothetical protein CT622.

Clone 23-G7-68, (SEQ ID NO: 79), identified using the TCT-3 cell line, contains a 950 bp insert and contains a small part of the L11 ribosomal ORF, the entire ORF for L1 ribosomal protein and a part of the ORF for L10 ribosomal protein. Clone 22-F8-91, (SEQ ID NO: 80), identified using the TCT-1 cell line, contains a 395 bp insert that contains a part of the pmpC ORF on the complementary strand of the clone. Clone 21-E8-95, (SEQ ID NO: 81), identified using the TCT-3 cell line, contains a 2,085 bp insert which contains part of CT613 ORF, the complete ORF for CT612, the complete ORF for CT611 and part of the ORF for CT610. Clone 19-F12-57, (SEQ ID NO: 82), identified using the TCT-3 cell line, contains a 405 bp insert which contains part of the CT858 ORF and a small part of the recA ORF. Clone 19-F12-53, (SEQ ID NO: 83), identified using the TCT-3 cell line, contains a 379 bp insert that is part of the ORF for CT455 encoding glutamyl tRNA synthetase. Clone 19-A5-54, (SEQ ID NO: 84), identified using the TCT-3 cell line, contains a 715 bp insert that is part of the ORF3 (complementary strand of the clone) of the cryptic plasmid. Clone 17-E11-72, (SEQ ID NO: 85), identified using the TCT-1 cell line, contains a 476 bp insert that is part of the ORF for Opp_2 and pmpD. The pmpD region of this clone is covered by the pmpD region of clone 15-H2-76. Clone 17-C1-77, (SEQ ID NO: 86), identified using the TCT-3 cell line, contains a 1551 bp insert that is part of the CT857 ORF, as well as part of the CT858 ORF. Clone 15-H2-76, (SEQ ID NO: 87), identified using the TCT-1 cell line, contains a 3,031 bp insert that contains a large part of the pmpD ORF, part of the CT089 ORF, as well as part of the ORF for SycE. Clone 15-A3-26, (SEQ ID NO: 88), contains a 976 bp insert that contains part of the ORF for CT858.

Clone 14-H1-4, (SEQ ID NO: 56), identified using the TCT-3 cell line, contains a complete ORF for the TSA gene, thiol specific antioxidant—CT603 (the CT603 ORF is a homolog of CPn0778 from *C. pneumoniae*). The TSA open reading frame in clone 14-H1-4 was amplified such that the expressed protein possess an additional methionine and a 6x histidine tag (amino terminal end). This amplified insert was sub-cloned into the Nde/EcoRI sites of the pET17b vector. Upon induction of this clone with IPTG, a 22.6 kDa protein was purified by Ni-NTA agarose affinity chromatography. The determined amino acid sequence for the 195 amino acid ORF of clone 14-H1-4 encoding the TSA gene is provided in SEQ ID NO: 65. Further analysis yielded a full-length clone for the TSA gene, referred to as CTL2-TSA-FL, with the full-length amino acid sequence provided in SEQ ID NO: 92.

Additional Chlamydia antigens were obtained by screening a genomic expression library of *Chlamydia trachomatis* (LGV II serovar) in Lambda Screen-1 vector (Novagen, Madison, Wis.) with sera pooled from several Chlamydia-infected individuals using techniques well known in the art. The following immuno-reactive clones were identified and the inserts containing Chlamydia genes sequenced: CTL2#1 (SEQ ID NO: 71); CTL2#2 (SEQ ID NO: 70); CTL2#3-5' (SEQ ID NO: 72, a first determined genomic sequence representing the 5' end); CTL2#3-3' (SEQ ID NO: 73, a second determined genomic sequence representing the 3' end); CTL2#4 (SEQ ID NO: 53); CTL2#5 (SEQ ID NO: 69); CTL2#6 (SEQ ID NO: 68); CTL2#7 (SEQ ID NO: 67); CTL2#8b (SEQ ID NO: 54); CTL2#9 (SEQ ID NO: 66); CTL2#10-5' (SEQ ID NO: 74, a first determined genomic sequence representing the 5' end); CTL2#10-3' (SEQ ID NO: 75, a second determined genomic sequence representing the 3' end); CTL2#11-5' (SEQ ID NO: 45, a first determined genomic sequence representing the 5' end); CTL2#11-3' (SEQ ID NO: 44, as econd determined genomic sequence representing the 3' end); CTL2#12 (SEQ ID NO: 46); CTL2#16-5' (SEQ ID NO: 47); CTL2#18-5' (SEQ ID NO: 49, a first determined genomic sequence representing the 5' end); CTL2#18-3' (SEQ ID NO: 48, a second determined genomic sequence representing the 3' end); CTL2#19-5' (SEQ ID NO: 76, the determined genomic sequence representing the 5' end); CTL2#21 (SEQ ID NO: 50); CTL2#23 (SEQ ID NO: 51; and CTL2#24 (SEQ ID NO: 52).

EXAMPLE 2

Induction of T Cell Proliferation and Interferon- γ Production by *Chlamydia Trachomatis* Antigens

The ability of recombinant *Chlamydia trachomatis* antigens to induce T cell proliferation and interferon- γ production is determined as follows.

Proteins are induced by IPTG and purified by Ni-NTA agarose affinity chromatograph (Webb et al., *J. Immunology* 157:5034-5041, 1996). The purified polypeptides are then screened for the ability to induce T-cell proliferation in PBMC preparations. PBMCs from *C. trachomatis* patients as well as from normal donors whose T-cells are known to proliferate in response to Chlamydia antigens, are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 μ g/ml gentamicin. Purified polypeptides are added in duplicate at concentrations of 0.5 to 10 μ g/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 μ l, 50 μ l of medium is removed from each well for determination of IFN- γ levels, as described below. The plates are then pulsed with 1 μ Ci/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scin-

tillation counter. Fractions that result in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone are considered positive.

IFN- γ is measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates are coated with a mouse monoclonal antibody directed to human IFN- γ (PharMingen, San Diego, Calif.) in PBS for four hours at room temperature. Wells are then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates are washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates are incubated overnight at room temperature. The plates are again washed and a polyclonal rabbit anti-human IFN- γ serum diluted 1:3000 in PBS/10% normal goat serum is added to each well. The plates are then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical Co., St. Louis, Mo.) is added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates are washed and TMB substrate added. The reaction is stopped after 20 min with 1 N sulfuric acid. Optical density is determined at 450 nm using 570 nm as a reference wavelength. Fractions that result in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, are considered positive.

Using the above methodology, recombinant 1B1-66 protein (SEQ ID NO: 5) as well as two synthetic peptides corresponding to amino acid residues 48-67 (SEQ ID NO: 13; referred to as 1-B1-66/48-67) and 58-77 (SEQ ID NO: 14, referred to as 1B1-66/58-77), respectively, of SEQ ID NO: 5, were found to induce a proliferative response and IFN- γ production in a Chlamydia-specific T cell line used to screen a genomic library of *C. trachomatis* LGV II.

Further studies have identified a *C. trachomatis*-specific T-cell epitope in the ribosomal S13 protein. Employing standard epitope mapping techniques well known in the art, two T-cell epitopes in the ribosomal S13 protein (rS13) were identified with a Chlamydia-specific T-cell line from donor CL-8 (T-cell line TCL-8 EB/DC). FIG. 8 illustrates that the first peptide, rS13 1-20 (SEQ ID NO: 106), is 100% identical with the corresponding *C. pneumoniae* sequence, explaining the cross-reactivity of the T-cell line to recombinant *C. trachomatis* and *C. pneumoniae*-rS13. The response to the second peptide rS13 56-75 (SEQ ID NO: 108) is *C. trachomatis*-specific, indicating that the rS13 response in this healthy asymptomatic donor was elicited by exposure to *C. trachomatis* and not to *C. pneumoniae*, or any other microbial infection.

EXAMPLE 3

Preparation of Synthetic Polypeptides

Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugating or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

EXAMPLE 4

Lysis of Target Cells by a Murine CD8+ T-Cell Line Specific for Chlamydia Antigens

A genomic library of *Chlamydia trachomatis* LGV II was constructed by limited digests using BamHI, BglII, BstYI and MboI restriction enzymes. The restriction digest fragments were subsequently ligated into the BamHI site of the retroviral vectors pBIB-KS1,2,3. This vector set was modified to contain a Kosak translation initiation site and stop codons in order to allow expression of proteins from short DNA genomic fragments, as shown in FIG. 2. DNA pools of 80 clones were prepared and transfected into the retroviral packaging line Phoenix-Ampho, as described in Pear, W. S., Scott, M. L. and Nolan, G. P., Generation of High Titre, Helper-free Retroviruses by Transient Transfection. Methods in Molecular Medicine: Gene Therapy Protocols, Humana Press, Totowa, N.J., pp. 41-57. The Chlamydia library in retroviral form was then transduced into H2-Ld expressing P815 cells, which were then used as target cells to stimulate an antigen specific T-cell line.

A Chlamydia-specific, murine H2-Ld restricted CD8+ T-cell line was expanded in culture by repeated rounds of stimulation with irradiated *C. trachomatis*-infected J774 cells and irradiated syngeneic spleen cells, as described by Starnbach, M., in *J. Immunol.*, 153:5183, 1994. This Chlamydia-specific T-cell line was used to screen the above Chlamydia genomic library expressed by the retrovirally-transduced P815 cells. Positive DNA pools were identified by detection of IFN- γ production using Elispot analysis (see Lalvani et al., *J. Experimental Medicine* 186:859-865, 1997).

Two positive pools, referred to as 2C7 and 2E10, were identified by standard chromium release assays. Stable transductants of P815 cells from pool 2C7 were cloned by limiting dilution and individual clones were selected based upon their capacity to elicit IFN- γ production from the Chlamydia-specific CTL line. From this screening process, four positive clones were selected, referred to as 2C7-8, 2C7-9, 2C7-19 and 2C7-21.

Transgenic DNA from these four positive clones was PCR amplified using pBIB-KS specific primers to selectively amplify the Chlamydia DNA insert. Amplified inserts were gel purified and sequenced. One immunoreactive clone, 2C7-8 (SEQ ID NO: 15, with the predicted amino acid sequence provided in SEQ ID NO: 32), is a 160 bp fragment with homology to nucleotides 597304-597145 of *Chlamydia trachomatis*, serovar D (NCBI, BLASTN search; SEQ ID NO: 33, with the predicted amino acid sequence provided in SEQ ID NO: 34). The sequence of clone 2C7-8 maps within two putative open reading frames from the region of high homology described immediately above, and in particular, one of these putative open reading frames, consisting of a 298 amino acid fragment (SEQ ID NO: 16, with the predicted amino acid sequence provided in SEQ ID NO: 17), was demonstrated to exhibit immunological activity.

To determine if these two putative open reading frames (SEQ ID NO: 16 and 20) encoded a protein with an associated immunological function, overlapping peptides (17-20 amino acid lengths) spanning the lengths of the two open reading frames were synthesized, as described in Example 3. A standard chromium release assay was utilized to determine the per cent specific lysis of peptide-pulsed H2-Ld restricted target cells. In this assay, aliquots of P815 cells (H2-Ld) were labeled at 37° C. for one hour with 100 μ Ci of ^{51}Cr in the presence or absence of 1 $\mu\text{g}/\text{ml}$ of the indicated peptides. Following this incubation, labeled P815 cells were washed to remove excess ^{51}Cr and peptide, and subsequently plated in duplicate in microculture plates at a

concentration of 1,000 cells/well. Effector CTL (Chlamydia-specific CD8 T cells) were added at the indicated effector:target ratios. Following a 4 hour incubation, supernatants were harvested and measured by gamma-counter for release of ^{51}Cr into the supernatant. Two overlapping peptides from the 298 amino acid open reading frame did specifically stimulate the CTL line. As shown in FIG. 3, peptides CtC7.8-12 (SEQ ID NO: 18) and CtC7.8-13 (SEQ ID NO: 19) were able to elicit 38 to 52% specific lysis, respectively, at an effector to target ratio of 10:1. Notably, the overlap between these two peptides contained a predicted Ld binding peptide. A 10 amino acid peptide was synthesized to correspond to this overlapping sequence (SEQ ID NO: 31) and was found to generate a strong immune response from the anti-Chlamydia CTL line by elispot assay. Significantly, a search of the most recent Genbank database revealed no proteins have previously been described for this gene. Therefore, the putative open reading frame encoding clone 2C7-8 (SEQ ID NO: 15) defines a gene which encompasses an antigen from Chlamydia capable of stimulating antigen-specific CD8+ T-cells in a MHC-I restricted manner, demonstrating this antigen could be used to develop a vaccine against Chlamydia.

EXAMPLE 5

Generation of Antibody and CD4+ T-Cell Responses in Mice Immunized with Chlamydia Antigens

Immunogenicity studies were conducted to determine the antibody and CD4+ T cell responses in mice immunized with either purified SWIB or S13 proteins formulated with Montanide adjuvant, or DNA-based immunizations with pcDNA-3 expression vectors containing the DNA sequences for SWIB or S13. SWIB is also referred to as clone 1-B1-66 (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5), and S13 ribosomal protein is also referred to as clone 10-C10-31 (SEQ ID NO: 4, with the corresponding amino acid sequence provided in SEQ ID NO: 12). In the first experiment, groups of three C57BL/6 mice were immunized twice and monitored for antibody and CD4+ T-cell responses. DNA immunizations were intradermal at the base of the tail and polypeptide immunizations were administered by subcutaneous route. Results from standard ^3H -incorporation assays of spleen cells from immunized mice shows a strong proliferative response from the group immunized with purified recombinant SWIB polypeptide (SEQ ID NO: 5). Further analysis by cytokine induction assays, as previously described, demonstrated that the group immunized with SWIB polypeptide produced a measurable IFN- γ and IL-4 response. Subsequent ELISA-based assays to determine the predominant antibody isotype response in the experimental group immunized with the SWIB polypeptide were performed. FIG. 4 illustrates the SWIB-immunized group gave a humoral response that was predominantly IgG1.

In a second experiment, C3H mice were immunized three times with 10 μg purified SWIB protein (also referred to as clone 1-B1-66, SEQ ID NO: 5) formulated in either PBS or Montanide at three week intervals and harvested two weeks after the third immunization. Antibody titers directed against the SWIB protein were determined by standard ELISA-based techniques well known in the art, demonstrating the SWIB protein formulated with Montanide adjuvant induced a strong humoral immune response. T-cell proliferative responses were determined by a XTT-based assay (Scudiero, et al, *Cancer Research*, 1988, 48:4827). As shown in FIG. 5, splenocytes from mice immunized with the SWIB polypeptide plus Montanide elicited an antigen specific proliferative response. In addition, the capacity of splenocytes from

immunized animals to secrete IFN- γ in response to soluble recombinant SWIB polypeptide was determined using the cytokine induction assay previously described. The splenocytes from all animals in the group immunized with SWIB polypeptide formulated with montanide adjuvant secreted IFN- γ in response to exposure to the SWIB Chlamydia antigen, demonstrating an Chlamydia-specific immune response.

In a further experiment, C3H mice were immunized at three separate time points at the base of the tail with 10 μ g of purified SWIB or S13 protein (*C. trachomatis*, SWIB protein, clone 1-B1-66, SEQ ID NO: 5, and S13 protein, clone 10-C10-31, SEQ ID NO: 4) formulated with the SBAS2 adjuvant (SmithKline Beecham, London, England). Antigen-specific antibody titers were measured by ELISA, showing both polypeptides induced a strong IgG response, ranging in titers from 1×10^{-4} to 1×10^{-5} . The IgG1 and IgG2a components of this response were present in fairly equal amounts. Antigen-specific T-cell proliferative responses, determined by standard 3 H-incorporation assays on spleen cells isolated from immunized mice, were quite strong for SWIB (50,000 cpm above the negative control) and even stronger for s13 (100,000 cpm above the negative control). The IFN γ production was assayed by standard ELISA techniques from supernatant from the proliferating culture. In vitro restimulation of the culture with S13 protein induced high levels of IFN γ production, approximately 25 ng/ml versus 2 ng/ml for the negative control. Restimulation with the SWIB protein also induced IFN γ , although to a lesser extent.

In a related experiment, C3H mice were immunized at three separate time points with 10 μ g of purified SWIB or S13 protein (*C. trachomatis*, SWIB protein, clone 1-B1-66, SEQ ID NO: 5, and S13 protein, clone 10-C10-31, SEQ ID NO: 4) mixed with 10 μ g of Cholera Toxin. Mucosal immunization was through intranasal inoculation. Antigen-specific antibody responses were determined by standard ELISA techniques. Antigen-specific IgG antibodies were present in the blood of SWIB-immunized mice, with titers ranging from 1×10^{-3} to 1×10^{-4} , but non-detectable in the S13-immunized animals. Antigen-specific T-cell responses from isolated splenocytes, as measured by IFN γ production, gave similar results to those described immediately above for systemic immunization.

