WO 01/35201 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A 0 O 0

(10) International Publication Number

17 May 2001 (17.05.2001) PCT WO 01/35201 A1l
(51) International Patent Classification’: GO6F 3/00 (72) Inventors: CHEN, Zhiqun; 901 San Antonio Road, MS
PAL01-521, Palo Alto, CA 94303-4900 (US). SCHWABE,
(21) International Application Number: PCT/US00/31029 Judy; 901 San Antonio Road, MS PALO1-521, Palo Alto,
CA 943034900 (US).
(22) International Filing Date: (74) Agents: RITCHIE, David, B. et al.; D’Alessandro &

10 November 2000 (10.11.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/439,113 12 November 1999 (12.11.1999) US

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901
San Antonio Road, MS PAL01-521, Palo Alto, CA 94303-
4900 (US).

Ritchie, P.O. Box 640640, San Jose, CA 95164-0640 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR,
HU,ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,1.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL,PT,RO,RU, SD, SE, SG, SL, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

[Continued on next page]

(54) Title: OPTIMIZATION OF N-BASE TYPED ARITHMETIC EXPRESSIONS

OVERVIEW OF
PROCESS

C

| GET INSTRUCTION } &

SENSITIVE TO
OVEF}PFLOW

YES

ROLL BACK TO
INSTRUCTION THAT
IS THE SOURCE OF
THE PROBLEM AND

RECONVERT WITH
WIDER BASE

|~ 86

CONVERT

88
INSTRUCTION d

ANOTHER
INSTRgCTION

YES

(57) Abstract: A method for arithmetic expression optimization
includes receiving a first instruction (80) defined for a first pro-
cessor having a first base, the first instruction (80) including an
operator and at least one operand, converting the first instruction
(80) to a second instruction (88) optimized for a second proces-
sor having a second base when all operands do not carry poten-
tial overflow (82) or when the operator is insensitive to overflow,
the second base being smaller than the first base, and converting
to a wider base a third instruction (86) that is the source of the
overflow when the at least one operand the potential for overflow
and when the operator is sensitive to overflow. An apparatus for
arithmetic expression optimization includes at least one memory
having program instructions and at least one processor config-
ured to use the program instructions to receive a first instruction
(80) defined for a first processor having a first base, convert the
first instruction to a second instruction (88) optimized for a sec-
ond processor having a second base when every one of the at least
one operand does not carry potential overflow (82) or when the
operator is insensitive to overflow, the second base being smaller
than the first base, and convert to a wider base a third instruc-
tion (86) that is the source of the overflow when the at least one
operand the potential for overflow (84) and when the operator is
sensitive to overflow.

woO 01735201 A1 IR 10O 00

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, For two-letter codes and other abbreviations, refer to the "Guid-
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BE, BJ, CE, ance Notes on Codes and Abbreviations"” appearing at the begin-
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

Published:
— With international search report.

10

15

20

25

30

WO 01/35201 PCT/US00/31029

TITLE OF THE INVENTION
OPTIMIZATION OF N-BASE TYPED ARITHMETIC EXPRESSIONS

Cross Reference to Related Applications

This application is related to the following:

U.S. Patent Application filed February 2, 1999, Susser and Schwabe, entitled
OBJECT-ORIENTED INSTRUCTION SET FOR RESOURCE-CONSTRAINED
DEVICES.

U.S. Patent Application filed April 15, 1997, Levy and Schwabe, entitled VIRTUAL
MACHINE WITH SECURELY DISTRIBUTED BYTECODE VERIFICATION.

L. Field Of the Invention.
The present invention relates to computer systems. More particularly, the present

invention relates to the optimization of n-base typed arithmetic expressions.

2. Background of the Invention.

Preparation of a computer program is illustrated in Fig. 1. The user writes programs
in a high-level programming language 10. The programs written in the high-level program
language 10 are compiled into a low-level machine language 12, which can be executed by
the targeted machine. For example, programs written in the high-level Java™ programming
language are compiled into low level bytecode instructions. The bytecode instructions are
the machine language for a Java™ Virtual Machine. The Java™ Virtual Machine
Specification is described in Lindholm et al., “The Java™ Virtual Machine Specification”,
1999, Addison Wesley, Second Edition.

Typical high-level programming languages support arithmetic expressions.
Arithmetic expressions are defined by an arithmetic operator that operates on one or more
operands. Operators typically supported include addition, subtraction, multiplication,
division, remainder, negate, shift, bitwise OR, bitwise AND and bitwise exclusive OR.

Intermediate values are the results of one or more arithmetic operations.

10

15

20

25

30

WO 01/35201 PCT/US00/31029

High-level languages also typically support multiple or n-base integral types and
arithmetic operations are overloaded. Overloading allows operators to accept operands
having mixed types. For example, the Java™ programming language supports four base
integral types: byte, short, int and long. These types support 8-, 16-, 32- and 64-bit values,
respectively. Operators such as the “+” operator may accept operands of any of these
integral types. The three examples below illustrate overloading the “+” operator for

operations on operands having mixed base types.

int a, b;

atb;

short a, b;

atb;

byte a, b;

atb;

This overloading is typically performed by widening values to a wider base type and
then performing the arithmetic operation. For example, C and Java™ compilers typically
widen values of type byte and short to type int. In the Java™ language, type int is always
32 bits. Thus, 16-bit values of type short and 8-bit values of type byte are widened to the
32-bit type int before performing the arithmetic operation. In the Java™ language, the

following byte code is generated for each of the three examples listed above:

iload a
iload b
iadd

The iload instructions loads any of the 8, 16 or 32-bit variables and puts a 32-bit
operand on the stack. The iadd instruction pops two 32-bit operands off the stack, adds
them and puts the 32-bit result back on the stack.

10

15

20

25

30

WO 01/35201 PCT/US00/31029

Unlike Java™, some high-level languages define only the relationship between the
integral types, and not the size of each type. For example, one C compiler vendor may
define the bit sizes of types byte, short and int to be 8, 16 and 32 bits, respectively.
However, another C compiler vender may define the sizes of the same types to be 16, 32
and 64 bits, respectively. Yet another compiler may define the bit sizes to be 16, 32 and 32
bits, respectively. In all cases, the relationship between the sizes of each type is maintained
(number of values represented by type byte < number of values represented by type short,
number of values represented by type short < number values represented by type int), but
the actual number of bits used to represent each type may differ. Like Java™, however, C
performs arithmetic operations in the size of the int type defined by each particular

compiler. This requires widening values having a smaller base type to type int.

This type widening approach reduces the number of machine instructions, thus
reducing the complexity of the target machine. However, this type widening typically
requires more computational stack space. For example, adding two 16-bit values of type
short after they have been widened to the 32-bit type uses the same amount of stack space as

adding two 32-bit values of type int, as illustrated in Figs. 2A and 2B.

Turning now to Fig. 2A, a flow diagram that illustrates stack usage when adding two
16-bit values of type short in the Java™ language is illustrated. At reference numeral 20,
the first 16-bit operand is loaded and pushed onto the operand stack. The operand stack at
this point is illustrated by reference numeral 30. At reference numeral 22, the first 16-bit
operand is expanded to 32 bits. At reference numeral 24, the second 16-bit operand is
loaded and pushed onto the operand stack. At reference numeral 26, the second 16-bit
operand is expanded to 32 bits. At this point, the operand stack occupies 4x16=64 bits. At

reference numeral 28, the two 32-bit operands are added using a 32-bit add operator.

Turning now to Fig. 3A, a flow diagram that illustrates stack usage when adding two
32-bit values of type int is presented. At reference numeral 40, the first 32-bit operand is
loaded and pushed onto the operand stack. The operand stack is illustrated by Fig. 3B. At
reference numeral 42, the second 32-bit operand is loaded and pushed onto the operand
stack. At reference numeral 44, the two 32-bit operands are added using a 32-bit add
operator. Thus, in both the 16-bit add and the 32-bit add examples above, two 32-bit

10

15

20

25

30

WO 01/35201 PCT/US00/31029

operands are pushed onto the stack before being popped off the stack and added using a 32-
bit add operation.

During the course of program execution, the stack size may vary in size due to
factors such as the level of nested procedure calls, the complexity of computed expressions
and the number of locally declared variables. On resource-constrained devices such as
smart cards, there is typically insufficient memory available to perform such computations

where type widening takes place.

Resource-constrained devices are generally considered to be those that are relatively
restricted in memory and/or computing power or speed, as compared to typical desktop
computers and the like. By way of example, other resource-constrained devices include
cellular telephones, boundary scan devices, field programmable devices, personal digital

assistants (PDAs) and pagers and other miniature or small footprint devices.

