Office de la Proprieté Canadian CA 2606981 C 2016/09/06

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 606 981
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2006/05/05 (51) CLInt./Int.Cl. GO6F 21/57(2013.01),
(87) Date publication PCT/PCT Publication Date: 2006/11/09 GO6F 12/00(2000.01), GO6F 21/44(2013.01)
- . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2016/09/06 VADEKAR ASHOK CA:
(85) Entree phase nationale/National Entry: 200/7/10/31 NEILL, BRIAN. CA
(86) N° demande PCT/PCT Application No.: CA 2006/000711| (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.: 2006/116871 CERTICOM CORPORATION, CA

(30) Priornte/Priority: 2005/05/05 (US60/677,816) (74) Agent: ROWAND LLP

(54) Titre : AUTHENTIFICATION DE RETROINSTALLATION SUR UN MICROLOGICIEL
(54) Title: RETROFITTING AUTHENTICATION ONTO FIRMWARE

HOST

ACCESSORY

120

OBTAIN COPY QF

ACCESSORY
MEMORY

130

—

FORWARD LISTOF
MEMORY g S
ADDRESSES MEMORY
| ADDRESSES
160 i

.
)
.
1
]
.
]
'
’
-
.
’
»
v
.
.
’
“
’
£
-

MPUTE
PRESENTATIVE
VALUE

130

RECEIVE | , SEND
REPRESENTATIVE | REP. VALUE | REPRESENTATIVE

VALUE ©(aCC) VALUE

170 |

COMPUTE
EXPECTED
REPRESENTATIVE
VAIUE

}
|
|
|
i
]
|

180 :
!
|
|
i
{
|

COMPARE TWO
REPRESENTATIVE
VALUES

(57) Abréegée/Abstract:

The present invention provides an inexpensive, software-based security-retrofit solution to verify the integrity of program code In
embedded systems, or accessories, without resorting to expensive hardware changes. All unused memory on an accessory that
could be used to store a program code image Is filled with random data. A host system also locally stores a copy of the accessory's
program image containing the random data. The host system sends the accessory a list of memory addresses or memory ranges
on the accessory, which Is always different and random in nature. The accessory will then produce a digest using values stored In

the memory addresses as Inputs to a secure hash function. The host system verifies the Integrity of the embedded program code
by verifying the resulting digest produced by and returned from the accessory.

C anada hitp:7/opic.ge.ca Ottawa-Hull KIA 0C9 - 4 tp.//cipo.ge.ca OPIC \\ sii:&f*‘-;r]
OPIC - CIPO 191 AN

CA 02606981 2007-10-31

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f*
International Bureau %

(43) International Publication Date
9 November 2006 (09.11.2006)

(51) International Patent Classification:
GOG6F 21/00 (2006.01) GOG6F 12/00 (2006.01)

(21) International Application Number:
PCT/CA2006/000711

(22) International Filing Date: 5 May 2006 (05.05.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/677,816 5 May 2005 (05.05.2005) US

(71) Applicant (for all designated States except US): CERTI-
COM CORP. [CA/CA]; 5520 Explorer Drive, 4th Floor,
Mississauga, Ontario L4W 5L1 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): VADEKAR, Ashok
[CA/CA]; 250 Harris Street, RR #4, Rockwood, Ontario
NOB 2KO (CA). NEILL, Brian [CA/CA]; 2135 Donald
Street, Burlington, Ontario L7M 3R3 (CA).

HOST

ACCESSORY

120

OBTAIN COPY OF

EMORY

l

i

}

i

[

i

ACCESSORY E
| !

!

130 1
[

!

150

SEND
RESENTATIVE
VALUE

. {
RECEIVE i
REPRESENTATIVE | REP. VALUE | r
VALUE (ACC)

- 170

- EXPECTE |
EPRESENTATIV.
VALUE

180

COMPARE TWO
REPRESENTATIVE
VALUES

wO 2006/116871 A3 I M D0 AL A0 R0 AR D R0

(10) International Publication Number

WO 2006/116871 A3

(74) Agents: ORANGE, John, R., S. et al.; Suite 2800, Com-
merce Court West, 199 Bay Street, Toronto, ON M5L 1A9
(CA).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, T], TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, I,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BEF, BJ, CFE, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TQG).

