US009348853B2

a2 United States Patent

Garratt et al.

US 9,348,853 B2
*May 24, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

MOBILE APPLICATION CACHE BASED ON
EXTREME SCALE TECHNOLOGY

Applicant: International Business Machines
Corporation, Armonk, NY (US)
Inventors: Jeffrey D. Garratt, Apex, NC (US);
Dinakaran Joseph, Apex, NC (US);
Todd E. Kaplinger, Raleigh, NC (US);
Craig A. Lanzen, Durham, NC (US);
Victor S. Moore, Lake City, FL (US);
Gregory L. Truty, Austin, TX (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/062,293

Filed: Oct. 24, 2013

Prior Publication Data

US 2014/0136499 A1l May 15, 2014

Related U.S. Application Data

Continuation of application No. 13/677,888, filed on
Nov. 15, 2012.

Int. Cl1.

GO6F 17/00 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 17/30309 (2013.01); GOG6F 17/30174

(2013.01)

THE OBJECT GRID:
+ SETS # OF PARTITIONS (FIXED)
+ ALLOCATES # JVMs (VARIABLE)

(58) Field of Classification Search

CPC ... GOG6F 17/30575; GOGF 17/30286;
GOGF 17/30067
USPC i 707/610, 640, 661

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,546,298 B2* 6/2009 Hulajccccceeee. GOG6F 9/4443

7,779,074 B2 8/2010 Surtani et al.
2007/0088791 Al* 4/2007 Clarkeccccoeovevnnene 709/206
2009/0271799 Al 10/2009 Barsness et al.
2010/0005153 Al 1/2010 Tsao
2010/0123005 Al* 52010 Guessetal. 235/383
2011/0197186 Al 8/2011 Barker et al.
2012/0042164 Al* 2/2012 Gagnonetal. 713/168
2014/0089671 Al 3/2014 Logue et al.

OTHER PUBLICATIONS

Kirby et al, IBM WebSphere eXtreme Scale V7: Solutions Architec-
ture, first Edition, Dec. 2009, pp. 1-80.*
Surtani et al, JBoss Cache User Guide, Jun. 2007, pp. 1-87.*

(Continued)

Primary Examiner — Rehana Perveen

Assistant Examiner — Loc Tran

(74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
Presser, P.C.; Dermott Cooke

(57) ABSTRACT

Storing data from mobile devices may comprise receiving an
asynchronous communication from a mobile device over a
wireless network notifying that data was dropped in a syn-
chronizing folder; computing a hash value associated with the
data; determining based on the computed hash value, a par-
tition of an object grid comprising a plurality of virtual
machines; and storing the data on the partition.

9 Claims, 5 Drawing Sheets

106

OOMPUTER 1
-106

+ ALLOCATES # MACHINES (VARIABLE)

« APPS ARE MAPPED TO THE PARTITIONS VIA
HASHING THEIR NAMES (THE HASH IS THE
PARTITION #)

REPLICA

—
0G PARTITION I
1 0

)

102

S
0G PARTITION
[

| S —
——

M 10

A REPLICAS < Z/”
T ONE HASH # FOR

104 <

=
|
|
_—

=]

{0 PARTITION I
L

— (0% PARTITION CONPTER -1

| EACH PARTITION

WM

—

—

REPLICAS <:t:

9
2

OG PARTITION
2

L — |

V)

i
Y] | [

WM

B
~:| 0G PARTITION | COMPUTER M
| 2

US 9,348,853 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
Kirby et al, IBM WebSphere eXtreme Scale V7: Solutions Architec-
ture, first Edition, Dec. 2009, 80 pages.™
Surtani et al, JBoss Cache User Guide, Jun. 2007, Red Hat Inc,
Release 2.0.0, 88 pages.™
Kirby, T., et al., “IBM Websphere extreme Scale V7: Solutions Archi-
tecture”, Dec. 2009, First Edition, 77 pages.