Smart cards, also known as intelligent portable data-carrying cards, generally are
made of plastic or metal and have an electronic chip that includes an embedded
microprocessor or microcontroller to execute programs and memory to store programs and
data. Such devices, which can be about the size of a credit card, have computer chips with
8-bit or 16-bit architectures. Additionally, these devices typically have limited memory
capacity. For example, some smart cards have less than one kilo-byte (1K) of random
access memory (RAM) as well as limited read only memory (ROM), and/or non-volatile

memory such as electrically erasable programmable read only memory (EEPROM).

Furthermore, smart cards with 8-bit or 16-bit architectures typically have built-in 8-
bit or 16-bit arithmetic operations, respectively. As such, smart cards can typically perform
8-bit or 16-bit operations more efficiently than 32-bit operations. Performing 32-bit
operations on data that has been widened to 32-bits is especially inefficient. Thus, the
limited architecture and memory of resource-constrained devices such as smart cards make
it impractical or impossible to execute programs where the values have been widened to a

larger integral type.

The Java™ Virtual Machine instruction set defines an arithmetic instruction set to

handle values of integral types byte, short and int. Variables of type byte and short are

4

10

15

20

25

30

WO 01/35201 PCT/US00/31029

widened to the integral type int during compilation. By contrast, the Java Card™ (the smart
card that supports the Java™ programming language) Virtual Machine defines a separate
instruction set to handle variables of type byte and short, in addition to the instruction set to
handle variables of integral type int. Most Java Card™ applications operate on data values

of type short or byte.

There is an increasing trend in the computer industry to support high-level computer
languages designed for execution on relatively memory-rich desktop computers, such that
the same programs can be run on resource-constrained devices, thus achieving
interoperability across vertical platforms. This interoperability across vertical platforms
requires that programs written in the high-level programming language render the same
result when run on resource-constrained devices as they would when ran on relatively
memory-rich devices. For example, it is desirable to support execution of programs written
in the Java™ programming language on a variety of platforms including smart card

platforms, hand-held devices, consumer appliances, desktop computers and supercomputers.

Accordingly, there is a need to transform program representations such that
semantically equivalent mathematical expressions can be performed using less
computational stack space. Additionally, there is a need in the prior art to perform such

transformations such that execution speed is increased.

SUMMARY OF THE INVENTION

A method for arithmetic expression optimization includes receiving a first
instruction defined for a first processor having a first base, the first instruction including an
operator and at least one operand, converting the first instruction to a second instruction
optimized for a second processor having a second base when all operands do not carry
potential overflow or when the operator is insensitive to overflow, the second base being
smaller than the first base, and converting to a wider base a third instruction that is the
source of the overflow when the at least one operand the potential for overflow and when
the operator is sensitive to overflow. An apparatus for arithmetic expression optimization
includes at least one memory having program instructions and at least one processor
configured to use the program instructions to receive a first instruction defined for a first
processor having a first base, convert the first instruction to a second instruction optimized

for a second processor having a second base when every one of the at least one operand

5

10

15

20

25

30

WO 01/35201 PCT/US00/31029
does not carry potential overflow or when the operator is insensitive to overflow, the second
base being smaller than the first base, and convert to a wider base a third instruction that is
the source of the overflow when the at least one operand the potential for overflow and

when the operator is sensitive to overflow.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram that illustrates compiling a program written in a high-level
language.

Fig. 2A is a flow diagram that illustrates stack usage for adding two 16-bit operands
widened to 32-bits.

Fig. 2B is a block diagram that illustrates stack usage for adding two 16-bit operands
widened to 32-bits.

Fig. 3A is a flow diagram that illustrates stack usage for adding two 32-bit operands.

Fig. 3B is a block diagram that illustrates stack usage for adding two 32-bit

operands.

Fig. 4A is a block diagram that illustrates converting arithmetic expressions for
execution on a resource-constrained machine according to one embodiment of the present

invention.

Fig. 4B is a block diagram that illustrates converting Java™ class files in accordance

with one embodiment of the present invention.

Fig. 5A is a code sample that illustrates the addition of two values of type short on a

desktop computer.

Fig. 5B is a code sample that illustrates the addition of two values of type short on a

resource-constrained computer.

10

15

20

25

30

WO 01/35201 PCT/US00/31029

Fig. 6A is a code sample that illustrates the addition of two values of type short and

immediately casting the result on a desktop computer.

Fig. 6B is a code sample that illustrates immediately casting the result of an

operation that potentially carries overflow on a resource-constrained computer.

Fig. 7A is a code sample that illustrates the addition of three values of type short and

immediately casting the result on a desktop computer.

Fig. 7B is a code sample that illustrates performing an operation that is not affected
by overflow on operands by an operation that the potential for overflow on a resource-

constrained computer.

Fig. 8A is a code sample that illustrates the addition of two values of type short and

dividing the result by a value of type short on a desktop computer.

Fig. 8B is a code sample that illustrates performing an operation that is affected by
overflow on operands created by an operation that the potential for overflow on a resource-

constrained computer.

Fig. 9 is a flow diagram that illustrates a method for n-base typed arithmetic

expression optimization in accordance with one embodiment of the present invention.

Fig. 10 is a detailed flow diagram that illustrates a method for n-base typed
arithmetic expression optimization in accordance with one embodiment of the present

invention.

Fig 11 is a flow diagram that illustrates converting an instruction in accordance with

one embodiment of the present invention.

Fig. 12A is a flow diagram that illustrates a method for converting a target

instruction in accordance with one embodiment of the present invention.

10

15

20

25

30

WO 01/35201 PCT/US00/31029

Fig. 12B is a flow diagram that illustrates a method for converting an initial value

instruction in accordance with one embodiment of the present invention.

Fig. 13 is a flow diagram that illustrates a method for converting a type conversion

instruction in accordance with one embodiment of the present invention.

Fig. 14 is a flow diagram that illustrates a method for converting a stack

manipulation instruction in accordance with one embodiment of the present invention.

Fig. 15 is a flow diagram that illustrates a method for converting an arithmetic

expression in accordance with one embodiment of the present invention

Fig. 16 is a flow diagram that illustrates a method for determining an optimized

instruction type in accordance with one embodiment of the present invention.

Fig. 17 is a flow diagram that illustrates a method for determining a result type and

result overflow in accordance with one embodiment of the present invention.

Fig. 18 is a flow diagram that illustrates a method for recording a rollback point in

accordance with one embodiment of the present invention.

Fig. 19 is a flow diagram that illustrates a method for rolling back the conversion

process in accordance with one embodiment of the present invention.

Fig. 20 is a flow diagram that illustrates propagating the results of an instruction

optimization in accordance with one embodiment of the present invention.

Fig. 21is a flow diagram that illustrates merging conversion information from

different control paths in accordance with one embodiment of the present invention.

Fig. 22A is a block diagram that illustrates instruction conversion in accordance

with one embodiment of the present invention.

10

15

20

25

30

WO 01/35201 PCT/US00/31029

Fig. 22B is a block diagram that illustrates instruction conversion in accordance with

one embodiment of the present invention.

DETAILED DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Those of ordinary skill in the art will realize that the following description of the
present invention is illustrative only. Other embodiments of the invention will readily

suggest themselves to such skilled persons having the benefit of this disclosure.

This invention relates to computer systems. More particularly, the present invention
relates to the optimization of n-base typed arithmetic expressions. The invention further
relates to machine readable media on which are stored (1) the layout parameters of the
present invention and/or (2) program instructions for using the present invention in
performing operations on a computer. Such media includes by way of example magnetic
tape, magnetic disks, optically readable media such as CD ROMs and semiconductor
memory such as PCMCIA cards. The medium may also take the form of a portable item
such as a small disk, diskette or cassette. The medium may also take the form of a larger or

immobile item such as a hard disk drive or a computer RAM.

Resource-constrained devices are generally considered to be those that are relatively
restricted in memory and/or computing power or speed, as compared to typical desktop
computers and the like. Although the particular implementation discussed below is
described in reference to a smart card, the invention can be used with other resource-
constrained devices including, but not limited to, cellular telephones, boundary scan
devices, field programmable devices, personal digital assistants (PDAs) and pagers, as well
as other miniature or small footprint devices. The invention can also be used on non-

resource constrained devices.

For the purpose of this disclosure, the term “processor” may be used to refer to a

physical computer or a virtual machine.

Turning now to Fig. 4A, a block diagram that illustrates converting arithmetic

expressions for execution on a resource-constrained machine according to one embodiment

9

10

15

20

25

30

WO 01/35201 PCT/US00/31029

of the present invention is presented. A compiler takes arithmetic expressions 60 written in
a high-level language 62 and widens the operands to a larger integral type, creating larger
base typed instructions 64 for execution on a typical desktop machine 66. The larger base
typed instructions 64 are optimized to semantically equivalent smaller base typed
instructions 68 for execution on a resource-constrained machine 70. For example, a short-
type addition instruction is used to operate on short-typed operands, and the result is type

short.