[Continued on next page]

(54) Title: RETROFITTING AUTHENTICATION ONTO FIRMWARE

(57) Abstract: The present invention provides an inexpensive,
software-based security-retrofit solution to verify the integrity of
program code in embedded systems, or accessories, without re-
sorting to expensive hardware changes. All unused memory on
an accessory that could be used to store a program code image is
filled with random data. A host system also locally stores a copy
of the accessory’s program image containing the random data.
The host system sends the accessory a list of memory addresses
or memory ranges on the accessory, which is always different and
random in nature. The accessory will then produce a digest using
values stored in the memory addresses as inputs to a secure hash
function. The host system verifies the integrity of the embedded
program code by verifying the resulting digest produced by and
returned from the accessory.

CA 02606981 2007-10-31

WO 2006/116871 A3 U1 HIA!H AR O AR 01 AR A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-

(88) Date of publication of the international search report: ning of each regular issue of the PCT Gazette.
21 December 2006

10

15

20

25

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

RETROFITTING AUTHENTICATION ONTO FIRMWARE

FIELD OF INVENTION

[0001] The invention relates generally to the field of cryptography. In particular, the
invention relates to providing an inexpensive, software-based security-retrofit solution to

verify the integrity of program code in embedded systems.

BACKGROUND OF THE INVENTION

[0002] Computer systems typically use peripheral devices to supplement their
functionality. Within this context, the computer system is called a host system and its
peripheral devices are called accessories. Accessories are often devices capable of
computation, as they are typically built using micro-processors or micro-controllers that can
be programmed and re-programmed with program code, micro-code or firmware. The
functionality and correct operation of these accessories are reliant on the correctness of the

program code that resides in the accessory.

[0003] There are occasions when a fielded accessory needs to be upgraded or retrofitted
because of a deficiency discovered in the program code. For example, it may be necessary to
upgrade a high-risk instrument in high-value applications, such as medical devices. These
types of devices are often regulated by the government. When a deficiency 1s discovered and
re-design is underway, a quick stop-gap solution may be available. It may therefore be

desirable that such a solution be applied to the devices already deployed 1n the field.

[0004] Individuals may maliciously alter the accessory's program code so that it performs
unauthorized operations, from the perspective of the host system, yet fools the host system

into believing nothing is amiss by reporting normal behavior. It is desirable that any
unauthorized modification of the accessory’s program code be detected before an upgrade 1s

applied and that an upgrade is applied only if no such unauthorized modification is detected.

[0005] One solution to this problem is to design security into accessories before they are
fielded, for example, by using secure micro-controllers that authenticate all micro-code

upgrades before being accepted. However, it is sometimes the case that when an accessory 1s

10

15

20

25

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

_D

first fielded, security concerns and risk levels are low, but over time, circumstances change
such that the risk associated with the unsecured accessory unexpectedly increases. The cost to
replace or make hardware changes to the accessory may be deemed too expensive, at which

point, the host system has an unsecured accessory in a high-risk environment.

[0006] A naive solution to this problem is to allow the host system to read all of the
program code from the accessory, compute a digest using a secure hashing function, and
compare the result to some locally maintained digest. There are two problems with this
approach. First, the accessory could be reprogrammed such that it maintained a copy of the
original program code, usurped read requests from the host system, and returned to the host
system the original stored program code image. Second, the program code stored on the
accessory may be too large to be effectively transmitted over a slow serial connection, or may

not even be remotely accessible. In these instances, it is more effective to calculate a digest to

be returned to the host system for validation.

[0007] Simply calculating a digest, even using a challenge-response mechanism, may not
effectively defeat an altered accessory that is maintaining a copy of the original program code

in memory somewhere on the accessory.

[0008] It is an object of the present invention to mitigate or obviate at least one of the

above mentioned disadvantages.

