Office de la Proprieté Canadian CA 2848100 C 2016/07/12

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 848 1 00
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2011/11/30 (51) CLInt./Int.Cl. GO6F 77/00(2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2012/07/05 GO6F 1/730(2000.01), AU4L 12776 (2006.01)
- . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2016/07/12 SINGH. SANJEEV. US:
(62) Demande originale/Original Application: 2 823 146 TAYLOR, STEVEN BRET, US:
(30) Priorités/Priorities: 2010/12/30 (US61/428 615). BUCHHEIT, PAUL, US
2011/09/08 (US13/228.312) NORRIS, JAMES, US;

BOSMAN, TUDOR, US;
DARNELL, BENJAMIN, US

(73) Proprietaire/Owner:
FACEBOOK, INC., US

(74) Agent: AUERBACH, JONATHAN N.

(54) Titre : INDEX DE TERMES COMPOSE POUR DONNEES GRAPHIQUES
54) Title: COMPOSITE TERM INDEX FOR GRAPH DATA

APPLICATION

I
:T [——_I :[INDEX

> 100
dB
}&1 10
(57) Abréegée/Abstract:

An Indexing system for graph data. In particular implementations, the indexing system provides for denormalization and replica
iIndex functionality to improve query performance.

o
SSonEeAN S f
.l.!.\‘\-c.c..--.
- h.l‘s_ .\I {\A '
J & "'.

C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC ' CTIPO
OPIC - CIPO 191 SRR

CA 02848100 2014-04-07

Abstract

An indexing system for graph data. In particular implementations, the indexing system
provides for denormalization and replica index functionality to improve query performance.

CA 02848100 2014-04-07

COMPOSITE TERM INDEX FOR GRAPH DATA

FIELD OF THE INVENTION

The present disclosure generally relates to databases and, more particularly, to a data

indexing system for graph data structures.
BACKGROUND OF THE INVENTION

Computer users are able to access and share vast amounts of information through various
local and wide area computer networks including proprietary networks as well as public
networks such as the Internet. Typically, a web browser installed on a user's computing
device facilitates access to and interaction with information located at various network
servers identified by, for example, associated uniform resource locators (URLs).
Conventional approaches to enable sharing of user-generated content include various
information sharing technologies or platforms such as social networking websites. Such
websites may include, be linked with, or provide a platform for applications enabling users
to view web pages created or customized by other users where visibility and interaction

with such pages by other users is governed by some characteristic set of rules.

Such social networking information, and most information in general, is typically stored in
relational databases. Generally, a relational database is a collection of relations (frequently
referred to as tables). Relational databases use a set of mathematical terms, which may use
Structured Query Language (SQL) database terminology. For example, a relation may be
defined as a set of tuples that have the same attributes. A tuple usually represents an object
and information about that object. A relation is usually described as a table, which is
organized into rows and columns. Generally, all the data referenced by an attribute are in

the same domain and conform to the same constraints.

The relational model specifies that the tuples of a relation have no specific order and that the

tuples, in turn, impose no order on the attributes. Applications access data by specitying

#11008157

CA 02848100 2014-04-07

queries, which use operations to identify tuples, identify attributes, and to combine
relations. Relations can be modified and new tuples can supply explicit values or be derived
from a query. Similarly, queries identify may tuples for updating or deleting. It is necessary
for each tuple of a relation to be uniquely identifiable by some combination (one or more) of
its attribute values. This combination is referred to as the primary key. In a relational
database, all data are stored and accessed via relations. Relations that store data are typically

implemented with or referred to as tables.

Relational databases, as implemented in relational database management systems, have
become a predominant choice for the storage of information in databases used for, for
example, financial records, manufacturing and logistical information, personnel data, and
other applications. As computer power has increased, the inefficiencies of relational
databases, which made them impractical in earlier times, have been outweighed by their
ease of use for conventional applications. The three leading open source implementations
are MySQL, PostgreSQL, and SQLite. MySQL is a relational database management system
(RDBMYS) that runs as a server providing multi-user access to a number of databases. The
"M" in the acronym of the popular LAMP software stack refers to MySQL. Its popularity for
use with web applications is closely tied to the popularity of PHP (the "P" in LAMP). Several
high-traffic web sites use MySQL for data storage and logging of user data.

A database index is a data structure that improves the speed of data retrieval operations on a
database table. A database index can be created using one or more columns of a database
table, providing the basis for both rapid random lookups and efficient access of ordered
records. The disk space required to store the index is typically less than that required by the
table (since indexes usually contain only the key-fields according to which the table is to be
arranged, and exclude all the other details in the table), yielding the possibility to store
indexes in memory for a table whose data is too large to store in memory. Indexes can be

implemented using a variety of data structures. Popular indexes include balanced trees, B+

trees and hashes.

#11008157

CA 02848100 2014-04-07

3

A graph is an abstract representation of a set of objects where at least some pairs of the
objects are connected by links. The interconnected objects are commonly referred to as
nodes, and the links that connect nodes are called edges. Modeling data in a graph structure,
however, imposes challenges to scalability and performance. Queries that require traversal
of a graph structure may require many database lookups. Highly scalable systems typically

rely on caching and indexing to improve query response times and overall performance.
SUMMARY

The present invention provides methods, apparatuses and systems directed to an indexing
system for graph data. In particular implementations, the indexing system provides for
denormalization and replica index functionality to improve query performance. These and
other features, aspects, and advantages of the disclosure are described in more detail below

in the detailed description and in conjunction with the following figures.

