发明名称
利用钢渣制备碱性球团矿的方法及由该方法制得的产品

摘要
本发明提供了一种利用钢渣制备碱性球团矿的方法及由该方法制得的产品，所述方法包括将钢渣粉与铁精粉按质量比(12:30)；(70:88)混合均匀后，依次对所述混合料进行造球、干燥、预热、烧结及环冷处理，即得碱性球团矿。本发明所述的方法避免使用现有技术在生产碱性球团矿时所需的膨润土及碱性熔剂，使得钢渣变废为宝，不仅降低了球团矿的生产成本，还使得炼铁成本下降50～80元/吨，从而将本发明的碱性球团矿用于高炉炼铁时有利于实现高产量及低能耗，对碱性球团矿的推广应用能起到事半功倍的作用。
1. 一种利用钢渣制备碱性球团矿的方法，包括如下步骤：

(1) 将钢渣粉碎得钢渣粉，所述钢渣粉中-200目的粉体占钢渣粉总质量的30～80wt%，所述钢渣粉中含有15～25wt%的氧化钙；

(2) 将所述钢渣粉与铁精粉按质量比为(21～30)：(70～79) 的比例混合形成混合料，对所述混合料进行造球成型，得生球；

(3) 对所述生球依次进行干燥、预热、焙烧及环冷处理，即得碱性球团矿，所述预热的温度为650～750℃，时间为30～40min。

2. 根据权利要求1所述的利用钢渣制备碱性球团矿的方法，其特征在于，所述钢渣粉中-200目的粉体占钢渣粉总质量的40～60wt%。

3. 根据权利要求1所述的利用钢渣制备碱性球团矿的方法，其特征在于，所述铁精粉中的铁含量为65wt%以上。

4. 根据权利要求1所述的利用钢渣制备碱性球团矿的方法，其特征在于，所述铁精粉中-200目的粉体占铁精粉总质量的70wt%以上。

5. 根据权利要求1-4任一项所述的利用钢渣制备碱性球团矿的方法，其特征在于，在所述混合料中还添加了粘结剂，所述粘结剂的用量为所述钢渣粉与所述铁精粉质量之和的0.3～0.7wt%。

6. 根据权利要求5所述的利用钢渣制备碱性球团矿的方法，其特征在于，所述粘结剂为皂土。

7. 根据权利要求1所述的利用钢渣制备碱性球团矿的方法，其特征在于，所述焙烧的温度为1000～1200℃，时间为35min～50min。

8. 由权利要求1-7任一项所述的方法制得的碱性球团矿。
利用钢渣制备碱性球团矿的方法及由该方法制得的产品

技术领域
[0001] 本发明涉及高炉炼铁用碱性球团矿的生产技术领域，具体涉及一种利用钢渣制备碱性球团矿的方法及由该方法制得的碱性球团矿。

背景技术
[0002] 我国是一个钢铁产能大国，钢铁工业每生产1吨钢将副产约120～150Kg的钢渣，由于炼钢原料的差异，使得钢渣的成分波动较大，导致目前我国对钢渣的处理仍以简单堆存和任意排放为主。但钢渣主要是由钙、铁、硅、镁和少量铝、锰、磷等的氧化物组成，其中除硅无用、磷有害之外，钙、铁、镁、锰等金属的总含量约占钢渣质量的80wt％左右，且它们都是不可或缺的有用金属，上述粗放的钢渣处理方式不仅造成了资源浪费，还带来了严重的环境问题。因此，钢渣的合理利用和有效回收已成为现代钢铁工业技术进步的重要标志，关系到我国钢铁工业能否健康发展。
[0003] 众所周知，作为高炉炼铁的主要原料，球团矿是一种能满足钢铁冶炼要求的球型含铁料，它是由细磨的铁精矿或其他含铁粉料与添加剂或粘结剂按一定比例配料，造球后，采用干燥、焙烧等方法使之发生一系列物理化学变化而硬化固结得到的。基于当前我国对钢渣的再利用多集中在回收铁的这一现状，现有技术将钢渣作为含铁料用于生产球团矿已有相关报道。但由于钢渣中的亚铁含量占比较大，约为40％，相应地由钢渣制得的球团矿中的亚铁含量也必然较高，而亚铁含量每提高1％，将导致炼铁时的焦比上升1％，从而增大了高炉炼铁的能耗。因此，如何对现有的采用钢渣制备球团矿的方法进行改进以克服炼铁成本高的缺陷，已成为本领域技术人员亟待解决的一个技术难题。

