

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
13 April 2006 (13.04.2006)

PCT

(10) International Publication Number
WO 2006/039632 A2

(51) International Patent Classification:

H01L 21/3205 (2006.01)

(74) Agent: SABO, William, D.; International Business Machines Corporation, Intellectual Property Law - Zip 972E, 1000 River Street, Essex Junction, VT 05452 (US).

(21) International Application Number:

PCT/US2005/035455

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:

30 September 2005 (30.09.2005)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

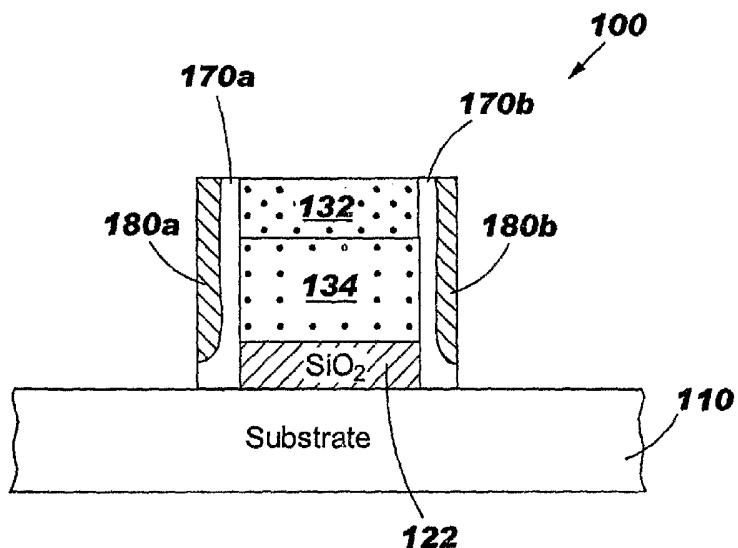
(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:


10/711,742 1 October 2004 (01.10.2004) US

Published:

— without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: GATE STACKS

(57) **Abstract:** A structure and fabrication method for a gate stack used to define source/drain regions in a semiconductor substrate (110). The method comprises (a) forming a gate dielectric layer (120) on top of the substrate (110), (b) forming a gate polysilicon layer (130) on top of the gate dielectric layer (120), (c) implanting n-type dopants in a top layer (130a) of the gate polysilicon layer (130), (d) etching away portions of the gate polysilicon layer (130) and the gate dielectric layer (120) so as to form a gate stack (132, 134, 122) on the substrate (110), and (e) thermally oxidizing side walls of the gate stack (132, 134, 122) with the presence of a nitrogen-carrying gas. As a result, a diffusion barrier layer (170) is formed at the same depth in the polysilicon material of the gate stack (132, 134, 122) regardless of the doping concentration. Therefore, the n-type doped region (132) of the gate stack has the same width as that of the undoped region (134) of the gate stack (132, 134, 122).

WO 2006/039632 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

GATE STACKS

TECHNICAL FIELD

The present invention relates to gate stacks, and more particularly, to a gate stack of a transistor wherein the top region of the gate stack is less likely to break off than the top region of a typical gate stack during the fabrication of the transistor.

BACKGROUND ART

A typical fabrication process of a transistor can start with the formation of a gate stack on a semiconductor substrate. Then, the gate stack can be used to define the source/drain regions of the transistor in the substrate. Eventually, the gate stack becomes the gate of the transistor. There is always a need to reduce the resistance of the gate of the transistor to improve the performance of the transistor.

Therefore, there is a need for a novel gate stack whose resistance is relatively lower than that of the prior art. Also, there is a need for a method for forming the novel gate stack.

DISCLOSURE OF INVENTION

The present invention provides a method of forming a semiconductor structure, comprising the steps of (a) providing a semiconductor region; (b) forming a gate stack on top of the semiconductor region, the gate stack including (i) a gate dielectric region on top of the semiconductor region, (ii) a first gate polysilicon region on top of the gate dielectric region, and (iii) a second gate polysilicon region on top of the first gate polysilicon region, the second gate polysilicon region being doped with a type of dopants; and (c) forming on a side wall of the gate stack a diffusion barrier

region and a spacer oxide region, wherein the diffusion barrier region is sandwiched between the gate stack and the spacer oxide region, and wherein the diffusion barrier region is in direct physical contact with both the first and second gate polysilicon regions.