Surtani, M. et al.,, “JBoss Cache User Guide”, Jun. 2007, Release
2.0.0 Habanero, 88 pages.

Office Action dated Jul. 3, 2014 received in the parent U.S. Patent
Application, namely U.S. Appl. No. 13/677,888.

“ObjectGrid architecture”, Jan. 30, 2009, pp. 1-8, https://www.ibm.
com/developerworks/wikis/display/objectgridprog/
ObjectGrid+architecture.

* cited by examiner

US 9,348,853 B2

Sheet 1 of 5

May 24, 2016

U.S. Patent

| ‘Ol
{ - N J
AT c T 1 A
4 NOLLILYYd 90f=—t-{-— | — T Z)
W HLTEHOY \ D S A e L
C N P 1
N m = II—lIIII
A e [-
q NOLLIL¥Yd DO, b o 18v1
WA | S . | || . JYN
. - | NOLLILYYd HOVA .
I 404 # HSYH IO | | >0l
g D b gy \ 0
7 = | 7 ! AUV
N = I A J T
W 4 NOLLILYYd 90f=- || M|
\ J :
Z-I 43LNdI0D — — | T
B g | , \
o WAL oo
L y (1 NOILILYYd
: YO FHL SI HSVH 3HL) STNYN MFHL ONIHSYH
: 2ol YIA SNOILILYYd 3HL OL Q3ddv 34 Sddv
4
—) (39VI4YA) SINHOVW # STLYOOTY -
| 0 .
201 WAT \OILL0) (TIQYIMYA) SWAT # SALYOOTIY
L AINdOD ; J (@x4 wzo::.%_ 10 # 813 -
20| M9 193780 FHL
00l

U.S. Patent May 24, 2016 Sheet 2 of 5 US 9,348,853 B2

2186

PARTITION

FIG. 2

220

HRERN

|~ 204

SYNC
FOLDER

202

US 9,348,853 B2

Sheet 3 of 5

May 24, 2016

U.S. Patent

NOYl LS¥)

314044

%DQW

NOILYOIddY Q

rree Y

SWAF ¢
zee vig

g1c
< wm N [VA >
T@m @gm%

NOLLILAYd

©

\

@

~

311104

430104
ONAS

US 9,348,853 B2

Sheet 4 of 5

May 24, 2016

U.S. Patent

¥ oOld

Y1¥Q Q34015 HL SS300v 01 301A30 FTI0W HL
NO ONINNNY 3SOHL NYHL §3HLO SNOILYOITddY FHOW 4O INO 318N

S1NY FHOW 4O INO 3HL NO @3Sv8 30I1A30 F180N HL OL ¥L1vd NanLIY

NOLLILEV FHL NO Y.L¥Q HL FHOLS

90V~

SINHOYW TYNLHIA 0 ALNMYHTIA ¥ ONISIHINOD AID 193780
NY 40 NOLLILY¥d ¥ ‘INT¥A HSYH Q3LNAINOD JHL NO (354 NIAMILIC

O -1

V1¥d 3HL HLIM d31¥1908SY 1A HSYH ¥ 31NdWOD

10,44

430704 ¥ NI d3dd08a SYM YL1¥d LYHL ONIAJILON MHOMLIN SSTTRUIM ¥ §3A0
@3AI3034 SI 301A30 JTIGOW ¥ WO NOILYIINNINOD SNONOSHINASY NY 3AIFOY

US 9,348,853 B2

Sheet 5 of 5

May 24, 2016

U.S. Patent

W3LSAS

FOVH0LS

gl

Amvmo_>mo /@N

1

(S)30Y NI
0/1 02

-yl

G ol
gz AY1dSI0
401dvQY YHOMLN
N
Zc
ASONIN
A
9l

oL F1NAOW 90

(S)40SS3004d

N
2l

US 9,348,853 B2

1
MOBILE APPLICATION CACHE BASED ON
EXTREME SCALE TECHNOLOGY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. Ser. No. 13/677,
888, filed on Nov. 15, 2012, the entire content and disclosure
of which is incorporated herein by reference.