发明内容
[0004] 本发明要解决的技术问题在于克服现有技术利用钢渣制得的球团矿用于炼铁时所存在的焦比高的问题，进而提供一种易于推广的低成本的碱性球团矿及其制备方法。
[0005] 为此，本发明实现上述目的的技术方案为：
[0006] 一种利用钢渣制备碱性球团矿的方法，包括如下步骤：
[0007] (1) 将钢渣粉碎得钢渣粉；所述钢渣粉中-200目的粉体占钢渣粉总质量的30～80wt％，所述钢渣粉中含有15～25wt％的氧化钙；
[0008] (2) 将所述钢渣粉与铁精粉按质量比为(12-30)：(70-88)的比例混合形成混合料，对所述混合料进行造球成型，得生球；
[0009] (3) 对所述生球依次进行干燥、预热、焙烧及环冷处理，即得碱性球团矿。
[0010] 优选地，所述钢渣粉中-200目的粉体占钢渣粉总质量的40～60wt％。
[0011] 优选地，所述铁精粉中的铁含量为65wt％以上。
[0012] 优选地，所述铁精粉中-200目的粉体占铁精粉总质量的70wt％以上。
[0013] 进一步地，在所述混合料中还添加了粘结剂，所述粘结剂的用量为所述钢渣粉与所述铁精粉质量之和的0.3～0.7wt％。
优选地，所述粘结剂为皂土。
优选地，所述预热的温度为650~750°C，时间为30~40min。
优选地，所述烧结的温度为1000~1200°C，时间为35min~50min。
由上述的方法制得的碱性球团矿。
本发明的上述技术方案具有如下优点：
1. 本发明提供的利用钢渣制备碱性球团矿的方法，通过将钢渣磨至-200目的粉体
占钢渣粉总质量的30~80wt%，并将钢渣粉与铁精粉按质量比（12~30）：（70~88）混
匀，由此制得的球团矿中CaO/SiO₂的值为0.6~1.3，属于碱性球团矿。采用本发明所述方法制得
的碱性球团矿进行高炉炼铁时可显著降低炼铁成本，有效解决了现有技术生产的球团矿用于
炼铁时所存在的成本高的问题。
此外，本发明所述的利用钢渣制备碱性球团矿的方法，借助于特定配比下的钢渣
粉与铁精粉的配合作用可直接制得碱性球团矿，避免使用现有技术在生产碱性球团矿时所
需的膨胀土及碱性熔剂，使得钢渣变废为宝，不仅降低了球团矿的生产成本，也使得炼铁成
本下降50~80元/吨，从而将本发明的碱性球团矿用于高炉炼铁时有利于实现高产量及低
能耗。
2. 本发明提供的利用钢渣制备碱性球团矿的方法，通过在650~750°C对生球预热
30~40min，可进一步降低预热球中的亚铁含量，从而确保成品球能够更好地满足高炉炼铁
的要求。

具体实施方式
下面将对本发明的技术方案进行清楚、完整地描述，显然，所描述的实施例是本发
明一部分实施方案，而不是全部的实施方案。基于本发明中的实施例，本领域普通技术人员在没
有做出创造性劳动前提下所获得的所有其他实施例，都属于本发明保护的范围。此外，下面
所描述的本发明不同实施方案中所涉及的技术特征只要彼此之间未构成冲突就可以相互
结合。
在下述实施例中，wt%表示质量百分含量。
实施例
本实施例所述的利用钢渣制备碱性球团粉的制备方法，包括如下步骤：
（1）将转炉钢渣粉碎，得到-200目的粉体占总粉体质量30wt%的钢渣粉，所述钢渣
粉中含25wt%的氧化钙；
（2）将所述钢渣粉与铁精粉按质量比为20:80的比例均均匀形成混合料，将混合料加
入至圆盘造球机中进行造球，筛选出粒径为8~16mm的生球；
其中，铁精粉中的铁含量为65wt%，铁精粉中-200目的粉体占铁精粉总质量的
70wt%；
（3）将生球置于350°C干燥5min，而在后在750°C下预热30min，得预热球，将预热球置
于1100°C下烧结50min后取出，再经环冷却系统冷却，制得球团矿P，其中CaO/SiO₂=0.9，FeO
含量为0.5wt%。
实施例2
本实施例所述的利用钢渣制备碱性球团粉的制备方法，包括如下步骤：