The present invention also provides a semiconductor structure, comprising (a) a semiconductor region; (b) a gate stack on top of the semiconductor region, the gate stack including (i) a gate dielectric region on top of the semiconductor region, (ii) a first gate polysilicon region on top of the gate dielectric region, and (iii) a second gate polysilicon region on top of the first gate polysilicon region, the second gate polysilicon region being doped with a type of dopants; and (c) a diffusion barrier region and a spacer oxide region on a side wall of the gate stack, wherein the diffusion barrier region is sandwiched between the gate stack and the spacer oxide region, and wherein the diffusion barrier region is in direct physical contact with both the first and second gate polysilicon regions.

The present invention also provides a method of forming a semiconductor structure, comprising the steps of (a) providing a semiconductor substrate; (b) forming a gate stack on top of the semiconductor substrate, the gate stack including (i) a gate dielectric region on top of the semiconductor substrate, (ii) a first gate polysilicon region on top of the gate dielectric region, and (iii) a second gate polysilicon region on top of the first gate polysilicon region, the second gate polysilicon region being heavily doped with a type of dopants; and (c) forming on first and second side walls of the gate stack first and second diffusion barrier regions and first and second spacer oxide regions, respectively, wherein the first diffusion barrier region is sandwiched between the gate stack and the first spacer oxide region, wherein the first diffusion barrier region is in direct physical contact with both the first and second gate

polysilicon regions, wherein the second diffusion barrier region is sandwiched between the gate stack and the second spacer oxide region, and wherein the second diffusion barrier region is in direct physical contact with both the first and second gate polysilicon regions.

The present invention provides the advantage of for a novel gate stack whose top region is less likely to break off than the top region of a typical gate stack.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A-1C illustrate cross-sectional views of a semiconductor structure after each of a series of fabrication steps is performed, in accordance with embodiments of the present invention.

FIG. 2 illustrates an oxidation system for performing an oxidation step described with respect to FIG. 1Dii, in accordance with embodiments of the present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

FIG. 1A illustrates a cross-sectional view of the semiconductor structure 100 after a gate dielectric layer 120 and then a gate polysilicon layer 130 are formed on top of a semiconductor (e.g., silicon Si, germanium Ge, a mixture of Si and Ge, etc.) substrate 110, in accordance with embodiments of the present invention. More specifically, the fabrication process of the structure 100 of FIG. 1A starts out with the Si substrate 110. Then, in one embodiment, the gate dielectric layer 120 can be formed by thermally oxidizing a top surface of the Si substrate 110 in a first thermal oxidation step. As a result, the resulting gate dielectric layer 120 comprises silicon dioxide (SiO_2). Then, the gate polysilicon layer 130 can be formed by depositing

silicon on top of the SiO₂ gate dielectric layer 120 using, illustratively, a CVD (chemical vapor deposition) process.

FIG. 1B illustrates a cross-sectional view of the semiconductor structure 100 after a heavily-doped gate polysilicon layer 130a is formed at top of the semiconductor structure 100 of FIG. 1A, in accordance with embodiments of the present invention. More specifically, in one embodiment, dopants of one type (e.g., n-type phosphorous or p-type boron) can be implanted by, illustratively, ion implantation into a top layer 130a of the gate polysilicon layer 130. As a result, the gate polysilicon layer 130 comprises two layers: the heavily-doped gate polysilicon layer 130a and the undoped (or lightly doped) gate polysilicon layer 130b.

FIG. 1C illustrates a cross-sectional view of the semiconductor structure 100 after portions of the gate polysilicon layer 130 and the gate dielectric layer 120 are removed so as to form a gate stack 132,134,122, in accordance with embodiments of the present invention. More specifically, in one embodiment, a photoresist mask (not shown) is laid on a top surface 135 of the heavily-doped gate polysilicon layer 130a of FIG. 1B. The photoresist mask covers an area of the top surface 135 under which the gate stack 132,134,122 is to be formed. Then, portions of the gate polysilicon layer 130 not covered by the photoresist mask is chemically etched away in a first chemical etching step. Then, portions of the gate dielectric layer 120 not covered by the photoresist mask is chemically etched away a second chemical etching step.

What remains of the gate polysilicon layer 130 and the gate dielectric layer 120 after the first and second chemical etching steps is the gate stack 132,134,122. More specifically, what remains of the heavily-doped gate polysilicon layer 130a after the first chemical etching step is the heavily-doped gate polysilicon region 132. What

remains of the undoped gate polysilicon layer 130b after the first chemical etching step is the undoped gate polysilicon region 134. Finally, what remains of the gate dielectric layer 120 after the second chemical etching step is the gate dielectric region 122.