FIELD

The present application relates generally to computers,
computer systems and data storage, and more particularly to
mobile application cache based on extreme scale technology.

BACKGROUND

A known method exchanges data between a plurality of
compute nodes having Java™ Virtual Machines (JVM). Each
JVM includes a set of computer program instructions capable
of executing a distributed Java™ application and each com-
pute node includes wireless network adapters to exchange
data between compute nodes wirelessly. Another known
method provides an external storage system for a wireless
device, wherein the external storage system comprises a con-
trolled distributed scalable virtual machine system for store
data.

Yet another known method provides for downloading and
updating data between a mobile device and distributed data-
base. A checksum is used to determine whether the document
has changed.

Generally, wireless devices can store data to one or more
virtual machines. In addition, a web application may commu-
nicate with a storage device remotely.

BRIEF SUMMARY

A method for mobile application cache, in one aspect, may
comprise receiving an asynchronous communication from a
mobile device over a wireless network notifying that data was
dropped in a synchronizing folder. The method may further
comprise computing a hash value associated with the data.
The method may also comprise determining based on the
computed hash value, a partition of an object grid comprising
a plurality of virtual machines. The method may also com-
prise storing the data on the partition. In one aspect, the
receiving the asynchronous communication comprises
receiving the name-value pair in a queue.

A system for storing data from mobile devices, in one
aspect, may comprise memory and a list of name-value pairs
stored on the memory. The system may also comprise a syn-
chronization module operable to execute on the processor and
to receive an event from a mobile device notifying that data
was dropped in a synchronizing folder on the mobile device.
The synchronization module may be further operable to copy
payload data from the mobile device’s event into the list of
name-value pairs. The system may also comprise an object
grid module operable to compute a hash value of a name-
value pair to which the payload data was copied. The object
grid module may be further operable to determine based on
the computed hash value, a partition of an object grid com-
prising a plurality of virtual machines and to store the payload
data on the determined partition. The system may also com-
prise a queue module operable to detect whether the name-

20

25

30

35

40

45

50

55

60

65

2

value pair has changed. The queue module may be further
operable to communicate the detected change to the mobile
device.

A computer readable storage medium storing a program of
instructions executable by a machine to perform one or more
methods described herein also may be provided.

Further features as well as the structure and operation of
various embodiments are described in detail below with ref-
erence to the accompanying drawings. In the drawings, like
reference numbers indicate identical or functionally similar
elements.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a diagram illustrating Object Grid architecture in
one embodiment of the present disclosure.

FIG. 2 is another architectural diagram illustrating system
components of the present disclosure in one embodiment.

FIG. 3 is an architectural diagram illustrating system com-
ponents that provide the association of application to data
saved in the shards of'an OG in one embodiment of the present
disclosure.

FIG. 4 is a flow diagram illustrating a method ofthe present
disclosure in one embodiment.

FIG. 5 illustrates a schematic of an example computer or
processing system that may implement a system in one
embodiment of the present disclosure.

DETAILED DESCRIPTION

A methodology of the present disclosure in one embodi-
ment builds a system wherein a large number of mobile
devices can reliably cache data within a collection of com-
puters called an Object Grid (OG). FIG. 1 is a diagram illus-
trating OG architecture. An OG 100 is a sophisticated data
cache. An OG is distinguished from other caches by its avail-
ability and extreme scalability. Applications on mobile
devices use an OG 100 to reliably save and retrieve data. Data
is sent to an OG via the payload of an event. The OG stores
this payload in the shards of a grid.

A grid is a collection of shards; a shard is a container for
storing data. Shards come in two flavors; primary and replica.
A replica is a copy of the primary. A primary and one or more
of'its replicas is called a partition (e.g., 102). When an OG is
initialized it determines the number of partitions to create.
Once created the number of partitions is fixed. Data is stored
in the shards assigned to these partitions. Data is mapped into
partitions. The mapping is a hash on the data name (e.g.,
shown at 104). The hash selects which partition to use. The
most common hash is a “modulo” seeded with the number of
defined partitions. The OG copies the respective data to the
primary and secondary shards of the selected partition (based
onthe hash). Shards reside in container Java Virtual Machines
(JVM’s), e.g., shown at 106.