SUMMARY OF THE INVENTION

[0009] In general terms, the invention comprises filling all unused memory on an
accessory device, that could be used to store a program code image, with high entropy random

data. A host system must also have access to a trusted copy of the accessory's memory image

containing the random data.

[0010] The existing program on the accessory has an application program interface (API)
that can be called by the host system. The accessory may be re-written where necessary to

include an additional APL, if the accessory does not already have one. The host system uses

10

15

20

25

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

-3 -

the API to send the accessory a list of memory addresses or memory ranges on the accessory.
This list is always different and truly unpredictable to prevent the list from being guessed by
the accessory ahead of time. The accessory will then produce a representative value that 1s
determined from the list and the values of the accessory device’s memory referenced by the
list. Preferably, the representative value is a digest using memory values at the supplied
memory addresses as inputs to a secure hash function. The resulting digest, produced by the

accessory, is returned to the host system for validation.

[0011] By padding memory with random data, an attacker is prevented from having
enough room on the accessory to replace the program image and maintain the old program
image. The accessory cannot be altered by an attacker by replacing the program image alone
without adding additional memory to the accessory first, requiring the attacker to make a
hardware change. By padding the memory with random data and thus implicitly including the
random data in the authentication process, an attacker is further prevented from being able to

make unauthorized changes to the program image without being detected.

[0012] The end result is that the host system can have some assurance that the accessory's

program code has not been maliciously changed.

BRIEF DESCRIPTION OF DRAWINGS

[0013] For the purposes of description, but not of limitation, an embodiment is explained

in greater detail by way of example with reference to the accompanying drawings, in which:

[0014] Figure 1 is a block diagram showing a host system communicating with an

accessory;

[0015] Figure 2 is a flowchart diagram illustrating steps of a method for verifying the

integrity of program code in the accessory shown in Figure 1; and

[0016] Figure 3 shows schematically unused memory space on the accessory shown in

Figure 1 padded with random data and memory ranges on the accessory randomly selected by

the host system.

10

15

20

25

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

DETAILED DESCRIPTION OF EMBODIMENTS

[0017] The description which follows, and the embodiments described therein, are
provided by way of illustration of an example, or examples, of particular embodiments of the
principles of the present invention. These examples are provided for the purposes of
explanation, and not limitation, of those principles and of the invention. In the description
which follows, like parts are marked throughout the specification and the drawings with the

same respective reference numerals.

[0018] Referring to Figure 1, there is shown a host 20 communicating with an accessory
22. Host 20 is generally a computer system that has a CPU 24, host memory device 26
accessible to CPU 24, host storage media 28, also accessible to CPU 24, and some input and
output devices (not shown). Application program 30 executes on CPU 24. Application
program 30 may be stored on host storage media 28, which may be permanently installed in
host 20, removable from host 20 or remotely accessible to host 20. Application program 30

communicates with and directs the operation of accessory 22.

[0019] Accessory 22 generally has some computation power. Typically, it has a
microprocessor or a microcontroller 32. Accessory 22 may also have other types of
programmable processors that have adequate computation power. For example, accessory 22
may be one equipped with a DSP (digital signal processor) or a FPGA (Field-Programmable
Gate Array). The processor, or microcontroller 32 generally has access to a memory storage
space that may be divided into accessory memory device 34 and volatile memory device 36.
Firmware program code 38, or embedded program code or micro-code, executes on
microcontroller 32 and supplements application program 30 executing on host 20 to further

control operations of accessory 22.

[0020] Firmware program code 38 and persistent (constant) data may be stored on
accessory memory device 34, or any persistent medium. Volatile data, 1.e., data related to
operative state of the program, may be stored on volatile memory device 36. Either accessory

memory device 34 or volatile memory device 36 may also be used to store semi-persistent

10

15

20

235

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

_5-

data, i.e., data persistent across power cycles but that may be programmatically moditied

during each power cycle.