FIG. 1Di illustrates a cross-sectional view of the semiconductor structure 100 after a spacer oxide layer 150 are formed on exposed surfaces of the gate stack 132,134,122 and the substrate 110 of FIG. 1C, in accordance with embodiments of the present invention. More specifically, in one embodiment, the semiconductor structure 100 of FIG. 1C is subjected to a second thermal oxidation step with the presence of oxygen (and/or oxygen-carrying material). As a result, oxygen reacts with silicon to form silicon dioxide SiO_2 constituting the spacer oxide layer 150. Assume that the gate polysilicon region 132 is doped with n-type dopants. Because thermal oxidation of n-type doped polysilicon is faster than thermal oxidation of undoped polysilicon, the spacer oxide layer 150 is thicker at the heavily-doped gate polysilicon region 132 than at the undoped gate polysilicon region 134, meaning the thickness 162 is larger than the thickness 164 (FIG. 1Di). As a result, the width 166 (i.e., in direction 137) of the heavily-doped gate polysilicon region 132 is narrower than the width 168 of the undoped gate polysilicon region 134.

FIG. 1Dii illustrates an alternative embodiment of the structure 100 of FIG. 1Dii. FIG. 1Dii illustrates a cross-sectional view of the semiconductor structure 100 after a diffusion barrier layer 170 and a spacer oxide layer 180 are formed on exposed surfaces of the gate stack 132,134,122 and the substrate 110 of FIG. 1C, in accordance with embodiments of the present invention. More specifically, in one embodiment, the semiconductor structure 100 of FIG. 1C is subjected to a third thermal oxidation step with the presence of oxygen (and/or oxygen-carrying material)

and a nitrogen-carrying gas (e.g., N₂O or NO). The terms “first”, “second”, and “third” as used in the first, second, and third thermal oxidation steps refer to three separate, independent thermal oxidation steps and do not necessarily mean that all of the first, second, and third thermal oxidation steps must be performed in one embodiment, or that they must be performed in the order of first, second, and then third. For example, the structure 100 of FIG. 1Dii involves only the first and third thermal oxidation steps (not the second thermal oxidation step). In one embodiment, the third oxidation step with the presence of the nitrogen-carrying gas is performed in a furnace (not shown) at a high temperature, illustratively, in the range of 900 °C - 1100 °C.

As a result of the third thermal oxidation step, nitrogen atoms diffuse into the gate polysilicon regions 132 and 134 of the gate stack 132,134,122 and reacts with silicon to form oxynitride silicon constituting the diffusion barrier layer 170 at a depth 185. The formation of the diffusion barrier layer 170 is self-limiting, meaning that the just-formed diffusion barrier layer 170 prevents more nitrogen atoms from diffusing through the diffusion barrier layer 170 itself. The diffusion barrier layer 170 also prevents more oxygen atoms (which, in one embodiment, can come from oxygen gas and/used for the third thermal oxidation step) from diffusing through it. As a result, only silicon material above the depth 185 of the diffusion barrier layer 170 are subjected to oxygen and oxidized to form SiO₂ constituting the spacer oxide layer 180. As a result, the formation of the spacer oxide layer 180 is limited by (i.e., cannot extend beyond) the diffusion barrier layer 170. In general, in the third thermal oxidation step, the nitrogen-carrying gas can be replaced by any equivalent gas that can react with silicon to form a diffusion barrier layer capable of preventing oxygen and/or oxygen-carrying materials from diffusing through it.

In the embodiments described above, the diffusion barrier layer 170 and the spacer oxide layer 180 are simultaneously formed in the third thermal oxidation step. In an alternative embodiment, the diffusion barrier layer 170 can be formed first, and then the spacer oxide layer 180 is formed. More specifically, in one embodiment, the diffusion barrier layer 170 can be formed by implanting nitrogen in a top layer (not shown) under the exposed surfaces of the regions 132 and 134, and then raising the temperature at the exposed surfaces of the regions 132 and 134 so as to cause the implanted nitrogen to react with silicon of the regions 132 and 134 to form silicon nitride (Si_3N_4) constituting the diffusion barrier layer 170. Then, the spacer oxide layer 180 can be formed by depositing SiO_2 on top of the diffusion barrier layer 170 using, illustratively, a CVD step. It should be noted that like oxynitride silicon, silicon nitride also prevents oxygen diffusion.

Because doping concentration of polysilicon does not affect the diffusion rate of nitrogen, the oxynitride silicon diffusion barrier layer 170 is formed at the same depth 185 from the exposed surfaces of the gate polysilicon regions 132 and 134. As a result, the thickness 182 of the spacer oxide layer 180 resulting from the oxidation of the n-type doped polysilicon region 132 and the thickness 184 of the spacer oxide layer 180 resulting from the oxidation of the undoped polysilicon region 134 are equal. Because the diffusion barrier layer 170 has the same thickness whether it results from the nitridation of polysilicon of the region 132 or region 134, the widths 186 and 188 (in direction 197) of the polysilicon regions 132 and 134, respectively, are also equal.