The OG maps its partitions onto a set of container JVMs. A
container JVM is a JVM that serves as a data store in a grid.
For increased availability, the OG puts the primary and rep-
lica shards of a partition on different JVMs and if possible
different physical machines (e.g., shown as different comput-
ers 108, 110). In this way if one JVM fails, its shards can be
restored. For example, if a replica shard is lost, the primary
shard is used to create another replica. If a primary shard is
lost then its replica is promoted to be the primary and another
replica is created from it. As before, the primary and replica
shards are always placed on separate container JVMs. To

US 9,348,853 B2

3

achieve failover, for example, the primary and replica are
located on separate J'VMs and more than likely separate nodes
(i.e., servers).

Partitions separate the mapping of “shards to JVMs” from
the mapping of “data to shards”. This separation allows JVMs
to be added or removed without disturbing the “data to
shards” mapping or the number of partitions.

Container JVMs are managed by a Catalog Service (CS).
The CS runs on a JVM separate from the container JVMs. At
a minimum an OG has one CS and one Grid. Whena JVM is
added to an OG it registers with the CS via a “well known
static address”. The JVM gives the CS a reference to its
container for the storing and retrieving of shards.

The OG concept in one embodiment of the present disclo-
sure is extended to include an object that is a list of name-
value pairs, logic to receive an event from a mobile device,
code to copy the payload from the mobile device’s event into
a list of name-value pairs, a mechanism that detects when a
name-value pair in a list has changed, a facility that commu-
nicates changes back to the originating mobile device via
sending the changed data back to the device in the payload of
an event message, and an API associated with each list for the
purpose of allowing applications to access and modify the
data in the lists.

A name-value pair comprises a key and a value such as
firstname=john and lastname=doe, where “firstname” is the
name and “john” is the value in that example, and “lastname™
is the name and “doe” is the value in that name-value pair
example.

Logic (e.g., module) to receive an event from a mobile
device may be implemented in one embodiment with data
synchronization mechanism such as those used in Drop-
box™. Such mechanism of the present disclosure in one
embodiment provides a client device mechanism for storing
the name-value pair (also referred to as key-value or key/
value). Such mechanism may also have an instance running in
the cloud or the like computing infrastructure, where the
server takes the data entry in the client device and puts itin a
queue. Based upon the partition (hashing of the key) the data
is assigned to a specific partition.

A code or logic to copy the payload from the mobile
device’s event into a list of name-value pairs may utilize the
Dropbox™ or the like synchronization mechanism. Other
technologies that allow storing and synchronizing content
between two or more endpoints may be utilized.

A facility communicates changes back to the originating
mobile device via sending the changed data back to the device
in the payload of an event message. In one embodiment of the
present disclosure, this facility is implemented as a queue.
The queue may include a mechanism that actively polls the
synchronization mechanism to determine if there have been
changes. If there have been changes, the methodology of the
present disclosure determines the key that changed and starts
the process of sending the changes back to the mobile device.

An API may be associated with each list for the purpose of
allowing applications to access and modify the data in the
lists. Such API may be implemented as part of a cloud
instance that provides synchronization mechanism.

In one embodiment of the present disclosure, one or more
queues or like data structure may be utilized. When a list of
name-value pairs in the OG is modified, the changes are sent
to a queue for delivery back to the application (e.g., mobile
application) associated with the list. Each queue has a profile
that tells the OG how to process the queue. For example,
messages in the queue may have assigned priority, or billing
instructions, or analytic triggers, and so on. Further, messages
are sent back to the mobile device as they are processed or

20

25

30

35

40

45

50

55

60

65

4

they remain in the queue until requested by the corresponding
application, or they are just purged from the queue.