[0021] Data link 40 provides a communication channel between application program 30
and firmware program code 38 when needed. Data link 40 may be wired or wireless. For
example, it may be a connection cable or a radio frequency connection. It may be a direct
connection between host 20 and accessory 22 or relayed through some intermediary host
systems. The data link 40 may be permanent, or more preferably, a connection that is

established on demand.

[0022] Each of application program 30 and firmware program code 38 has application
program interfaces (APIs) for communicating with each other. In particular, as will be
described later, firmware program code 38 has an API that application program 30 calls to
forward a list of memory addresses and an API through which firmware program code 38
returns a representative value such as a digest calculated based on the contents of a list of
memory addresses. Although conceptually, firmware program code 38 is described to have
two separate APIs, these two APIs may be implemented as a single API in practice.
Application program 30 also has corresponding APIs for sending the list of memory addresses

and for receiving the returned representative value.

[0023] While the distinction is made here that there is a host memory device 26 which
tends to be used for storing more volatile data and a host storage media 28 which tends to be
used for storing more persistent data, host 20 may have only a single data storage device for
storing both volatile and persistent data. Similarly, accessory 22 may have only a single

memory device for storing both volatile and persistent data.

[0024] As will be appreciated, host 20 may be a general purpose computer, a custom
tailored special purpose computer, or some other programmable computation devices.
Further, although host 20 is shown and described as a single computer system, it is only for
the convenience of description. Host 20 is understood to be collectively the combined
system, which may include several computer systems, for performing the tasks as described.

As will be appreciated by one of skilled in the art, the computation and storage performed by

10

15

20

25

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

_ 6 -

host 20 may be distributed among several networked computers without affecting the

functioning of the system and the performance of the method described herein.

[0025] Referring to Figures 2 and 3, an example of a method of verifying the integrity of
firmware program code 38 is described in detail. In Figure 2, to the left of the dotted line are
operations generally performed by host 20 or on components of host 20. To the right of the

dotted line in Figure 2 are operations generally performed by accessory 22 or on components

of accessory 22.

[0026] Typically, the size of firmware program code 38 is smaller than the size of
memory available on accessory memory device 34. In other words, accessory memory device
34 typically has unused memory space, i.e., space not occupied by firmware program code 38
nor data associated with firmware program code 38. To limit the ability of an adversary to
use the unused memory space for storing any unauthorized code, prior to verification, all
unused memory space is filled with random data.. The random data preferably has high
entropy. High entropy random data tends to be difficult to compress while data that possess
randomness but of low entropy tends to compress well. Preferably, all memory space on
accessory memory device 34 is occupied by incompressible data. Filling all memory space
with incompressible data discourages an adversary from compressing the data and thereby
gaining memory space. A number of random number generation algorithms are available for
generating high entropy random data. For example, the random number generation
algorithms specified in “Change Notice 1”7 of Federal Information Processing Standards
Publication 186-2, “Digital Signature Standard”, issued by the National Institute of Standards
and Technology (NIST) of the United States of America, may be used. In addition, block

encrypting data of lower entropy tends to produce output of higher entropy.

[0027] At step 110, all unused memory on accessory device 22 is filled with random data
and a trusted copy of the padded memory image is retrieved for later reference or use.
Although this step may be performed by accessory device 22, there are existing tools that
allow one to fill all unused memory with randomly generated high entropy data. Generally,

the randomness of the data is controlled by the tool that i1s employed to fill the unused

10

15

20

25

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

-7 -

memory space. Preferably, memory padding is performed at a development facility or

manufacturing site before the accessory 1s released to the market.

[0028] After padding with random data, all memory space on accessory 22 1s occupied.
Referring to Figure 3, accessory memory space 200 may be divided into contiguous program
code and persistent data space 202 and unused memory space 204. Unused memory space
204 is filled with random data 206. Although Figure 3 shows that firmware program code 38
occupies a contiguous segment of memory, namely a contiguous portion of program code and
persistent data space 202, it is possible that firmware program code 38 may occupy several
disjoint memory segments. Similarly, persistent (constant) data may occupy a contiguous
segment of memory or several disjoint memory segments. Whether or not program code and

persistent data space 202 is contiguous, all the unused memory space will be filled, or padded

with random data.