A protection study was conducted in mice to determine whether DNA-based immunization with SWIB can influence genital tract disease resulting from chlamydial elementary bodies inoculation. Two models were utilized; a model of intravaginal inoculation that uses a human isolate containing a strain of *Chlamydia psittaci*, and a model of intrauterine inoculation that involves a human isolate identified as *Chlamydia trachomatis*, serovar F. Both strains induce inflammation in the upper genital tract, which resemble endometritis and salpingitis caused by *Chlamydia trachomatis*. C3H mice were immunized at three time points at the base of the tail with 100 μ g of pcDNA-3 expression vector containing SWIB DNA (*C. trachomatis*, as described above). Two weeks post the third immunization, animals were treated with progesterone and infected, either through intravaginal or intrauterine inoculation. Two weeks post infection, mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. In the intrauterine-inoculation model, mock-immunized animals receiving empty vector showed consistent inflammation with an ovary/oviduct mean inflammation score of 6.12, versus 2.62 for the DNA-immunized group. In the model of vaginal inoculation and ascending infection, mock-immunized mice had an ovary/oviduct mean inflammation score of 8.37 versus 5 for the DNA-immunized group. Additionally, in a later model, vaccinated mice showed no signs of tubal

occlusion while negative control mice had inflammatory cells in the lumen of the oviduct.

EXAMPLE 6

Expression and Characterization of *Chlamydia pneumoniae* Genes

The human T-cell line, TCL-8, described in Example 1, recognizes *Chlamydia trachomatis* as well as *Chlamydia pneumoniae* infected monocyte-derived dendritic cells, suggesting *Chlamydia trachomatis* and *pneumonia* may encode cross-reactive T-cell epitopes. To isolate the *Chlamydia pneumoniae* genes homologous to *Chlamydia trachomatis* LGV II clones 1B1-66, also referred to as SWIB (SEQ ID NO: 1) and clone 10C10-31, also referred to as S13 ribosomal protein (SEQ ID NO: 4), HeLa 229 cells were infected with *C. pneumoniae* strain TWAR (CDC/CWL-029). After three days incubation, the *C. pneumoniae*-infected HeLa cells were harvested, washed and resuspended in 200 μ l water and heated in a boiling water bath for 20 minutes. Ten microliters of the disrupted cell suspension was used as the PCR template.

C. pneumoniae specific primers were designed for clones 1B1-66 and 10C10-31 such that the 5' end had a 6X-Histidine tag and a Nde I site inserted, and the 3" end had a stop codon and a BamHI site included (FIG. 6). The PCR products were amplified and sequenced by standard techniques well known in the art. The *C. pneumoniae*-specific PCR products were cloned into expression vector pET17B (Novagen, Madison, Wis.) and transfected into *E. coli* BL21 pLysS for expression and subsequent purification utilizing the histidine-nickel chromatographic methodology provided by Novagen. Two proteins from *C. pneumoniae* were thus generated, a 10-11 kDa protein referred to as CpSWIB (SEQ ID NO: 27, and SEQ ID NO: 78 having a 6 \times His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 28, respectively), a 15 kDa protein referred to as CpS13 (SEQ ID NO: 29, and SEQ ID NO: 77, having a 6X His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 30 and 91, respectively). A human anti-chlamydia T-cell line (TCL-8) capable of cross-reacting to *C. trachomatis* and *C. pneumoniae* was used to determine whether the expressed proteins possessed T-cell epitopes common to both *C. trachomatis* and *C. pneumoniae*. Briefly, *E. coli* expressing chlamydial proteins were titered on 1×10^4 monocyte-derived dendritic cells. After two hours, the dendritic cells cultures were washed and 2.5×10^4 T cells (TCL-8) added and allowed to incubate for an additional 72 hours. The amount of INF- γ in the culture supernatant was then determined by ELISA. As shown in FIGS. 7A and 7B, the TCL-8 T-cell line specifically recognized the S13 ribosomal protein from both *C. trachomatis* and *C. pneumoniae* as demonstrated by the antigen-specific induction of IFN- γ , whereas only the SWIB protein from *C. trachomatis* was recognized by the T-cell line. To validate these results, the T cell epitope of *C. trachomatis* SWIB was identified by epitope mapping using target cells pulsed with a series of overlapping peptides and the T-cell line TCL-8. 3H-thymidine incorporation assays demonstrated that the peptide, referred to as C.t.SWIB 52-67, of SEQ ID NO: 39 gave the strongest proliferation of the TCL-8 line. The homologous peptides corresponding to the SWIB of *C. pneumoniae* sequence (SEQ ID NO: 40), the topoisomerase-6 SWIB fusion of *C. pneumoniae* (SEQ ID NO: 43) and *C. trachomatis* (SEQ ID NO: 42) as well as the human SWI domain (SEQ ID NO: 41) were synthesized and tested in the above assay. The T-cell line TCL-8 only recognized the *C. trachomatis* peptide of SEQ ID NO: 39 and not the corresponding *C. pneumoniae* peptide (SEQ ID NO: 40), or the other corresponding peptides described above (SEQ ID NO: 41-43).

EXAMPLE 7

Induction of T Cell Proliferation and Interferon- γ Production by *Chlamydia Pneumoniae* Antigens

The ability of recombinant *Chlamydia pneumoniae* antigens to induce T cell proliferation and interferon- γ production is determined as follows.

Proteins are induced by IPTG and purified by Ni-NTA agarose affinity chromatograph (Webb et al., *J. Immunology* 157:5034-5041, 1996). The purified polypeptides are then screened for the ability to induce T-cell proliferation in PBMC preparations. PBMCs from *C. pneumoniae* patients as well as from normal donors whose T-cells are known to proliferate in response to *Chlamydia* antigens, are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 μ g/ml gentamicin. Purified polypeptides are added in duplicate at concentrations of 0.5 to 10 μ g/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 μ l, 50 μ l of medium is removed from each well for determination of IFN- γ levels, as described below. The plates are then pulsed with 1 μ Ci/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that result in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone are considered positive.

IFN- γ was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates are coated with a mouse monoclonal antibody directed to human IFN- γ (PharMingen, San Diego, Calif.) in PBS for four hours at room temperature. Wells are then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates are washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates are incubated overnight at room temperature. The plates are again washed and a polyclonal rabbit anti-human IFN- γ serum diluted 1:3000 in PBS/10% normal goat serum is added to each well. The plates are then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical Co., St. Louis, Mo.) is added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates are washed and TMB substrate added. The reaction is stopped after 20 min with 1 N sulfuric acid. Optical density is determined at 450 nm using 570 nm as a reference wavelength. Fractions that result in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, are considered positive.

Chlamydia-specific T cell lines were generated from donor CP-21 with a positive serum titer against *C. pneumoniae* by stimulating donor PBMC with either *C. trachomatis* or *C. pneumoniae*-infected monocyte-derived dendritic cells, respectively. T-cells generated against *C. pneumoniae* responded to recombinant *C. pneumoniae*-SWIB but not *C. trachomatis*-SWIB, whereas the T-cell line generated against *C. trachomatis* did not respond to either *C. trachomatis*- or *C. pneumoniae*-SWIB (see FIG. 59). The *C. pneumoniae*-SWIB specific immune response of donor CP-21 confirms the *C. pneumoniae* infection and indicates the elicitation of *C. pneumoniae*-SWIB specific T-cells during *in vivo* *C. pneumoniae* infection. Epitope mapping of the T-cell response to *C. pneumoniae*-SWIB has shown that Cp-SWIB-specific T-cells responded to the overlapping peptides Cp-SWIB 32-51 (SEQ ID NO: 101) and Cp-SWIB 37-56 (SEQ ID NO: 102), indicating a *C. pneumoniae*-SWIB-specific T-cell epitope Cp-SWIB 37-51 (SEQ ID NO: 100).

In additional experiments, T-cell lines were generated from donor CP1, also a *C. pneumoniae* seropositive donor,

by stimulating PBMC with non-infectious elementary bodies from *C. trachomatis* and *C. pneumoniae*, respectively. In particular, proliferative responses were determined by stimulating 2.5×10^4 T-cells in the presence of 1×10^4 monocyte-derived dendritic cells and non-infectious elementary bodies derived from *C. trachomatis* and *C. pneumoniae*, or either recombinant *C. trachomatis* or *C. pneumoniae* SWIB protein. The T-cell response against SWIB resembled the data obtained with T-cell lines from CP-21 in that *C. pneumoniae*-SWIB, but not *C. trachomatis*-SWIB elicited a response by the *C. pneumoniae* T-cell line. In addition, the *C. trachomatis* T-cell line did not proliferate in response to either *C. trachomatis* or *C. pneumoniae* SWIB, though it did proliferate in response to both CT and CP elementary bodies.

EXAMPLE 8

Immune Responses of Normal Study Subjects Against *Chlamydia* Antigens

The examples provided herein suggest that there is a population of healthy donors among the general population that has been infected with *C. trachomatis* and generated a protective immune response controlling the *C. trachomatis* infection. These donors remained clinically asymptomatic and seronegative for *C. trachomatis*. To characterize the immune responses of normal donors against chlamydial antigens identified by CD4 expression cloning, PBMC obtained from 12 health donors were tested against a panel of recombinant chlamydial antigens including *C. trachomatis*-, *C. pneumoniae*-SWIB and *C. trachomatis*-, *C. pneumoniae*-S13. The data are summarized in Table I below. All donors were seronegative for *C. trachomatis*, whereas 6/12 had a positive *C. pneumoniae* titer. Using a stimulation index of >4 as a positive response, 11/12 of the subjects responded to *C. trachomatis* elementary bodies and 12/12 responded to *C. pneumoniae* elementary bodies. One donor, AD104, responded to recombinant *C. pneumoniae*-S13 protein, but not to recombinant *C. trachomatis*-S13 protein, indicating a *C. pneumoniae*-specific response. Three out of 12 donors had a *C. trachomatis*-SWIB, but not a *C. pneumoniae*-SWIB specific response, confirming a *C. trachomatis* infection. *C. trachomatis* and *C. pneumoniae*-S13 elicited a response in 8/12 donors suggesting a chlamydial infection. These data demonstrate the ability of SWIB and S13 to elicit a T-cell response in PBMC of normal study subjects.

TABLE I

Immune response of normal study subjects against <i>Chlamydia</i>									
50	Donor	Sex	Chlamydia IgG titer	CT EB	CT EB	CT Swib	CP Swib	CT S13	CP S13
AD100	male	negative	++	+++	+	-	++	++	
AD104	female	negative	+++	++	-	-	-	-	++
AD108	male	CP 1:256	++	++	+	+/-	+	+	+
AD112	female	negative	++	++	+	-	+	-	
AD120	male	negative	-	+	-	-	-	-	
AD124	female	CP 1:128	++	++	-	-	-	-	
AD128	male	CP 1:512	+	++	-	-	++	+	
AD132	female	negative	++	++	-	-	+	+	
AD136	female	CP 1:128	+	++	-	-	+/-	-	
AD140	male	CP 1:256	++	++	-	-	+	+	
AD142	female	CP 1:512	++	++	-	-	+	+	
AD146	female	negative	++	++	-	-	++	+	

Proliferative responses were determined by stimulating 3×10^5 PBMC with 1×10^4 monocyte-derived dendritic cells pre-incubated with the respective recombinant antigens or elementary bodies (EB). Assays were harvested after 6 days with a 3 H-thymidine pulse for the last 18 h.

SI: Stimulation Index
 +/-: SI<4
 +: SI>4
 ++: SI 10–30
 +++: SI>30

In a first series of experiments, T-cell lines were generated from a healthy female individual (CT-10) with a history of genital exposure to *C. trachomatis* by stimulating T-cells with *C. trachomatis* LGV II elementary bodies as previously described. Although the study subject was exposed to *C. trachomatis*, she did not seroconvert and did not develop clinical symptoms, suggesting donor CT-10 may have developed a protective immune response against *C. trachomatis*. As shown in FIG. 10, a primary Chlamydia-specific T-cell

line derived from donor CT-10 responded to *C. trachomatis*-SWIB, but not *C. pneumoniae*-SWIB recombinant proteins, confirming the exposure of CT-10 to *C. trachomatis*. Epitope mapping of the T-cell response to *C. trachomatis*-SWIB showed that this donor responded to the same epitope Ct-SWIB 52–67 (SEQ ID NO: 39) as T-cell line TCL-8, as shown in FIG. 11.

Although the present invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 109

<210> SEQ ID NO 1
 <211> LENGTH: 481
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 1

ctgaagactt	ggctatgttt	tttatTTTga	cgataaacct	agttaaggca	taaaagagtt	60
gcgaaggaaag	agccctcaac	ttttcttatac	accttcttta	actaggagtc	atccatgagt	120
caaaataaga	actctgcttt	catgcagcct	gtgaacgtat	ccgctgattt	agctgccatc	180
gttggcgcag	gacctatgcc	tcgcacagag	atcattaaga	aaatgtggga	ttacattaag	240
gagaatagtc	ttaaagatcc	tacaaacaaa	cgtaatatca	atcccgtat	taaattggct	300
aaagttttg	gaactgaaaa	acctatcgat	atgttccaaa	tgacaaaaat	ggtttctcaa	360
cacatcatta	aataaaatag	aaattgtactc	acgtgttcct	cgtcttaag	atgaggaact	420
agttcattct	tttgttcgt	ttttgtgggt	attactgtat	ctttaacaac	tatcttagca	480
g						481

<210> SEQ ID NO 2

<211> LENGTH: 183
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 2

atcggtggtg	caggacctat	gcctcgacaca	gagatcatta	agaaaatgtg	ggattacatt	60
aaggagaata	gtcttcaaga	tcctacaaac	aaacgtataa	tcaatcccga	tgataaattt	120
gctaaagttt	ttggaactga	aaaacctatc	gatatgttcc	aatgacaaa	aatggttct	180
caa						183

<210> SEQ ID NO 3

<211> LENGTH: 110
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 3

gctgcgacat	catgcgagct	tgcaaaccaa	catggacatc	tccaaatttcc	ccttctaact	60
cgctcttgg	aactaatgct	gttaccgagt	caatcacaat	cacatcgacc		110

<210> SEQ ID NO 4

<211> LENGTH: 555

-continued

<212> TYPE: DNA
 <213> ORGANISM: Chlamydia trachomatis
 <400> SEQUENCE: 4

 cggcacgagc ctaagatgct tatactactt taagggaggc ctttcgtatg ccgcgcata 60
 ttggaaataga tattcctgcg aaaaagaat taaaataag tcttacatat atttatggaa 120
 tagggccagc tctttctaaa gagattattg ctagattgca gttgaatccc gaagctagag 180
 ctgcagagtt gactgaggaa gaggttggtc gactaaacgc tctttacag tcggattacg 240
 ttgttgaagg ggatttgcgc cgtcgtgtgc aatctgatata caaacgtctg attactatcc 300
 atgcttatcg tggacaaaga catagacttt ctttgctgt tcgtggtcag agaacaaaaa 360
 caaattctcg cacgcgtaa ggttaaacgtaa aactattgc agttaagaag aaataataat 420
 ttttaggaga gagtgttttgcgtttaaaaatc aagcgaaaaa aagaggcgtaa aaaaagaaac 480
 aagtaaaaaaa cattccttcg ggcgttgcgtttaat aatacaatttgcgttta 540
 taaccataac agacc 555

<210> SEQ ID NO 5
 <211> LENGTH: 86
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia trachomatis
 <400> SEQUENCE: 5

 Met Ser Gln Asn Lys Asn Ser Ala Phe Met Gln Pro Val Asn Val Ser
 1 5 10 15

 Ala Asp Leu Ala Ala Ile Val Gly Ala Gly Pro Met Pro Arg Thr Glu
 20 25 30

 Ile Ile Lys Lys Met Trp Asp Tyr Ile Lys Glu Asn Ser Leu Gln Asp
 35 40 45

 Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val
 50 55 60

 Phe Gly Thr Glu Lys Pro Ile Asp Met Phe Gln Met Thr Lys Met Val
 65 70 75 80

 Ser Gln His Ile Ile Lys
 85

<210> SEQ ID NO 6
 <211> LENGTH: 61
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia trachomatis
 <400> SEQUENCE: 6

 Ile Val Gly Ala Gly Pro Met Pro Arg Thr Glu Ile Ile Lys Lys Met
 1 5 10 15

 Trp Asp Tyr Ile Lys Glu Asn Ser Leu Gln Asp Pro Thr Asn Lys Arg
 20 25 30

 Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly Thr Glu Lys
 35 40 45

 Pro Ile Asp Met Phe Gln Met Thr Lys Met Val Ser Gln
 50 55 60

<210> SEQ ID NO 7
 <211> LENGTH: 36
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia trachomatis
 <400> SEQUENCE: 7

-continued

Ala Ala Thr Ser Cys Glu Leu Ala Asn Gln His Gly His Leu Gln Phe
 1 5 10 15

Pro Leu Leu Thr Arg Ser Leu Glu Leu Met Leu Leu Pro Ser Gln Ser
 20 25 30

Gln Ser His Arg
 35

<210> SEQ ID NO 8
 <211> LENGTH: 18
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 8

Leu Arg His His Ala Ser Leu Gln Thr Asn Met Asp Ile Ser Asn Phe
 1 5 10 15

Pro Phe

<210> SEQ ID NO 9
 <211> LENGTH: 5
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 9