FIG. 2 is another architectural diagram illustrating system
components of the present disclosure in one embodiment. In
one embodiment of the methodology of the present disclo-
sure, data travels between a mobile client 202 to the OG via
the notion of a file hosting, storing and synchronization tool
204 or methodology or the like such as a Dropbox-like
mechanism. In general, Dropbox is known as a Web-based
file hosting service operated by Dropbox™, Inc. that uses
cloud computing to enable users to store and share files and
folders with others across the Internet using file synchroniza-
tion. The synchronization is one-way, from the client Drop-
box to the file systems storing the data dropped. The meth-
odology of the present disclosure extends this concept to
include a bidirectional data flow with “call backs” to the
respective file folder or container 204 such as the Dropbox. In
the present disclosure, such Dropbox-like element or folder
on a client or mobile device is referred to as a synchronizing
folder 204, e.g., a file or data folder. When data is returned to
a synchronizing folder 204, the synchronizing folder 204 in
turn sends the data to the application that originally dropped
the respective data onto the synchronizing folder 204. The
association in one embodiment is via a call back or other
asynchronous means, such as an SMS to notify the applica-
tion about the data’s availability.

A methodology of the present disclosure in one embodi-
ment provides a highly available mobile device cache that can
persist the cached changes back to enterprise application
servers, e.g., on a cloud infrastructure. In one aspect, the
client is driving all of the function. The client caches the
content using ObjectGrid and then via the functionalities of
ObjectGrid, it is listened for on a server instance, e.g., the
cloud instance. This event is then received and put on the
queue for further processing. In one embodiment, there is no
need to push cache from the server instance (e.g., the cloud)
back to the device.

When an object on the mobile device 202 is dropped onto
a synchronizing folder 204, the logic within that synchroniz-
ing folder 204 uses introspection to determine if it includes a
callback method to return data to the associated application
on the mobile device 202. The callback can be a remote
procedure call (RPC) or a RESTful command or a Short
Message Service (SMS) address that the server uses to notify
client applications that data is available for pickup from the
synchronizing folder 204.

The methodology of the present disclosure extends the
concept of an OG to include a synchronizing folder 204 on a
mobile device 202, at least one OG receive queue 208, at least
one OG send queue 212, and a profile (e.g., 206, 210) for
managing these queues. The synchronizing folder 204 inte-
grates the applications on a mobile device 202 with an OG
cache connected to a wireless network 220 for the purpose of
reliably storing and retrieving data in a highly available data
store. A synchronizing folder 204 is a software entity on a
mobile device 202 whereon data can be logically dropped and
sent over a wireless network 220 to an OG 218 wherein the
data is cached in the OG’s partitions 212, 214, 216. An OG
queue 208 receives the data from a synchronizing folder 204,
uses the name given to the data to compute the associated hash
code and corresponding partition address, and saves the data
within the primary and replica shards for that partition (e.g.,
216). A profile 206 is used to determine the order in which
items in the queue are saved, the application of billing rules to
each item, the “time to live” for the associated data, and the
rules that determine if and when the saved data will be
returned back to the synchronizing folder 204. A typical rule

US 9,348,853 B2

5

would be to return data when it has changed. Another might
be to batch data changes and return them to the appropriate
synchronizing folder as a group, or to return the data after a
given period of time. Additional or different rules may apply.

When data is returned to a synchronizing folder 204, the
synchronizing folder 204 (the logic associated with the syn-
chronizing folder) in turn sends the data to the application that
originally dropped the respective data onto the synchronizing
folder 204. The association is via a callback or other asyn-
chronous means, such as an SMS to notify the application
about the data’s availability.