[0029] As will be appreciated, accessory memory space 200 may include memory space
occupied by volatile data on volatile memory device 36. Memory elements that do not
change over the validation process (or change in a well defined fashion) can be vahdated.
Accessory memory space 200 may also include memory space occupied by data on a
“peripheral” memory device, such as a serial EEPROM. In fact, accessory memory space 200
may even include portions outside the physical space of both accessory memory device 34
and volatile memory device 36 (but these addresses fold back as shadow of physical
addresses). These, of course, require that accessory 22 (and host 20) support a memory
addressing scheme that can address any and all available memory spaces and support special
memory configurations such as bank-switching, overlays and shadowing. In fact, ditferent
memory addressing schemes and special memory configurations may be exploited to further
enhance the security. For example, when validated memory addresses correspond to memory
spaces outside the physical memory space, it would be difficult for a modified program
requiring a compatible but larger memory footprint to emulate the validation process of the

original program and the smaller device while running on the necessarily larger device.

10

15

20

25

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

_ 8-

[0030] An image of memory on accessory 22, with no unoccupied memory spaces lett, 1s
retrieved for later reference, or use. The image is generated and saved in a trusted fashion.
For example, the image may be obtained from accessory 22 during a trusted operation, such
as programming at a manufacturing site of accessory 22. It 1s also possible that the factory
programs accessory images in bulk and the image is generated elsewhere at a development
facility that also generates host code and data images. However the image 1s generated, the
image is produced and provided in a trusted fashion. When the image is saved, the image 1s

also saved in a trusted fashion. The end result is that a trusted copy of the image can be

obtained when needed.

[0031] Host 20 obtains a trusted copy of the image of memory on accessory 22, with no
unoccupied memory spaces left, at step 120. In general, host 20 does not store the trusted
image locally in order to minimize the risk of the image being tempered with. Instead, host
20 is provided with access to a trusted copy of the image. Although only one trusted memory
image is referenced here, it is possible that several different memory images ot accessory 22
must be made available to host 20. This is because accessory 22 may have been upgraded
several times over time by its manufacturer. Each previous upgrade would result in a
different memory image. When accessory 22 1s upgraded 1n the field, accessory 22 may

correspond to any one of the several upgrades, or even its original version.

[0032] As will be appreciated, although this step is described as the next following the
saving of a trusted copy of the memory image, these two steps may be many days, months or
even years apart. It is possible that the trusted copy of the memory image is saved during
manufacturing of the accessory and the retrieval of a trusted copy of the image happens many
years later when a fix is applied to the accessory deployed in the field. Further, although this

step is described as a first step on the host side, this is not necessary. This step needs to be

completed prior to computing the expected representative value and may be performed any

time before the computation.

[0033] Referring to Figure 2, host 20 at step 130 sends accessory 22 a list of memory

addresses to initiate the verification process. The list may be a range of memory addresses or

10

15

20

25

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

several ranges of memory addresses on the accessory memory device 34. For example,
Figure 3 shows three randomly selected memory segments, or memory ranges: a first memory
range 208, or memory segment A, between first starting address 210 and first ending address
212, a second memory range 214, or memory segment B, between second starting address 216
and second ending address 218, and a third memory range 220, or memory segment C,

between third starting address 222 and third ending address 224.

[0034] The list, or the ranges of memory addresses, 1s random in nature or at least
unpredictable so that the ranges cannot be anticipated by accessory 22, i.e., the list cannot be
anticipated by an adversary attempting to alter maliciously the firmware code stored on
accessory 22. Not only the selection of starting and ending points is unpredictable, so is the
ordering of the selected memory ranges. For example, the list may contain the addresses of
segment C as the first range, the addresses of segment A as the second range and the
addresses of segment B as the third range. Changing the ordering of the selected memory
ranges produces a different list and would also produce a different representative value at step
140, as will be described below. The list 1s typically generated by host 20. However, the list
may be generated in any way as long as the list 1s truly unpredictable and different each time
it 1s generated. As host 20 generally has more computation power, host 20 typically generates

and sends the list to accessory 22.