Leu Ala Leu Trp Asn
 1 5

<210> SEQ ID NO 10
 <211> LENGTH: 11
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 10

Cys Cys Tyr Arg Val Asn His Asn His Ile Asp
 1 5 10

<210> SEQ ID NO 11
 <211> LENGTH: 36
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 11

Val Asp Val Ile Val Ile Asp Ser Val Ala Ala Leu Val Pro Lys Ser
 1 5 10 15

Glu Leu Glu Gly Glu Ile Gly Asp Val His Val Gly Leu Gln Ala Arg
 20 25 30

Met Met Ser Gln
 35

<210> SEQ ID NO 12
 <211> LENGTH: 122
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 12

Met Pro Arg Ile Ile Gly Ile Asp Ile Pro Ala Lys Lys Lys Leu Lys
 1 5 10 15

Ile Ser Leu Thr Tyr Ile Tyr Gly Ile Gly Pro Ala Leu Ser Lys Glu
 20 25 30

Ile Ile Ala Arg Leu Gln Leu Asn Pro Glu Ala Arg Ala Ala Glu Leu
 35 40 45

Thr Glu Glu Glu Val Gly Arg Leu Asn Ala Leu Leu Gln Ser Asp Tyr

-continued

50	55	60
Val Val Glu Gly Asp Leu Arg Arg Arg Val Gln Ser Asp Ile Lys Arg		
65	70	75
Leu Ile Thr Ile His Ala Tyr Arg Gly Gln Arg His Arg Leu Ser Leu		
85	90	95
Pro Val Arg Gly Gln Arg Thr Lys Thr Asn Ser Arg Thr Arg Lys Gly		
100	105	110
Lys Arg Lys Thr Ile Ala Gly Lys Lys Lys		
115	120	

<210> SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Chlamydia trachomatis
<400> SEQUENCE: 13

Asp Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys		
1	5	10
Val Phe Gly Thr		
20		

<210> SEQ ID NO 14
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Chlamydia trachomatis
<400> SEQUENCE: 14

Asp Asp Lys Leu Ala Lys Val Phe Gly Thr Glu Lys Pro Ile Asp Met		
1	5	10
Phe Gln Me Thr		
20		

<210> SEQ ID NO 15
<211> LENGTH: 161
<212> TYPE: DNA
<213> ORGANISM: Chlymidia trachomatis
<400> SEQUENCE: 15

atctttgtgt gtctcataag cgcaagacgg ctgcggctgt ctgtagcttc atcggaggaa	60
ttacctacct cgcgacatcc ggagctatcc gtccgattct gtttgcacaaaatgctgg	120
cgcaaccgtt tcttttttcc caaactaaag caaatatggg a	161

<210> SEQ ID NO 16
<211> LENGTH: 897
<212> TYPE: DNA
<213> ORGANISM: Chlymidia trachomatis
<400> SEQUENCE: 16

atggcttcta tatgoggacg tttagggct ggtacaggga atgctctaaa agctttttt	60
acacagccca acaataaaat ggcaagggtt gtaaataaga cgaaggaaat ggataagact	120
attaagggtt ccaagtctgc tgccgaattt accgcaaata ttttggaaaca agctggaggc	180
gcgggctctt ccgcacacat tacagctcc caagtgttca aaggattagg ggatgcgaga	240
actgttgcg cttagggaa tgccttaac ggagcgttgc caggaacagt tcaaagtgcg	300
caaagttct tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg	360
ctcacacgac atctttgtgt gtctcataag cgcaagacgg ctgcggctgt ctgtagcatc	420
atcggaggaa ttacacctt cgcgacatcc ggagctatcc gtccgattct gtttgcacaaa	480

-continued

```

aaaatgctgg caaaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt      540
agctatatta tggcggtctaa ccatgcagcg tctgtggtgg gtgctggact cgctatcagt      600
gcggaaagag cagattgcga agcccgctgc gtcgtattg cgagagaaga gtcgttactc      660
gaagtgcgg gagaggaaaa tgcttgcgag aagaaagtgc ctggagagaa agccaagacg      720
ttcacgcgca tcaagtatgc actcctcaact atgctcgaga agtttttgg aatgcgttgcc      780
gacgtttca aatttgtgcc gctgcctatt acaatggta ttctgtgcgt tttggctgtct      840
ggatgtacgt tcacttctgc aattatttgg aatttgtgcc ttcgtgcgt tttggctgtct      897

```

<210> SEQ ID NO 17

<211> LENGTH: 298

<212> TYPE: PRT

<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 17

```

Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
1           5           10           15

```

```

Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn
20          25          30

```

```

Lys Thr Lys Gly Met Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala
35          40          45

```

```

Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
50          55          60

```

```

Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
65          70          75          80

```

```

Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
85          90          95

```

```

Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
100         105         110

```

```

Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
115         120         125

```

```

His Lys Arg Arg Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile
130         135         140

```

```

Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
145         150         155         160

```

```

Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
165         170         175

```

```

Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
180         185         190

```

```

Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
195         200         205

```

```

Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly
210         215         220

```

```

Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr
225         230         235         240

```

```

Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
245         250         255

```

```

Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
260         265         270

```

```

Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
275         280         285

```

```

Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
290         295

```

-continued

<210> SEQ ID NO 18
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 18

Arg Ala Ala Ala Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile Thr
1 5 10 15

Tyr Leu

<210> SEQ ID NO 19
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 19

Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile
1 5 10 15

Arg Pro

<210> SEQ ID NO 20
<211> LENGTH: 216
<212> TYPE: PRT
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 20

Met Arg Gly Ser Gln Gln Ile Phe Val Cys Leu Ile Ser Ala Glu Arg
1 5 10 15

Leu Arg Leu Ser Val Ala Ser Ser Glu Glu Leu Pro Thr Ser Arg His
20 25 30

Ser Glu Leu Ser Val Arg Phe Cys Leu Ser Thr Lys Cys Trp Gln Asn
35 40 45

Arg Phe Phe Leu Pro Lys Leu Lys Gln Ile Trp Asp Leu Leu Ala
50 55 60

Ile Leu Trp Arg Leu Thr Met Gln Arg Leu Trp Trp Val Leu Asp Ser
65 70 75 80

Leu Ser Val Arg Lys Glu Gln Ile Ala Lys Pro Ala Ala Leu Val Leu
85 90 95

Arg Glu Lys Ser Arg Tyr Ser Lys Cys Arg Glu Arg Lys Met Leu Ala
100 105 110

Arg Arg Lys Ser Leu Glu Arg Lys Pro Arg Arg Ser Arg Ala Ser Ser
115 120 125

Met His Ser Ser Leu Cys Ser Arg Ser Phe Trp Asn Ala Leu Pro Thr
130 135 140

Phe Ser Asn Trp Cys Arg Cys Leu Leu Gln Trp Val Phe Val Arg Leu
145 150 155 160

Trp Leu Leu Asp Val Arg Ser Leu Leu Gln Leu Leu Asp Cys Ala Leu
165 170 175

Ser Ala Pro Glu His Lys Gly Phe Phe Lys Phe Leu Lys Lys Lys Ala
180 185 190

Val Ser Lys Lys Lys Gln Pro Phe Leu Ser Thr Lys Cys Leu Ala Phe
195 200 205

Leu Ile Val Lys Ile Val Phe Leu
210 215

<210> SEQ ID NO 21

-continued

<211> LENGTH: 1256

<212> TYPE: DNA

<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 21

ctcgtgccgg	cacgagcaaa	gaaatccctc	aaaaaatggc	cattattggc	ggtgtgtga	60
tcgggtgcga	attcgcttcc	ttattccata	cgttaggctc	cgaagttct	gtgatcgaag	120
caagctctca	aatccctgt	ttgaataatc	cagatatttc	aaaaccatg	ttcgataaat	180
tcacccgaca	aggactccgt	ttcgacttag	aagcctctgt	atcaaataatt	gaggatata	240
gagatgcgt	tcggtaact	atcaatggg	atgtcgaaga	atacgattac	gttctcgat	300
ctataggacg	ccgttgaat	acagaaaata	ttggcttgg	taaagctgg	gttatttg	360
atgaacgcgg	agtcatccct	accgatgcc	caatgcgcac	aaacgtacct	aacattat	420
ctattggaga	tatcacagga	aaatggcaac	ttgcccattgt	agcttctcat	caaggaatca	480
ttgcagcacg	gaatataatgt	ggccataaaag	aggaaatcg	ttactctgt	gtcccttctg	540
tgatctttac	cttccctgaa	gtcgcttcag	taggcctctc	cccaacagca	gctcaacaac	600
atctccctct	tcgcttactt	tttctgaaaa	atttgataca	gaagaagaat	tcctcgac	660
cttgcgagga	gggggcgtc	tggagacca	gttgaattt	gctaagt	tttctgat	720
tgattctttg	cgagaattat	ccgctaagct	tggttacgt	agcgatgg	agactgggg	780
tttcttcaac	gaggagtacg	acgacgaaga	agaggaatc	aaaccgaaga	aaactacgaa	840
acgtggacgt	aagaagagcc	gttcataa	cttgctttt	agtttggta	gttttacttc	900
tctaaaatcc	aatgggttgc	tgtgccaaa	agtagttgc	gtttccggat	agggcgtaaa	960
tgcgctgcat	gaaagattgc	ttcgagagc	gcatacgctg	ggagatcccg	gataacttct	1020
ttcagatacg	aataagcata	gctgttccca	gaataaaaac	ggccgacgct	aggaacaaca	1080
agattttagat	agagttgt	tagcaggtaa	actgggttat	atgttgc	gcgtgttagt	1140
tctagaatac	ccaaagtgtcc	tccagggtgt	aatactcgat	acactccct	aagagcctct	1200
aatggatagg	ataagttccg	taatccatag	gccatagaag	ctaaacgaaa	cgtatt	1256

<210> SEQ ID NO 22

<211> LENGTH: 601

<212> TYPE: DNA

<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 22

ctcgtgccgg	cacgagcaaa	gaaatccctc	aaaaaatggc	cattattggc	ggtgtgtga	60
tcgggtgcga	attcgcttcc	ttattccata	cgttaggctc	cgaagttct	gtgatcgaag	120
caagctctca	aatccctgt	ttgaataatc	cagatatttc	aaaaccatg	ttcgataaat	180
tcacccgaca	aggactccgt	ttcgacttag	aagcctctgt	atcaaataatt	gaggatata	240
gagatgcgt	tcggtaact	atcaatggg	atgtcgaaga	atacgattac	gttctcgat	300
ctataggacg	ccgttgaat	acagaaaata	ttggcttgg	taaagctgg	gttatttg	360
atgaacgcgg	agtcatccct	accgatgcc	caatgcgcac	aaacgtacct	aacattat	420
ctattggaga	tatcacagga	aaatggcaac	ttgcccattgt	agcttctcat	caaggaatca	480
ttgcagcacg	gaatataatgt	ggccataaaag	aggaaatcg	ttactctgt	gtcccttctg	540
tgatctttac	cttccctgaa	gtcgcttcag	taggcctctc	cccaacagca	gctcaacaac	600
a						601

-continued

<210> SEQ ID NO 23
 <211> LENGTH: 270
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 23

```

acatccctt ctgccttac ttttctgaa aaatttgcata cagaagaaga attccctcgca      60
cacttgcgag gaggaggcg tctggaagac cagttgaatt tagctaagtt ttctgacggt      120
tttgcattttt tgcgagaatt atccgctaag ctgggttacg atagcgatgg agagactgg      180
gatttttca acgaggagta cgacgacgaa gaagaggaaa tcaaaccgaa gaaaactacg      240
aaacgtggac gtaagaagag ccgttcataa                                         270
  
```

<210> SEQ ID NO 24
 <211> LENGTH: 363
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 24

```

ttacttctct aaaatccaaa tggtgctgt gccaaaaagt agtttgcgtt tccggatagg      60
gcgttaatgc gctgcataaa agattgcctt cagagcggca tcgcgtggga gatcccgat      120
actttcttc agatacgaat aagcatacgat gttcccgaaa taaaaacggc cgacgctagg      180
aacaacaaga ttttagataga gcttgcgttag caggttaact gggttatatg ttgcgtggcg      240
tgcgtttctt agaataccca agtgcctcc aggttgcata actcgatata cttccctaa      300
agcctctaaat ggataggata agtccgtaa tccataggcc atagaagcta aacgaaacgt      360
att                                         363
  
```

<210> SEQ ID NO 25
 <211> LENGTH: 696
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 25

```

gctcgtgccg gcacgagcaa agaaatccct caaaaaatgg ccattattgg cgggtgtgt      60
atcggttgcg aattcgcttcc ttattccat acgttaggct ccgaagtttc tgcgtatcgaa      120
gcaagctctc aaatccttc tttgataat ccagatattt caaaaaccat gttcgataaaa      180
ttcacccgac aaggactccg ttgcgtacta gaagcctctg tatcaaataat tgaggatata      240
ggagatcgcg ttgcgttaac tatcaatggg aatgtcgaag aatacgatata cttccctcgta      300
tctataggac gccgttgcata tacagaaaat attggcttgg ataaagctgg tgttatgtt      360
gatgaacgcg gactcatccc taccgtatcc acaatgcgc caaacgtacc taacatattat      420
gctattggag atatcacagg aaaatggcaa ctgcctcatg tagttctca tcaaggaatc      480
attgcagcac ggaatataagg tggccataaa gaggaaatcg attactctgc tgcgtttctt      540
gtgatcttta cttcccttc gatgcgttca gtaggcctct ccccaacagc agctcaacaa      600
catctcccttc ttgcgttact ttttctgaaa aatttgcata agaagaagaa tccctcgac      660
acttgcgagg aggaggccgt ctggaaagacc agttga                                         696
  
```

<210> SEQ ID NO 26
 <211> LENGTH: 231
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 26

-continued

Ala Arg Ala Gly Thr Ser Lys Glu Ile Pro Gln Lys Met Ala Ile Ile
 1 5 10 15
 Gly Gly Gly Val Ile Gly Cys Glu Phe Ala Ser Leu Phe His Thr Leu
 20 25 30
 Gly Ser Glu Val Ser Val Ile Glu Ala Ser Ser Gln Ile Leu Ala Leu
 35 40 45
 Asn Asn Pro Asp Ile Ser Lys Thr Met Phe Asp Lys Phe Thr Arg Gln
 50 55 60
 Gly Leu Arg Phe Val Leu Glu Ala Ser Val Ser Asn Ile Glu Asp Ile
 65 70 75 80
 Gly Asp Arg Val Arg Leu Thr Ile Asn Gly Asn Val Glu Glu Tyr Asp
 85 90 95
 Tyr Val Leu Val Ser Ile Gly Arg Arg Leu Asn Thr Glu Asn Ile Gly
 100 105 110
 Leu Asp Lys Ala Gly Val Ile Cys Asp Glu Arg Gly Val Ile Pro Thr
 115 120 125
 Asp Ala Thr Met Arg Thr Asn Val Pro Asn Ile Tyr Ala Ile Gly Asp
 130 135 140
 Ile Thr Gly Lys Trp Gln Leu Ala His Val Ala Ser His Gln Gly Ile
 145 150 155 160
 Ile Ala Ala Arg Asn Ile Gly Gly His Lys Glu Glu Ile Asp Tyr Ser
 165 170 175
 Ala Val Pro Ser Val Ile Phe Thr Phe Pro Glu Val Ala Ser Val Gly
 180 185 190
 Leu Ser Pro Thr Ala Ala Gln Gln His Leu Leu Leu Arg Leu Leu Phe
 195 200 205
 Leu Lys Asn Leu Ile Gln Lys Lys Asn Ser Ser His Thr Cys Glu Glu
 210 215 220
 Glu Gly Val Trp Lys Thr Ser
 225 230

<210> SEQ ID NO 27
 <211> LENGTH: 264
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia pneumoniae

 <400> SEQUENCE: 27

 atgagtcaaa aaaataaaaa ctctgcttt atgcattccg tgaatatttc cacagattta 60
 gcagttatag ttggcaaggg acctatgccc agaaccgaaa ttgtaaagaa agtttggaa 120
 tacattaaaa aacacaactg tcaggatcaa aaaaataaac gtaatatcct tcccgatgc 180
 aatcttgcca aagttttgg ctctagtatgat cctatcgaca tggccaaat gaccaagcc 240
 ctttccaaac atattgtaaa ataa 264

<210> SEQ ID NO 28
 <211> LENGTH: 87
 <212> TYPE: PRT
 <213> ORGANISM: Chlamydia pneumoniae

 <400> SEQUENCE: 28

 Met Ser Gln Lys Asn Lys Asn Ser Ala Phe Met His Pro Val Asn Ile
 1 5 10 15
 Ser Thr Asp Leu Ala Val Ile Val Gly Lys Gly Pro Met Pro Arg Thr
 20 25 30
 Glu Ile Val Lys Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys Gln
 35 40 45