An enhanced Dropbox concept connects mobile device
applications to an OG, which serves as a scalable data cache
for the mobile device. The methodology of the present dis-
closure in one embodiment provides for building a simple
architecture for reliably saving and retrieving data from
highly available storage devices created by an OG connected
to a wireless network. In one embodiment, the data is sent to
and received from the OG 218 via asynchronous events. It is
thus ideal for the mobile environment which may fade in and
out of service frequently. It also scales to millions of mobile
devices with little difficulty and provides the means by which
data is stored in and synchronized with external sources. The
queues used to receive events from and to send events to
applications running in mobile devices provide buffering and
elasticity.

In another aspect, a methodology of the present disclosure
may provide an association of an application to the data saved
in the shards of an Object Grid (OG). FIG. 3 is an architectural
diagram illustrating system components that provide the
association of application to data saved in the shards of an OG
in one embodiment of the present disclosure. In the present
disclosure, in one embodiment, shards (e.g., 302, 304, 306,
308, 310,312) are mapped to JVMs (e.g., 314,316, 318, 320),
and applications (e.g., 322, 324, 326, 328) within the JVMs
subscribe to the data in the shards. A Java Virtual Machine
(JVM) may host one or more containers and each container
can host multiple shards. A JVM therefore contains the appli-
cations that are associated with the data in the JVMs shards.

An application within a JVM can receive and modify shard
data or it can pass the data to an external service for further
processing. Typical external services are SAP™, Twitter™,
Amazon™, Facebook™, and so on. For example, consider a
service like Twitter™. A mobile client 330 can save datain a
shard (e.g., 310) where an application exists that connects to
Twitter™. This application bridges the gap between the data
in the shard and the protocol needed to transfer that data to
Twitter™. If a response is generated by Twitter™, or if unso-
licited data is received from Twitter™, that data populates the
shard and in doing so causes the changed data in the shard to
be returned to the application in the associated mobile client
330. OG architecture is further described in https://www.
ibm.com/developerworks/wikis/display/objectgridprog/Ob-
jectGrid+architecture (blank spaces are inserted in the URL
so that the text does not automatically convert to a hypertext
link), disclosure of which is incorporated herein by reference.

In one aspect, a methodology of the present disclosure may
add to the above-described enhanced Dropbox™-like con-
cept that connects mobile device applications to an OG, the
scaffolding necessary to connect the cached data in the OG to
external services. An application (e.g., 322, 324, 326, 328) in
the JVM (e.g., 314, 316, 318, 320) of an OG 332 can: 1)
Subscribe to the data in a shard, 2) Fetch the subscribed to
data from a shard, 3) Process the fetched data, 4) Transfer the
data to an external service, 5) Receive data back from a

20

25

30

35

40

45

50

55

60

65

6

service, 6) Update the subscribed data within a shard, and 7)
send the changed data in the shard back to the originating
mobile application.

In one embodiment, the connection between a mobile
application and its shard data is always asynchronous, while
the connection between shard data and external services can
be either synchronous or asynchronous, depending on the
requirements of the external service. The methodology of the
present disclosure in one embodiment allows a provider of
application to enrich the data within the grid with content
from external sources. The result is a highly scalable and
highly available Mobile Application Platform (MAP) for
applications to provide services to mobile devices.

FIG. 4 is a flow diagram illustrating a method of storing
data from mobile devices of the present disclosure in one
embodiment. At 402, an asynchronous communication from
amobile device is received over a wireless network notifying
that data was dropped in a synchronizing folder of the present
disclosure in one embodiment. The asynchronous communi-
cation may be an event notification comprising a name-value
pair. The name-value pair may be received on an object grid
queue and profile information associated with the name-value
pair may be received. The profile information specifies one or
more rules applicable to storing and managing of the name-
value pair. At 404, a hash value or the like may be computed
associated with the data. At 406, based on the computed hash
value, a partition of an object grid comprising a plurality of
virtual machines is determined. At 408, the data is stored on
the partition. In one embodiment, a primary version of the
data is stored on a primary shard of the partition and a replica
version of the data is stored on a replica shard of the partition.
In one aspect, the data may be returned to the mobile device
based on the one or more rules as shown at 410. Yet in another
aspect, one or more applications other than those running on
the mobile device may be enabled to access the stored data as
shown at 412.