BRIEF DESCRIPTION OF THE DRAWINGS

#11008157

CA 02848100 2014-04-07

Figure 1 illustrates an example indexing system architecture according to one

implementation of the invention.

Figure 2 illustrates an example computer system architecture. Figure 3 provides an

example network environment.
Figure 3 provides an example network environment.

Figure 4 shows a flowchart illustrating an example method for adding a new object

to a graph and composite index.

DESCRIPTION OF EXAMPLE EMBODIMENT(S)

The invention is now described in detail with reference to a few embodiments
thereof as illustrated in the accompanying drawings. In the following description,
numerous specific details are set forth in order to provide a thorough understanding
of the present disclosure. It is apparent, however, to one skilled in the art, that the
present disclosure may be practiced without some or all of these specific details. In
other instances, well known process steps and/or structures have not been described
in detail in order not to unnecessarily obscure the present disclosure. In addition,
while the disclosure is described in conjunction with the particular embodiments, it

should be understood that this description is not intended to limit the disclosure to

the described embodiments.

In particular implementations, the present invention is directed to a database index
infrastructure that provides for flexible search capability to data objects and
associations between data objects. Particular embodiments relate to an indexing
system for storing and serving information modeled as a graph that includes nodes
and edges that define associations or relationships between nodes that the edges

connect in the graph. In particular embodiments, the graph is, or

#11008157

CA 02848100 2014-04-07

includes, a social graph, and the indexing system is part of a larger networking system,
infrastructure, or platform that enables an integrated social network environment. In the
present disclosure, the social network environment may be described in terms of a social
graph including social graph information. In fact, particular embodiments of the present
disclosure rely on, exploit, or make use of the fact that most or all of the data stored by or for
the social network environment can be represented as a social graph. Particular
embodiments provide a cost-effective infrastructure that can efficiently, intelligently, and
successfully scale with the exponentially increasing number of users of the social network

environment such as that described herein.

In particular embodiments, the distributed indexing system and backend infrastructure
described herein provides one or more of: low latency at scale, a lower cost per request, an
easy to use framework for developers, an infrastructure that enables combined queries
involving both associations (edges) and objects (nodes) of a social graph as described by way
of example herein, an infrastructure that provides a flexible and expressive query model for
stored objects and associations, and an infrastructure that is easy to call directly from PHP.
Additionally, as used herein, "or" may imply "and" as well as "or;" that is, "or" does not

necessarily preclude "and," unless explicitly stated or implicitly implied.

Particular embodiments may operate in a wide area network environment, such as the
Internet, including multiple network addressable systems. Figure 3 illustrates an example
network environment, in which various example embodiments may operate. Network cloud
60 generally represents one or more interconnected networks, over which the systems and
hosts described herein can communicate. Network cloud 60 may include packet-based wide
area networks (such as the Internet), private networks, wireless networks, satellite networks,
cellular networks, paging networks, and the like. As Figure 3 illustrates, particular
embodiments may operate in a network environment comprising social networking system

20 and one or more client devices 30. Client devices 30 are operably connected to the

#11008157

CA 02848100 2014-04-07

network environment via a network service provider, a wireless carrier, or any other

suitable means.

In one example embodiment, social networking system 20 comprises computing systems
that allow users to communicate or otherwise interact with each other and access content,
such as user profiles, as described herein. Social networking system 20 is a network
addressable system that, in various example embodiments, comprises one or more physical
servers 22 and data store 24. The one or more physical servers 22 are operably connected to
computer network 60 via, by way of example, a set of routers and /or networking switches
26. In an example embodiment, the functionality hosted by the one or more physical servers
22 may include web or HTTP servers, FTP servers, as well as, without limitation, web pages
and applications implemented using Common Gateway Interface (CGI) script, PHP Hyper-
text Preprocessor (PHP), Active Server Pages (ASP), Hyper Text Markup Language (HTML),

Extensible Markup Language (XML), Java, JavaScript, Asynchronous JavaScript and XML
(AJAX), and the like.

Physical servers 22 may host functionality directed to the operations of social networking
system 20. By way of example, social networking system 20 may host a website that allows
one or more users, at one or more client devices 30, to view and post information, as well as
communicate with one another via the website. Hereinafter servers 22 may be referred to as

server 22, although server 22 may include numerous servers hosting, for example, social

networking system 20, as well as other content distribution servers, data stores, and
databases. Data store 24 may store content and data relating to, and enabling, operation of
the social networking system as digital data objects. A data object, in particular
implementations, is an item of digital information typically stored or embodied in a data file,
database or record. Content objects may take many forms, including: text (e.g., ASCI],
SGML, HTML), images (e.g., jpeg, tif and gif), graphics (vector-based or bitmap), audio,
video (e.g., mpeg), or other multimedia, and combinations thereof. Content object data may

also include executable code objects (e.g., games executable within a browser window or

#11008157

CA 02848100 2014-04-07

frame), podcasts, etc. Logically, data store 24 corresponds to one or more of a variety of
separate and integrated databases, such as relational databases and object-oriented
databases, that maintain information as an integrated collection of logically related records
or files stored on one or more physical systems. Structurally, data store 24 may generally
include one or more of a large class of data storage and management systems. In particular
embodiments, data store 24 may be implemented by any suitable physical system(s)
including components, such as one or more database servers, mass storage media, media
library systems, storage area networks, data storage clouds, and the like. In one example
embodiment, data store 24 includes one or more servers, databases (e.g., MySQL), and/or

data warehouses.