-continued

Asp Gln Lys Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys
 50 55 60

Val Phe Gly Ser Ser Asp Pro Ile Asp Met Phe Gln Met Thr Lys Ala
 65 70 75 80

Leu Ser Lys His Ile Val Lys
 85

<210> SEQ ID NO 29

<211> LENGTH: 369

<212> TYPE: DNA

<213> ORGANISM: Chlamydia pneumoniae

<400> SEQUENCE: 29

atgccacgca tcatttggaaat tgatattcct gcaaaagaaaa agttaaaaat aagtctgaca	60
tatattttatg gaataggatc agctcggttct gatgaaatca ttaaaaagtt gaagtttagat	120
cctgaggccaa gaggctctga attaactgaa gaagaagtag gacgactgaa ctctctgcta	180
caatcagaat ataccgtaga aggggatttg cgacgtcggttcaatcgga tatcaaaaga	240
ttgatcgcca tccatttcta tcgagggtcag agacatagac ttcttttacc agtaagagga	300
caacgtacaa aaactaattc tcgtactcgaa aaggtaaaaaa gaaaaacagt cgcaggtaag	360
aagaaataa	369

<210> SEQ ID NO 30

<211> LENGTH: 122

<212> TYPE: PRT

<213> ORGANISM: Chlamydia pneumoniae

<400> SEQUENCE: 30

Met Pro Arg Ile Ile Gly Ile Asp Ile Pro Ala Lys Lys Lys Leu Lys
 1 5 10 15

Ile Ser Leu Thr Tyr Ile Tyr Gly Ile Gly Ser Ala Arg Ser Asp Glu
 20 25 30

Ile Ile Lys Lys Leu Lys Leu Asp Pro Glu Ala Arg Ala Ser Glu Leu
 35 40 45

Thr Glu Glu Glu Val Gly Arg Leu Asn Ser Leu Leu Gln Ser Glu Tyr
 50 55 60

Thr Val Glu Gly Asp Leu Arg Arg Arg Val Gln Ser Asp Ile Lys Arg
 65 70 75 80

Leu Ile Ala Ile His Ser Tyr Arg Gly Gln Arg His Arg Leu Ser Leu
 85 90 95

Pro Val Arg Gly Gln Arg Thr Lys Thr Asn Ser Arg Thr Arg Lys Gly
 100 105 110

Lys Arg Lys Thr Val Ala Gly Lys Lys Lys
 115 120

<210> SEQ ID NO 31

<211> LENGTH: 10

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Made in the lab

<400> SEQUENCE: 31

Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu
 1 5 10

-continued

<210> SEQ ID NO 32
<211> LENGTH: 53
<212> TYPE: PRT
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 32

Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Phe
1 5 10 15

Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile
20 25 30

Leu Phe Val Asn Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Thr
35 40 45

Lys Ala Asn Met Gly
50

<210> SEQ ID NO 33
<211> LENGTH: 161
<212> TYPE: DNA
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 33

atctttgtgt gtctcataag cgcaagcggtgt ctgcggctgt ctgttagcatc atcggaggaa 60
ttacctacct cgcgacattc ggagctatcc gtccgattct gtttgtcaac aaaatgctgg 120
caaaaccgtt tctttcttcc caaactaaag caaatatggg a 161

<210> SEQ ID NO 34
<211> LENGTH: 53
<212> TYPE: PRT
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 34

Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile
1 5 10 15

Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile
20 25 30

Leu Phe Val Asn Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr
35 40 45

Lys Ala Asn Met Gly
50

<210> SEQ ID NO 35
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Chlamydia pneumoniae

<400> SEQUENCE: 35

gatatacata tgcacatcac tcaccatcac atgagtcaaa aaaaataaaa actct 55

<210> SEQ ID NO 36
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Chlamydia pneumoniae

<400> SEQUENCE: 36

ctcgaggaat tcttatttta caatatgtttt gga 33

<210> SEQ ID NO 37
<211> LENGTH: 53
<212> TYPE: DNA
<213> ORGANISM: Chlamydia pneumoniae

-continued

<400> SEQUENCE: 37

gatatacata tgcatacaca tcaccatcac atgccacgca tcattggaaat gat

53

<210> SEQ ID NO 38

<211> LENGTH: 30

<212> TYPE: DNA

<213> ORGANISM: Chlamydia pneumoniae

<400> SEQUENCE: 38

ctcgaggaat tcttatttct tcttacctgc

30

<210> SEQ ID NO 39

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Made in the lab

<400> SEQUENCE: 39

Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly Thr
1 5 10 15

<210> SEQ ID NO 40

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: made in the lab

<400> SEQUENCE: 40

Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe Gly Ser
1 5 10 15

<210> SEQ ID NO 41

<211> LENGTH: 15

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: made in the lab

<400> SEQUENCE: 41

Lys Glu Tyr Ile Asn Gly Asp Lys Tyr Phe Gln Gln Ile Phe Asp
1 5 10 15

<210> SEQ ID NO 42

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: made in the lab

<400> SEQUENCE: 42

Lys Lys Ile Ile Ile Pro Asp Ser Lys Leu Gln Gly Val Ile Gly Ala
1 5 10 15

<210> SEQ ID NO 43

<211> LENGTH: 15

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: made in the lab

<400> SEQUENCE: 43

Lys Lys Leu Leu Val Pro Asp Asn Asn Leu Ala Thr Ile Ile Gly
1 5 10 15

-continued

<210> SEQ ID NO 44
<211> LENGTH: 509
<212> TYPE: DNA
<213> ORGANISM: Chlamydia

<400> SEQUENCE: 44

```
ggagctcgaa ttcggcacga gagtgccat tgggtgcag gctttgtctg atgatagcga      60
taccgtacgt gagattgtctg tacaagtgc tggatgtat ggttctatgtt gcttactgcg      120
cgccgtgggc gatttagcga aaaatgattc ttcttattcaa gtacgcatca ctgttatacg      180
tgctgcagcc gtgttggaga tacaagatct tggcctcat ttacgagttg tagtccaaaa      240
tacacaattt gatggAACGG aaagaagaga agcttggaga tctttatgtt ttcttactcg      300
gcctcatagt ggtgtattaa ctggcataga tcaagctta atgacctgtt agatgttaaa      360
ggaatatcct gaaaagtgtt cggagaaca gattcgatca ttattggctg cagatcatcc      420
agaagtgcag gttagtactt tacagatcat tctgagagga ggttagatgtt tccggtcattc      480
ttctataatg gaatcggtt tcgtgccgg      509
```

<210> SEQ ID NO 45
<211> LENGTH: 481
<212> TYPE: DNA
<213> ORGANISM: Chlamydia
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: (23)
<223> OTHER INFORMATION: n=A,T,C or G

<400> SEQUENCE: 45

```
gatccgaatt cggcacgagg cantattttc tcccaacatt acgggtccaa ataagcgata      60
aggctttcta ataaggaagt taatgtttaa ggctttttta ttgcgtttcg taaggttagta      120
ttgcaaccgc acgcgattta atgatacgca agccatttcc atcatggaaa agaacccttg      180
gacaaaaata caaaggaggt tcactccataa ccagaaaaag ggagagttttag tttccatggg      240
ttttcccttat atacacccgt ttccacacaat taggagccgc gtcttagtatt tgaaatacaa      300
attgccccca agcgaattttt gttccctgtt cagggatttc tccttattgt tctgtcagcc      360
atccgcctat ggtaacgc当地 ttagctgtt taggaagatc aactccaaac aggtcataga      420
aatcagaaag ctcatacggtt cctgcagcaa taacaacattt ctgtctgag tgagcgaatt      480
g      481
```

<210> SEQ ID NO 46
<211> LENGTH: 427
<212> TYPE: DNA
<213> ORGANISM: Chlamydia
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: (20)
<223> OTHER INFORMATION: n=A,T,C or G

<400> SEQUENCE: 46

```
gatccgaatt cggcacgagn tttttctgtt tttttcttag ttttttagtgc tccggagca      60
ataacacaga tcaaaagaacg gccattcagt ttaggtctg actcaacaaa acctatgtcc      120
tctaaaggccct gacacattct ttgaacaacc ttatgcccgt gttcgggata agccaaactct      180
cgccccccgaa acataacaaga aacctttact ttatccctt tctcaataaaa ggctctatgt      240
tgctttgtt tcgttaagaaa gtcgttatca tcgtatattag gcttaagctt aaccttttg      300
atacgcactt ggtgtgtgc tttcttacta tctttttctt ttttagttat gtcgtaacgaa      360
```

-continued

```
<210> SEQ ID NO 47
<211> LENGTH: 600
<212> TYPE: DNA
<213> ORGANISM: Chlamydia
<220> FEATURE:
<221> NAME/KEY: unsure
<222> LOCATION: (522)
<223> OTHER INFORMATION: n=A,T,C or G
```

<400> SEQUENCE: 47

gatccgaatt cggcacgaga tgcttctatt acaattgggtt tggatcgga aaaagcttac 60
cagcttattc tagaaaagggtt gggagatcaa attcttgggtt gaattgctga tactattgtt 120
gatagtagacag tccaaagatata ttttagacaaa atcacaacag accccttctt aggtttgttg 180
aaagctttta acaactttcc aatcactaat aaaattcaat gcaacgggtt attcactccc 240
aggaacatgg aacttttattt aggaggaact gaaataggaa aattcacagt cacacccaaa 300
agctctggaa gcatgttctt agtctcagca gatattatttgc catcaagaat ggaaggcggc 360
gttggtagttag ctgggtacg agaagggtgat tctaaggccct acgcgatttag ttatggatac 420
tcatcaggcg ttcctaattt atgttagtcta agaaccagaa ttattaatac aggattgact 480
ccgacaacgt attcattacg tggggcggtt ttagaaagcg gngtggatgtt ggttaatgcc 540
ctttctaaatg gcaatgatata ttttagaata acaaatttcc ttatgtatct tttttggagg 600

<210> SEQ ID NO 48
<211> LENGTH: 600
<212> TYPE: DNA
<213> ORGANISM: Chlamydia

<400> SEQUENCE: 48

ggagctcgaa ttcggcacga gctctatgaa tatccaattc tctaaactgt tcggataaaa 60
atgatgcagg aattagggtcc acactatctt tttttgttcc gcaaatgatt gattttaat 120
cggttgcgtgt gtatactatg tcgtgttaacg cttttgggtt acttctgaca ctggccccca 180
atccagaaga taaattggat tgccgggtcta ggtcagcaag taacactttt ttccctaaaa 240
atggggccaa gttgcattccc acgttagag aaagtgttgt tttccagtt cctcccttaa 300
aagagcaaaa aactaaagggtg tgccaaatcaa ctccaaacgtt agagtaagtt atctattcag 360
ccttggaaaaa catgtctttt cttagacaaga taagcataat caaaggctttt ttttagcttta 420
aactgttatac ctctaaatttt tcaagaacag gagagtcgg gaataatcct aaagagtttt 480
ctatgggttg aagcagtcct agaatttagt agacactttt atggtagagt tctaaaggag 540
aatttaaagaa agttactttt tccttggtaat ctcgtatttt taggtctaat tcggggaaat 600

<210> SEQ ID NO 49
<211> LENGTH: 600
<212> TYPE: DNA
<213> ORGANISM: Chlamydia

<400> SEQUENCE: 49

```
gatccgaatt cggcacgaga tgcttctatt acaattgggt tggatcgga aaaagcttac 60
cagcttattc tagaaaagg gggagatcaa attcttggtg gaattgctga tactattgtt 120
qataqtacq tccaaqatat tttaqacaaa atcacaacaq acccttct aqqtqtq 180
```

-continued

aaagctttta acaactttcc aatcactaat aaaattcaat gcaacgggtt attcactccc	240
aggaacattg aaactttatt aggaggaact gaaataggaa aattcacagt cacacccaaa	300
agctctggga gcatgttctt agtctcagca gatattattt catcaagaat ggaaggcggc	360
gttgttctag ctttggtacg agaaggtgat tctaaggccct acgcgattag ttatggatac	420
tcatcaggcg ttccctaatt atgttagtcta agaaccagaa ttattaatac aggattgact	480
ccgacaacgt attcattacg tgtaggcggt tttagaaagcg gtgtggatg ggtaatgcc	540
ctttctaatg gcaatgatat tttaggaata acaaatactt ctaatgtatc ttttttggag	600

<210> SEQ ID NO 50

<211> LENGTH: 406

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 50

<210> SEQ ID NO 51

<211> LENGTH: 602

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 51

gatccgaatt	cggcacgaga	tattttagac	aaaatcaaa	caagcccttc	tcttaggttg	60
ttgaaagctt	ttaacaacctt	tccaaatcaact	aataaaaattc	aatgcaacgg	gttattcaact	120
cccgagaaca	ttgaaacttt	attaggagga	actgaaatag	gaaaattcac	agtcacaccc	180
aaaagctctg	ggagcatgtt	cttagtctca	gcagatatta	ttgcatcaag	aatgaaaggc	240
ggcggtgttc	tagcttggt	acgagaaggt	gattctaagc	cctacgcgt	tagttatgga	300
tactcatca	gcgttcctaa	tttatgttagt	ctaaagaacca	gaattattaa	tacaggattg	360
actccgacaa	cgtattcatt	acgtgttaggc	ggtttagaaa	gcgggtgtgt	atgggtaat	420
gccctttcta	atggcaatga	tattttagga	ataacaataa	cttctaatgt	atcttttttg	480
gaggtaatac	ctcaaacaaaa	cgtttaaaca	atttttattg	gatttttctt	ataggttta	540
tattttagaga	aaaaagttcg	aattacgggg	tttgttatgc	aaaataaact	cgtgccgaat	600
tc						602

<210> SEQ ID NO 52

<211> LENGTH: 145

<212> TYPE: DNA

<213> ORGANISM: *Chlamydia*

<400> SEQUENCE: 52

```
gatccgaatt cggcacgagc tcgtgccat gtgttcaaca gcatccatag gatggcagt 60
caaataact ccaagtaatt cttttctct tttcaacaac tccttaggag agcgttggat 120
aacatttca gctcggtccg aatcc 145
```

-continued

<210> SEQ ID NO 53
<211> LENGTH: 450
<212> TYPE: DNA
<213> ORGANISM: Chlamydia

<400> SEQUENCE: 53

gatccgaatt	cgccacgagg	taatccggcac	cgcactgctg	acactcatct	cctcgagctc	60
gatcaaacc	acacttggga	caagtaccta	caacataacg	gtccgctaaa	aacttccctt	120
cttcctcaga	atacagctgt	tcggtcacct	gattctctac	cagtccgcgt	tcctgcaagt	180
ttcgatagaa	atcttcaca	atagcaggat	gataagcggt	cgtagttctg	gaaaagaaat	240
ctacagaaat	tcccaatttc	ttgaaggat	ctttatgaag	cttatgatac	atgtcgacat	300
attcttgata	ccccatgcct	gccaactctg	cattaagggt	aatttgcattt	ccgtattcat	360
cagaaccaca	aatataacaa	acctctttgc	cttgcgttct	ctgaaaacgc	gcataaacat	420
ctgcaggcaa	ataaggcctcg	tgccgaattc				450

<210> SEQ ID NO 54
<211> LENGTH: 716
<212> TYPE: DNA
<213> ORGANISM: Chlamydia

<400> SEQUENCE: 54

gatcgaaatt	cgccacgagc	ggcacaggtt	ttctgtatgc	gatttacaat	cctttattca	60
acttttgcct	agagaggcac	actataactaa	gaagtttctt	gggtgtgtgg	cacagtccctg	120
tcgtcagggg	attctgctag	aggggttaggg	gaaaaaaaccc	ttattactat	gaccatgcgc	180
atgtggaaatt	acattccata	gacttcgc	tcattccaa	catttacaca	gctctacacc	240
tcttaagaag	aggtgacgtg	gatgggtgg	ggcagccctt	gcaccaaggg	attccctttt	300
agcttcggac	tacctctgt	ctctacacc	attaccctgt	agatggcaca	ttctggctt	360
ttcttaatcc	caaagatcct	gtactttct	ctctatctaa	tcgtcagcga	ttgattgtgt	420
ccatccaaaa	ggaaaaactg	gtgaagcaag	ctttaggaac	acaatatcga	gtagctgaaa	480
gctctccatc	tccagaggga	atcatagctc	atcaagaagc	ttctactcct	tttctggga	540
aaattacttt	gatatatccc	aataatatta	cgcgcgttca	gcgtttggcc	gaggatatcca	600
aaaaatgatc	gacaaggagc	acgctaaatt	tgtacatacc	ccaaaatcaa	tcagccatct	660
aggcaaatgg	aatatcaaag	taaacagttat	acaactgggg	atctcggtcc	gaattc	716

<210> SEQ ID NO 55
<211> LENGTH: 463
<212> TYPE: DNA
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 55

tctcaaattcc	ttgcgttcaa	taatccagat	atttcaaaaa	ccatgttcga	taaattcacc	60
cgacaaggac	tccgtttcgt	actagaagcc	tctgtatcaa	atattgagga	tataggagat	120
cgcgttgcgt	taactatcaa	tggaaatgtc	gaagaatacg	attacgttct	cgtatctata	180
ggacgcccgtt	tgaatacaga	aaatattggc	ttggataaaag	ctgggtttat	ttgtgtgaa	240
cgcggagtca	tccctaccga	tgccacaatg	cgacacaaacg	tacctaacat	ttatgttatt	300
ggagatatca	caggaaaatg	gcaacttgcc	catgttagtt	ctcatcaagg	aatcattgca	360
gcacggaata	taggtggcca	taaagaggaa	atcgattact	ctgctgtccc	ttctgtgatc	420