While the above descriptions referred to Dropbox™, it
should be noted that Dropbox™ product is not required in
implementing methodologies of the present disclosure.
Rather, similar synchronization methods or other file hosting,
data storing and synchronization methods may be utilized,
e.g., for seamless syncing of data between a device (e.g., a
mobile device) and a server (e.g., cloud instance) and distrib-
uted storage mechanism of data, files or documents. In the
present disclosure, the notion of such mechanism is extended
to include a queue that is able to listen for events (e.g., cache
entry modifications) and then react to these events to publish
the key/value (name-value) pairs to the ObjectGrid, which is
responsible for making these cache entries highly available
via the partition and sharding design models.

FIG. 5 illustrates a schematic of an example computer or
processing system that may implement one or more method-
ologies of the present disclosure in one embodiment. The
computer system is only one example of a suitable processing
system and is not intended to suggest any limitation as to the
scope of use or functionality of embodiments of the method-
ology described herein. The processing system shown may be
operational with numerous other general purpose or special
purpose computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with the
processing system shown in FIG. 5 may include, but are not
limited to, personal computer systems, server computer sys-
tems, thin clients, thick clients, handheld or laptop devices,
multiprocessor systems, microprocessor-based systems, set
top boxes, programmable consumer electronics, network
PCs, minicomputer systems, mainframe computer systems,

US 9,348,853 B2

7

and distributed cloud computing environments that include
any of the above systems or devices, and the like.

The computer system may be described in the general
context of computer system executable instructions, such as
program modules, being executed by a computer system.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. The computer system may be practiced in distributed
cloud computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed cloud computing environ-
ment, program modules may be located in both local and
remote computer system storage media including memory
storage devices.

The components of computer system may include, but are
not limited to, one or more processors or processing units 12,
asystem memory 16, and a bus 14 that couples various system
components including system memory 16 to processor 12.
The processor 12 may include an OG module 10 that per-
forms the methods described herein. The module 10 may be
programmed into the integrated circuits of the processor 12,
or loaded from memory 16, storage device 18, or network 24
or combinations thereof.

Bus 14 may represent one or more of any of several types
of bus structures, including a memory bus or memory con-
troller, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus architec-
tures. By way of example, and not limitation, such architec-
tures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

Computer system may include a variety of computer sys-
tem readable media. Such media may be any available media
that is accessible by computer system, and it may include both
volatile and non-volatile media, removable and non-remov-
able media.

System memory 16 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) and/or cache memory or others. Computer
system may further include other removable/non-removable,
volatile/non-volatile computer system storage media. By way
of'example only, storage system 18 can be provided for read-
ing from and writing to a non-removable, non-volatile mag-
netic media (e.g., a “hard drive”). Although not shown, a
magnetic disk drive for reading from and writing to a remov-
able, non-volatile magnetic disk (e.g., a “floppy disk™), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 14 by one or more data media inter-
faces.

Computer system may also communicate with one or more
external devices 26 such as a keyboard, a pointing device, a
display 28, etc.; one or more devices that enable a user to
interact with computer system; and/or any devices (e.g., net-
work card, modem, etc.) that enable computer system to
communicate with one or more other computing devices.
Such communication can occur via Input/Output (I/O) inter-
faces 20.

Still yet, computer system can communicate with one or
more networks 24 such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet) via network adapter 22. As depicted, net-
work adapter 22 communicates with the other components of

20

25

30

35

40

45

50

55

60

65

8

computer system via bus 14. It should be understood that
although not shown, other hardware and/or software compo-
nents could be used in conjunction with computer system.
Examples include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages, a scripting language such
as Perl, VBS or similar languages, and/or functional lan-
guages such as Lisp and ML and logic-oriented languages
such as Prolog. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-