Data store 24 may include data associated with different social networking system 20 users
and/or client devices 30. In particular embodiments, the social networking system 20
maintains a user profile for each user of the system 20. User profiles include data that
describe the users of a social network, which may include, for example, proper names (first,
middle and last of a person, a trade name and/or company name of a business entity, etc.)
biographic, demographic, and other types of descriptive information, such as work
experience, educational history, hobbies or preferences, geographic location, and additional
descriptive data. By way of example, user profiles may include a user's birthday,
relationship status, city of residence, and the like. The system 20 may further store data

describing one or more relationships between different users. The relationship information

may indicate users who have similar or common work experience, group memberships,
hobbies, or educational history. A user profile may also include privacy settings governing

access to the user's information is to other users.

Client device 30 is generally a computer or computing device including functionality for
communicating (e.g., remotely) over a computer network. Client device 30 may be a desktop
computer, laptop computer, tablet, personal digital assistant (PDA), in- or out-of-car

navigation system, smart phone or other cellular or mobile phone, or mobile gaming device,

#11008157

CA 02848100 2014-04-07

among other suitable computing devices. Client device 30 may execute one or more client
applications, such as a web browser (e.g., Microsoft Windows Internet Explorer, Mozilla
Firefox, Apple Safari, Google Chrome, and Opera, etc.), to access and view content over a
computer network. In particular implementations, the client applications allow a user of
client device 30 to enter addresses of specific network resources to be retrieved, such as
resources hosted by social networking system 20. These addresses can be Uniform Resource
Locators, or URLs. In addition, once a page or other resource has been retrieved, the client
applications may provide access to other pages or records when the user "clicks" on
hyperlinks to other resources. By way of example, such hyperlinks may be located within
the web pages and provide an automated way for the user to enter the URL of another page

and to retrieve that page.

Figures 1 illustrates an example embodiment of a networking system, architecture, or
infrastructure 100 (hereinafter referred to as networking system 100) that can implement the
back end functions of social networking system 20 illustrated in Figure 3. In particular
embodiments, networking system 100 enables users of networking system 100 to interact
with each other via social networking services provided by networking system 100 as well as
with third parties. For example, users at remote user computing devices (e.g., personal
computers, netbooks, multimedia devices, cellular phones (especially smart phones), etc.)
may access networking system 100 via web browsers or other user client applications to
access websites, web pages, or web applications hosted or accessible, at least in part, by
networking system 100 to view information, store or update information, communicate
information, or otherwise interact with other users, third party websites, web pages, or web
applications, or other information stored, hosted, or accessible by networking system 100. In
particular embodiments, networking system 100 maintains a graph that includes graph
nodes representing users, concepts, topics, and other information (data), as well as graph

edges that connect or define relationships between graph nodes, as described in more detail

below.

#11008157

CA 02848100 2014-04-07

With reference to Figure 1, in particular embodiments, networking system 100 includes a
number of client or web servers 104 (hereinafter client servers 104) that communicate
information to and from users of networking system 100. For example, users at remote user
computing devices may communicate with client servers 104 via load balancers or other
suitable systems via any suitable combination of networks and service providers. Client
servers 104 may query the index and database systems described herein in order to retrieve
data to generate structured documents for responding to user requests. The networking
system 100 may also comprise an index layer comprising one or more index servers 106, a
cache layer 108 comprising one or more cache servers, and a database layer comprising one
or more database servers and associated database management functionality 110. Database
110 generally connotes a database system that may itself include other cache layers for

handling other query types.

Each of the client servers 104 communicates a cache layer 108. The cache layer 108 may be
implemented as one or more distributed cache clusters or rings. In one implementation, the
cache layer 108 is a write-thru/read-thru cache layer, wherein all reads and writes traverse
the cache layer. In one implementation, the cache layer maintains association information
and, thus, can handle queries for such information. Other queries are passed through to
database 110 for execution. In particular embodiments, database 110 is a relational database.
Database 110 may be implemented as a MySQL, and/or any suitable relational database
management system such as, for example, HAYSTACK, CASSANDRA, among others. In
particular embodiments, cache layer 108 may include a plug-in operative to interoperate
with any suitable implementation of database 110. In one implementation, a plug-in
performs various translation operations, such as translating data stored in the cache layer as
graph nodes and edges to queries and commands suitable for a relational database including

one or more tables or flat files.

In particular embodiments, information stored by networking system 100 is stored within

database 110 and cache layer 108. In particular embodiments, the information stored within

#11008157

CA 02848100 2014-04-07

10

each database 110 is stored relationally (e.g., as objects and tables via MySQL), whereas the
same information is stored by the cache layer in the form of a graph including graph nodes

and associations or connections between nodes (referred to herein as graph edges).

In particular embodiments, each graph node or object is assigned a unique identifier (ID)
(hereinafter referred to as node ID) that uniquely identifies the graph node in the graph; that
is, each node ID is globally unique. In one implementation, each node ID is a 64-bit

identifier. In one implementation, a shard is allocated a segment of the node ID space.