According to another embodiment of the present invention, the optimization to
semantically equivalent smaller base typed instructions is part of a just-in-time code
generator. Just before a set of instructions is executed for the first time, the unoptimized
instructions are optimized to semantically equivalent smaller base typed instructions for
execution on a resource-constrained machine. Subsequent execution of the same set of

instructions use the set of optimized instructions.

According to another embodiment of the present invention, when a larger type
instruction 64 is required to preserve the semantics of an arithmetic instruction, and larger
type instructions are not supported by the target processor, the arithmetic expression is

rejected as not supported.

Turning now to Fig. 4B, a block diagram that illustrates converting instructions in
accordance with one embodiment of the present invention is presented. Java™ class files
72 containing instructions with 32-bit operands are received by a Java Card™ class file
converter 74. The converter 74 generates instructions 76 optimized for execution on a
resource-constrained device. The optimizations include, by way of example, providing less

stack usage, smaller program size and faster execution.

Target machines may support n-typed arithmetic operators. While the Java™
Virtual Machine supports type int operators, the Java Card™ Virtual Machine supports type
short operators and optionally supports type int operators. Other devices may support only
byte-typed arithmetic operations, or all of byte-, short- and int-typed operations. Typically,
relatively less time is required to perform 16-bit arithmetic on an 8-bit or 16-bit processor

and relatively more time is required to perform 32-bit arithmetic on the same processor.

10

10

15

20

25

WO 01/35201 PCT/US00/31029
Since the actual values used in an arithmetic operation are not known at

optimization time, the optimization must assume the worst case value for each operand.
The worst case value for an operand is determined based upon the input operand type. A
small-type operation can have results that require large-type representation or overflow into
a larger type. Thus, according to the present invention, arithmetic operators are categorized
into operators affected by overflow and operators with the potential to create overflow. For
the purposes of this disclosure, overflow includes the underflow of negative values. The
result of a small-type operation is said to carry potential overflow if the operator used to
create the result belongs to the group of operators with the potential to create overflow into
a large-type representation. Intermediate values are allowed to carry potential overflow as
long as the intermediate value is not used as an operand for an operator belonging to the

group of operators affected by overflow.

The operators with a potential to create overflow include addition, subtraction,
multiplication, division, negate and left shift. The Java™ bytecodes for these operators are

shown in Table 1.

Java™

Bytecode

iadd

isub

imul

div

ineg

ishl

Table 1 — Operations with Potential Overflow

The operators affected by overflow are shown in Table 2. The arithmetic operators
affected by overflow include division, remainder, negate, right-shift and unsigned right-
shift. Non-arithmetic operators affected by overflow include array operations, switch

operations and compare operations.

11

10

15

WO 01/35201

PCT/US00/31029

Java™ Operation | Which Operand(s) Affected by
Bytecode Type Overflow

idiv Arithmetic | both input operands

irem Arithmetic | both input operands

ineg Arithmetic | only has one operand

ishr Arithmetic | operand being shifted only
iushr Arithmetic | operand being shifted only
if<*> Compare only has one operand

if icmp<*> Compare both operands to the compare
tableswitch Switch switch value

lookupswitch | Switch switch value

*newarray array number of elements

*aload array array index

*astore array array index

Table 2 — Operations Affected by Overflow

When optimizing Table 1 operations to a smaller type, the result may overflow into
the larger type. The result of an expression with one of the operators in Table 2 may lose
precision if one of the operands in the expression is an intermediate value and contains
potential overflow data. To enable optimization and preserve the semantics of the high-
level source code, the potential overflow must be corrected using an explicit source level

cast to the type of the result if the result is input to one of the operations in Table 2.

If input operand(s) to any of the operations in Table 2 are the result of an operation
in Table 1 and an explicit high level source code cast is not present, optimization cannot
occur. Such an erroneous optimization would not guarantee a semantically equivalent
result. In other words, the optimized code generated for execution on a resource-
constrained device could render a result different than the non-optimized code generated for
a desktop computer. For example, overflow data could be present in the Java™ 32-bit

representation of the operand(s), but not in the Java Card™ 16-bit representation.

The result of operations with the operators listed in Table 1 may cause overflow if

an operator with a smaller type is applied. Examples of these problems associated with

12

10

15

20

25

30

WO 01/35201 PCT/US00/31029

optimizing instructions targeted to a desktop computer platform to instructions targeted to a
resource-constrained computer platform are provided in Figs. 5A-8B. The examples
assume the desktop computer is based on a 32-bit architecture and is relatively memory
rich. The resource-constrained computer is assumed to be based on a 16-bit architecture
with relatively little memory. Those of ordinary skill in the art will recognize the invention

applies to computing platforms having various architectures.

Figures 5A-8B also use signed values. Those of ordinary skill in the art will also

recognize that overflow may occur regardless of whether the values are signed or unsigned.

Turning now to Fig. 5A, a code sample that illustrates the addition of two values of
type short on a desktop computer is illustrated. The value “a” contains the maximum value
that can be represented by a 16-bit signed short type. As described above, even though the
values are 16-bit short values, int-type addition is used. Thus, overflow from the 16-bit
range to the 32-bit range is present in the result value and the effect of the overflow is to

create a larger positive 32-bit number.

Turning now to Fig. 5B, a code sample that illustrates adding the same values as in
Fig. 5A on a resource-constrained computer is presented. Since execution is being
performed on a resource-constrained computer and both values are 16-bit short types, the
instructions are optimized to use short-typed addition, thus using less stack space.
However, because 16-bit addition is used instead of 32-bit addition, the addition creates
overflow in the sign bit. Whereas the desktop computer computed a value of 32,768, the
result computed in the resource-constrained computer example is —32,768, a negative
number. This result is unacceptable because it is different from the desktop computer

result, preventing interoperability across multiple computer platforms.

Turning now to Fig. 6A, a code sample that illustrates the addition of two values of
type short and immediately casting the result is presented. This example is the same as that
in Fig. 5A, except that the result of the addition is cast to type short. Casting the type to
short truncates the most significant sixteen bits to a short value and sign extends to a 32-bit
value. The result of an operation that potentially carries overflow (the add operation) is cast

to type short, thereby eliminating any potential overflow problem.

13

10

15

20

25

30

WO 01/35201 PCT/US00/31029
Fig. 6B illustrates adding the same values as in Fig. 6A represented as 16-bit values on a
resource-constrained computer. The result values for both the desktop computer and the

resource-constrained computer are the same.

Turning now to Fig. 7A, a code sample that illustrates the addition of three values of
type short on a desktop computer is presented. In the example, int-type addition is used to
add 16-bit short values “a” and “b” and add the result to “c”. The final result is cast to a

short type.

Turning now to Fig. 7B, a code sample that illustrates performing an operation that
is not affected by overflow on operands created by an operation that potentially carries
overflow on a resource-constrained computer is presented. Since all values in this example
are 16-bit short types, short-typed addition is used for all intermediate additions. As
indicated in Table 1, the addition operator potentially creates overflow, but is not affected
by overflow. Thus, adding “a” and “b” creates a value that potentially carries overflow.
This value is added to “c”, creating another value that potentially carries overflow.
Although the second add operation contains one operand that potentially carries overflow
(the a+b result), the add operation is not affected by operands carrying overflow. The final
result is cast to type short, removing the potential overflow from the addition operation.

Thus, the result values for both the desktop computer and the resource-constrained

computer are the same.

Turning now to Fig. 8A, a code sample that illustrates the addition of two values of
type short and dividing the result by a value of type short on a desktop computer is
presented. Since execution is being performed on a desktop computer, int-type operations
are used. The values “a” and “b” are added together using int-type add. This intermediate

[1PN

value is divided by “c”.

Turning now to Fig. 8B, a code sample that illustrates performing an operation that
is affected by overflow on operands created by an operation that potentially carries overflow
on a resource-constrained computer is presented. Since execution is being performed on a
resource-constrained computer, short-type operations are used. The values “a” and “b” are
added together using short-type add. The addition creates an intermediate value having

overflow from the 16-bit range. This intermediate value is divided by “c”. Unlike the

14

10

15

20

25

30

WO 01/35201 PCT/US00/31029

addition operator used in Fig. 7B, the division operator is affected by overflow, as shown in
Table 2. The 16-bit value is considered to be negative, since the high bit is set. Thus, the
desktop computer and resource-constraint computer examples provide different results that

have not been corrected by type conversion expressed in the program as in Figs. 6A-7B.

According to the present invention, arithmetic expressions are optimized using typed
instructions that are optimal based upon the types of operands. The optimization process
proceeds until a potential overflow problem is encountered. At this point, the input
operands of the arithmetic expression are revisited and converted to the next larger typed
instructions. This process repeats until the appropriate type of instructions are chosen so
that arithmetic expressions render the same result on desktop computers and on resource-

constrained devices with optimized instruction sets.

