DEVICE FOR USE IN FORMING AND RETAINING
THE SHAPE OF KNOTS IN TIE

Michael Kovalovskyy, New York, N.Y.
(305 Hillsda Ave., New Hyde Park, N.Y.)
Filed Jan. 12, 1968, Ser. No. 2,000
2 Claims. (Cl. 2—153)

This invention relates to devices for use in forming and retaining the shape of knots in four-in-hand ties.

As a piece of wearing apparel, a tie generally serves no functional purpose and is worn only as an ornament. The ornamental value of a tie depends in part upon the appearance and qualities of the material from which it is made. However, of equal importance is the manner and ability with which the wearer uses the tie in attaining a satisfactory appearance. A well-tailored tie made of the finest fabric will be of little aid to the appearance of the person wearing the tie if a poor, sloppy-looking knot is formed in the tie by the wearer. Furthermore, even though a satisfactory knot may initially be formed in the tie, movements of the fabric caused by activity of the wearer may cause the knot to open or to become misshaped so that the tie acquires an unkempt or sloppy appearance.

A principal object of this invention is the provision of new devices for use in forming and retaining the shape of the knot in a four-in-hand tie. Further objects include:

(1) The provision of tie-knot forming and retaining devices which are of simple construction so that they will be inexpensive and readily accepted and used by wearers of ties.

(2) The provision of such devices which are so easy to use and yet are so effective for their intended purpose that they will be used as a matter of daily routine by tie users, rather than looked upon as a burden to be used only on special occasions or even not at all.

(3) The provision of such devices which can be used to form knots of various shapes in four-in-hand ties, e.g., concave knots, pointed knots, rounded knots, or the like.

(4) The provision of such devices which do not depend for their use upon any particular style or type of collar, or upon any attachments or the like associated with other pieces of apparel worn by the tie user.

Other objects and further scope of applicability of the present invention will become apparent from the detailed description given hereinafter; it should be understood, however, that the detailed description, while indicating preferred embodiments of the invention, is given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

These objects are accomplished according to the present invention by the provision of a tie-knot forming and retaining device which consists of an elliptical element of bendable sheet material which is about 3 to 6 times as long as it is wide, the length of the element being between about 1 and 2 inches, with the sheet material being of sufficient thickness and being made of such substance that the element has sufficient rigidity to retain its shape against any stress imposed upon it by the compressed folds of the cloth when it is included as a knot forming and retaining device in a tie. The new elliptical elements are further characterized by cut-out portions into which some of the cloth of the tie may extend when the device is positioned in the folds of the tie-knot, whereby the knot shaping device is retained in its proper position in the tie knot, without need for use of adhesive materials, clips, pins or the like.

A more complete understanding of the new tie-knot shaping devices of this invention may be had by reference to the accompanying drawings, in which:

FIG. 1 is a fragmentary, diagrammatical view of a four-in-hand tie tied with a "Windsor knot" with the knot formed and retained in a desired shape using one of the knot shaping devices of this invention;

FIG. 2 is an enlarged sectional view taken along the line 2—2 of FIG. 1;

FIG. 3 is an enlarged sectional view similar to FIG. 2, showing a tie-knot of a modified form;

FIG. 4 is an enlarged sectional view similar to FIGS. 2 and 3, showing yet another modified form of knot;

FIG. 5 is a perspective view of one of the knot shaping devices of the invention;

FIG. 6 is a perspective view of a modified form of the new knot shaping devices;

FIG. 7 is a perspective view of yet another modified form of the knot shaping device;

FIG. 8 is a sectional view taken along the line 8—8 of FIG. 5.

Referring in detail to the drawings, FIGS. 2, 3 and 4 show a tie 2 with knot 4 composed of cloth folds 6, 8 and 10. Between the layers of cloth 6 and 8 is the knot shaping device 12.

FIG. 2 shows the form of knot with concave sides which is preferred for best appearance with a "Windsor" type of knot.

FIG. 3 illustrates the appearance of a pointed knot which is preferred by some tie users and which can be readily formed and retained in desired shape by incorporating between the layers of cloth a knot shaping device 12 in accordance with this invention.

FIG. 4 illustrates the appearance of a knot of the "rounded" type, which is preferred by those who wear wide-spread collars in order to give a somewhat expansive effect at the neckline.

As shown by FIGS. 5, 6 and 7, the new tie-knot retaining devices of this invention may take a number of modified forms, although basically the devices are similar.