In particular embodiments, the graph can maintain a variety of different node types, such as
users, pages, events, wall posts, comments, photographs, videos, background information,
concepts, interests and any other element that would be useful to represent as a node. Edge
types correspond to associations between the nodes and can include friends, followers,
subscribers, fans, likes (or other indications of interest), wallpost, comment, links,
suggestions, recommendations, and other types of associations between nodes. In one
implementation, a portion of the graph can be a social graph including user nodes that each
correspond to a respective user of the social network environment. The social graph may
also include other nodes such as concept nodes each devoted or directed to a particular
concept as well as topic nodes, which may or may not be ephemeral, each devoted or
directed to a particular topic of current interest among users of the social network
environment. In particular embodiments, each node has, represents, or is represented by, a
corresponding web page ("profile page”) hosted or accessible in the social network
environment. By way of example, a user node may have a corresponding user profile page
in which the corresponding user can add content, make declarations, and otherwise express
himself or herself. By way of example, as will be described below, various web pages hosted
or accessible in the social network environment such as, for example, user profile pages,
concept profile pages, or topic profile pages, enable users to post content, post status
updates, post messages, post comments including comments on other posts submitted by

the user or other users, declare interests, declare a "like" (described below) towards any of

#11008157

CA 02848100 2014-04-07

11

the aforementioned posts as well as pages and specific content, or to otherwise express
themselves or perform various actions (hereinafter these and other user actions may be
collectively referred to as "posts” or "user actions”). In some embodiments, posting may
include linking to, or otherwise referencing additional content, such as media content (e.g.,
photos, videos, music, text, etc.), uniform resource locators (URLs), and other nodes, via
their respective profile pages, other user profile pages, concept profile pages, topic pages, or
other web pages or web applications. Such posts, declarations, or actions may then be
viewable by the authoring user as well as other users. In particular embodiments, the social
graph further includes a plurality of edges that each define or represent a connection
between a corresponding pair of nodes in the social graph. As discussed above, each item of

content may be a node in the graph linked to other nodes.

As just described, in various example embodiments, one or more described web pages or
web applications are associated with a social network environment or social networking
service. As used herein, a "user" may be an individual (human user), an entity (e.g., an
enterprise, business, or third party application), or a group (e.g., of individuals or entities)
that interacts or communicates with or over such a social network environment. As used
herein, a "registered user" refers to a user that has officially registered within the social
network environment (Generally, the users and user nodes described herein refer to
registered users only, although this is not necessarily a requirement in other embodiments;

that is, in other embodiments, the users and user nodes described herein may refer to users

that have not registered with the social network environment described herein). In particular
embodiments, each user has a corresponding "profile" page stored, hosted, or accessible by
the social network environment and viewable by all or a selected subset of other users.
Generally, a user has administrative rights to all or a portion of his or her own respective
profile page as well as, potentially, to other pages created by or for the particular user
including, for example, home pages, pages hosting web applications, among other
possibilities. As used herein, an "authenticated user" refers to a user who has been

authenticated by the social network environment as being the user claimed in a

#11008157

CA 02848100 2014-04-07

12

corresponding profile page to which the user has administrative rights or, alternately, a

suitable trusted representative of the claimed user.

A connection between two users or concepts may represent a defined relationship between
users or concepts of the social network environment, and can be defined logically in a
suitable data structure of the social network environment as an edge between the nodes
corresponding to the users, concepts, events, or other nodes of the social network
environment for which the association has been made. As used herein, a "friendship”
represents an association, such as a defined social relationship, between a pair of users of the
social network environment. A "friend,” as used herein, may refer to any user of the social
network environment with which another user has formed a connection, friendship,
association, or relationship with, causing an edge to be generated between the two users. By
way of example, two registered users may become friends with one another explicitly such
as, for example, by one of the two users selecting the other for friendship as a result of
fransmitting, or causing to be transmitted, a friendship request to the other user, who may
then accept or deny the request. Alternately, friendships or other connections may be
automatically established. Such a social friendship may be visible to other users, especially
those who themselves are friends with one or both of the registered users. A friend of a
registered user may also have increased access privileges to content, especially user-
generated or declared content, on the registered user's profile or other page. It should be
noted, however, that two users who have a friend connection established between them in
the social graph may not necessarily be friends (in the conventional sense) in real life
(outside the social networking environment). For example, in some implementations, a user
may be a business or other non-human entity, and thus, incapable of being a friend with a

human being user in the traditional sense of the word.

As used herein, a "fan" may refer to a user that is a supporter or follower of a particular user,
web page, web application, or other web content accessible in the social network

environment. In particular embodiments, when a user is a fan of a particular web page

#11008157

CA 02848100 2014-04-07

13

("tans" the particular web page), the user may be listed on that page as a fan for other
registered users or the public in general to see. Additionally, an avatar or profile picture of
the user may be shown on the page (or in/on any of the pages described below). As used
herein, a "like" may refer to something, such as, by way of example and not by way of
limitation, a post, a comment, an interest, a link, a piece of media (e.g., photo, photo album,
video, song, etc.) a concept, an entity, or a page, among other possibilities (in some
implementations a user may indicate or declare a like to or for virtually anything on any
page hosted by or accessible by the social network system or environment), that a user, and
particularly a registered or authenticated user, has declared or otherwise demonstrated that
he or she likes, is a fan of, supports, enjoys, or otherwise has a positive view of. In one
embodiment, to indicate or declare a "like" or to indicate or declare that the user is a"fan® of
something may be processed and defined equivalently in the social networking environment
and may be used interchangeably; similarly, to declare oneself a "fan of something, such as a
concept or concept profile page, or to declare that oneself "likes" the thing, may be defined
equivalently in the social networking environment and used interchangeably herein.
Additionally, as used herein, an "interest” may refer to a user-declared interest, such as a
user-declared interest presented in the user's profile page. As used herein, a "want" may
refer to virtually anything that a user wants. As described above, a "concept” may refer to
virtually anything that a user may declare or otherwise demonstrate an interest in, a like
towards, or a relationship with, such as, by way of example, a sport, a sports team, a genre
of music, a musical composer, a hobby, a business (enterprise), an entity, a group, a
celebrity, a person who is not a registered user, or even, an event, in some embodiments,
another user (e.g., a non-authenticated user), etc. By way of example, there may be a concept
node and concept profile page for "Jerry Rice," the famed professional football player,
created and administered by one or more of a plurality of users (e.g., other than Jerry Rice),
while the social graph additionally includes a user node and user profile page for Jerry Rice
created by and administered by Jerry Rice, himself (or trusted or authorized representatives

of Jerry Rice).