-continued

tttacottcc ctgaagtcgc ttcaagtaggc ctctcccaa cag 463

<210> SEQ ID NO 56
<211> LENGTH: 829
<212> TYPE: DNA
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 56

gtactatggg atcattatgtt ggaagacagg ctccggattt ttctggtaaa gccgttgg	60
gtggagaaga gaaaagaatc tctcttagcag actttagtgg taagtatgtt gtgtctttt	120
tttacatcaa agattttacc tatgtttgtc ctacagaatt acatgtttt caagatagat	180
tggtagattt tgaagagcat ggtgcagtcg tccttgggttgc gacattgaga	240
cacattctcg ttggctcaact gtagcagag atgcaggagg gatagaggga acagaatatc	300
ctctgttagc agaccctct tttaaaatat cagaagctt tggtgttttgc aatcctgaag	360
gatcgctcgc tttaaagatc actttcctta tcgataaaaca tgggggttatt cgtcatgcgg	420
ttatcaatga tcttccttta gggcgttcca ttgacgagga attgcgtatt ttagattcat	480
tgatcttctt tgagaaccac ggaatgggtt gtccagctaa ctggcgttctt ggagagcgtg	540
gaatggtgcc ttctgaagag ggataaaag aatacttcca gacgtatggat taagcatctt	600
tgaaagtaag aaagtctgtac agatcttgat ctgaaaagag aagaaggctt tttaattttc	660
tgcagagagc cagcggaggct tcaataatgt tgaagtctcc gacaccaggc aatgctaagg	720
cgacgatatt agttatgtt gtcgtatggat taaggaaatg aaggccaaag aaatagctat	780
caataaagaa gccttcttcc ttgactctaa agaataatgtt gtcgtatcc	829

<210> SEQ ID NO 57
<211> LENGTH: 1537
<212> TYPE: DNA
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 57

acatcaagaa atagcggact cgccctttagt gaaaaaaagct gaggagcaga ttaatcaagc	60
acaacaagat attcaaacga tcacaccttag tgggtttggat attcctatcg ttggtcccgag	120
tgggtcagct gcttccgcag gaagtgcggc aggagcgttg aaatcctcta acaattcagg	180
aagaatttcc ttgttgcttg atgtatgttca caatgaaatg gcagcgttgcgatggat	240
ttttcgatct atgatcgaac aatattaatgtt aaacaatcctt gcaacagctt aagagctaca	300
agctatggag gctcagctga ctgcgtatgtc agatcaactt gttgggtgcgg atggcgtatgt	360
cccaagccaa atacaagcaa tcaaagatgc tcttgcgaa gctttgaaac aaccatcagc	420
agatgggttta gctacagctt tgggacaagt ggcttttgca gctgccaagg ttggaggagg	480
ctccgcagga acagctggca ctgtccagat gaatgttttttaca agacagcgtt	540
ttcttcgatct tcttccttgcgatctt cttatgcgcg acgactttcc gatggatatt ctgttttacaa	600
aacactgaac tctttatatt ccgaaagcag aagcggcgtt cagtcagctt ttagtcaaacc	660
tgcaaatccc gcgcttcca gaagcgttcc tcgttctgcgatc agaaaatgc aaggacgcag	720
tgcagatgtt agccaaagag cagcagaac tattgtcaga gatagccaa cgttaggtga	780
tgttatatgc cgcttacagg ttctggattt tttgtatgtctt acgattgtga gcaatccgc	840
agcaaatcaa gaagagatca tgcagaagctt cacggcatctt attagcaag ctccacaatt	900
tgggtatccct gctgttcaga attctgtggta tagcttgcag aagtttgcgtt cacaattggaa	960
aagagagttt gttgtatgggg aacgtatgtctt cgcagaatctt caagagaatg cgttttagaaa	1020

-continued

acagccccgct ttcattcaac aggtgttggt aaacattgct tctctattct ctggttatct	1080
ttcttaacgt gtgattgaag tttgtgaatt gagggggagc caaaaaagaa tttctttttt	1140
ggctctttt tctttcaaa ggaatctcggt gtctacagaa gtctttcaa taataagttc	1200
tttagttccaa aagagaaaa tatataaaag aaaaaactcc taattcattt aaaaagtgtct	1260
cggcagactt cgtggaaaat gtctgttaaa ctggagggga atcagcagaa agatgcaaga	1320
tatccgagaa aaaaggctca ggctcgtgcc gaattcggca cgagactacg aaagaagggt	1380
cttttttttc ggaatctgtc attggatctg cgtaaagactt aaagttcggc aacacaggct	1440
ctgtcttc ttttaggtttc ttgcgcgaga aaaattttct caagtaacaa gaagatttct	1500
ttttacagcc ggcatccggc ttctcgcgaa gtataac	1537

<210> SEQ ID NO 58

<211> LENGTH: 463

<212> TYPE: DNA

<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 58

tctcaaatcc ttgctttgaa taatccagat atttcaaaaa ccatgttcga taaattcacc	60
cgacaaggac tccgttcgt actagaagcc tctgtatcaa atattgagga tataggagat	120
cgcgttcgtt taactatcaa tggaaatgtc gaagaatacg attacgttct cgtatctata	180
ggacgcgcgtt tgaatacaga aaatattggc ttggataaaag ctgggtttat ttgtatgaa	240
cgcggaggatca tccctaccga tgccacaatg cgcacaaaacg tacctaacat ttatgttatt	300
ggagatatac cagaaaaatg gcaacttgcc catgtagctt ctcataagg aatcattgca	360
gcacggata tagtggcca taaagaggaa atcgattact ctgctgtccc ttctgtgatc	420
tttacccccc ctgaagtcgc ttcaagtaggc ctctccccaa cag	463

<210> SEQ ID NO 59

<211> LENGTH: 552

<212> TYPE: DNA

<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 59

acattcctcc tgctcctcgc ggccatccac aaattgaggt aaccttcgat attgtatgcca	60
acggaattttt acacgtttct gctaaagatg ctgctagtgg acgcgaacaa aaaatccgta	120
ttgaagcaag ctctggatta aaagaagatg aaattcaaca aatgtatccgc gatgcagagc	180
ttcataaaaga ggaagacaaa caacgaaaag aagcttctga tgtaaaaat gaagccgatg	240
gaatgtatctt tagagccgaa aaagctgtga aagattacca cgacaaaatt cctgcagaac	300
ttgttaaaga aattgaagag catattgaga aagtacgcca agcaatcaa gaagatgctt	360
ccacaacacg tatcaaagca gcttctgtatg agttgagttac tcgtatgcaa aaaatccgag	420
aagctatgca ggctcaatcc gcatccgcag cagcatcttc tgcagcgaat gctcaaggag	480
ggccaaacat taactccgaa gatctgaaaa aacatagttt cagcacacga cctccagcag	540
gaggaagcgc ct	552

<210> SEQ ID NO 60

<211> LENGTH: 1180

<212> TYPE: DNA

<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 60

-continued

atccttagcgg taaaactgct tactggtcag ataaaatcca tacagaagca acacgtactt	60
cttttaggag aaaaaatcta taatgctaga aaaatcctga gtaaggatca cttccctca	120
acaactttt catcttggat agagtttagt tttagaacta agtcttctgc ttacaatgct	180
cttgcataattt acgagctttt tataaacctc cccaaacaaa ctctacaaa agagttcaa	240
tcgatcccct ataaaatccgc atatatttg gccgctagaa aaggcgattt aaaaaccaag	300
gtcgatgtga tagggaaagt atgtgaaatc tcgtgccgaa ttccggcacgaa gcccacgag	360
gatgttagagt aattagttaa agagctgcat aattatgaca aagcatggaa aacgcatcg	420
tgttatccaa gagacttacg atttagctaa gtctgttctt ttgggtgaag cgatagat	480
tttaaacag tgcctactg tgctttcga tcaaacggtt gatgtgtctg ttaaattagg	540
gatcgatcca agaaaagatg atcagcaat tcgtggttcg gttctttac ctcacggat	600
aggtaaagtt ttgcgaattt tagttttgc tgctggagat aaggctgcaag aggctattga	660
agcaggagcg gactttgttgc gtagcgcacg ctggtagaa aaaaatcaag gtggatgggt	720
tgacttcgat gttcggttg ccactcccgaa tatgtgaga gaggtcgaa agctaggaaa	780
agtttaggt ccaagaaacc ttatgcctac gcctaaagcc ggaactgtaa caacagatgt	840
ggttaaaactt attgcggaaac tgccggaaagg taaaattgaa tttaaagctg atcgagctgg	900
tgtatcaac gtcggagttt cgaagcttc ttgcatagt ggcataatca aagaaaatgt	960
tgaagcggtt tgcgcagctt tagttaaagc taagccgcac actgctaaag gacaatattt	1020
agttatttc actatttcct cgaccatggg gccagggtt accgtggata ctagggagtt	1080
gattgcgtta taattctaaag tttaaagagg aaaaatgaaa gaagagaaaa agttgctgct	1140
tcgcgagggtt gaagaaaaga taaccgcctt tcggcacgag	1180

<210> SEQ ID NO 61

<211> LENGTH: 1215

<212> TYPE: DNA

<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 61

attacagcgt gtgcaggtaa cgacatcatt gcatgtatc tttgtatggca ttgtatgcggc	60
attccttata gggtcagttc ctagaggccc aggaatggag agaagagatc ttctaaagaa	120
aaatggggag attgttgcta cgcaaggaaa agctttgaac acaacagccaa agcgggatgc	180
aaagatttt gttgttggaa accctgtgaa taccaattgc tggatagcaa tgaatcatgc	240
tcccgattt ttgagaaaga actttcatgc gatgtacgaa ttggaccaga atcgatgc	300
tagcatgtta tcgcatacgatc cagaagtacc tttatcggtt gtatcacaag ttgtggttt	360
gggaaatcac tccgcacaaac aagtgcgttca ttttacgaa gctctgatta atgaccgtcc	420
tatcgacatcg acgatagcgg atcgtgattt gtttagagaat attatgggtc cttctgtaca	480
gagtcgttgtt agtgcgttta ttgaagcaccg agggaaatgtt tcggcagctt ctgcacgc	540
agctttatcgatc gaggctgctt gatcaatata tcagccaaa gaaggactcg tgccgat	600
ggcacagatcgatc tcgaaattgc aggcattttt agtgcgttta cgtatgcataaactacgt	660
ggtagactatcgatc aaagtttgc acagattttt acatcgatcgatc cccttattttt	720
aagaatatctt actccctca actatggaa tccctaaac aagaaaaggaa ttacgcattt	780
agttacatcgatc aatatgatcgatc ttgtgactgg gaaggcgaca ctcccttgcac cttccaaa	840
gaaaattatcgatc tcattatcgatc aatgcgttgc cggcattca cccgagatcc gtctccca	900
gtttcccatcgatc ctggactttt cttggatc acgaaaaaaa tagaccacccaaacaacta	960

-continued

ggcgttcatg cagttgaact ccttcattt ttcaattcg atgaaaccgt ccatccattt	1020
aaaaatcagg acttccccca cctgtgtaac tattgggggt attttcggt gaatttttc	1080
tgccctctc gccgtatac ttatgggca gacccttgcg ctccggcccg agagttcaag	1140
actcttgtca aagcgttaca ccgtgcggga atcgaagtca ttctcgatgt cgtttcaat	1200
catacaggct ttgaa	1215

<210> SEQ ID NO 62
<211> LENGTH: 688
<212> TYPE: DNA
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 62	
gtggatccaa aaaagaatct aaaaagccat acaaagattt cgttacttct tgcgatgcct	60
ctaacacttt atcagcgtca tctttgagaa gcatctcaat gagcgctttt tcttctctag	120
catgcccac atccgcttct tcatgttctg tgaaaatatgc atagtcttca ggattggaaa	180
atccaaagta ctcagtcata ccacgaattt tctctcttagc gatacgtgga atttgactct	240
cataagaata caaaggagcc actccctgcag ctaaaagaatc tcctgtacac caccgcatga	300
aagtagctac tttcgctttt gctgcttac taggctcatg agcctctaact tcttctggag	360
taactcctag agcaaacaca aactgcttcc acaaataatc atgatttaggg taaccgttct	420
cttcatccat caagttatct aacaataact tacgcccctc taaatcatcg caacgactat	480
gaatcgcaga taaatattta gggaaaggott tgatatgtaa ataatagtct ttggcacgag	540
cctgtaattt ctcttagta agctccccct tcgaccattt cacataaaac gtgtgttcta	600
gcataatgtt attttgaata attaaatctta actgatctaa aaaattcata aacacctcca	660
tcatttcttt tcttgactcc acgttaacc	688

<210> SEQ ID NO 63
<211> LENGTH: 269
<212> TYPE: DNA
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 63	
atgttgaat cacacaagct gttcctaaat atgctacggt aggatctccc tatcctgttg	60
aaattactgc tacaggtaaa agggattgtg ttgatgttat cattactcg caattaccat	120
gtgaagcaga gttcgtaacg agtgcattcc cgacaactcc tactgctgat ggtaaagctag	180
tttggaaaat tgaccgctta ggacaaggcg aaaagagtaa aattactgtt tggtaaaac	240
ctcttaaaga aggttgctgc tttacagct	269

<210> SEQ ID NO 64
<211> LENGTH: 1339
<212> TYPE: DNA
<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 64	
cttttattat ggcttctggg gatgtatgtca acgatatcgat cctgctatct cgaggagatt	60
ttaaaaattgt tatacagacg gctccagagg agatgcattgg attagcggac tttttggctc	120
ccccggcgaa ggatcttggg attctctccg cctggaaagc tggtagctg cgttacaaac	180
agcttagttaa tccttagaa acatttctgg acctatgccc atcacattgg ctccgtgatc	240
cacatagaga gtttctcccg taattgcgtc agctagggga gagactaaga aggctgctgc	300

-continued

tgccctact tgctcagctt ccatggaga aggtagtgga gcccagtctt ggtagtaatc	360
caccattctc tcaataaaatc caatacgctt tcctgcacgg ctagctaatg gcccgtccga	420
gatagtattc actcggactc cccaacgtcg gccggcttcc caagccagta cttttgtatc	480
actttctaaa gcagcttttg ctgcgttcat tcctccgcca taccctggaa cagcacgcat	540
ggaagcaaga taagtttagag agatggtgct agtcctgca ttcataattg ggccaaaatg	600
agagagaagg ctgataaaagg agtagctgga tgtacttaag gccggcaagat agcctttacg	660
agaggtatca agtaatgggt tagcaatttc cggactgttt gctaaagagt gaacaagaat	720
atcaatgtgt cccaaatctt tttcacctg ttctacaact tcggatacag tgtacccaga	780
aagatctttg taacgtttat tttccaaaat ttccctgagga atatcttctg ggggtcgaa	840
actggcatcc atggataga ttttagcgaa agttagcaat tctccattgg agagttcacf	900
agatgcattg aattttccta actcccaaga ttgagagaaa atttataga taggaaccca	960
ggtccccaca agtatggtg cgcctgcttc tgctaacatt ttggcaatgc cccagccata	1020
cccggttatca tcgcctatgc cggctatgaa agcaattttt cctgttaat caattttcaa	1080
catgagctaa ccccattttg tcttcttgag agaggagagt agcagattct ttattattga	1140
gaaacgggcc tcataataca taaggagtag attcactggc tgatccagg tttctagagt	1200
aaagagtttc cttgtcaaat tcttatatgg gtagagttaa tcaactgttt tcaagtgatt	1260
tatgtttatt taaaataat ttgttttaac aactgtttaa tagtttaat ttttaagtg	1320
tgaaaaacag gtttatata	1339

<210> SEQ ID NO 65

<211> LENGTH: 195

<212> TYPE: PRT

<213> ORGANISM: Chlamydia trachomatis

<400> SEQUENCE: 65

Met	Gly	Ser	Leu	Val	Gly	Arg	Gln	Ala	Pro	Asp	Phe	Ser	Gly	Lys	Ala
5									10					15	

Val	Val	Cys	Gly	Glu	Glu	Lys	Glu	Ile	Ser	Leu	Ala	Asp	Phe	Arg	Gly
20								25						30	

Lys	Tyr	Val	Val	Leu	Phe	Phe	Tyr	Pro	Lys	Asp	Phe	Thr	Tyr	Val	Cys
35								40					45		

Pro	Thr	Glu	Leu	His	Ala	Phe	Gln	Asp	Arg	Leu	Val	Asp	Phe	Glu	Glu
50							55				60				

His	Gly	Ala	Val	Val	Leu	Gly	Cys	Ser	Val	Asp	Asp	Ile	Glu	Thr	His
65							70				75			80	

Ser	Arg	Trp	Leu	Thr	Val	Ala	Arg	Asp	Ala	Gly	Gly	Ile	Glu	Gly	Thr
85							90						95		