The form of device shown in FIG. 5 consists of an elliptical ring of bendable sheet material, the ring being about 1 to 2 inches in length and about 3 to 6 times as long as it is wide. The sheet material of the ring is of sufficient thickness to provide the rigidity needed for the ring to retain its shape against any stress imposed by the compressed folds of the cloth in the knot of the tie. For example, the ring 14 can be made of various forms of stainless steel, aluminum alloys, brass or copper alloys having sufficient ductile properties to permit it to be bent and shaped using finger pressure, with the thickness being about several hundredths to perhaps a tenth of an inch in thickness, so that the normal stresses imposed by the cloth folds in the tie knot will not be sufficient to unwind the device once it has been formed by finger pressure into the desired shape. Bendable, ductile plastic materials can also be used as the sheet material.

A portion of the cloth layer 6 or 8 can extend into the opening 16 and this serves to retain the device in position within the tie knot so that it is not forced out of the knot during the daily activity of the tie wearer.

The modified form of device shown in FIG. 6 consists of an elliptical element 18 having a pair of longitudinal slots 20 cut in end 22 and a second pair of longitudinal slots 24 cut in the end 26. In actual use, portions of the folds of cloth in the knot of the tie can extend into the slots 20 and 24, and also there will be a certain amount of flexing of the webs 28 and 30 between the pairs of slots 20 and 24, so that combined action of these will hold the device in operative position within the knot of the tie.

In the form of knot shaping device shown in FIG. 7,
the elliptical element 32 contains two small cut-out portions 34 and 36, somewhat triangular in shape, located at
the ends 38 and 40 of the elliptical element 32.

New tie shaping devices can be made and sold either in bent form in the shape shown in FIGS. 2, 3 and 4, or
any other desired shape, or can be made and sold as flat
items, as shown in FIGS. 5 to 7, leaving it to the buyer
and user to create the desired shape in accordance with
the particular style of knot which he desires to wear.

Ease of use is important to the consumer acceptance
of this type of device because if it requires special manipu-
lations which are difficult to master, or special attach-
ments on the other pieces of wearing apparel, prospective
users of the devices will not be bothered with the trouble
of using them. The new devices described above are
easy to use. First, the knot is tied in any established
fashion to which the wearer is accustomed. Once the
knot is made, the new tie shaping device, if not already in
the desired shape, is molded by finger pressure into the
desired shape and then is inserted directly under the top
fold or layer of cloth a sufficient distance so that it is
out of sight (see the dotted line representation of the
device in FIG. 1). The knot is then shaped by suitable
finger pressure to mold the device and adjust the knot
into the final desired shape, with the device inserted there-
in. The cut-out portions as described prevent the device
from slipping from the knot and the device will hold the
tie knot in this shaped condition throughout an entire
day of normal activity by the tie wearer.

I claim:

1. A four-in-hand tie made of fabric, a dress knot tied
therein and, included within the knot at the apex portion
thereof as a knot-shape forming and retaining device, an
elliptical element of bendable sheet material about 3 to
6 times as long as it is wide, the length being between
about 1 to 2 inches, the sheet being of sufficient thickness
and being made of material of sufficient rigidity to retain
its shape against stresses imposed thereon by compressed
folds of cloth in the knot, said element having at least
one elongated slot therein, said element being bent around
both end portions of the tie which depend from the knot,
fabric of the tie extending into said elongated slot in said
elliptical element helping to hold the element in position
within the knot.

2. A four-in-hand tie made of fabric, a dress knot tied
therein and, included within the knot at the apex portion
thereof as a knot-shape forming and retaining device, an
elliptical element of bendable sheet metal about 1 to 2
inches in length and between about 3 to 6 times as long
as it is wide, the sheet metal being of sufficient thickness
and being made of material of sufficient rigidity to retain
its shape against stresses imposed thereon by compressed
folds of cloth in the knot, said element having a small
cut-out section centrally located at each end thereof, said
element being bent around both end portions of the tie
which depend from the knot, fabric of the tie extending
into said cut-out sections helping to hold the element in
position within the tie.

References Cited in the file of this patent

UNITED STATES PATENTS

1,481,839 Hewes 1924
1,509,784 Schrter 1924
2,195,373 Snyder et al. 1940
2,554,310 Pinsut 1951
2,617,107 Semmel 1952
2,644,163 Guaschino 1953
2,669,724 Jarrett 1954
2,708,752 Meyer 1955
2,754,518 Vary 1956
2,936,462 Williams et al. 1960