Several relationships are maintained during the conversion process. These
relationships relate to instructions and the values that will be produced when executing the
instructions on the target machine. The relationship data includes the actual and the desired
type for a value. The relationship data also includes the source instruction that will produce
the value on the target machine once the instruction is executed on the target machine. Each
instruction is also linked to its operand(s) relationship data. Additionally, the relationship
data for a result is linked to the instruction(s) that consume the result. Each relationship data
is also linked to the instruction (if any) that will cause potential overflow if the instruction is
executed on the target machine. This instruction is referred to as a rollback point. Since an
erroneous final result may be produced when a value which carries potential overflow is
consumed by an operator that is sensitive to overflow, linking each value that will be
produced to the instruction that caused the overflow provides a way to roll back to the

instruction that caused the overflow problem when the conversion process cannot proceed
further.

An intermediate value can be further consumed as an operand in successor
instructions. If the intermediate value potentially carries overflow, the rollback instruction
is also propagated in the result. This repeats in the course of converting an expression. The
rollback action always acts on an intermediate value (or operand) and rolls back to the
instruction where a re-conversion is required. A method for determining the rollback

instruction and other details of the optimization are discussed below.

15

10

15

20

25

30

WO 01/35201 PCT/US00/31029

Turning now to Fig. 9, a flow diagram that illustrates n-base typed arithmetic
expression optimization in accordance with one embodiment of the present invention is
presented. At reference numeral 80, an instruction to be converted is received. At reference
numeral 82, a determination is made regarding whether any of the input operands carry
potential overflow. If at least one operand carries potential overflow, a determination
regarding whether the instruction being converted is sensitive to overflow is made at
reference numeral 84. The Java™ bytecodes for these are listed in Table 2. Those of
ordinary skill in the art will recognize that the list of operators affected by overflow may
vary for different high-level languages, and that this invention may be applied to these other

languages as well.

At reference numeral 86, if the instruction being converted is sensitive to overflow,
the conversion process is rolled back to the instruction that is the source of the problem and
that instruction is converted using a type having a wider base. For example, an 8-bit byte
type would be widened to a 16-bit word type, and a 16-bit word type would be widened to a
32-bit word type. Widening an operand to a larger type requires subsequent instruction

conversions of the operand to use instructions tied to the larger type.

If the instruction being converted is insensitive to overflow, or if none of the input
operands carry potential overflow, the instruction is converted to the most optimal type for
execution on a resource-constrained device at reference numeral 88. At reference numeral
90, a determination is made regarding whether more instructions remain to be converted. If
more instructions remain, conversion of the next instruction begins at reference numeral 80.
The conversion process ends at reference numeral 92 when the last instruction has been

converted.

Turning now to Fig. 10, a detailed flow diagram that illustrates n-base typed
arithmetic expression optimization in accordance with one embodiment of the present
invention is presented. At reference numeral 100, an indication that the conversion is not
complete is made. At reference numeral 102, an indication that conversion of the first
instruction should be performed is made. At reference numeral 104, whether instruction
conversion has been completed is determined. If instruction conversion has been

completed, execution terminates at reference numeral 106. If conversion has not been

16

10

15

20

25

30

WO 01/35201 PCT/US00/31029

completed, an indication that conversion is complete is made at reference numeral 108. At
reference numeral 110, the first instruction is obtained. At reference numeral 112, a

determination of whether the instruction should be converted is made.

If the instruction should be converted, an indication that the conversion is not
complete and an indication that the current instruction should not be converted again are
made at reference numerals 114 and 116, respectively. At reference numeral 118, the
instruction is converted to another instruction optimized for a target machine having a
smaller base type. At reference numeral 120, a determination is made regarding whether a
rollback has been triggered by the conversion at reference numeral 118. If a rollback has
been triggered, the instruction at the rollback point is obtained at reference numeral 122 and
conversion of the instruction at the rollback point is restarted at reference numeral 104. If
rollback is not triggered, the result type and the desired type are matched at reference
numeral 124. At reference numeral 126, the conversion information is propagated to

successor instructions for each control path.

At reference numeral 128, a determination regarding whether more instructions
remain is made. If more instructions remain, the next instruction is obtained at reference
numeral 130 and execution continues at reference numeral 112. The conversion process

ends when the last instruction has been converted.

Turning now to Fig. 11, a flow diagram that illustrates converting an instruction in
accordance with one embodiment of the present invention is presented. At reference
numeral 140, whether the current instruction is an arithmetic instruction is determined. If
the instruction is an arithmetic instruction, it is converted at reference numeral 142.
Similarly, stack manipulation, target, type conversion and convert initial value instructions
are converted at reference numerals 146, 150, 154 and 158, respectively. The classification
of instructions according to whether an instruction is an arithmetic, stack manipulation, type
conversion or initial value instruction in Fig. 11 is for illustrative purposes only. Those of
ordinary skill in the art will recognize that the invention may be applied to many other

instruction types or classifications as well.

Turning now to Fig. 12A, a flow diagram that illustrates a method for converting a

target instruction in accordance with one embodiment of the present instruction is

17

10

15

20

25

30

WO 01/35201 PCT/US00/31029

presented. In the Java™ Virtual Machine instruction set, target instructions include branch,
switch, array access, array creation and variable store/put instructions, as well as any other
type-sensitive non-arithmetic instructions in a computer language that is not a stack

manipulation, type conversion, initial value instruction or arithmetic expression.

At reference numeral 160, the desired types for instruction operands are determined.
At reference numeral 162, a determination is made regarding whether the operands
consumed by the target instruction have types that are smaller than the desired types of the
target instruction. If the operands have types that are smaller than desired, the conversion
process is rolled back with the smaller typed operand at reference numeral 164. If the
operands do not have types that are smaller than desired, a determination regarding whether
the operands carry potential overflow is made at reference numeral 166. An operand may
carry potential overflow if it was created by one of the operators listed in Table 1, or if it is
created by an operator that propagates overflow in an operand. Operators that propagate
overflow include, by way of example, the “and”, “or” and exclusive “or” (xor) operators. If
none of the operands carries potential overflow, the instruction is optimized at reference
numeral 167. If at least one of the operands potentially carries overflow, the conversion

process is rolled back with the smaller operand at reference numeral 164.

Turning now to Fig. 12B, a flow diagram that illustrates a method for converting an
initial value instruction in accordance with one embodiment of the present invention is
presented. Examples of initial value instructions include get/load instructions and other
instructions that load a variable. Initial value instructions also include method invocation
instructions, which return the method result. Additionally, initial value instructions include
load constant instructions. These instructions are called “initial value” instructions because
the values produced by the instructions are not the result of an intermediate computation.
At reference numeral 168, the type of a variable, returned value or constant is received. At
reference numeral 169, the initial value instruction is optimized according to the type of the
variable or constant. For example, to load a short typed local variable, the iload instruction

is optimized to sload.

Turning now to Fig. 13, a flow diagram that illustrates a method for converting a
type conversion instruction in accordance with one embodiment of the present instruction is

presented. A type conversion instruction may convert an operand to a larger type or a

18

10

15

20

25

30

WO 01/35201 PCT/US00/31029

smaller type. For example, casting a 32-bit int type to a 16-bit short type converts the
operand to smaller type. Likewise, casting an 8-bit byte type to a 32-bit int type converts
the operand to a larger type. In the latter case, the byte type is called the operand type, and
the int type is called the target type.

At reference numeral 170, an instruction is received. The operand type and the
target type are determined at reference numerals 172 and 174, respectively. If the operand
type is larger than the target type, the operand type is narrowed to the target type at
reference numeral 178. If the operand type is smaller than the target type, a determination
is made regarding whether the operand potentially carries overflow at reference numeral
180. If the operand potentially carries overflow, the conversion process is rolled back to
correct the type at reference numeral 182. If the operand does not carry potential overflow,

the operand is widened to the target type at reference numeral 184.

Turning now to Fig. 14, a flow diagram that illustrates a method for converting a
stack manipulation instruction in accordance with one embodiment of the present
instruction is presented. In the Java™ Virtual Machine instruction set, stack manipulation
instructions include the “dup”, “swap” and “pop” instructions. At reference numeral 190,
an instruction is received. At reference numeral 192, a determination is made regarding
whether the instruction is a dup instruction. If the instruction is a dup instruction, a
determination regarding whether a rollback point for the original stack entry exists is made
at reference numeral 194. If the original stack entry does not have a rollback point, the
rollback point for the duplicated stack entry is set to the rollback point for the original stack
entry at reference numeral 196. If the original stack entry has a rollback point, the rollback
point for the duplicated stack entry is set to the source instruction of the original stack entry

at reference numeral 198. At reference numeral 200, the instruction is converted.