FIG. 1E illustrates a cross-sectional view of the semiconductor structure 100 after top portions of the diffusion barrier layer 170 and the spacer oxide layer 180 above the gate stack 132,134,122 of FIG. 1Dii are removed, in accordance with

embodiments of the present invention. More specifically, in one embodiment, the top portions of the diffusion barrier layer 170 and the spacer oxide layer 180 above the gate stack 132,134,122 (FIG. 1Dii) can be removed by, illustratively, a CMP (chemical mechanical polishing) step. What remains of the diffusion barrier layer 170 is the diffusion barrier regions 170a and 170b, and what remains of the spacer oxide layer 180 is the spacer oxide regions 180a and 180b. The spacer oxide regions 180a and 180b can be used to define source/drain regions (not shown) in the substrate 110.

FIG. 2 illustrates an oxidation system 200 for performing the third oxidation step described *supra* with respect to FIG. 1Dii. Illustratively, the oxidation system 200 comprises a pre-heat chamber 210 and an oxidation furnace 220 containing the structure 100 of FIG. 1C. In one embodiment, the nitrogen-carrying gas is first heated up in the pre-heat chamber 210 to a high temperature (700 °C-900 °C). Then, the pre-heated nitrogen-carrying gas is led to the oxidation furnace 220. In the oxidation furnace 220, the top surfaces of the structure 100 is also heated to 700 °C -900 °C. At this temperature range, the third oxidation step occurs as described *supra*. It should be noted that as a result of the pre-heating of the nitrogen-carrying gas in the pre-heat chamber 210, some N₂O in the nitrogen-carrying gas is converted to NO, which is more active than N₂O. Therefore, the third oxidation step can be carried out in the oxidation furnace 220 at a lower temperature than without the preheating step (i.e., at 700 °C-900 °C as opposed to 900 °C-1100 °C).

In summary, as a result of the third thermal oxidation of the gate stack 132,134,122 with the presence of the nitrogen-carrying gas, the thin diffusion barrier layer 170 is formed at a same depth 185 in the gate polysilicon regions 132 and 134 regardless of doping concentration. Therefore, the resulting gate polysilicon regions 132 and 134 have equal widths 186 and 188, respectively (FIG. 1Dii). As a result, the

region 132 of FIG. 1Dii is less likely to break off than the case of FIG. 1Di during ensuing fabrication steps (e.g., a chemical mechanical polishing step).

In the embodiments described above, the gate polysilicon region 134 is undoped. In general, the gate polysilicon region 134 can be lightly doped with either n-type or p-type dopants or both.

While particular embodiments of the present invention have been described herein for purposes of illustration, many modifications and changes will become apparent to those skilled in the art. Accordingly, the appended claims are intended to encompass all such modifications and changes as fall within the true spirit and scope of this invention.

CLAIMS

1. A method of forming a semiconductor structure, comprising the steps of:
 - providing a semiconductor region;
 - forming a gate stack on top of the semiconductor region, the gate stack including
 - (i) a gate dielectric region on top of the semiconductor region,
 - (ii) a first gate polysilicon region on top of the gate dielectric region,
 - and
 - (iii) a second gate polysilicon region on top of the first gate polysilicon region, the second gate polysilicon region being doped with a type of dopants; and
 - forming on a side wall of the gate stack a diffusion barrier region and a spacer oxide region,
 - wherein the diffusion barrier region is sandwiched between the gate stack and the spacer oxide region, and
 - wherein the diffusion barrier region is in direct physical contact with both the first and second gate polysilicon regions.
2. The method of claim 1, wherein the second gate polysilicon region is doped with n-type dopants
3. The method of claim 1, wherein the step of forming the gate stack comprises the steps of:
 - forming a gate dielectric layer on top of the semiconductor region;

forming a gate polysilicon layer on top of the gate dielectric layer;

implanting the type of dopants into a top layer of the gate polysilicon layer;

and

etching away portions of the gate polysilicon layer and the gate dielectric layer such that what remains of the gate polysilicon layer after the step of etching comprises the first and second gate polysilicon regions, and what remains of the gate dielectric layer after the step of etching comprises the gate dielectric region.

4. The method of claim 1, wherein the diffusion barrier region comprises oxynitride silicon.

5. The method of claim 1, wherein the step of forming the diffusion barrier region and the spacer oxide region comprises the steps of:

forming the diffusion barrier region at a top surface of the side wall of the gate stack; and

forming the spacer oxide region on top of the diffusion barrier region after the step of forming the diffusion barrier region.