#11008157

CA 02848100 2014-04-07

14

In an example graph structure, a data object includes a plurality of attributes. The attributes

can be name-value pairs. For example, a data object corresponding to a person may include

the following attributes:

"id": 12345, # 64bit FBid
"type": person, # can be a type integer or a string name

"created": 1253665137,

"n_n

"name": "Papa Smurf’,

1

"username": "papa_smurf’,

"t "

"gender”: "male”,

"

"emails": ["psmurf@facebook.com”, "papasmurf@gmail.com”]

The data object identifier (id) may be a 64-bit value that is assigned when the object is
created. The attributes of the data object may be parsed and maintained in a search index
maintained by one or more index servers 106. For example, when a new data object is
created a term producer module may create the following terms from the foregoing data

object:

type:person

created:1253665137

name:papa

#11008157

CA 02848100 2014-04-07

15

name: smurf

username:papa_smurf

gender:male |

emails: psmurf@ facebook. com

emails:papasmurf@gmail.com

A document identifier (docid) may include a time stamp (such as a 32-bit counter or clock
value) and the data object identifier (id) of a corresponding data object. The terms may be
stored in one or more indexes in association with a corresponding docid. For example, in an
example search index, docids are generated from the object ID and the "created” timestamp
so that all posting lists are ordered reverse chronologically (conceptually, the docids are
"created (32bits):OBid (64bits)"). The time stamp (created) corresponds to the time when the
data object was first created. In other implementations, the time stamp may correspond to
the time a given data object was last modified. In one implementation, docids for the index
are constructed so that the results of a given search can be ordered reverse chronologically
by creation time. For example, based on this scheme, the search, name:smurf type:person,
will return all people having the name "smurf", ordered reverse chronologically by the time
the data object associated with the person was created. In other embodiments, an arbitrary

32-bit sort key can be used in place of a timestamp, if it is desired to order objects on some

other basis.

Associations (edges) between objects may be conceptually modeled and stored as data
objects — referred to as "edge objects." Accordingly, the index may store entries
corresponding to data objects, such as persons, and other objects that correspond to edge
relationships that facilitates searching of social network or other graph-related information,
thereby increasing system performance. The following data object corresponds to an

association of the type "fan" between the person object above (id 12345) and another data

#11008157

CA 02848100 2014-04-07

16

object (id 67890) corresponding to a musical group (Coldplay).

"1d": 92821,
"type": connection.fan,
"created": 1253665248,

"source": 12345, # Papa Smurf

"dest": 67890 # Coldplay

Edges may generate special terms in the search index associated with the source and

destination objects. The search query connection.fan.to(67890), for example, will return the
document identifiers associated with all Coldplay (docid 67890) fans. Similarly, the search
query connection.fan.from(12345) returns document identifiers for all data objects of which
the person (id 12345) has established a fan association. Using this syntax, an application can

find all status updates from the friends or other connections of a person with the query:
connection.from(12345) type:status

As an additional example, the following search query returns all of a persori s(id 12345)
friends that are also Coldplay fans: connection.friend.from(12345) connection.fan.to(67890)
Since it is possible to make a data object "point" to another object directly with an attribute,
certain types of associations can be created without a separate edge object. For example,
instead of having "owner" edge objects between status messages and users, a status object

may include an owner attribute with a value of the data object corresponding to the creating

user--for example:

#11008157

CA 02848100 2014-04-07

17

"id": 5834639,

"mon

"type": "status.message”, "text": "doing nothing”,

"owner': 12345,

In one implementation, the index servers 106 support a simple syntax for graph traversal
through query composition. For example, the following search query will return all of a
persori s(id 12345) friends-of-friends: connection.friend.from(connection.friend.from(12345)).
In this case, an index server first executes the inner query, connection.friend.from(12345).
The document identifiers returned by the inner query are then applied to the outer prefix so
that the entire expression expands to an OR of connection.from terms for all of the friends of

the person.

This query composition syntax may be used to construct a wide variety of queries. For
example, the following search will return all of the photos that have tags identifying friends

of the person (id 12345) and in the Stanford network:

connection.tag.from(connection.friend.from(12345) network:stanford) type:photo. The inner
query syntax can be applied to any properties, not just edges. For example, assuming
"author" is an attribute of status messages, the following search would return all status
messages from friends of the person (id 12345): author(connection.friend.from(12345))
type:status. Additionally, the following search query would return all the status messages
from people named Papa: author(name:papa type:person) type:status. Still further, the
following search query returns the created friend connections for the person (id 12345) in

reverse chronological order: source(connection.friend.from(12345)) type:connection.

The index server 106 returns document identifiers in response to queries, which a client

#11008157

CA 02848100 2014-04-07

18

process 104 may use to access corresponding data objects stored in a data store, such as
database 110 or cache layer 108. In one implementation, term producer modules, as
discussed above, generate terms for the search index from attributes of the data objects. A
term producer takes an object as input and outputs a set of (docid, term) pairs indicating
what terms should be indexed for that data object. In one implementation, the term producer
module type or behavior is chosen based on a type of the object being inserted. For example,
assume for didactic purposes that a term producer module has been called to process the

following edge object:

"1d": 92821,

"type": "connection.fan", "created": 1253665248,

"source": 12345, # Papa Smurf "dest": 67890 # Coldplay

The connection term producer module may produce the following terms for insertion into

the index:

(92821, "type:connection.fan") # Edge document

(92821, "source:12345")

(92821, "dest:67890")

(12345, "connection.fan.to:67890") # Papa Smurf's document (12345, "connection.t0:67890")

(67890, "connection.fan.from:12345") # Coldplay's document (67890,

"connection.from:12345")

Figure 4 sets forth an example method associated with creating new objects and storing

#11008157

CA 02848100 2014-04-07

19

them in a system configured according to an implementation of the invention. As Figure 4
shows, for a new object, a object creation process generates a new document identifier
(docid), which may include a created time stamp (created) component and an object

identifier component (see above) (402).