Glu	Tyr	Pro	Leu	Leu	Ala	Asp	Pro	Ser	Phe	Lys	Ile	Ser	Glu	Ala	Phe
100								105					110		

Gly	Val	Leu	Asn	Pro	Glu	Gly	Ser	Leu	Ala	Leu	Arg	Ala	Thr	Phe	Leu
115								120					125		

Ile	Asp	Lys	His	Gly	Val	Ile	Arg	His	Ala	Val	Ile	Asn	Asp	Leu	Pro
130							135				140				

Leu	Gly	Arg	Ser	Ile	Asp	Glu	Glu	Leu	Arg	Ile	Leu	Asp	Ser	Leu	Ile
145								150			155			160	

Phe	Phe	Glu	Asn	His	Gly	Met	Val	Cys	Pro	Ala	Asn	Trp	Arg	Ser	Gly
165								170					175		

Glu	Arg	Gly	Met	Val	Pro	Ser	Glu	Glu	Gly	Leu	Lys	Glu	Tyr	Phe	Gln
180								185					190		

-continued

Thr Met Asp
195

<210> SEQ ID NO 66

<211> LENGTH: 520

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 66

gatccgaatt cggcacgagg aggaatggaa	60
gggcccctccg attttaaatac tgctaccatg	
ccattcaacta gaaactccat aacagcgggtt ttctctgtat	120
gcgagtaaga agcaaggatt	
tgtatgtaaat tagcgcaatt agagggggat gaggttactt	180
ggaaatataa ggagcgaagc	
gatgaaggag atgtatgtgc tctggaagca aaggttctg aagctaaca	240
ac aacattgcgt	
cctccaacaa tcgcctgagg attctggctc atcagttat	300
gccttgcctg aatgagagcg	
gacttaagtt tcccatcaga gggagctatt tgaatttagat	360
aatcaagagc tagatcctt	
atttgtggat cagaaaattt acttgtgagc	420
gcatcgagaa ttgcgtcaga agaagaatca	
tcatcgacg aattttcaaa tcctcgaaaa tcttctccag	480
agacttcgaa aagatcttct	
gtgaaacgtt cttcaagagg agtacgcctt tttccctctg	520

<210> SEQ ID NO 67

<211> LENGTH: 276

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 67

gatccgaatt cggcacgagg tattgaagga	60
gaaggatctg actcgatcta tgaaatcatg	
atgcctatct atgaagttat	120
gaatatggat ctagaaacac	
gaagatcttt tgccgtacag	
caagggcact atcaggaccc	180
aagagcttca gattatgacc	
tcccacgtgc tagcgactat	
gatttgccctaa	240
gaagccata tcctactcca	
ccttgcctt ctagatatca	
gctacagaat	
atggatgttag aagcagggtt	276
ccgtgaggca	
gtttat	

<210> SEQ ID NO 68

<211> LENGTH: 248

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 68

gatccgaatt cggcacgagg tttcaagaa	60
tatgtccttc aagaatgggt	
taaattgaaa	
gatctaccgg tagaagagtt	120
gctagaaaaa	
cgatatacaga	
aattccgaac	
gataggctta	
tatgaaactt	180
cttctgttag	
gcataagaag	
catttatgtt	
tattcggttt	
ttctctttta	240
tccatattag	
ggctaaacgtt	
aacgtctcaa	
gcagaaattt	
tttctctagg	
tcttattg	248

<210> SEQ ID NO 69

<211> LENGTH: 715

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<220> FEATURE:

<221> NAME/KEY: unsure

<222> LOCATION: (34)

<223> OTHER INFORMATION: n=A,T,C or G

<400> SEQUENCE: 69

gatccgaatt cggcacgaga	60
aggttagatcc	
gatntcagca	
aaagtgcctt	
taaaggaaga	

-continued

ttcccttcggt atccgtcagc aaataagggt gcacactcca tctcgacag tttgagcttt 120
attttcatat agtttcgac ggaactctt attaaactcc caaaaccgaa tgtagtcgt 180
gtgggtatg cctatatggt aagggaggtt ttggcttcg agaatattgg tgatcatttt 240
ttgtacgaca aaattagcta atgcaggac ctctgggggg aagtatgcat ctgatgttcc 300
atctttcgg atgctagcaa cagggacaaa ataatctcct atttggtagt gggatcttaa 360
gcctccgac atgccaaca tgatcgctgc tgtagcattt ggaaggaaag aacacagatc 420
tacggtaaga gctgctccctg gagagccaa tttaaaatcg atgattgagg tgtgaatttg 480
aggcgcatgc gctgcccggaaa acatggatcc tcgagaaaca gggacctgtat agattcagc 540
gaaaacatcc acggtaatac ccmaaattag taagaaggag atagggctgg aactcttggaa 600
tggtagagcc ggtatagcgc tctagcatgt cacaggcgat tgtttcttcg ctgatttttt 660
tatgttgcgtatggtataat cacagatatt ataatggtta gagaatcttt ttttc 715

<210> SEQ ID NO 70
<211> LENGTH: 323
<212> TYPE: DNA
<213> ORGANISM: Chlamydia

<400> SEQUENCE: 70

gatccgaatt cggcacgagc agaacgtaaa cagcacactt aaaccgtgta tgaggttaa	60
cactgtttgg caagcaaaca accattccctc tttccacatc gttcttacca ataccctctga	120
ggagcaatcc aacattctct cctgcacgac cttctggag ttctttctg aacatttcaa	180
ccccagtaac aatcgtttct ttagtatctc taagaccgc caactgaact ttatcgaaaa	240
ctttaacaat tccacgctca atacgtccag ttactacagt tcctcgccg gagatagaga	300
acacgtcctc aatgggcatt aag	323

```
<210> SEQ ID NO 71
<211> LENGTH: 715
<212> TYPE: DNA
<213> ORGANISM: Chlamydia
```

<400> SEQUENCE: 71

gatccgaaatt cggcacgagg aaaaaaagat tctctaacc ttataatc tgtgatttat
gaccatcaa cataaaaaaa tcagcgaaga aacaatgcc tgtgacatgc tagagcggct 120
ataccggctc taccattcaa gagttccagc cctatctcc tcttactaat tttgggtatt
acgtggatgt tttcgctgaa atctatcagg tccctgttcc tcgaggatcc atgtttcgg 180
gcagcgcatg cgcctcaaat tcacacctca atcatcgatt ttaaatttagg ctctccagga 240
gcagcttta ccgtagatct gtgttcttcc ctcccaatgc ctacagcagc gatcatgttg 300
ggcatgtgcg gaggcttaag atcccactac caaataggag attattttgt ccctgttgct 360
agcatccgaa aagatggAAC atcagatgca tactcccccc cagaggccc tgcatttagct 420
aattttgtcg tacaaaaaat gatcaccaat attctcgaaAG ccaaaaacct cccttaccat 480
ataggcatca cccacacgac taacattcggtttggagtttaataaaga gttccgtcgaa 540
aaactatataaAGC tcaaaactgtc gagatggagt gtgccacctt atttgctgca 600
qqataccqaa qqaatcttcc tttaqqaqca ctttqctqaa tattcqgatct acctt 660
qgatccgaaatt cggcacgagg aaaaaaagat tctctaacc ttataatc tgtgatttat 715

<210> SEQ ID NO 72
<211> LENGTH: 641
<212> TYPE: DNA

-continued

<213> ORGANISM: Chlamydia
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (550)
 <223> OTHER INFORMATION: n=A,T,C or G
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (559)
 <223> OTHER INFORMATION: n=A,T,C or G
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (575)
 <223> OTHER INFORMATION: n=A,T,C or G
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (583)
 <223> OTHER INFORMATION: n=A,T,C or G
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (634)
 <223> OTHER INFORMATION: n=A,T,C or G
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (638)
 <223> OTHER INFORMATION: n=A,T,C or G

<400> SEQUENCE: 72

gatccgaaatt	cgccacgaga	tctcctcgag	ctcgatcaa	cccacactt	ggacaagtac	60
ctacaacata	acggtccgct	aaaaacttc	cttcttc	agaatacagc	tgttcggtca	120
cctgattctc	taccagtccg	cgttcctgca	agtttcgata	gaaatcttgc	acaatagcag	180
gatgataagc	gttcgttagtt	ctggaaaaga	aatctacaga	aattccaa	ttcttgaagg	240
tatctttatg	aagcttatga	tacatgtcga	catattctt	atacccat	cctgccaact	300
ctgcattaag	ggtaattgcg	attccgtatt	catcagaacc	acaaatatac	aaaacctt	360
tgcctttag	tctctgaaaa	cgcgcataaa	catctgcagg	caaataagca	ccggtat	420
gtccaaaatg	caaaggacca	tttgcgtaa	gcaacgcaga	agtaataaga	atacggaa	480
atccactat	ttcacgtcgc	tccagttgt	cagagaagga	tctttctt	tggatgttcc	540
gaaaccttgn	tctctcgnc	tctctcctgt	agcanacaaa	tgncctctc	gacatctt	600
tcagcgtatt	cggactgtat	ccctaaagat	cccnngangt	t		641

<210> SEQ ID NO 73
 <211> LENGTH: 584
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (460)
 <223> OTHER INFORMATION: n=A,T,C or G
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (523)
 <223> OTHER INFORMATION: n=A,T,C or G
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (541)
 <223> OTHER INFORMATION: n=A,T,C or G
 <220> FEATURE:
 <221> NAME/KEY: unsure
 <222> LOCATION: (546)
 <223> OTHER INFORMATION: n=A,T,C or G

<400> SEQUENCE: 73

gaattcggca	cgagacattt	ctagaatgga	accggcaaca	aacaaaaact	ttgtatctga	60
agatgactt	aagcaatctt	tagataggga	agatttttt	gaatgggtct	ttttatgg	120
gacttattac	ggaacgagta	aggcggagat	ttcttagagtt	ctgcaaaagg	gtaagcactg	180

-continued

catagccgtg attgtatgtac aaggagctt ggctctgaag aagcaaatgc cggcagtcac	240
tatttttattt caagctccct ctcagaaga acttgagcgc cggttgaatg ctgggattc	300
agagaaagat ttccagaaga aagaaagatt agagcatagc gctgtcgaaa ttgtgccgc	360
tagcgaattt gattatgttgg tggtaatga tgatttggatt acagcatatc aagtttaag	420
aagtattttt atagctgaag aacataggat gagtcatggn tagaaaagat cgtttaacta	480
atgaaagact gaataagcta tttgatagcc ccttttagttt ggntaattac gtaattaagc	540
nagctnagaa caaaattgct agaggagatg ttcgttcttc taac	584

<210> SEQ ID NO 74

<211> LENGTH: 465

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 74

gatccgatt cggcacgagc tcgtgccgtt tgggatcgta taatcgcatc ggagaatgg	60
taagaaattt ttttcgagtg aaagagctag gcgtaatcat tacagatagc catactactc	120
caatgcggcg tggagttactg ggtatcgccg tggatggta tggattttctt ccattacaca	180
actatataagg atcgttagat tgttcggtc gtcccttaca gatgacgcaa agtaatctt	240
tagatgcctt agcagttgcg gctgttggttt gatgggaga gggaaatgag caaacaccgt	300
tagcggtgat agaggaggca cctaataatgg tctaccattc atatcctact tctcgagaag	360
agtatttttc tttgcgcata gatgaaacag aggacttata cggacctttt ttgcaagcgg	420
ttaccgtgga gtcagaaaaa gaaatgttgg aggtgtttat gaatt	465

<210> SEQ ID NO 75

<211> LENGTH: 545

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 75

gaattccggca cgagatgaaa agttagcgac acaggggatt ctcctaccaa agaattccga	60
aaagttttctt tccaaaaacc tcttcctctc ttgatttagt atccctctgc aactactta	120
ctatatgttc tggaaatat gcatagtctt caggattgga aaatccaaag tactcagtc	180
atccacgaat tttctctcta gcgatacgta gatatttgcact ctcataagaa tacaagcag	240
ccactcctgc agctaaagaa tccctgtac accaccgcattt gaaatggact actttcgctt	300
ttgctgcttc actaggctca tgaccctcta actcttctgg agtaactcctt agagcaaaca	360
caaactgcctt ccacaaaatca atatgattttt ggttaccgtt ctcttcatcc atcaagttat	420
ctaacaataa cttacgcgcc tctaaatcat cgcaacgact atgaatcgca gataaatatt	480
taggaaaggc tttgatatgtt aaataatagt ctggcata cgcctgtat tgctcttag	540
taagc	545

<210> SEQ ID NO 76

<211> LENGTH: 797

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<220> FEATURE:

<221> NAME/KEY: unsure

<222> LOCATION: (788)

<223> OTHER INFORMATION: n=A,T,C or G

<220> FEATURE:

<221> NAME/KEY: unsure

<222> LOCATION: (789)

-continued

<223> OTHER INFORMATION: n=A,T,C or G

<400> SEQUENCE: 76

gatccgaatt cggcacgaga tacgctagat	60
gcgataaaatg cgataatga ggattatcct	
aaaccagggtg acttcccacg atcttccttc	120
tctagtagcgc ctccatgc tccagtacct	
caatctgaga ttccaacgta acctaccta	180
acacagcctc catcacccta acttgtaaaa	
actgtataaa aaagagcgcg cttcccttat	240
gcaaaaatcaa tttgaacaac tccttactga	
attagggact caaatcaaca gcccctttac	300
tcctgattcc aataatgcct gtatagttgc	
ctttggatac aacaatgttg ctgtacaaat	360
tgaagaggat ggttaattcag gattttttagt	
tgctggagtc atgcttggaa aacttccaga	420
gaataccttt agacaaaaaa ttttcaaagc	
tgctttgtct atcaatggat ctccgcaatc	480
taatattaaa ggcactctag gatacgggtga	
aatctctaac caactctatc tctgtatcg	540
gcttaacatg acctatctaa atggagaaaa	
gctcgccgt tacttagttc tttttcgca	600
gcatgcaat atctggatgc aatctatctc	
aaaaggagaa cttccagatt tacatgtct	660
aggtatgtat cacctgtaaa ttatgccgtc	
attatccaa tcccgacgta tcatccagca	720
atcttccatt cgaaagattt ggaatcagat	
agataacttct cctaagcatg gggatcg	780
taccggttat ttttcttcc atactcaaaa	
aaagttgnng gggataa	797

<210> SEQ ID NO 77

<211> LENGTH: 399

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 77

catatgcatt accatcacca tcacatgcca	60
cgcatcattt gaattgatat tcctgcaaaag	
aaaaagttaa aaataagtct gacatataatt	120
tatggaatag gatcagctcg ttctgtatgaa	
atcattaaaa agttgaagtt agatcccttag	180
gcaagagcct ctgaattaac tgaagaagaa	
gttaggacgac tgaactctct gctacaatca	240
aatataccg tagaagggga tttgcgacgt	
cgtgttcaat cggatataaa aagattgatc	300
gccatccatt ttatcgagg tcagagacat	
agactttctt taccagtaag aggacaacgt	360
acaaaaacta attctcgat tcgaaaaggt	
aaaagaaaaa cagtgcagg taagaagaaa	399
taagaattc	

<210> SEQ ID NO 78

<211> LENGTH: 285

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 78

atgcacatcacc atcaccatca catgagtcaa	60
aaaaataaaa actctgcttt tatgcacatccc	
gtgaatattt ccacagattt agcagttata	120
gttggcaagg gacctatgcc cagaaccgaa	
attgtaaaga aagtttggga atacattaaa	180
aaacacaact gtcaggatca aaaaataaaa	
cgtaatatcc ttcccgatgc gaatcttgcc	240
aaagtctttg gctcttagtga tcctatcgac	
atgttccaaa tgaccaaagc ctttccaaa	285
catattgtaa aataa	

<210> SEQ ID NO 79

<211> LENGTH: 950

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 79

-continued

aaattaactc gaggcacaat tacggcaatt gctgagcaaa agatgaagga catggatgtc 60
gttcttttag agtccgcccga gagaatggtt gaagggactg cccgaagcat gggtgttagat 120
gtagagtaat tagttaaaga gctgcataat tatgacaaag catggaaaac gcattcgtgg 180
tatccaagag acttacgatt tagctaagtc gtattcttg ggtgaagcga tagatatttt 240
aaaacagtgt cctactgtgc gttcgatca aacgggtatg gtgtctgtta aattaggat 300
cgatccaaga aagagtgatc agcaaattcg tggttcggtt tctttacctc acggtacagg 360
taaagtttg cgaatttttag ttttgctgc tggagataag gctgcagagg ctattgaagc 420
aggagcggac tttgttggta gcgacgactt ggtagaaaaa atcaaagggtg gatgggttga 480
cttcgtatgtt gcggttgcca ctcggatata gatgagagag gtcggaaagc tagggaaagt 540
tttaggtcca agaaaaccta tgcctacgcc taaagccgga actgtaccaa cagatgtgg 600
taaaactatt gcggaactgc gaaaaggtaa aattgaattt aaagctgatc gagctgggt 660
atgcaacgtc ggagtgcga agcttcttt cgatagtgcg caaatcaaag aaaatgttga 720
agcggtgtgt gcagccttag taaaagctaa gcccgcact gctaaaggac aatatttagt 780
taatttcaactt atttccctcgat ccatggggcc aggggttacc gtggatacta gggagttat 840
tgcgttataa ttcttaagttt aaagaggaaa aatgaaagaa gagaaaaagt tgctgcttcg 900
cgaggttggaa gaaaagataa ccgcctctca aggttttatt ttgtttagat 950