6. The method of claim 1, wherein the step of forming the diffusion barrier region and the spacer oxide region comprises the step of thermally oxidizing the side wall of the gate stack with the presence of a nitrogen-carrying gas.

7. The method of claim 6, wherein the step of thermally oxidizing the side wall of the gate stack with the presence of the nitrogen-carrying gas comprises the steps of:

pre-heating the nitrogen-carrying gas; and

thermally oxidizing the side wall of the gate stack with the presence of the pre-heated nitrogen-carrying gas.

8. The method of claim 6, wherein the step of thermally oxidizing the side wall of the gate stack comprises the steps of:

thermally oxidizing a top surface and the side wall of the gate stack with the presence of the nitrogen-carrying gas so as to form a diffusion barrier layer and a spacer oxide layer on the top surface and the side wall of the gate stack; and
removing a portion of the diffusion barrier layer and the spacer oxide layer at a top surface of the gate stack such that polysilicon material of the second gate polysilicon region is exposed to the atmosphere, and such that what remains of the diffusion barrier layer after the step of removing comprises the diffusion barrier region, and what remains of the spacer oxide layer after the step of removing comprises the spacer oxide region.

9. A semiconductor structure, comprising:

a semiconductor region;

a gate stack on top of the semiconductor region, the gate stack including

(i) a gate dielectric region on top of the semiconductor region,

(ii) a first gate polysilicon region on top of the gate dielectric region,

and

(iii) a second gate polysilicon region on top of the first gate polysilicon

region, the second gate polysilicon region being doped with a type of dopants; and

a diffusion barrier region and a spacer oxide region on a side wall of the gate

stack,

wherein the diffusion barrier region is sandwiched between the gate stack and the spacer oxide region, and

wherein the diffusion barrier region is in direct physical contact with both the first and second gate polysilicon regions.

10. The semiconductor structure of claim 9, wherein the second gate polysilicon region is doped with n-type dopants.

11. The semiconductor structure of claim 9, wherein the diffusion barrier region comprises oxynitride silicon.

12. The semiconductor structure of claim 9, wherein a first thickness of a first region of the spacer oxide region corresponding to the first gate polysilicon region and a second thickness of a second region of the spacer oxide region corresponding to the second gate polysilicon region are substantially identical.

13. A method of forming a semiconductor structure, comprising the steps of:

providing a semiconductor substrate;

forming a gate stack on top of the semiconductor substrate, the gate stack including

(i) a gate dielectric region on top of the semiconductor substrate,

(ii) a first gate polysilicon region on top of the gate dielectric region, and

(iii) a second gate polysilicon region on top of the first gate polysilicon region, the second gate polysilicon region being heavily doped with a type of dopants; and

forming on first and second side walls of the gate stack first and second diffusion barrier regions and first and second spacer oxide regions, respectively, wherein the first diffusion barrier region is sandwiched between the gate stack and the first spacer oxide region,

wherein the first diffusion barrier region is in direct physical contact with both the first and second gate polysilicon regions,

wherein the second diffusion barrier region is sandwiched between the gate stack and the second spacer oxide region, and

wherein the second diffusion barrier region is in direct physical contact with both the first and second gate polysilicon regions.

14. The method of claim 13, wherein the second gate polysilicon region is doped with n-type dopants.

15. The method of claim 13, wherein the step of forming the gate stack comprises the steps of:

forming a gate dielectric layer on top of the semiconductor substrate;

forming a gate polysilicon layer on top of the gate dielectric layer; implanting dopants into a top layer of the gate polysilicon layer; and etching away portions of the gate polysilicon layer and the gate dielectric layer such that what remains of the gate polysilicon layer after the step of etching comprises the first and second gate polysilicon regions, and what remains of the gate dielectric layer after the step of etching comprises the gate dielectric region.

16. The method of claim 13, wherein the first and second diffusion barrier regions comprise oxynitride silicon.

17. The method of claim 13, wherein the step of forming the first and second diffusion barrier regions and the first and second spacer oxide regions comprises the steps of:

forming the first and second diffusion barrier regions at top surfaces of the first and second side walls of the gate stack, respectively; and

forming the first and second spacer oxide regions on top of the first and second diffusion barrier regions, respectively, after the step of forming the first and second diffusion barrier regions.

18. The method of claim 13, wherein the step of forming the first and second diffusion barrier regions and the first and second spacer oxide regions comprises the step of thermally oxidizing the first and second side walls of the gate stack with the presence of a nitrogen-carrying gas.

19. The method of claim 18, wherein the step of thermally oxidizing the first and second side walls of the gate stack with the presence of the nitrogen-carrying gas comprises the steps of:

pre-heating the nitrogen-carrying gas; and
thermally oxidizing the first and second side walls of the gate stack with the presence of the pre-heated nitrogen-carrying gas.