Turning now to Fig. 15, a flow diagram that illustrates a method for converting an
arithmetic expression in accordance with one embodiment of the present invention is
presented. At reference numeral 210, a determination is made regarding whether the
operands carry potential overflow. If the operands do not carry potential overflow, an
indication that the operands do not have potential overflow is made at reference numeral
212. If the operands carry potential overflow, a determination regarding whether the

instruction is affected by overflow is made at reference numeral 214. If the instruction is

19

10

15

20

25

WO 01/35201 PCT/US00/31029

not affected by overflow, an indication that the operand has potential overflow is made at
reference numeral 216. If the instruction is affected by overflow, the conversion is rolled
back at reference numeral 218 to the first operand with overflow. If the conversion is not
rolled back, the optimized instruction type is determined at reference numeral 220, the
instruction is optimized at reference numeral 222 and the result type and result overflow are

determined at reference numeral 224.

Turning now to Fig. 16, a flow diagram that illustrates a method for determining an
optimized instruction type in accordance with one embodiment of the present invention is
presented. At reference numeral 230, at least one operand is received. At reference
numeral 232, the desired instruction type is set to the largest type associated with the
operand(s). At reference numeral 234, a determination is made regarding whether any of
the operands have types smaller than the desired instruction type. If at least one operand
has a type smaller than the desired type, the smaller operand is rolled back to correct the

type at reference numeral 236.

Turning now to Fig. 17, a flow diagram that illustrates a method for determining a
result type and result overflow in accordance with one embodiment of the present invention
is presented. At reference numeral 240, the result type is set to the instruction type. The
Java Card™ result types and overflow indications returned are summarized in tables 3 to
10, below. The tables are organized according to the type of instruction. Each table

indicates the result type and the overflow indication based upon the types of one or two

operands.

type(A) and/or | type(B) Result Type Overflow
byte and byte short false

int or int int false
others short true

Table 3 — Addition, Multiplication, Subtraction

20

10

WO 01/35201 PCT/US00/31029
type(A) and/or | type(B) Result Type Overflow
byte and byte short false
byte and short short false
int or int nt false
others short true
Table 4 — Division
type(A) Result Type Overflow
byte short true
short short true
int int false
Table 5 — Left Shift
type(A) Result Type Overflow
byte byte false
short short false
int int false
Table 6 — Right Shift
type(A) Result Type Overflow
byte short false
short short true
int int false
Table 7 — Negate
type(A) Result Type Overflow
byte short true
short short true
int int false

Table 8 — Unsigned Right Shift

21

10

15

20

25

WO 01/35201 PCT/US00/31029
type(A) and/or | type(B) Result Type Overflow
int or int int false
others short false
Table 9 - Remainder
type(A) and/or | type(B) | Result Type | Overflow
byte and byte byte false
int or int int false
others short =overflow(operands)

Table 10 — and, or, xor

The use of Java Card™ result types and overflow indications in Fig. 17 are for
illustrative purposes only. Those of ordinary skill in the art will recognize that the invention
is applicable for other high order languages having other types.

At reference numeral 244, a determination is made regarding whether the result
potentially carries overflow caused by using a more optimized instruction. If the result does
not carry potential overflow, a determination is made regarding whether any operands
propagate overflow at reference numeral 246. If at least one operand propagates overflow
or if the result potentially carries overflow, the rollback point of the result is recorded at
reference numeral 248 and an indication that the result has potential overflow is made at

reference numeral 250.

Turning now to Fig. 18, a flow diagram that illustrates a method for recording a
rollback point in accordance with one embodiment of the present invention is presented. At
reference numeral 260, a determination is made regarding whether a first operand has a
rollback point associated with it. If the first operand has a rollback point associated with it,
the rollback point for the current instruction is set to the rollback point of the first operand
at reference numeral 262. If the first operand does not have overflow associated with it, a
determination regarding whether a second operand has overflow associated with it is made
at reference numeral 264. If the second operand has a rollback point associated with it, the
rollback point of the instruction is set to the rollback point of the second operand at

reference numeral 266. If neither operand has a rollback point associated with it, the

22

10

15

20

25

30

WO 01/35201 PCT/US00/31029

rollback point of the instruction is set to the source instruction for the first operand at

reference numeral 268.

According to a specific embodiment of the present invention, as shown in Fig. 18,
“first operand” refers to the one created first. Setting the rollback point to the source
instruction for the older operand may obviate the need to perform an additional rollback
operation for the newer operand, since correcting the types associated with the older

operand may correct types used subsequently by the newer operand.

Turning now to Fig. 19, a flow diagram that illustrates a method for rolling back the
conversion process in accordance with one embodiment of the present invention is
presented. At reference numeral 270, conversion of the current instruction is preempted. At
reference numeral 272, a determination regarding whether the operand has a rollback point.
If the operand does not have a rollback point, the rollback instruction is set to the source
instruction that created the operand at reference numeral 276. If the operand has a rollback
point, the rollback instruction is set to the same rollback point at reference numeral 274. At
reference numeral 278, the desired type of the rollback instruction is widened. At reference
numeral 280, an indication that the rollback instruction should be converted is made. At
reference numeral 282, the conversion process resumes at the rollback instruction. At

reference numeral 284, the rollback instruction is converted according to the new desired

type.

Turning now to Fig. 20, a flow diagram that illustrates propagating the results of an
instruction optimization in accordance with one embodiment of the present invention is
presented. At reference numeral 290, a successor instruction is obtained. A successor
instruction is an instruction in the same control path as the current instruction, and occurring
immediately after the current instruction. Those of ordinary skill in the art will recognize

that a single instruction may be part of many control paths.

At reference numeral 292, a determination is made regarding whether the successor
instruction has been visited previously in the conversion process. If the successor
instruction has not been visited previously, the conversion information for the successor
instruction is set equal to the conversion information for the current instruction at reference

numeral 294 and an indication that the successor instruction should be converted is made at

23

10

15

20

25

30

WO 01/35201 PCT/US00/31029

reference numeral 296. The conversion information may include the runtime state at the
current conversion point. For example, the values created by the current or previous
instruction that have not been consumed. The values will be used as operands to successor
instructions in the control path. For each value, the type, source instruction and rollback
point are recorded. If the successor instruction has been visited previously, the conversion
information previously recorded at the successor instruction is merged with the current
conversion information at reference numeral 298. At reference numeral 298, a
determination regarding whether a value within the merged information has been modified
is made at reference numeral 300. If a value has been modified, an indication that the
successor instruction should be converted is made at reference numeral 296. This process is

repeated for each successor instruction.

Turning now to Fig. 21, a flow diagram that illustrates merging conversion
information from different control paths in accordance with one embodiment of the present
invention is presented. At reference numeral 310, the corresponding inputs for both control
paths are compared. At reference numeral 312, a determination is made regarding whether
the types for corresponding inputs are different. If the types are different, the input having
the smaller type is rolled back at reference numeral 314. This process is repeated for each

operand.

Turning now to Fig. 22A, a block diagram illustrating instruction conversion in
accordance with one embodiment of the present invention is presented. This demonstrates
applying the present invention to an arithmetic expression that can be optimized. Fig. 22A
illustrates the conversion process for the Java™ expression

short ¢ = (short) ((short) (a +b) / c)
where the values a, b and ¢ are of type short. The Java™ bytecode sequence for this

expression is shown at reference numeral 316.

Instruction conversion begins with the iload_a instruction. Instructions associated
with the first, smaller type are used for the load and add instructions. As specified in Table
1, the add instruction creates potential overflow, but the explicit cast to type short at the
source level removes the possibility of overflow. The div 330 instruction is affected by

overflow as indicated in Table 2. However, no potential overflow is present because of the

24

10

15

20

25

30

WO 01/35201 PCT/US00/31029

explicit cast. Therefore, the need to “roll back” to the addition operation to create a larger

type does not occur.

To further aid in an understanding of the present invention, the example discussed

above will be described in more detail, with reference to Figs. 10 to 21.

The iload instruction is a source instruction. At reference numeral 160, the desired
type for the “a” operand is type short. At reference numeral 162, the operand “a” is type
short. At reference numeral 166, the operands do not carry potential overflow because they
were loaded directly and thus were not created by an operation that creates overflow.
Therefore, a short-flavored instruction is used to convert the iload instruction to an sload _a
instruction at reference numeral 167. Similarly, the iload b instruction is converted to an

sload b instruction.