<210> SEQ ID NO 80

<211> LENGTH: 395

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 80

tttcaaggat tttgtttcc cgatcatctt actaaatgca gctccaacaa tcacatcatg 60
ggctggttta gcatacgat caacagaagc tcctctgtg taataagtga attcttcaga 120
agtaggtgtt cctacttgcg atagcatgtt tcctagtctt gatatccaca gttgttata 180
gctaaacttca tcaaagcgag cttagattcat tttatcggtt agcaagcctt gtttactgt 240
gaccatgtac atttgagatc ccagaatcga gttcgcatag aatgtattgt ctctaggtac 300
ataagcccat tgtctataag agtcaaattt ccagagcgct gagatcgatc cattttgtat 360
ttgatcagga tccagagtga gtgttcgtt atatc 395

<210> SEQ ID NO 81

<211> LENGTH: 2085

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 81

atttggcgaa ggagttggg ctacggctat taataaatca ttctgttgc ctgcctccaa 60
gaccagattt tgcgtttctt tatgaagaat ctcttattga gcaaattgtt cgttggggag 120
agtctcgtt agaacaattt gctcaagtagt gtttagatac aatgtggcaa gttgtttcg 180
atccaggaat aggatttggg aagactcccg ttctgtcgat gttattgtat gatggagtaa 240
agcagttaa acgtgttttta gagtgcgttgcg tattatagg ccattctaga aaatcgat 300
tgagtagttt gggccgatattt aatagtgcacg atcgtgttgc gggaaacgatc ggctgttctg 360
tatcttca tgcgtcgat gttgatttac tgcgtgtgc tcagggttggaa ggttacacac 420
gtgccttagc cgctgtgtt gggctggta tgggttgcgat atccaaagcaa caggatcgat 480

-continued

tgctattgtatcccaggag tgatgggagc ttttaggaag ctcccttgaa gttatccccaa
agatctacgt ttttttgcag aaaccattcg aaatcatccc atcattatgg gacgaaagac 600
ttgggagtcctttccagaca agtataagca tggggcgggat atcggtgtct tttctcgacag 660
gatgcatccacacatgca taggagtttc ttcccttgca gagtatgggaa cactatcttt 720
gaatcatccgttttaatttggggagcgaa gctcttgaa agtttttcc aacaaaacct 780
tctgaaagct tggggatgtca cacatataaa aagaaaat tggggcgata ctttttcc 840
tatcacgcgatatacaggat ggaagaagga atgtatttgc aatacagagg atttcagttat 900
ttattattat gaaaataact ccgatcaaaa cacgtaaagt atttgcacat gattgcgttc 960
aagagatctt gcaagaggct ttggccgcctc tgcaagaacg gagtggttgc gttgtcttt 1020
caaagattgt gagttttagt gaaggcgctg tcgctgtatgc aagaatgtgc aaagcagagt 1080
tgataaaaaa agaagcggat gcttattttgt tttgtgagaa aagcgggata tatctaacga 1140
aaaaagaagg tattttgatt ccttctgcag ggattgtatgc atcgaatacg gaccagcctt 1200
ttgttttata tcctaaagat atttgggat cgtgtatgc catcgagaa tggtaagaa 1260
attattttcg agtggaaagag cttaggcgtaa tcattacaga tagccataact actccatgc 1320
ggcgtggagt actgggtatc gggctgtgtt ggtatggatt ttctccatttcacaactata 1380
taggatcgct agattgttgc ggtgtccct tacagatgc gcaaaatgtatc ttgttagatgc 1440
ccttagcgt tgccgtgtt gtttgtatgg gagaggggaa tgagcaaaaca ccgttagccgg 1500
tgatagagca ggcacctaattt atggtctacc attcatatcc tacttctcga gaagagtatt 1560
gttctttgcg catagatgaa acagaggact tatacggacc ttttttgcgaa gcggttacgt 1620
ggagtcaaga aaagaaatgatggaggtgtt tatgaattttt ttagatcgt tagatattat 1680
tattcaaaat aagcatatgc tagaacacac gttttatgtt aatggtgcgaaaggggagct 1740
tactaaagag caattacagg cgtatgcggaa agactattat ttacatatca aagcccttcc 1800
taaatattta tctgcgttccatagtcgttgcgtt gaggcgctgatgcgtttagatcgtt 1860
agataacttgcgtt atggatgaag agaacgggatccctaatcatatttgcgtt ggaagcgtt 1920
tgtgtttgcgtt ctagggatgtt ctccagaaga gtttagaggct catgagccatgcgtt 1980
aaaagcgaaa gtagctactt tcatgcgggtt gtttgcgtt gattcttgcgtt gtcaggatgtt 2040
ggctqcttttgcgtttagatcgtt gtagctactt tcatgcgggtt gtttgcgtt gattcttgcgtt 2100

<210> SEQ ID NO 82
<211> LENGTH: 405
<212> TYPE: DNA
<213> ORGANISM: Chlamydia

<400> SEQUENCE: 82

ttcatcggtc tagttcgcta ttctactctc caatggttcc gcatttttgg gcagagcttc	60
geaatcatta tgcaacgagt ggtttggaaaa gcgggtacaa tattgggagt accgatgggt	120
ttctccctgt cattgggcct gttatatggg agtcggaggg tctttccgc gcttatattt	180
cttcggtgac tgatggggat ggtaagagcc ataaagttagg atttctaaga attcctacat	240
atagttggca ggacatggaa gatttgatc cttaggacc gcctccttgg gaagaattgt	300
attggctcca taaagggggg agaaaaacttc gatataggga atcgatcaa ggtaaaagtg	360
gcaaaaaaaata aatttagctcc tccattccga actgcagaat ttgtat	405

<210> SEQ ID NO 83
<211> LENGTH: 379

-continued

<212> TYPE: DNA
 <213> ORGANISM: Chlamydia
 <400> SEQUENCE: 83

tataccattc	gtttgcgg	ggagaaatgt	tttttgcgtt	caatgc	60	
ggtcgtgtcg	tttcccttg	ggcagatgtt	gacgatcaag	ttttgggttaa	atcagacggg	120
ttccctacgt	atcactttgc	taatgttagt	gatgttgcatt	tgatggggat	tacccatgtg	180
ttgcgagggg	aagagtgggtt	aagttctaca	cctaaacacc	ttcttcttta	caaagcttt	240
gggtggggagc	ctcccgagtt	tttccatatgc	ccgcttcttc	taaatcctgta	tggaagtaag	300
ctttccaaga	gaaaatcc	tacttctatt	ttttactatc	gggatgtcg	atacaaaaaaa	360
gaagcgttca	tgaatttcc					379

<210> SEQ ID NO 84
 <211> LENGTH: 715
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia
 <400> SEQUENCE: 84

tcaatcctgt	atataataatt	ctgggttctta	gactacataa	attaggaacg	cctgtatgagt	60
atccataact	aatcgcgtag	ggctttagaaat	cacccctctcg	taccaaagct	agaacaacgc	120
cgccctccat	tcttgcgtca	ataatatactg	ctgagactaa	gaacatgctc	ccagagcttt	180
tgggtgtgac	tgtgaatttt	cctatttcag	ttcctcttaa	taaagttca	atgttctgg	240
gagtgaataa	cccggtgcat	tgaattttat	tagtgttgg	aaagttttaa	aaagtttca	300
acaaaactag	agaagggtct	gttgcgtt	tgtctaaat	atcttggact	gtactatcaa	360
caatagtatc	agcaattcca	ccaagaattt	gatctccaa	ctttctaga	ataagctgg	420
aagcttttc	cgcattccaa	ccaattgtaa	tagaaggatt	gggtgatgga	ttattggaga	480
ctgttaaaga	tattccatca	gaagctgtca	ttttggctgc	gacagggttt	gtatgtgtcc	540
caaggattat	ttgctggtcc	ttgacggct	ctgtcatttgc	cccaacttttgc	atattatcg	600
caaagacgca	gttttgcgtt	ttatcacaat	aaaaaccaga	atttccatt	ttaaaactct	660
tttttatttt	gagctttaaa	taaatttaggt	tttttagttc	aagtttgcta	ttaat	715

<210> SEQ ID NO 85
 <211> LENGTH: 476
 <212> TYPE: DNA
 <213> ORGANISM: Chlamydia
 <400> SEQUENCE: 85

ctcggtccgc	tcgtgccgtc	cgtgccggtc	ttttagaaga	gcgtgaagct	ttaaataatt	60
cgattacgtt	tatcatggat	aagcgttatt	ggatagaaac	cgagtctgaa	caggtacaag	120
tggtttccat	agatagtaca	gcttgcgttag	gaggaggcgc	tattgcgt	caagaaatttgc	180
tttcttattca	gaacaatcg	gctgggattt	ccttcgaggg	aggttgcgt	attttcggag	240
gaggttattgc	gtgtggatct	ttttcttccg	caggccgtgc	ttctgtttta	gggactatttgc	300
atatttcgaa	gaattttaggc	gcgttccgt	tctctcgatc	tttatgtacg	acctcagatt	360
taggacaaat	ggagtaccag	ggaggaggag	ctcttattgg	tgttttgcgt	tcgaat	420
agaatgttgc	tgtgttcacc	tttaaagaca	acattgtgaa	gacttttgcgt		476

<210> SEQ ID NO 86
 <211> LENGTH: 1551
 <212> TYPE: DNA

-continued

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 86

gcgtatcgat	atttcttctg	ttacattctt	tatagggatt	ctgtggctg	ttaatgcgt	60
aacctactct	catgtattac	gggatttac	tgtgagatg	gatgcgtgt	tttctcgtaa	120
cacgcttgct	gttcttttag	gtttagtctc	tagcgtttta	gataatgtgc	cattagtcgc	180
tgcaacaata	ggtatgtatg	acttacctat	gaacgatcct	ctttggaaac	tcattgccta	240
tacagcaggc	acagggggaa	gtattctcat	cattggatcc	gctgcagggtg	ttgcctacat	300
ggaaatggaa	aaagttagtt	tcggctggta	tgtcaaacac	gcttcttgg	ttgcctttagc	360
cagttatTTT	ggaggtctag	cagtctatTTT	tctaatggaa	aattgtgtga	atTTgttctgt	420
ttgaggttagt	cagtagtggca	gagtttctt	aaaaattctt	ttaataaaaag	ggttctctgc	480
ctattctagg	ccccttttg	aatggaaaaa	tgggTTTTG	gagaacatcg	attatgaaaa	540
tgaataggat	ttggcttatta	ctgttaccc	tttcttctgc	catacattct	cctgtacgag	600
gagaaagctt	ggtttcaag	aatgttcttc	aagatttgag	tttttagag	catttattac	660
aggttaaata	tgctcctaaa	acatggaaag	agcaatactt	aggatggat	cttggtaaaa	720
gctccgtttc	tgcacacgag	aagttcgtta	cacaagaaaa	tccatcaaca	agtttttgc	780
agcaggatcct	tgctgatTTT	atcgaggat	taaatgactt	tcacgctgg	gtaaTTTct	840
ttgcgataga	aagtgcTTAC	cttccttata	ccgtacaaaa	aagtagtgc	ggccgtttct	900
actttttaga	tatcatgact	ttttcttcg	agatccgtgt	tggagatgag	ttgcttagagg	960
tggatggggc	gcctgtccaa	gatgtgctcg	ctactctata	tggaagcaat	cacaaggga	1020
ctgcagctga	agagtccgt	gctttaagaa	cactatTTTc	tgcgtatggc	tctttagggc	1080
acaaagtacc	ttctgggcgc	actactttaa	agattcgtcg	tcctttgg	actacgagag	1140
aagttcgtgt	gaaatggcgt	tatgttccgt	aaggtagttagg	agatttgct	accatagctc	1200
cttctatcag	ggctccacag	ttacagaaaat	cgatgagaag	ctttttccct	aagaagatg	1260
atgcgtttca	tcggcttagt	tcgttattct	actctccaaat	ggttccgc	tttgggcag	1320
agcttcgcaa	tcattatgc	acgagtgggt	tgaaaagcgg	gtacaatatt	gggagtaccg	1380
atgggtttct	ccctgtcatt	gggcctgtta	tatggagtc	ggagggtctt	ttccgcgtt	1440
atatttcttc	ggtagactgt	ggggatggta	agagccataa	agtaggattt	ctaagaattc	1500
ctacatata	ttggcaggac	atggaaagatt	ttgtatcc	aggaccgcct	c	1551

<210> SEQ ID NO 87

<211> LENGTH: 3031

<212> TYPE: DNA

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 87

atgttaggccc	tcaagcgggt	ttattgttag	accaaattcg	agatctattc	gttgggtcta	60
aagatagtca	ggctgaagga	cagtataggt	taattgttagg	agatccaagt	tcttccaag	120
agaaagatgc	agatacttt	cccggaagg	tagagcaaag	tactttgttc	tcaatcca	180
atcccggtt	tttcaagggt	gtggaccaac	aggatcaagt	ctctccaa	gggttaattt	240
gtatTTTAC	gagcagcaac	ctgttctc	cccggtacgg	agaatcttt	ttaggtattt	300
cttttgg	ggatagtagt	aaggctggaa	tcacattaac	tgacgtgaaa	gcttcttgg	360
ctggagcggc	tttatattct	acagaagatc	ttatcttga	aaagattaag	ggtgattgg	420
aatttgcatt	atgttcttct	ctagaacagg	ggggagctt	tgcagctaa	agtatTTTGA	480

-continued

ttcatgattt ccaaggattt caggtaaac actgtactac agccgtaat gctgagggggt
ctagtgcgaa tgatcatctt ggatttggag gaggcgctt ctttgcgtacg gttctcttt
ctggagagaa aagtctctat atgcgtcag gagatatgg agttgcgaaat tggatgggg
ctatatctt tgaaggaaac agcgcgaact ttgctaatttgg aggagcgatt gctgcctctg
ggaaagtgc ttttgcgtc aatgataaaa agacttctt tatagagaac cgagcttgt
ctggaggagc gattgcagcc tcttcgtata ttgccttca aaactgcgca gaactagtt
tcaaaggcaa ttgtgcattt ggaacagagg ataaagggttcc tttaggtgg ggggtat
cttctctagg caccgttctt ttgcaagggat atcacgggat aacttgcgtat aataatgagt
ctgcttcgca aggaggcgcc attttggca aaaattgtca gatttgcac aacgaggggc
cagtggtttt cagagatagt acagcttgc taggaggagg cgctattgc gctcaagaaa
ttgtttctat tcagaacaat caggctggat ttcccttcga gggaggtaag gctagttcg
gaggaggtat tgctgtggat tcttttttcc cgccaggcg tgcttgcgtt tttagggacta
ttgatatttc gaagaatttgcgcgat cgttctctcg tactttatgt acgacctcag
attttagaca aatgggttac cagggaggag gagctctatt ttgtgaaaat attttctt
ctgagaatgc ttgtgtgc acctttaaag acaacattgtt gaagactttt gcttogaatg
ggaaaattctt gggaggagga gcgatttttag ctactggtaa ggtggaaattt accaataatt
ccggaggaat ttcttttaca ggaatgcga gagctccaca agcttccca actcaagagg
agtttctttt attcagcaaa aaagaaggc gaccacttc ttcaaggat tctggggag
gagcgatttt aggaagagaa gtatcttcc cccacaacgc tgcaatgtt tttgagcaaa
atcggttgc gtgcagcgaa gaagaagcga cattattagg ttgtgtggat ggaggcgctg
ttcatggat ggatagact tcgatttttgc gcaactttc agtaagattt ggtataatt
acgcaatggg acaaggagtc tcaggaggag ctctttatc taaaacagt cagttactg
gaaatggaaat cgtcgatttt tctcgaaata ttgcgtatgg gggaggacgc aatgttctgt
tagcttcaga aacccttgc tccagagcaaa atacatctcc ttcatcgctt cgctctt
atttcaagt aaccctcatcc ccctctaattt ggcctaattt acatcaaattt cttgttctt
actcgccatc agagaaaacc gctgttatgg agtttctatgtt gatggcatg gtagcagatt
taaaatcgaa gggcccttcc attccctctg caaaattgc aatgtatattt acggaactt
gcaatctcca agccttacac tctgttagata gcttttttgc tagaaatattt gggaaacttgg
aaaatagctt aaagcatgaa ggacatgccc ctttccatc cttaaacgaca gggaaattt
ctaaaacctt cttacaattt gtagaagata aattcccttc ctcttccaaa gctcaaaagg
cattaaatgtt actggtaggc ccagactactg gtcctcaac tgaagtttta aacttattt
tccgcgtctt taatggctgt tcgccttagaa tattctctgg agctgaaaaaa aaacagcagc
tggcatcggtt tatcacaat acgctatgtt cgataatgc ggataatgag gattatccctt
aaccaggtga cttccacga tcttccttctt ctagtacgatcc tcctcatgtt ccagttac
aatcttagat tccaaacgtca cctaccttca cacagcccttcc atcaccctaa cttgtaaaa
ctgtataaaa aagagcgcc ttcctttatg caaaatcaat ttgaacaact ctttactgaa
tttagggacttcc aatcaacag cccttcttactt cttgtatccca ataatgcctg tataatgc
tttggataca acaatgttgc ttttgcgttcaattt gtaggatg gtaattcagg atttttagtt
qctqqqatca tgcgttgc qaaatcccaq aatacccttta qacaaaaat tttcaaaqct
2820