20. The method of claim 18, the step of thermally oxidizing the first and second side walls of the gate stack comprises the steps of:

thermally oxidizing top surfaces and the first and second side walls of the gate stack with the presence of the nitrogen-carrying gas so as to form a diffusion barrier layer and a spacer oxide layer on the top surfaces and the first and second side walls of the gate stack; and

removing portions of the diffusion barrier layer and the spacer oxide layer at a top surface of the gate stack such that polysilicon material of the second gate polysilicon region is exposed to the atmosphere, and such that what remains of the diffusion barrier layer after the step of removing comprises the first and second diffusion barrier regions, and what remains of the spacer oxide layer after the step of removing comprises the first and second spacer oxide regions.

1/3

FIG. 1A

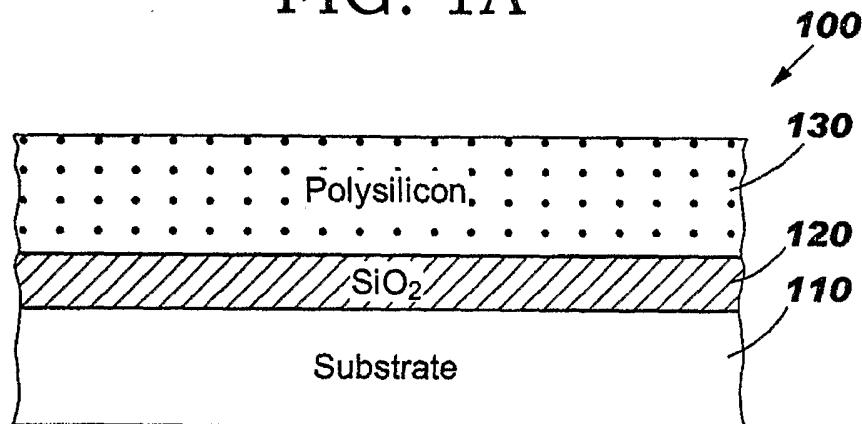


FIG. 1B

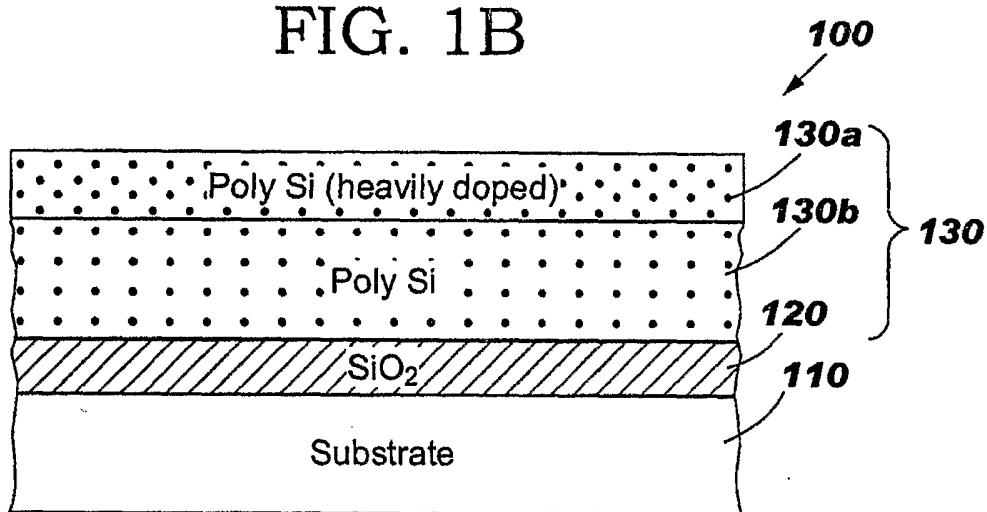
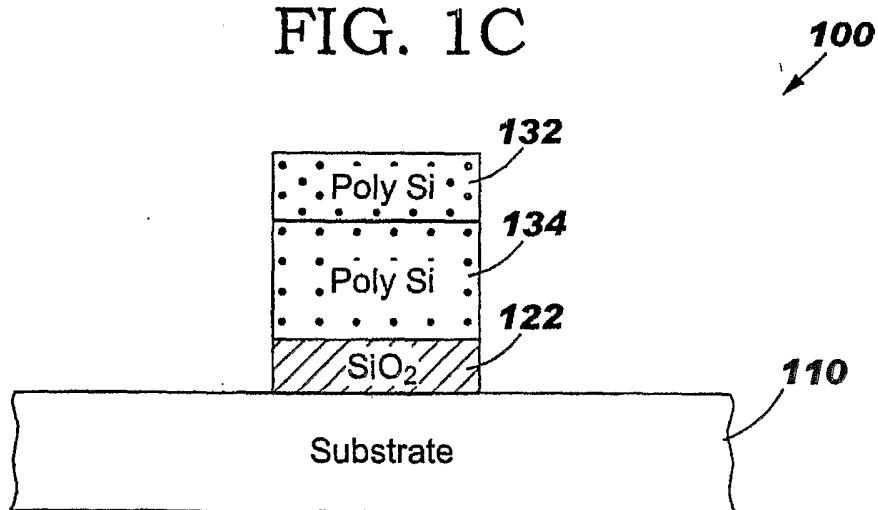