Next, the iadd instruction is processed. Since iadd is an instruction that may create
overflow, a check is made to determine whether its operands carry potential overflow at
reference numeral 210. Both operands were loaded directly so they do not carry potential
overflow. Hence, the optimized result type is determined at reference numeral 220. At
reference numeral 232, the instruction type is set to the maximum operand type. In this
example, the maximum operand type is type short because both operand “a” and operand
“b” are of type short. Since both operands are the same type as the instruction type, type

short is returned as the instruction type at reference numeral 238.

Next, the instruction is optimized at reference numeral 222. Since the instruction
type is type short, the optimized instruction is “sadd”. Next, the result type and overflow
indication is determined at reference numeral 224. At reference numeral 240, the result
type is set to type short, which is the instruction type. Additionally, an indication that the
result has potential overflow is made, according to Table 3. Since the result contains
potential overflow, the rollback point for the result of (a+b) is recorded at reference numeral
248. Neither operand has a rollback point, so the rollback point for the result is set to the
source instruction for operand “a” (the first operand) at reference numeral 268. At reference

numeral 250, an indication that the result has potential overflow is made.

25

10

15

20

25

30

WO 01/35201 PCT/US00/31029

Next, the i2s instruction is processed. The i2s instruction is a type conversion
instruction. At reference numeral 176, the operand type (short) is compared to the target
type (short). Since both types are the same, the type is narrowed to type short at reference

numeral 178, eliminating potential overflow.

Next, the iload_c instruction is processed. Like values a and b, c is of type short and
the iload_c instruction is converted to an sload_c instruction. Next, the idiv instruction is
processed. As specified in Table 2, idiv is an instruction that may be affected by overflow.
The “a+b” operand does not carry potential overflow due to the explict source-level cast to
short, so the optimized divide instruction type is determined to be type short at reference

numeral 232 and the result type is set to type short at reference numeral 240.

Next, the i2s instruction is processed. At reference numeral 176, the operand type
(short) is compared to the target type (short). Since both types are the same, the type is

narrowed to type short at reference numeral 178, eliminating potential overflow.

Finally, the istore_c instruction is processed. Since the desired type is type short and
the operands do not carry overflow, the istore_c instruction is optimized to a sstore ¢
instruction at reference numeral 167. The converted bytecodes are shown at reference

numeral 318.

Turning now to Fig. 22B, a block diagram illustrating instruction conversion in
accordance with one embodiment of the present invention is presented. This demonstrates
applying the present invention to an arithmetic expression that cannot be optimized.
Nevertheless, the converted code maintains semantic equivalence with the unconverted
code. Fig. 22B illustrates the conversion process for the Java™ expression

short ¢ = (short) ((a +b) / ¢)
where the values a, b and ¢ are of type short. The Java™ bytecode sequence for this

expression is shown at reference numeral 320.

Instruction conversion begins with the iload_a instruction, represented at reference
numeral 322. Instructions associated with the first, smaller type are used for the load 322,
324 and add 326 instructions. As specified in Table 1, the add instruction 326 creates the

potential for overflow, but does not require using the second, larger type. The div 330

26

10

15

20

25

30

WO 01/35201 PCT/US00/31029

instruction, however, is affected by overflow. This is indicated in Table 2. Thus, the
instructions creating the overflow problem must be corrected. The problem is corrected by
“rolling back” to reference numeral 322 and using the second, large-typed instructions for

operand “a”.

At reference numeral 332, instruction conversion proceeds a second time until it is
determined that operand “b” must also be converted to a larger type, requiring rolling back a
second time. Instruction conversion then proceeds a third time at reference numeral 334
until it is determined that the instructions for operand “c” need to use the larger type.
Rollback is performed a third time, the type for operand “c” is corrected and the conversion
process completes after continuing the conversion process a fourth time at reference

numeral 336.

To further aid in an understanding of the present invention, the example of Fig. 22B

discussed above will be described in more detail, with reference to Figs. 10 to 21.

The initial conversion of the iload a, iload b and iadd instructions proceeds as
described in the previous example. Next, the iload_c instruction is converted to an sload ¢
instruction at reference numeral 167. Next, the idiv instruction is processed. As specified
in Table 2, idiv is an instruction that may be affected by overflow. The “a+b” operand the
potential for overflow because it was created by the “+” operator and that operator may
create overflow as indicated in Table 1. Since at least one operand the potential for
overflow, a rollback to the first operand with overflow is performed at reference numeral

218.

At reference numeral 270, conversion of the current instruction is preempted. At
reference numeral 274, overflow is associated with the a+b operand, so the rollback point is
set to the rollback point for the a+b operand. At reference numeral 278, the desired type of
rollback instruction is widened from type short to type int. At reference numeral 280, an
indication to convert the instruction being rolled back to is made. At reference numeral
282, the conversion process is resumed at the iload_a instruction, which was previously
converted to an sload_a instruction. At reference numeral 284, the iload_a instruction is

converted.

27

10

15

20

25

30

WO 01/35201 PCT/US00/31029

As a result of the rollback, the iload_a instruction is processed at reference numeral
338. Atreference numeral 124, the result type and the desired type are matched. Since the
result type is short and the desired type is int, the types do not match, Thus, the S2I
instruction is created to promote the short to an int. Processing continues with the iload b
instruction and the iadd instruction. At reference numeral 210, the operands for the iadd
instruction do not carry potential overflow, so the optimized result type is determined at
reference numeral 220. At reference numeral 234, the operand types are compared. Since
the “a” operand is now type int and the “b” operand is still type short, rollback is performed
for the “b” operand. At reference numeral 276, the rollback instruction is set to the iload b
instruction 340. At reference numeral 278, the desired type is set to int. At reference
numeral 280, an indication to convert the current instruction is made. At reference
numerals 282 and 284, the conversion is resumed at the iload_b instruction and the

instruction is converted.

At reference numeral 124, the result type and the desired type are matched. Since
the result type is short and the desired type is int, the types do not match, Thus, the S2I

instruction is created to promote the short to an int.

Next, the iadd instruction is processed. After rolling back twice, neither operand has
the potential for overflow. Therefore, an indication that the operand does not carry potential
overflow is made at reference numeral 210 and the optimized instruction type is determined
at reference numeral 220. At reference numeral 232, the instruction type is set to the
maximum operand type. Since the a+b operand is type int and the “c” operand is type short,
the instruction type is set to int. Since the “c” operand type is different than the instruction
type, rollback is performed on the “c” operand at reference numeral 236. At reference
numeral 276, the rollback instruction is set to the iload_c instruction. At reference numeral
278, the desired type of rollback instruction is widened from type short to type int. The

conversion process resumes at the iload_c instruction 342.
At reference numeral 124, the result type and the desired type are matched. Since

the result type is short and the desired type is int, the types do not match, Thus, the S2I

instruction is created to promote the short to an int.

28

10

15

20

25

WO 01/35201 PCT/US00/31629

Next, the idiv instruction is processed. At reference numeral 238, the optimized
instruction type is set to int, since both operands are of type int. At reference numeral 222,
an int-flavored instruction (idiv) is selected. The final instruction sequence is represented at

reference numeral 344 of Fig. 22.

Although the present invention has been described with regard to integral types,
those of ordinary skill in the art will recognize that the present invention may be applied to
floating-point arithmetic expressions as well. Furthermore, although the present invention
has been illustrated with respect to Java Card™ technology, those of ordinary skill in the art
will recognize that the invention is applicable to many other platforms. These platforms
include, by way of example, K virtual machine (KVM) technology. KVM technology is
described in “The K Virtual Machine (KVM) - A White Paper”, June 8, 1999, Sun

Microsystems, Inc.

The present invention may be implemented in software or firmware. It may be
implemented in other processors, as well as in programmable gate array devices,

Application Specific Integrated Circuits (ASICs), and other hardware.

Thus, a novel method for adaptive optimization of arithmetic expressions has been
described. Uniform-typed instructions are converted to semantically equivalent typed
instructions for a second, smaller (having a smaller number of bits) integral type for
execution on a resource-constrained machine, thus providing relatively efficient stack
utilization and increased execution speed. While embodiments and applications of this
invention have been shown and described, it would be apparent to those skilled in the art
having the benefit of this disclosure that many more modifications than mentioned above
are possible without departing from the inventive concepts herein. The invention, therefore,

is not to be restricted except in the spirit of the appended claims.

29

10

15

20

25

30

WO 01/35201 PCT/US00/31029

CLAIMS

What is claimed is:

A method for arithmetic expression optimization, comprising:

receiving a first instruction defined for a first processor having a first base, said
instruction including an operator and at least one operand,;

converting said first instruction to a second instruction optimized for a second processor
having a second base when said at least one operand does not carry potential
overflow beyond said second base or when said operator is insensitive to overflow,
said second base smaller than said first base; and

converting to a wider base a third instruction that is the source of potential overflow
associated with said at least one operand when said at least one operand carries the
potential for overflow beyond said second base and when said operator is sensitive
to overflow, said third instruction having been previously optimized, said wider

base larger than said second base and smaller or equal to said first base.
The method of claim 1 wherein said converting to a wider base further comprises
discarding previous conversion results of said third instruction before said converting to

a wider base.