[0032] (1) 将转炉钢渣粉碎，得到-200目的粉体占总粉体质量80wt％的钢渣粉，所述钢渣粉中含20wt％的氧化铝；
[0033] (2) 将所述钢渣粉与铁精粉按质量比为25:75的比例混匀形成混合料，将混合料加入至圆盘造球机中进行造球，筛选出粒径为8～16mm的生球；
[0034] 其中，铁精粉中的铁含量为67wt％，铁精粉中-200目的粉体占铁精粉总质量的72wt％。
[0035] (3) 将生球置于350℃干燥5min，而后在650℃下预热40min，得预热球；将预热球置于1200℃下焙烧35min后取出，再经环冷系统冷却，制得球团矿B，其中CaO/SiO₂＝0.85、FeO含量为0.5wt％。
[0036] 实施例3
[0037] 本实施例所述的利用钢渣制备碱性球团矿的制备方法，包括如下步骤：
[0038] (1) 将转炉钢渣粉碎，得到-200目的粉体占总粉体质量55wt％的钢渣粉，所述钢渣粉中含25wt％的氧化铝；
[0039] (2) 将所述钢渣粉与铁精粉按质量比为12:88的比例混匀形成混合料，将混合料加入至圆盘造球机中进行造球，筛选出粒径为8～16mm的生球；
[0040] 其中，铁精粉中的铁含量为67wt％，铁精粉中-200目的粉体占铁精粉总质量的70wt％；
[0041] (3) 将生球置于350℃干燥5min，而后在675℃下预热40min，得预热球；将预热球置于1000℃下烧成42.5min后取出，再经环冷系统冷却，制得球团矿C，其中CaO/SiO₂＝0.65、FeO含量为0.5wt％。
[0042] 实施例4
[0043] 本实施例所述的利用钢渣制备碱性球团矿的制备方法，包括如下步骤：
[0044] (1) 将转炉钢渣粉碎，得到-200目的粉体占总粉体质量40wt％的钢渣粉，所述钢渣粉中含22wt％的氧化铝；
[0045] (2) 将所述钢渣粉与铁精粉按质量比为30:70的比例混匀形成混合料，将混合料中加入皂土，皂土的加入量为混合料质量的0.3wt％，混匀后加入至圆盘造球机中进行造球，筛选出粒径为8～16mm的生球；
[0046] 其中，铁精粉中的铁含量为67wt％，铁精粉中-200目的粉体占铁精粉总质量的75wt％；
[0047] (3) 将生球置于350℃干燥5min，而后在700℃下预热40min，得预热球；将预热球置于1200℃下烧成40min后取出，再经环冷系统冷却，制得球团矿D，其中CaO/SiO₂＝1.3、FeO含量为0.5wt％。
[0048] 实施例5
[0049] 本实施例所述的利用钢渣制备碱性球团矿的制备方法，包括如下步骤：
[0050] (1) 将转炉钢渣粉碎，得到-200目的粉体占总粉体质量60wt％的钢渣粉，所述钢渣粉中含15wt％的氧化铝；
[0051] (2) 将所述钢渣粉与铁精粉按质量比为21:79的比例混匀形成混合料，将混合料中加入皂土，皂土的加入量为混合料质量的0.7wt％，混匀后加入至圆盘造球机中进行造球，筛选出粒径为8～16mm的生球。
其中，铁粉中的铁含量为67wt%，铁粉中-200目的粉体占铁粉总质量的75wt%。

将生球置于350℃干燥5min，然后在660℃下预热40min，得预热球；将预热球置于1050℃下焙烧50min后取出，再经环冷系统冷却，制得球团矿F，其中CaO/SiO₂＝0.7, FeO含量为0.5wt%。

对比例1
(1) 将转炉钢渣粉碎，得到-200目的粉体占总粉体质量90wt%的钢渣粉，所述钢渣粉中含25wt%的氧化钙；
(2) 将所述钢渣粉与铁精粉按质量比为1:10的比例混匀形成混合料，将混合料加入至圆盘造球机中进行造球，筛选出粒径为8~16mm的生球；
其中，铁粉中的铁含量为65wt%，铁粉中-200目的粉体占铁粉总质量的70wt%。
将生球置于350℃干燥5min，然后在750℃下预热30min，得预热球；将预热球置于1100℃下焙烧50min后取出，再经环冷系统冷却，制得球团矿E，其中CaO/SiO₂＝0.4, FeO含量为0.5wt%。

对比例2
(1) 将转炉钢渣粉碎，得到-200目的粉体占总粉体质量30wt%的钢渣粉，所述钢渣粉中含25wt%的氧化钙；
(2) 将所述钢渣粉与铁精粉按质量比为20:80的比例混匀形成混合料，将混合料加入至圆盘造球机中进行造球，筛选出粒径为8~16mm的生球；
其中，铁粉中的铁含量为65wt%，铁粉中-200目的粉体占铁粉总质量的70wt%。
将生球置于350℃干燥5min，然后在950℃下预热30min，得预热球；将预热球置于1100℃下焙烧50min后取出，再经环冷系统冷却，制得球团矿G，其中CaO/SiO₂＝0.9, FeO含量为0.4wt%。

实验例
在其它条件相同的情况下，分别将上述球团矿A~G与烧结矿按一定配比投入高炉中进行炼铁，并按照上述公式计算球团矿A~G所对应的焦比，结果如表1所示；
焦比=每昼夜的焦炭消耗量/平均每吨生铁所消耗的焦炭量
表1 使用球团矿A~G进行高炉炼铁时的焦比

<table>
<thead>
<tr>
<th>球团矿</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>焦比(kg)</td>
<td>490</td>
<td>496</td>
<td>500</td>
<td>440</td>
<td>498</td>
<td>515</td>
<td>530</td>
</tr>
</tbody>
</table>

表1可以看出，与球团矿E相比，使用碱性球团矿A~E进行高炉炼铁时的焦比明显较小，说明本发明的方法通过采用特定粒度分布的钢渣粉与铁精矿按特定配比复合作为球团矿原料，有利于制得可显著降低炼铁焦比的碱性球团矿。此外，球团矿A~E所对应的焦比均低于球团矿G，说明适当降低预热温度有助于降低利用由本发明的特定球团矿原料制成的碱性球团矿进行高炉炼铁时的焦比，从而能够降低炼铁成本。

显然，上述实施例仅仅是为清楚地说明所作的举例，而并非对实施方式的限定。对
于所属领域的普通技术人员来说，在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。