[0035] In one exemplary implementation, one of the memory address ranges included in
the list always contains the program code that is considered critical to the operation of
accessory 22. In other words, host 20 always includes a memory segment that contains the
entire critical code of application program 30. Although the memory containing the critical
code 1s always included in the selected memory ranges, the memory segment containing the

critical code may be randomly arranged within the list, as described above.

[0036] Upon receiving the list of memory addresses, accessory 22 produces at step 140 a
value that takes as inputs the list of memory addresses and the memory values at the supplied
addresses. The value generated 1s representative of the memory values at the supplied

addresses. A number of algorithms may be used to produce the value, provided the value

10

135

20

25

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

- 10 -

produced is representative of the list and the actual values at the supplied memory addresses.
For example, the values of the memory at the supplied memory addresses may be first read
and then concatenated together into a string. The string will then be the representative value.
Preferably, the representative value is a digest computed using a secure hashing algorithm.
The secure hashing algorithm computes the digest using the memory values at the supplied
memory addresses as its input. Any digesting algorithms with the security properties of the
SHA (Secure Hash Algorithm) may be used. The secure hash function may be one based on
SHA-1 or MDS5, for example. Preferably, one can use a digesting algorithm with the security
properties of the SHA already existed in an accessory implementation; otherwise, one of
SHA-1 or SHA-256, depending on the efficiency on the specific processor type of accessory
22, may be used. Accessory 22 returns, i.e., sends, the resulting representative value to host

20 at step 150, which 1s received by host 20 at step 160.

[0037] The example shown in Figure 3 has first memory range 208 corresponding to
memory spaces occupied entirely by persistent data and firmware program code 38, third
memory range 220 corresponding to unused memory spaces 204 filled with random data, and
second memory range 214 corresponding to a section of memory that contains partly
firmware program code 38 and partly random data. As will be appreciated, other selections
are possible. What is important is that the possible set of lists (that can be requested by host
20) be sufficiently large and that the selection of addresses is truly unpredictable. This tends
to discourage precomputing all (or even a significant subset of) corresponding representative

values as the computation may be expensive or even infeasible, both from a storage and

computation perspective.

[0038] Firmware program code 38 may have modules implementing one or several of
these secure hashing algorithms. Where only one secure hashing algorithm 1s implemented,
the accessory computes a digest using the implemented secure hash function, taking the
memory ranges received as input, and sends the resulting digest to the host system. Where the
firmware program code 38 implements more than one secure hashing algorithm, a digest

using one of the implemented secure hashing algorithms is produced. The resulting digest,

10

15

20

235

CA 02606981 2007-10-31
WO 2006/116871 PCT/CA2006/000711

- 11 -

together with an indication of the secure hashing algorithm used, is sent to host 20. As will be

appreciated, either host 20 or accessory 22 may select a particular secure hashing algorithm

and inform the other the secure hashing algorithm used to produce the digest.

[0039] When retrofitting a firmware, the firmware program code 38 may not have an API
for receiving the list of randomly generated memory addresses. It also may not have a
module for producing a digest using a secure hash algorithm. In order to prepare such an
accessory for a secure upgrade, namely, an upgrade that is performed only if the firmware
code can be authenticated, it will be necessary to first retrofit authentication function on to the
accessory. In other words, it will be necessary to first rewrite the existing program on
accessory 22 to include an additional API that can be called by host 20 for recetving the list of
memory addresses and an additional API that can return to the host a representative value
computed from the list. The rewritten firmware program will also include a module for
computing a representative value or a module or modules for implementing secure hashing

algorithms for computing a digest.

[0040] After host 20 receives the resulting digest or the representative value at step 160
from accessory 22, host 20 uses the trusted copy of the memory image of the accessory to
compute an expected representative value at step 170. Preferably, the same algorithm used by
accessory 22 is used by host 20 to produce the expected representative value. But this 1s not
necessary. The algorithm used by host 20 only needs to be equivalent to that used by
accessory 22 so that the expected representative value will be the same as the received
representative value. If accessory 22 implements more than one secure hashing algorithm but

uses only one to compute a digest, host 20 selects the same or equivalent algorithm to

compute the expected representative value.