FIG. 1C

2/3
FIG. 1Di

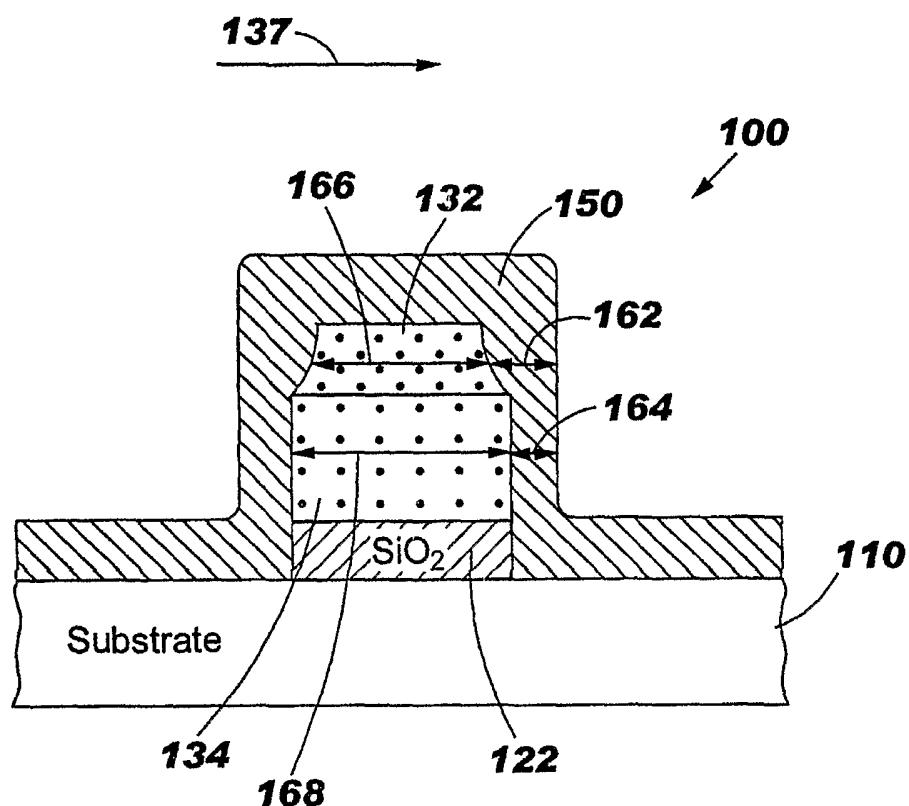
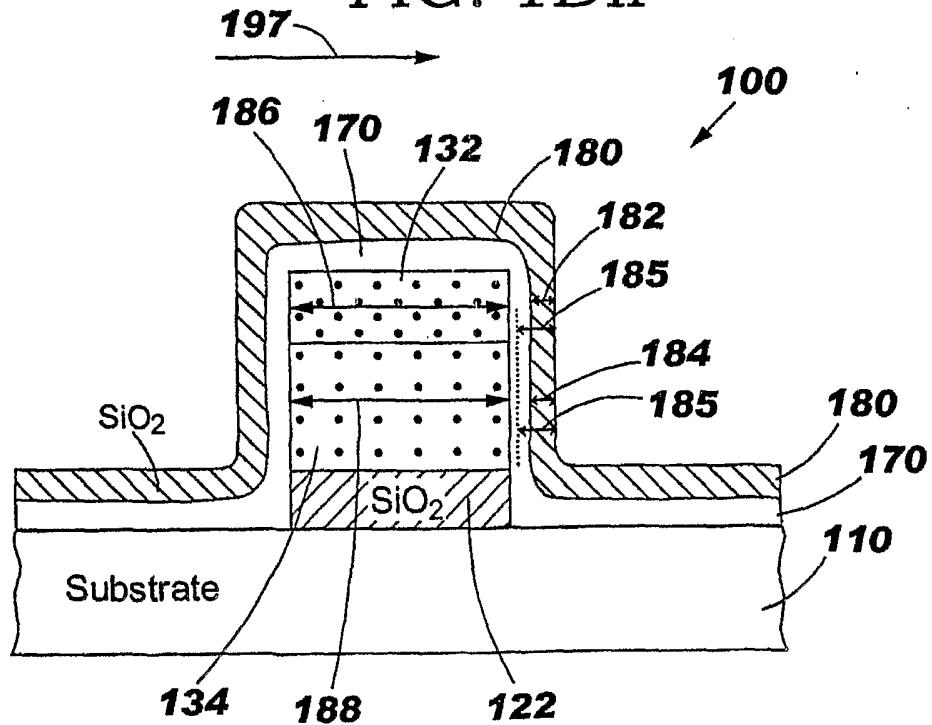