The method of claim 1, further comprising rejecting an expression that cannot be

optimized to a smaller base on said second processor.

The method of claim 1 wherein said converting to a wider base further comprises
rejecting said first instruction when said wider base is not supported by said second
processor.

The method of claim 1 wherein said first instruction is arithmetic.

The method of claim 1 wherein said first instruction comprises a non-arithmetic,

type-sensitive instruction.

30

10

15

20

25

30

WO 01/35201 PCT/US00/31029

7.

10.

11.

12.

The method of claim 5, further comprising, after said converting said first
instruction, returning to receiving said first instruction until all instructions defined for

said first processor are converted.

The method of claim 7, further comprising linking each instruction to successor

instructions in all control paths.

The method of claim 8 wherein said converting said first instruction further
comprises:
linking each result of an instruction to all instructions that consume said result;
if said converting includes creating a value, linking said value to the instruction that
produced said value; and
if said value carries a potential for overflow, linking said value to the instruction that

originally caused said overflow.

The method of claim 1 wherein
said first processor comprises a Java™ Virtual Machine; and

said second processor comprises a Java Card™ Virtual Machine.

The method of claim 1 wherein
said first base is used by said first processor for performing arithmetic operations on at
least one data type, said at least one data type having a size less than the size of said
first base; and
said second base is used by said second processor for performing arithmetic operations
on said at least one data type, said second base having a size equal to the size of

said at least one data type.
The method of claim 1 wherein

said first processor comprises a 32-bit processor; and

said second processor comprises a resource-constrained 16-bit processor.

31

10

15

20

25

30

WO 01/35201 PCT/US00/31029

13.

14.

15.

16.

17.

The method of claim 9 wherein
said first base is used by said first processor for performing arithmetic operations on at
least one data type, said at least one data type having a size less than the size of said
first base; and
said second base is used by said second processor for performing arithmetic operations
on said at least one data type, said second base having a size greater than the size of

said at least one data type.

The method of claim 13 wherein
said first processor comprises a 32-bit processor; and

said second processor comprises a resource-constrained 16-bit processor.

A program storage device readable by a machine, embodying a program of
instructions executable by the machine to perform arithmetic expression optimization
comprising:
receiving a first instruction defined for a first processor having a first base, said first
instruction including an operator and at least one operand;

converting said first instruction to a second instruction optimized for a second processor
having a second base when said at least one operand does not carry potential
overflow beyond said second base or when said operator is insensitive to overflow,
said second base smaller than said first base; and

converting to a wider base a third instruction that is the source of potential overflow
associated with said at least one operand when said at least one operand carries the
potential for overflow beyond said second base and when said operator is sensitive
to overflow, said third instruction having been previously optimized, said wider

base larger than said second base and smaller or equal to said first base.
The program storage device of claim 15 wherein said converting to a wider base
further comprises discarding previous conversion results of said third instruction before

said converting to a wider base.

The program storage device of claim 15, further comprising rejecting an expression

that cannot be optimized to a smaller base on said second processor.

32

10

15

20

25

30

WO 01/35201 PCT/US00/31029

18.

19.

20.

21.

22.

23.

24,

25.

The program storage device of claim 15 wherein said converting to a wider base
further comprises rejecting said first instruction when said wider base is not supported

by said second processor.

The program storage device of claim 15 wherein said first instruction is arithmetic.

The program storage device of claim 15 wherein said first instruction comprises a

non-arithmetic, type-sensitive instruction.

The program storage device of claim 19, further comprising, after said converting
said first instruction, returning to receiving said first instruction until all instructions

defined for said first processor are converted.

The program storage device of claim 21, further comprising linking each instruction

to successor instructions in all control paths.

The program storage device of claim 22 wherein said converting said first
instruction further comprises:
linking each result of an instruction to all instructions that consume said result;
if said converting includes creating a value, linking said value to the instruction that
produced said value; and
if said value carries a potential for overflow, linking said value to the instruction that

originally caused said overflow.

The program storage device of claim 15 wherein
said first processor comprises a Java™ Virtual Machine; and

said second processor comprises a Java Card™ Virtual Machine.

The program storage device of claim 15 wherein
said first base is used by said first processor for performing arithmetic operations on at
least one data type, said at least one data type having a size less than the size of said

first base; and

33

5

10

15

20

25

30

WO 01/35201 PCT/US00/31029

26.

27.

28.

said second base is used by said second processor for performing arithmetic operations
on said at least one data type, said second base having a size equal to the size of

said at least one data type.

The program storage device of claim 15 wherein
said first processor comprises a 32-bit processor; and

said second processor comprises a resource-constrained 16-bit processor.

The program storage device of claim 23 wherein
said first base is used by said first processor for performing arithmetic operations on at
least one data type, said at least one data type having a size less than the size of said
first base; and
said second base is used by said second processor for performing arithmetic operations
on said at least one data type, said second base having a size greater than the size of

said at least one data type.

An apparatus for arithmetic expression optimization, comprising:

at least one memory having program instructions; and

at least one processor configured to use the program instructions to:

receive a first instruction defined for a first processor having a first base, said first
instruction including an operator and at least one operand;

convert said first instruction to a second instruction optimized for a second processor
having a second base when said at least one operand does not carry potential
overflow beyond said second base or when said operator is insensitive to overflow,
said second base smaller than said first base; and

convert to a wider base a third instruction that is the source of potential overflow
associated with said at least one operand when said at least one operand carries the
potential for overflow beyond said second base and when said operator is sensitive
to overflow, said third instruction having been previously optimized, said wider

base larger than said second base and smaller or equal to said first base.

34

10

15

20

25

30

WO 01/35201 PCT/US00/31029

29.

30.

31.

32.

33.

34.

The apparatus of claim 28 wherein said at least one processor is further configured
to use the program instructions to discard previous conversion results of said third

instruction before converting to a wider base.

An apparatus for arithmetic expression optimization, comprising:

means for receiving a first instruction defined for a first processor having a first base,
said first instruction including an operator and at least one operand;

means for converting said first instruction to a second instruction optimized for a second
processor having a second base when said at least one operand does not carry
potential overflow beyond said second base or when said operator is insensitive to
overflow, said second base smaller than said first base; and

means for converting to a wider base a third instruction that is the source of potential
overflow associated with said at least one operand when said at least one operand
carries the potential for overflow beyond said second base and when said operator
1s sensitive to overflow, said third instruction having been previously optimized,

said wider base larger than said second base and smaller or equal to said first base.

The apparatus of claim 30 wherein said means for converting to a wider base further
comprises a means for discarding previous conversion results of said third instruction

before said converting to a wider base.

The apparatus of claim 30, further comprising a means for linking each instruction

to successor instructions in all control paths.

A method of using an application software program including arithmetic expression
optimization of at least one instruction targeted to a processor having a first base, the
method comprising:
receiving the software program on a processor; and

executing the sequence of instructions on the processor.

The method of claim 33, further including storing the at least one instruction on a

resource-constrained device.

35

WO 01/35201 PCT/US00/31029

35. A smart card having a microcontroller embedded therein, the smart card comprising:
a virtual machine being executed by a microcontroller, the virtual machine executing a
software application comprising of a plurality of previously optimized instructions,
the virtual machine comprising means for receiving optimized instructions, the
optimized instructions being previously optimized for execution on a resource-

constrained device, means for executing said instructions.

36

WO 01/35201 PCT/US00/31029

1/15
HIGH-LEVEL TARGET MACHINE
10~ PROGRAMMING COMPILE PROGRAMMING 12
LANGUAGE LANGUAGE
FIG. 1

20
LOAD FIRST 16-BIT OPERAND |~

!

22
EXPAND TO 32 BITS L~

!

24
LOAD SECOND 16-BIT OPERAND |~

!