US 9,348,853 B2

9

puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be under-
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The computer program product may comprise all the
respective features enabling the implementation of the meth-
odology described herein, and which—when loaded in a
computer system—is able to carry out the methods. Com-
puter program, software program, program, or software, in
the present context means any expression, in any language,
code or notation, of a set of instructions intended to cause a
system having an information processing capability to per-

20

25

30

35

40

45

50

55

60

65

10

form aparticular function either directly or after either or both
of'the following: (a) conversion to another language, code or
notation; and/or (b) reproduction in a difterent material form.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements, if any, in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Various aspects of the present disclosure may be embodied
as a program, software, or computer instructions embodied in
a computer or machine usable or readable medium, which
causes the computer or machine to perform the steps of the
method when executed on the computer, processor, and/or
machine. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform various functionalities and methods
described in the present disclosure is also provided.

The system and method of the present disclosure may be
implemented and run on a general-purpose computer or spe-
cial-purpose computer system. The terms “computer system”
and “computer network™ as may be used in the present appli-
cation may include a variety of combinations of fixed and/or
portable computer hardware, software, peripherals, and stor-
age devices. The computer system may include a plurality of
individual components that are networked or otherwise
linked to perform collaboratively, or may include one or more
stand-alone components. The hardware and software compo-
nents of the computer system of the present application may
include and may be included within fixed and portable
devices such as desktop, laptop, and/or server. A module may
be a component of adevice, software, program, or system that
implements some “functionality”, which can be embodied as
software, hardware, firmware, electronic circuitry, or etc.

The embodiments described above are illustrative
examples and it should not be construed that the present
invention is limited to these particular embodiments. Thus,
various changes and modifications may be effected by one
skilled in the art without departing from the spirit or scope of
the invention as defined in the appended claims.

We claim:

1. A method for mobile application cache, comprising:

receiving an asynchronous communication from a mobile

device over a wireless network notifying that data was
dropped in a synchronizing folder;

computing a hash value associated with the data;

US 9,348,853 B2

11

determining based on the computed hash value, a partition
of an object grid comprising a plurality of virtual
machines; and

storing the data on the partition,

wherein the synchronizing folder comprises a data sharing

file folder on the mobile device and the data is dropped
in the synchronizing folder by one or more of a plurality
of applications running on the mobile device,

wherein the plurality of applications on the mobile device

are allowed to save respective data in the object grid and
retrieve the respective data from the object grid over the
wireless network via the synchronizing folder on the
mobile device,

the asynchronous communication comprising at least pro-

file information associated with a name-value pair of an
object grid queue, the profile information comprising
one or more rules that specify an order in which items in
the queue are saved, an application of billing rules, a
time-to-live for an associated data, and a rule that deter-
mines whether and when the saved data will be returned
back to the synchronizing folder, the method further
comprising returning the data to the mobile device based
on the one or more rules.

2. The method of claim 1, wherein the storing the data on
the partition comprises storing a primary version of the data
on a primary shard of the partition and storing a replica
version of the data on a replica shard of the partition.

20

25

12

3. The method of claim 2, wherein the asynchronous com-
munication comprises an event notification comprising a
name-value pair.

4. The method of claim 3, wherein the receiving the asyn-
chronous communication comprises receiving the name-
value pair on an object grid queue and profile information
associated with the name-value pair.

5. The method of claim 4, wherein the profile information
specifies one or more rules to apply to storing and managing
of the name-value pair.

6. The method of claim 5, further comprising:

returning the data to the mobile device based on the one or

more rules.

7. The method of claim 3, further comprising:

enabling an application running on one or more of the

plurality of virtual machines to access the stored data.

8. The method of claim 1, wherein the receiving the asyn-
chronous communication comprises receiving the name-
value pair in a queue.

9. The method of claim 1, wherein logic in the mobile
device associated with the synchronizing folder performs
introspection to determine whether the data contains a call-
back method to return data to the application that dropped the
data, and responsive to receiving saved data associated with
the data from the object grid, returning the save data to the
application via the callback method.

#* #* #* #* #*