[0041] At step 180, host 20 compares the representative value received tfrom accessory 22
with the expected representative value that was computed locally to verify the accessory
program image. Firmware program code 38 will not be authenticated 1if these two values are

not identical or equivalent to each other.

CA 02606981 2013-05-27

_ 12 -

[0042] As described, the first step of this method is to ensure that all memory on the
accessory 1s occupied. If the compiled program that is used to implement the accessory's
functionality is smaller than the physical memory on the accessory, the remainder is padded with

truly random and high entropy data. The padded data becomes part of the memory image that is

made available to the host system during a retrofitting upgrade.

[0043] In a further exemplary implementation, host 20 sends a string of data at step 130 along

with the list of memory addresses to accessory 22. The string may be random, or it may include

an 1dentification information such as the unique identity of the accessory (or even the host
system). When the string 1s used as auxiliary input to the secure hash function, the method is
typically referred to as a challenge-response method. However, it still relies on random padding

data in the memory image to prevent the injection of illicit program code into the accessory.

[0044] Various examples have now been described in detail. Those skilled in the art will
appreciate that numerous modifications, adaptations and variations may be made to the examples

without departing from the scope of the invention. The invention is to be limited only by the

scope of the appended claims.

CA 02606981 2015-07-29

CLAIMS
What 1s claimed 1s:

1. A method of verifying integrity of program code embedded in an accessory, said accessory
having a memory device for storing the program code and data associated with the program

code, all unused memory space of the memory device being filled with random data, a host being
in operable communication with a memory image of the memory device, said method

comprising the steps of the host:

sending a list of start and end points defining memory address ranges to the accessory, wherein
said start and end points are unpredictable to the accessory, and wherein said list specifies said

memory address ranges in a sequence unpredictable to the accessory;

receiving a value from the accessory, said value being generated from and representative of
values of memory at memory addresses in said memory address ranges arranged according to said

sequence specified in said list;
producing an expected value from the memory image and said list; and,
comparing said value received from the accessory with said expected value;

wherein the integrity of the program code is verified if said received value 1s equivalent to said

expected value.

2. The method of claim 1, wherein said value is a concatenation of said values of memory at said
memory addresses in said memory address ranges arranged according to said sequence specified

in said list.

3. The method of claim 1, wherein said value is a digest computed using a secure hashing

algorithm with said values of memory at said memory addresses as input thereto and said
expected value 1s an expected digest computed using a second secure hashing algorithm

equivalent to said secure hashing algorithm.

4. The method of claim 3, further comprising the step of:

13

CA 02606981 2015-07-29

sending a random data string to the accessory, wherein the digest is computed taking the random
data string received as an additional input, and the expected digest 1s produced taking the random

data string as a second input.

5. A method of preparing an accessory for authenticating its firmware program code, said
firmware program code and data associated with said firmware program code being stored in a

memory device of said accessory, said method comprising the steps of:

providing said firmware program code with a first API for receiving a list of start and end points
defining memory address ranges from a host, addresses in said memory address ranges
corresponding to memory addresses addressable by said firmware program code, and wherein
said start and end points are unpredictable to the accessory, and wherein said list specifies said

memory address ranges in a sequence unpredictable to the accessory;
providing said firmware program code with a second API;

providing said firmware program code with a cryptographic program for producing a
representative value from said list and values of memory at said addresses 1n said memory
address ranges according to said sequence specitied 1n said list, said second API returning said

representative value to said host; and,

filling all memory space of memory device unoccupied by said firmware program code and said

data with random data, and providing a memory 1mage of said memory device for reference;

wherein said firmware program code 1s authenticated if in an authentication operation, said
representative value 1s equivalent to an expected representative value, said expected
representative value being computed by said host from a copy of said memory image using said

l1st.