-continued

gctttgtcta tcaatggatc tccgcaatct aatattaaag gcactctagg atacgggtgaa	2880
atctctaaacc aactctatct ctgtgatcggt cttaacatga cctatctaaa tggagaaaag	2940
ctcgcccggtt acttagttct ttttcgcag catgccaata tctggatgca atctatctca	3000
aaaggagaac ttccagatctt acatgctcta g	3031

<210> SEQ ID NO 88	
<211> LENGTH: 976	
<212> TYPE: DNA	
<213> ORGANISM: Chlamydia	
<400> SEQUENCE: 88	
agggtggatgg ggcgcctgtc caagatgtgc tcgctactct atatggaagc aatcacaaag	60
ggactgcagc tgaagagtgc gctgctttaa gaacactatt ttctcgcatg gcctcttag	120
ggcacaaaagt accttctggg cgcaactactt taaagattcg tcgtcctttt ggtactacga	180
gagaagttcg tggaaatgg cgttatgttc ctgaagggtgt aggagatttg gctaccatag	240
ctccttctat cagggctcca cagttacaga aatcgatgag aagcttttc cctaaagaaag	300
atgatgcgtt tcatcggtct agttcgctat tctactctcc aatggttccg cattttggg	360
cagagttcg caatcattat gcaacgatg gttgaaaag cggttacaat attgggatg	420
ccgatgggtt tccctgtc attgggcctg ttatatggg gtcggagggt cttttccgcg	480
cttataatttc ttccgtgact gatggggatg gtaagagcca taaagtagga ttctaaagaa	540
ttccctacata tagttggcag gacatggaaatg attttgatcc ttcaaggaccg cttccctggg	600
aagaatttgc taagattattt caagtatccc cttctaatac agaagctttt attatcgacc	660
aaacgaacaa cccaggtggt agtgcctt atctttatgc actgcttcc atgttgacag	720
accgtccctt agaacttcctt aaacatagaa tgattctgac tcaggatgaa gtgggtatg	780
cttttagattt gtttaaccctg ttggaaaacg tagacacaaa cgtggagtct cgccttgctc	840
ttggagacaa catggaaatg tatactgtgg atctacaggt tgccgagttat taaaagct	900
ttggacgtca agtattgaat tgttggagta aaggggatata cgagttatca acacctattc	960
ctcttttgg ttttga	976

<210> SEQ ID NO 89	
<211> LENGTH: 94	
<212> TYPE: PRT	
<213> ORGANISM: Chlamydia	
<400> SEQUENCE: 89	
Met His His His His His Met Ser Gln Lys Asn Lys Asn Ser Ala	
5 10 15	
Phe Met His Pro Val Asn Ile Ser Thr Asp Leu Ala Val Ile Val Gly	
20 25 30	

Lys Gly Pro Met Pro Arg Thr Glu Ile Val Lys Lys Val Trp Glu Tyr	
35 40 45	
Ile Lys Lys His Asn Cys Gln Asp Gln Lys Asn Lys Arg Asn Ile Leu	
50 55 60	
Pro Asp Ala Asn Leu Ala Lys Val Phe Gly Ser Ser Asp Pro Ile Asp	
65 70 75 80	
Met Phe Gln Met Thr Lys Ala Leu Ser Lys His Ile Val Lys	
85 90	

<210> SEQ ID NO 90	
<211> LENGTH: 474	

-continued

<212> TYPE: PRT

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 90

Met	Ala	Ser	His	His	His	His	His	Met	Asn	Glu	Ala	Phe	Asp	Cys
5								10					15	

Val	Val	Ile	Gly	Ala	Gly	Pro	Gly	Gly	Tyr	Val	Ala	Ala	Ile	Thr	Ala
20							25						30		

Ala	Gln	Ala	Gly	Leu	Lys	Thr	Ala	Leu	Ile	Glu	Lys	Arg	Glu	Ala	Gly
35						40					45				

Gly	Thr	Cys	Leu	Asn	Arg	Gly	Cys	Ile	Pro	Ser	Lys	Ala	Leu	Leu	Ala
50						55					60				

Gly	Ala	Glu	Val	Val	Thr	Gln	Ile	Arg	His	Ala	Asp	Gln	Phe	Gly	Ile
65						70					75		80		

His	Val	Glu	Gly	Phe	Ser	Ile	Asn	Tyr	Pro	Ala	Met	Val	Gln	Arg	Lys
						85			90				95		

Asp	Ser	Val	Val	Arg	Ser	Ile	Arg	Asp	Gly	Leu	Asn	Gly	Leu	Ile	Arg
100						105					110				

Ser	Asn	Lys	Ile	Thr	Val	Phe	Ser	Gly	Arg	Gly	Ser	Leu	Ile	Ser	Ser
115						120					125				

Thr	Glu	Val	Lys	Ile	Leu	Gly	Glu	Asn	Pro	Ser	Val	Ile	Lys	Ala	His
130						135					140				

Ser	Ile	Ile	Leu	Ala	Thr	Gly	Ser	Glu	Pro	Arg	Ala	Phe	Pro	Gly	Ile
145						150					155		160		

Pro	Phe	Ser	Ala	Glu	Ser	Pro	Arg	Ile	Leu	Cys	Ser	Thr	Gly	Val	Leu
						165			170			175			

Asn	Leu	Lys	Glu	Ile	Pro	Gln	Lys	Met	Ala	Ile	Ile	Gly	Gly	Val	
						180					185		190		

Ile	Gly	Cys	Glu	Phe	Ala	Ser	Leu	Phe	His	Thr	Leu	Gly	Ser	Glu	Val
195						200					205				

Ser	Val	Ile	Glu	Ala	Ser	Ser	Gln	Ile	Leu	Ala	Leu	Asn	Asn	Pro	Asp
210						215					220				

Ile	Ser	Lys	Thr	Met	Phe	Asp	Lys	Phe	Thr	Arg	Gln	Gly	Leu	Arg	Phe
225						230			235			240			

Val	Leu	Glu	Ala	Ser	Val	Ser	Asn	Ile	Glu	Asp	Ile	Gly	Asp	Arg	Val
						245			250			255			

Arg	Leu	Thr	Ile	Asn	Gly	Asn	Val	Glu	Glu	Tyr	Asp	Tyr	Val	Leu	Val
260						265					270				

Ser	Ile	Gly	Arg	Arg	Leu	Asn	Thr	Glu	Asn	Ile	Gly	Leu	Asp	Lys	Ala
275						280					285				

Gly	Val	Ile	Cys	Asp	Glu	Arg	Gly	Val	Ile	Pro	Thr	Asp	Ala	Thr	Met
290						295					300				

Arg	Thr	Asn	Val	Pro	Asn	Ile	Tyr	Ala	Ile	Gly	Asp	Ile	Thr	Gly	Lys
305						310					315			320	

Trp	Gln	Leu	Ala	His	Val	Ala	Ser	His	Gln	Gly	Ile	Ile	Ala	Ala	Arg
						325			330			335			

Asn	Ile	Gly	Gly	His	Lys	Glu	Glu	Ile	Asp	Tyr	Ser	Ala	Val	Pro	Ser
						340			345			350			

Val	Ile	Phe	Thr	Phe	Pro	Glu	Val	Ala	Ser	Val	Gly	Leu	Ser	Pro	Thr
355						360					365				

Ala	Ala	Gln	Gln	Gln	Lys	Ile	Pro	Val	Lys	Val	Thr	Lys	Phe	Pro	Phe
370						375					380				

Arg	Ala	Ile	Gly	Lys	Ala	Val	Ala	Met	Gly	Glu	Ala	Asp	Gly	Phe	Ala
385						390			395			400			

-continued

Ala Ile Ile Ser His Glu Thr Thr Gln Gln Ile Leu Gly Ala Tyr Val
 405 410 415

Ile Gly Pro His Ala Ser Ser Leu Ile Ser Glu Ile Thr Leu Ala Val
 420 425 430

Arg Asn Glu Leu Thr Leu Pro Cys Ile Tyr Glu Thr Ile His Ala His
 435 440 445

Pro Thr Leu Ala Glu Val Trp Ala Glu Ser Ala Leu Leu Ala Val Asp
 450 455 460

Thr Pro Leu His Met Pro Pro Ala Lys Lys
 465 470

<210> SEQ ID NO 91

<211> LENGTH: 129

<212> TYPE: PRT

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 91

Met His His His His His Met Pro Arg Ile Ile Gly Ile Asp Ile
 5 10 15

Pro Ala Lys Lys Lys Leu Lys Ile Ser Leu Thr Tyr Ile Tyr Gly Ile
 20 25 30

Gly Ser Ala Arg Ser Asp Glu Ile Ile Lys Lys Leu Lys Leu Asp Pro
 35 40 45

Glu Ala Arg Ala Ser Glu Leu Thr Glu Glu Glu Val Gly Arg Leu Asn
 50 55 60

Ser Leu Leu Gln Ser Glu Tyr Thr Val Glu Gly Asp Leu Arg Arg Arg
 65 70 75 80

Val Gln Ser Asp Ile Lys Arg Leu Ile Ala Ile His Ser Tyr Arg Gly
 85 90 95

Gln Arg His Arg Leu Ser Leu Pro Val Arg Gly Gln Arg Thr Lys Thr
 100 105 110

Asn Ser Arg Thr Arg Lys Gly Lys Arg Lys Thr Val Ala Gly Lys Lys
 115 120 125

Lys

<210> SEQ ID NO 92

<211> LENGTH: 202

<212> TYPE: PRT

<213> ORGANISM: Chlamydia

<400> SEQUENCE: 92

Met His His His His His Met Gly Ser Leu Val Gly Arg Gln Ala
 5 10 15

Pro Asp Phe Ser Gly Lys Ala Val Val Cys Gly Glu Glu Lys Glu Ile
 20 25 30

Ser Leu Ala Asp Phe Arg Gly Lys Tyr Val Val Leu Phe Phe Tyr Pro
 35 40 45

Lys Asp Phe Thr Tyr Val Cys Pro Thr Glu Leu His Ala Phe Gln Asp
 50 55 60

Arg Leu Val Asp Phe Glu Glu His Gly Ala Val Val Leu Gly Cys Ser
 65 70 75 80

Val Asp Asp Ile Glu Thr His Ser Arg Trp Leu Thr Val Ala Arg Asp
 85 90 95

Ala Gly Gly Ile Glu Gly Thr Glu Tyr Pro Leu Leu Ala Asp Pro Ser
 100 105 110

-continued

Phe Lys Ile Ser Glu Ala Phe Gly Val Leu Asn Pro Glu Gly Ser Leu
 115 120 125

Ala Leu Arg Ala Thr Phe Leu Ile Asp Lys His Gly Val Ile Arg His
 130 135 140

Ala Val Ile Asn Asp Leu Pro Leu Gly Arg Ser Ile Asp Glu Glu Leu
 145 150 155 160

Arg Ile Leu Asp Ser Leu Ile Phe Phe Glu Asn His Gly Met Val Cys
 165 170 175

Pro Ala Asn Trp Arg Ser Gly Glu Arg Gly Met Val Pro Ser Glu Glu
 180 185 190

Gly Leu Lys Glu Tyr Phe Gln Thr Met Asp
 195 200

<210> SEQ ID NO 93

<211> LENGTH: 19

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: made in a lab

<400> SEQUENCE: 93

Glu Asn Ser Leu Gln Asp Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp
 1 5 10 15

Asp Lys Leu

<210> SEQ ID NO 94

<211> LENGTH: 20

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 94

Asp Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys
 1 5 10 15

Val Phe Gly Thr
 20

<210> SEQ ID NO 95

<211> LENGTH: 20

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 95

Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly Thr
 1 5 10 15

Glu Lys Pro Ile
 20

<210> SEQ ID NO 96

<211> LENGTH: 20

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 96

Asp Asp Lys Leu Ala Lys Val Phe Gly Thr Glu Lys Pro Ile Asp Met
 1 5 10 15

Phe Gln Met Thr

-continued

20

<210> SEQ ID NO 97
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 97

Lys Val Phe Gly Thr Glu Lys Pro Ile Asp Met Phe Gln Met Thr Lys
1 5 10 15

Met Val Ser Gln
20

<210> SEQ ID NO 98
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 98

Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly
1 5 10 15

Thr Glu Lys Pro
20

<210> SEQ ID NO 99
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 99

Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe Gly
1 5 10 15

<210> SEQ ID NO 100
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 100

Lys Met Trp Asp Tyr Ile Lys Glu Asn Ser Leu Gln Asp Pro Thr
1 5 10 15

<210> SEQ ID NO 101
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 101

Thr Glu Ile Val Lys Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys
1 5 10 15

Gln Asp Gln Lys
20

<210> SEQ ID NO 102
<211> LENGTH: 20

-continued

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 102

Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys Gln Asp Gln Lys Asn
 1 5 10 15

Lys Arg Asn Ile
 20

<210> SEQ ID NO 103
 <211> LENGTH: 15
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 103

Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys Gln Asp Gln Lys
 1 5 10 15

<210> SEQ ID NO 104
 <211> LENGTH: 20
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 104

Ala Glu Leu Thr Glu Glu Glu Val Gly Arg Leu Asn Ala Leu Leu Gln
 1 5 10 15

Ser Asp Tyr Val
 20

<210> SEQ ID NO 105
 <211> LENGTH: 21
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 105

Leu Gln Ser Asp Tyr Val Val Glu Gly Asp Leu Arg Arg Arg Val Gln
 1 5 10 15

Ser Asp Ile Lys Arg
 20

<210> SEQ ID NO 106
 <211> LENGTH: 20
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 106

Met Pro Arg Ile Ile Gly Ile Asp Ile Pro Ala Lys Lys Lys Leu Lys
 1 5 10 15

Ile Ser Leu Thr
 20

<210> SEQ ID NO 107
 <211> LENGTH: 20
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence

-continued

<220> FEATURE:

<223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 107

Ala Glu Leu Thr Glu Glu Glu Val Gly Arg Leu Asn Ala Leu Leu Gln
 1 5 10 15

Ser Asp Tyr Val
 20

<210> SEQ ID NO 108

<211> LENGTH: 20

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 108

Leu Asn Ala Leu Leu Gln Ser Asp Tyr Val Val Glu Gly Asp Leu Arg
 1 5 10 15

Arg Arg Val Gln
 20

<210> SEQ ID NO 109

<211> LENGTH: 20

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Made in a lab

<400> SEQUENCE: 109

Leu Asn Ser Leu Leu Gln Ser Glu Tyr Thr Val Glu Gly Asp Leu Arg
 1 5 10 15

Arg Arg Val Gln
 20

What is claimed is:

1. A method of stimulating an immune response against a Chlamydia antigen in a patient, said method comprising:

(a) providing a pharmaceutical composition, wherein said pharmaceutical composition comprises an isolated polypeptide comprising an immunogenic portion of a Chlamydia antigen, wherein said immunogenic portion comprises at least 20 contiguous amino acid residues from SEQ ID NO:5, wherein said antigen comprises the amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of (a) a sequence encoding the polypeptide of SEQ ID NO:5; (b) a sequence 95% identical to a sequence encoding the polypeptide of SEQ ID NO:5; and (c) a sequence that hybridizes with a sequence encoding the polypeptide of SEQ ID NO:5 under moderately stringent conditions, and a physiologically acceptable carrier, wherein the polypeptide encoded by the polynucleotide

40 of (b) or (c) binds to an antibody or T-cell that is specific for the polypeptide of SEQ ID NO:5;

(b) administering said pharmaceutical composition to the patient; and

(c) thereby stimulating an immune response in the patient.

45 2. The method of claim 1, wherein said polypeptide is encoded by a polynucleotide selected from the group consisting of (a) the polynucleotide of SEQ ID NO:1, (b) a polynucleotide at least 95% identical to SEQ ID NO:1; and (c) a polynucleotide that hybridizes with SEQ ID NO:1 under moderately stringent conditions, wherein said polypeptide encoded by the polynucleotide of (b) or (c) binds to an antibody or T-cell that is specific for the polypeptide of SEQ ID NO:5.

50 3. The method of claim 1, wherein said immunogenic portion comprises SEQ ID NOs:13 or 14.

55 * * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,555,115 B1
DATED : April 29, 2003
INVENTOR(S) : Peter Probst et al.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 109,
Line 43, phannaceutical" should read -- pharmaceutical --

Signed and Sealed this

Sixteenth Day of September, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office