FIG. 1Dii

3/3

FIG. 1E

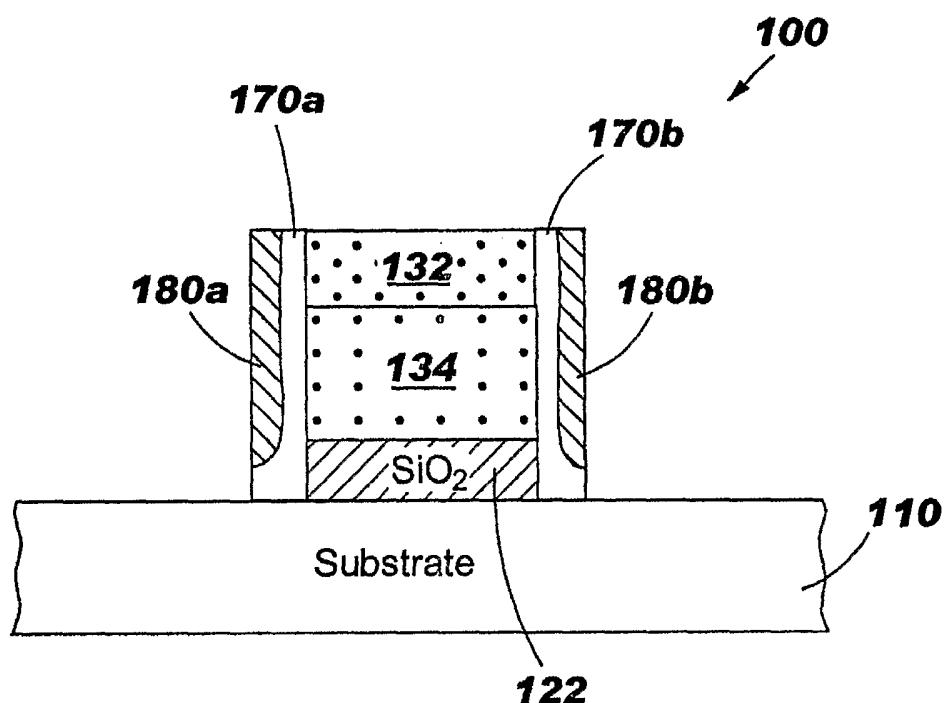
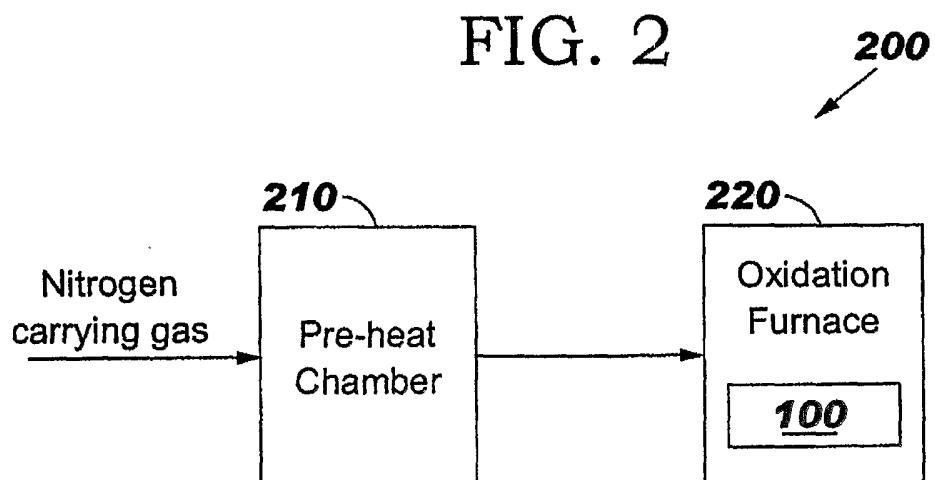



FIG. 2