One or more term producer modules are then invoked to create docid-term pairs based on
the type of object (404). The object creation process then inserts the docid-term pairs into one
or more indexes maintained by the index servers 106 (406) and writes the object to database
110 (408). In some implementations, each docid-term pair may be maintained as a separate
entry in a given index. In other implementations, a docid of a docid-term pair may be added
to an existing index entry having the same term. For example, the document identifier of an
object (e.g., docid 12345) corresponding to a new fan of Coldplay (docid 67890) may be
added to one or more existing index entries having the term "connection.t0:67890" and/or

"connection.fan.to:67890"

Term producer modules can be updated, and all new objects will index the new terms from
the term producer. In addition, an update process may also regenerate the entire index daily
in a MapReduce job so that all old objects are updated with new terms. Index rebuilding can
be used as a mechanism for improving performance through denormalization. Many storage
systems require denormalization of data at the application level to improve performance.
Term producers enable denormalization decisions to be made more dynamically and
facilitate changes to those decisions as query patterns change. Furthermore, changes to
denormalization configurations do not require changes to the way in which the underlying
data is persistently stored in database 110. For example, assume that a page generating script
(home.php) executes the following search frequently to get status messages from friends:
author(connection.from(UID)) type:status. If performance becomes an issue because of
query volume and the size of the type:status posting list, a term producer module can be

added or updated for status messages to output a composite term of author and type so that

the results are in a single, smaller posting list or index. For example, a term producer

#11008157

CA 02848100 2014-04-07

20

module can be configured to add additional terms for status objects, such as:

"id": 321224,
"type": "status”, "created": 1253665137,

‘message”: " ", "author": 12345

A term producer module can be updated to output the additional term: (321224,
"status:author:12345"). The page generating script can be updated such that the query is
expressed as: status:author(connection.from(UID)). In addition, a set of replica indexes can
be created for the particular term for further performance improvements, as described in
more detail below. One particular advantage of this scheme is that denormalization
decisions can easily be changed, and does not need to happen at the application level. This
means developers are able to store data in the most conceptually logical way. Query
performance can be tuned in a manner relatively independent of these application-level
decisions, rendering applications cleaner, easier to understand, and easier to update over

time.

In one implementation, the search index is sharded by document identifier (docid). For
example, as Figure 1 illustrates, the index layer can be implemented by a hierarchical
configuration of index servers including a root server 106a and a plurality of leaf servers
106b. In one implementation, each leaf server 106b is allocated one or more shards. In
another implementation, a cluster or ring topology can be used. By default, a search can be
executed by sending a query to all shards in parallel, merging the results in the mixer or root
index server 106a. In one implementation, a shard is allocated a segment of the document

identifier space. In particular embodiments, each document identifier (docid) maps (e.g.,

arithmetically or via come mathematical function) to a unique corresponding shard ID.

#11008157

CA 02848100 2014-04-07

21

Accordingly, a particular term (e.g., "connection.fan.from:12345") may be maintained in one
shard to which the object Coldplay (docid 67890) corresponds and other shards
corresponding to other objects that the person (docid12345) has also established a"fan®
connection. In one implementation, each of the index servers 106 is allocated a set of shard
IDs for which they are responsible to maintain. This allocation can be adjusted to add or

remove index servers 106 from the system.

Sending all queries to all shards may be computationally expensive and may limit the
overall query rate of the system. In one implementation, the index layer implemented by the
index servers 106 supports special replica indexes that only index a subset of the terms in the
index system. For example, in addition to a main or master index, the index layer may
include one or more additional replica index that are adapted for one or more specific query
types. For example, assume that the query connection.from(*) is an extremely common
query within the system. The indexing system described herein can be configured such that
all connection.from terms are replicated in an additional replica index that only contains
those terms. The following command illustrates an example application programming

interface that allows for creation of such replica indexes.
replicas = {
"connection.from:*": [...], # Devoted connection replica

"email:*": [...], # Email search replica

" [...], # Main replicas

When an index server 106 executes a query, it chooses the smallest replica index that can
satisfy the search. For example, the query connection.from(12345) will be forwarded to an
index server that is devoted to the connection.from replica index. On the other hand, a more

generic or broader search, such as connection.from(12345) type:page, will be executed on the

#11008157

CA 02848100 2014-04-07

22

main index or another replica that supports both terms. However, there is no theoretical
reason against sharding by term to improve performance for certain queries. An advantage
of this design is that the system can support all queries and be tuned for optimal throughput
and performance for the most important queries. Once a query becomes common enough,
an administrator may tune the system to increase query rate by creating a set of replicas
devoted to satistying that class of query. This simplifies application development in that a
network application can first be configured to perform whatever queries it requires. Prior to
launching the application, replica indexes can be created to improve performance based on

the structure of the queries created during application development.