6. The method of claim 5, wherein said representative value 1s a digest computed using a secure

hashing program.

7. The method of claim 6, wherein said expected representative value is an expected digest

computed using a second secure hashing algorithm equivalent to said secure hashing algorithm.

14

CA 02606981 2015-07-29

8. The method of claim 7, further comprising the step of:

sending a random data string to the accessory, wherein the digest is computed taking the random
data string received as an additional input, and the expected digest is produced taking the random

data string as a second input.

9. The method of any one of claims 1 to 8, wherein at least one of said address ranges is selected to

include a portion of the program code comprising the entire critical code of the program code.

10. An accessory having an authenticatable firmware program code, said firmware program code
and data associated with said firmware program code being stored in a memory device of said
accessory, said accessory having an externally stored memory image of said memory device,

said firmware program code comprising:

an nterface for receiving an input from a host and for returning a value to the host, said input
comprising start and end points defining ranges of memory addresses selected by the host,

wherein said start and end points are unpredictable to the accessory; and,

a program tor producing the value, the value being a function of said input and values of memory

at memory addresses in said defined ranges on said memory device;

wherein said host produces an expected value from a trusted copy of said externally stored
memory 1mage using said input and compares said expected value with said value returned from
said firmware program code , and wherein said firmware program code is authenticated if said

value returned from said firmware program code i1s equivalent to said expected value.

1 1. The accessory of claim 10, wherein said program for producing the value is a secure hashing

program and said value 1s a digest produced by said secure hashing program.
12. The accessory of claim 10, wherein said input is a random value generated by the host.

13. The accessory of claim 10, wherein said interface comprises:
an API for recerving a list of said ranges of memory addresses from said host, addresses in

said ranges of memory addresses corresponding to memory addresses on said memory device

15

CA 02606981 2015-07-29

addressable by said firmware program code and sequences of said address ranges in said list
being unpredictable to the accessory; and

a second API tor returning said value to said host.

14. The accessory of claim 10, wherein all memory space of said memory device not occupied by

satd firmware program code and said data is entirely filled with random data.

15. The accessory of claim 13, wherein said sequence is randomized.

16. The accessory of any one of claims 10 to 15, wherein at least one of said address ranges is
selected to include a portion of the firmware program code comprising the entire critical code of the

firmware program code.

16

CA 02606981 2007-10-31
WO 2006/116871

PCT/CA2006/000711
1/3
J*
‘,
N
N
N
'
- H Hee
JExE)
o v—
= o -
- ©
N s

20

SUBSTITUTE SHEET (RULE 26)

CA 02606981 2013-05-27

HOST

ACCESSORY

- PAD MEMORY

120

ACCESSORY
MEMORY

110

I

|

I

!

OBTAIN COPY OF '
|

!

i

130 :

FORWARD
MEMORY
ADDRESSES

160 g‘ 150

RECEIVE i
REPRESENTATIVE BE“E*_\Z&QE__ REPRESENTATIVE
| VALUE (AGC)

170 i

COMPUTE
REPRESENTATIVE
VALUE

COMPUTE
- EXPECTED

REPRESENTATIVE
VALUE

180
COMPARE TWO
| REPRESENTATIVE
VALUES

SUBSTITUTE SHEET (RULE 26)

140

CA 02606981 2007-10-31

PCT/CA2006/000711

WO 2006/116871

3/3

v0C

\\\\\\\\\\\\\\\\

omm\ cee

¢ Dld

00¢

{/ _ f _ 01¢

SUBSTITUTE SHEET (RULE 28)

120

OBTAIN COPY QF

ACCESSORY
MEMORY

—

FORWARD ‘COMPUTE
MEMORY PRESENTATIVE
ADDRESSES

VALUE

160 g 150
- a
RECEIVE i SEND
REPRESENTATIVE ggggijgggggﬂg, REPRESENTATIVE
VALUE (ACC.) VALUE

170 | i

COMPUTE

EXPECTED
REPRESENTATIVE
VALUE

180

COMPARE TWO

REPRESENTATIVE |
VALUES

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - abstract drawing