Figure 2 illustrates an example computing system architecture, which may be used to
implement a server 22a, 22b. In one embodiment, hardware system 1000 comprises a
processor 1002, a cache memory 1004, and one or more executable modules and drivers,
stored on a tangible computer readable medium, directed to the functions described herein.
Additionally, hardware system 1000 includes a high performance input/output (I/O) bus
1006 and a standard I/O bus 1008. A host bridge 1010 couples processor 1002 to high
performance I/O bus 1006, whereas I/O bus bridge 1012 couples the two buses 1006 and
1008 to each other. A system memory 1014 and one or more network/communication
interfaces 1016 couple to bus 1006. Hardware system 1000 may further include video
memory (not shown) and a display device coupled to the video memory. Mass storage 1018,
and I/0O ports 1020 couple to bus 1008. Hardware system 1000 may optionally include a
keyboard and pointing device, and a display device (not shown) coupled to bus 1008.

Collectively, these elements are intended to represent a broad category of computer
hardware systems, including but not limited to general purpose computer systems based on
the x86-compatible processors manufactured by Intel Corporation of Santa Clara, California,
and the x86-compatible processors manufactured by Advanced Micro Devices (AMD), Inc.,

of Sunnyvale, California, as well as any other suitable processor.

The elements of hardware system 1000 are described in greater detail below. In particular,

#11008157

CA 02848100 2014-04-07

23

network interface 1016 provides communication between hardware system 1000 and any of
a wide range of networks, such as an Ethernet (e.g., IEEE 802.3) network, a backplane, etc.
Mass storage 1018 provides permanent storage for the data and programming instructions to

perform the above-described functions implemented in the servers 22a, 22b, whereas system

memory 1014 (e.g., DRAM) provides temporary storage for the data and

#11008157

CA 02848100 2014-04-07

24

programming instructions when executed by processor 1002. I/O ports 1020 are one or
more serial and/or parallel communication ports that provide communication between

additional peripheral devices, which may be coupled to hardware system 1000.

Hardware system 1000 may include a variety of system architectures; and various
components of hardware system 1000 may be rearranged. For example, cache 1004 may
be on-chip with processor 1002. Alternatively, cache 1004 and processor 1002 may be
packed together as a "processor module," with processor 1002 being referred to as the
"processor core." Furthermore, certain embodiments of the present invention may not
require nor include all of the above components. For example, the peripheral devices
shown coupled to standard I/O bus 1008 may couple to high performance I/O bus 1006.
In addition, in some embodiments, only a single bus may exist, with the components of

hardware system 1000 being coupled to the single bus.

Furthermore, hardware system 1000 may include additional components, such as

additional processors, storage devices, or memories.

In one implementation, the operations of the embodiments described herein are
implemented as a series of executable modules run by hardware system 1000,
individually or collectively in a distributed computing environment. In a particular
embodiment, a set of software modules and/or drivers implements a network
communications protocol stack, browsing and other computing functions, optimization
processes, and the like. The foregoing functional modules may be realized by hardware,
executable modules stored on a computer readable medium, or a combination of both.
For example, the functional modules may comprise a plurality or series of instructions to
be executed by a processor in a hardware system, such as processor 1002. Initially, the

series of instructions may be stored on a storage device, such as mass storage

#11008157

CA 02848100 2014-04-07

25

1018. However, the series of instructions can be tangibly stored on any suitable storage
medium, such as a diskette, CD-ROM, ROM, EEPROM, etc. Furthermore, the series of
instructions need not be stored locally, and could be received from a remote storage device,
such as a server on a network, via network/communications interface 1016. The instructions
are copied from the storage device, such as mass storage 1018, into memory 1014 and then

accessed and executed by processor 1002.

An operating system manages and controls the operation of hardware system 1000,
including the input and output of data to and from software applications (not shown). The
operating system provides an interface between the software applications being executed on
the system and the hardware components of the system. Any suitable operating system may
be used, such as the LINUX Operating System, the Apple Macintosh Operating System,
available from Apple Computer Inc. of Cupertino, Calif., UNIX operating systems, Microsoft
(r) Windows(r) operating systems, BSD operating systems, and the like. Of course, other
implementations are possible. For example, the nickname generating functions described

herein may be implemented in firmware or on an application specific integrated circuit.

Furthermore, the above-described elements and operations can be comprised of instructions
that are stored on storage media. The instructions can be retrieved and executed by a

processing system. Some examples of instructions are software, program code, and

firmware. Some examples of storage media are memory devices, tape, disks, integrated
circuits, and servers. The instructions are operational when executed by the processing
system to direct the processing system to operate in accord with the invention. The term
"processing system” refers to a single processing device or a group of inter-operational
processing devices. Some examples of processing devices are integrated circuits and logic
circuitry. Those skilled in the art are familiar with instructions, computers, and storage

media.

#11008157

CA 02848100 2014-04-07

26

The present disclosure encompasses all changes, substitutions, variations, alterations, and
modifications to the example embodiments herein that a person having ordinary skill in the
art would comprehend. Similarly, where appropriate, the appended claims encompass all
changes, substitutions, variations, alterations, and modifications to the example
embodiments herein that a person having ordinary skill in the art would comprehend. By
way of example, while embodiments of the present invention have been described as
operating in connection with a social networking website, the present invention can be used
in connection with any communications facility that supports web applications and models
data as a graph of associations. Furthermore, in some embodiments the term "web service”
and "web-site" may be used interchangeably and additionally may refer to a custom or
generalized API on a device, such as a mobile device (e.g., cellular phone, smart phone,
personal GPS, personal digital assistance, personal gaming device, etc.), that makes API calls

directly to a server.

#11008157

CA 02848100 2015-08-28

27

Claims:

1. A method comprising:

by at least one computing system, in response to a creation of a data object, generating a
document identifier comprising an object identifier component and a time stamp;

by the at least one computer system, selecting at least one term producer module from a
plurality of term producer modules, the selection based at least in part on a type of the
respective data object;

by at least one of the selected term producer modules, generating at least one term
associated with the data object, each term based at least in part on at least one attribute of the
data object;

by the at least one computing system, outputting at least one pair to at least one index,
cach of the pairs comprising one of the document identifiers and one of the terms; and

by the computing system, storing the at least one index on at least one index server.

2. T'he method of Claim 1, wherein the type of the data object comprises:
a node type; or
an edge type, wherein the edge type comprises:
at least one of the generated terms is associated with a source object attribute;
and
at least one of the generated terms 1s associated with a destination object

attribute.

oy

The method of Claim 1, further comprising;:
by the at least one computing system, receiving a search comprising an indication of at
least one search data object and at least one search attribute; and

by the at least one computing system, based on the search, retrieving the data object.
23 TI'he method of Claim 1, further comprising:

by the at least one computing system, updating at least one of the term producer

modules.

P20 29 4%

CA 02848100 2015-08-28

238

. The method of Claim 4, wherein updating the at least one term producer module
comprises at least one of:
adding at least one term generated by the term producer module; and

altering at least one term generated by the term producer module.

6. The method of Claim 4, wherein the at least one term producer modules are updated
before the creation of the data object.

/. The method of Claim 1, wherein outputting at least one pair to at least one index
comprises outputting at least one of the pairs to an existing index entry comprising the

respective term.

8. At least one computer-readable non-transitory storage media embodying a software that
is operable when executed to:

In response to a creation of a data object, generate a document 1dentifier comprising an
object identifier component and a time stamp;

select at least one term producer module from a plurality of term producer modules, the
selection based at least in part on a type of the respective data object;

generate at least one term associated with the data object, each term based at least in part
on at least one attribute of the data object;

output at least one pair to at least one index, each of the pairs comprising one of the
document identifiers and one of the terms; and

store the at least one index on at least one imndex server.

9. The media of Claim 8, wherein the type of the data object comprises:
a node type; or
an edge type, wherein the edge type comprises:
at least one of the generated terms is associated with a source object attribute;

and

4204529 v3

CA 02848100 2015-08-28

29

at least one of the generated terms is associated with a destination object

attribute.

10. The media of Claim 8, wherein the software is further operable when executed to:
receive a search comprising an indication of at least one search data object and at least
one search attribute; and

based on the scarch, retrieve the data object.

11. The media of Claim 8, wherein the software is further operable when executed to:

update at least one of the term producer modules.

12. The media of Claim 11, wherein updating the at least one term producer module
comprises at least one of:
adding at least one term generated by the term producer module; and

altering at least one term generated by the term producer module.

13. The media of Claim 11, wherein the at least one term producer module is updated

before the creation of the data object.

14. The media of Claim 8, wherein outputting at least one pair to at least one index
comprises outputting at least one of the pairs to an existing index entry comprising the

respective term.

15. A system comprising:
at least one processor; and
a memory coupled to the at least one processor comprising instructions executable by
the at least one processor, the at least one processor being operable when executing the
Instructions to:
In response to a creation of a data object, generate a document identifier

comprising an object identifier component and a time stamp;

F204529 v3

CA 02848100 2015-08-28

30

select at least one term producer module from a plurality of term producer
modules, the selection based at least in part on a type of the respective data object;

generate at least one term associated with the data object, each term based at
[cast in part on at least one attribute of the data object;

output at least one pair to at least one index, each of the pairs comprising one of
the document identifiers and one of the terms; and

store the at least one index in at least one index server.

16. The system of Claim 15, wherein the type of the data object comprises:
a node type; or
an edge type, wherein the edge type comprises:
at feast one of the generated term is associated with a source object attribute; and

at least one of the generated term is associated with a destination object attribute.

17. The system of Claim 15, wherein the at least one processor is further operable when
executed to:

receive a search comprising an indication of at least one search data object and at least
one search attribute; and

based on the search, retrieve the data object.

18. The system of Claim 15, wherein the at least one processor is further operable when
executed to:

update at least one of the term producer modules.

19. The system of Claim 18, wherem updating the at least one term producer module
comprises at least one of:
adding at least one term generated by the term producer module; and

altering at least one term generated by the term producer module.

20. The system of Claim 18, wherein the at least one term producer module is updated

before the creation of the data object.

SRRV

1002

CA 02848100 2015-08-28

o T
B

PROCESSOR

1010 HOST
BRIDGE

APPLICATION

INDEX

dB

1000

1004 //

CACHE

HIGH PERFORMANCE 1/0 BUS

100

FIG. I

yr1016
NETWORK
INTERFACE

/0 BUS
1012 BRIDGE

STANDARD I/0 BUS

SYSTEM
MEMORY [-1014

1018

MASS

TORAGE

1008

FIG. 2

/0
PORTS 1020

CA 02848100 2015-08-28

SOCIAL NETWORKING SYSTEM
22D 220

=
b

24
s

20
.—_
= 0
3
“ 26
24
223
30 30
30 :| 30
CLIENT NETWORK SERVER
mo _Q_Q o
30 30
FIG. 3

404 CREATE DOCID- TERM PAIRS
BASED ON OBJECT TYPE

INSERT DOCID-TERM
406 PAIRS INTO INDEX

408 — WRITE OBJECT TO DATABASE

FIlG. 4

APPLICATION

ﬂ

100

CACHING

}\110 B

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