W
o

w
N

S e

EXPAND TO 32 BITS |26 36
32-51# ADD 28 38
END
FIG. 2

|

Va 40 : 50
LOAD FIRST 32-BIT OPERAND |
|

: P 52
LOAD SECOND 32-BIT OPERAND |
I

l 44 54

32-BIT ADD L ! Q/

I

END

FIG. 3

SUBTITUTE SHEET (RULE 26)

WO 01/35201

2/15

PCT/US00/31029

eg 6< 6&
ARTHMETIC | COMPILE | LARGER) opTimizaTion | o 2MALER S
EXPRESSION | WIDEN | INSTRUCTIONS | SEMANTICALLY |INSTRUCTIONS

OPERANDS EQUIVALENT
HIGH-LEVEL RESOURCE-
PROGRAMMING Ui CONSTRAINED
LANGUAGE y DEVICE
62 66 70
FIG. 4A
|
I
U P
CLASS FILE
2BT [
OPERANDS
CONVERTER |~ 7*
JAVA CARD™
CAPFILES | ~76
16 OR 32-BIT
OPERANDS
FIG. 4B

SUBTITUTE SHEET (RULE 26)

WO 01/35201 PCT/US00/31029

3/15

short a = OX7FFF;
shortb = 1;
shortc=1;

a [int-type add] b;
0x00007FFF + 1
0x00008000
32768

FIG. 5A

result

short a = Ox7FFF;

shortb = 1;
shortc=1;
result = a{ short-type add] b;
= Ox7FFF -1
= 0x8000
= —32768
FIG. 5B

(short) a[int-type add] b
(short) (0XO0007FFF + 1)
(short) (0x00008000)
OxFFFF8000

-32768

FIG. 6A

result

result (short) a [short-type add] b
(short) (OX7FFF + 1)

(short) (0x8000)

= -32768
FiG. 6B

SUBTITUTE SHEET (RULE 26)

WO 01/35201

result

result

result

result

4/15

(short) (a[int-type add] b
[int-type add] c)

(short) (0Ox00007FFF +1 +1)

(short) (0x00008001)
OxFFFF8001
-32767

FIG. 7A

(short) a [short-type add] b

[short-type add] ¢
(short) (OX7FFF +1+1)
(short) 0x8001
-32767

FIG. 7B

a[int-type add] b

[int-type divide] ¢
(OX00007FFF +1) / 2
0x00008000 / 2
0x00004000
16384

FIG. 8A

nunn

a [short-type add] b

[short-type divide] ¢

(OX7FFF + 1) / 2
0x8000 / 2
0xC000

-16384

FIG. 8B

SUBTITUTE SHEET (RULE 26)

PCT/US00/31029

WO 01/35201

5/15

OVERVIEW OF
PROCESS
i
Y 80
GET INSTRUCTION |~

INPUT
OPERANDS

PCT/US00/31029

CARRY
OVERFLOW
?

INSTRUCTION

SENSITIVE TO
OVERFLOW

ROLL BACK TO
INSTRUCTION THAT
IS THE SOURCE OF | ~ 86
THE PROBLEM AND
RECONVERT WITH

WIDER BASE

YES

.

CONVERT
INSTRUCTION

FIG. 9

ANOTHER
INSTRUCTION
?

SUBTITUTE SHEET (RULE 26)

WO 01/35201

6/15

(OVERVIEW OF PROCESS)

DONE = FALSE

!

SET CONVERT IN
1ST INSTRUCTION
=TRUE

DONE = TRUE

|

110
GET 1STINSTRUCTION

PCT/US00/31029

106

RECONVERT

=TRUE
?

DONE = FALSE

!

CONVERT = FALSE

RESET TO
INSTRUCTION
OF ROLLBACK

POINT

/

122

:

CONVERT
INSTRUCTION

120

ROLLBACK
TRIGGERED
?

NO

124"

MATCH RESULT TYPE
AND DESIRED TYPE

1261

Y

PROPAGATE
CONVERSION

/118

INFORMATION

128

INSTRUOCTIONS

GET NEXT
SEQUENTIAL
INSTRUCTIONS

LN

130

MORE

YES

NO

FIG. 10

SUBTITUTE SHEET (RULE 26)

WO 01/35201

7/15

(_ CONVERT INSTRUCTION)

140

ARITHMETIC
INSTRUCTION
?

144

STACK

MANIPULATION

INSTRUCTION
?

148

TARGET
INSTRUCTION
?

152

CONVERSION
INSTRUCTION
?

156

INITIAL

VALUE

INSTRUCTION
?

142

N

CONVERT
ARITHMETIC
INSTRUCTION

PCT/US00/31029

146

N

CONVERT STACK
MANIPULATION
INSTRUCTION

150

N

CONVERT
TARGET
INSTRUCTION

154

N

CONVERT TYPE
CONVERSION
INSTRUCTION

158

N

CONVERT
INITIAL VALUE
INSTRUCTION

FIG. 11

SUBTITUTE SHEET (RULE 26)

WO 01/35201 PCT/US00/31029

8/15

((CONVERT TARGET INSTRUCTION)

Y

DETERMINE TYPES
FOR OPERANDS IN 160
THE INSTRUCTION

162

OPERANDS
HAVE SMALLER
TYPES THAN
EXPECTED
TYIZES

OPERANDS
CARRY
OVERFLOW

YES

YES
ROLLBACK 164 167~ OPTIMIZE
WITH SMALLER | I~ INSTRUCTION
OPERAND I
END

FIG. 12A

CONVERT INITIAL
VALUE INSTRUCTION

RECORD TYPE OFF 168
VARIABLE, RETURNED e
VALUE OR CONSTANT

v

OPTIMIZE
INSTRUCTION | ~169
BASED ON TYPE

A

END

FIG. 12B

SUBTITUTE SHEET (RULE 26)

WO 01/35201 PCT/US00/31029

9/15

CONVERT TYPE CONVERSION
INSTRUCTION

GET TYPE CONVERSION | ~170
INSTRUCTION

'

TYPE 172
(OPERAND) =M d

!

TYPE | 174
(TARGET TYPE) = M'

NO
1/82
OPERAND
ROLLBACK] |«YE2 CARRIES
OVERFLOW
?
NO NARROW THE
TYPE M TO M'
WIDEN THE OPERAND
184~ FROMTYPEMTOM' N
178
END
FIG. 13

SUBTITUTE SHEET (RULE 26)

WO 01/35201 PCT/US00/31029

10/15

CONVERT STACK
MANIPULATION INSTRUCTION

190
GETINSTRUCTION

192

DUP
INSTRUCTION
?

194 | ROLLBACK POINT
ROLLBACK (DUPLICATE) =
(ORIGINAL) SOURCE
= NULL INSTRUCTION
? (ORIGINAL)
NO <
198

ROLLBACK POINT (DUPLICATE)
196-—"| = ROLLBACK POINT (ORIGINAL)

CONVERT
200~"| INSTRUCTION

END

FIG. 14

SUBTITUTE SHEET (RULE 26)

PCT/US00/31029

WO 01/35201
11/15
CONVERT
ARITHMETIC INSTRUCTION 212
210 INDICATE
OPERANDS NG | OPERAND DOES
CARRY NOT HAVE
OVERFLOW POTENTIAL
2 OVERFLOW
214 (IDNDICAL% 220
INSTRUCTION PERA
AFFECTED BY DOES HAVE
OVERFLOW. POTENTIAL DETERMINE
? OVERFLOW OPTIMIZED
YES INSTRUCTION TYPE
ROLLBACK TO FIRST 216 }
OPERAND WITH OVERFLOW OPTIMIZE
N 200 _~| INSTRUCTION
218 }
DETERMINE RESULT
004-"]| TYPE & OVERFLOW
|
END
FIG. 15
DETERMINE OPTIMIZED
INSTRUCTION TYPE
230
GET OPERAND(S) |~
I}
SET INSTRUCTION 930
TYPE TO MAXIMUM
OPERAND TYPE(S)
236
234
ANY N
OPERANDS YES || ROLLBACK WITH
INSTRUCTION SMALLER OPERAND

TYPE
?

NO

i:’ ~238
END

FIG. 16

SUBTITUTE SHEET (RULE 26)

WO 01/35201

PCT/US00/31029

12/15

DETERMINE RESULT TYPE
AND OVERFLOW

C

OVERFLOW
?

NO

SETRESULTTYPE |~ 240
TO INSTRUCTION TYPE
RESULT
CARRIES YES
OVERFLOW
?
248
246
ANY \
OPERANDS RECORD ROLLBACK
PROPAGATE POINT OF THE RESULT

!

INDICATE RESULT HAS
POTENTIAL OVERFLOW
E,‘\]D 250
FiG. 17
(' RECORD ROLLBACK POINT) 262
260 SET ROLLBACK
FIRST POINT TO
OPERAND HAS AOLLBAGK
A R%,L,%ACK POINT OF THE
s FIRST OPERAND
264 SET ROLLBACK
SECOND POINT TO
OPERAND HAS ROLLBACK POINT
AROLLBACK OF THE SECOND
POINT OPERAND
'NO \
SET ROLLBACK POINT TO 266
SOURCE INSTRUCTION OF
THE FIRST OPERAND
/ | Y
268 END
FIG. 18

SUBTITUTE SHEET (RULE 26)

WO 01/35201

PCT/US00/31029
13/15
(ROLL BACK)
PREEMPT CONVERSION | ~ 270
OF CURRENT INSTRUCTION
: 272
ROLLBACK NO
POINT =
NIL
?
274 276
\/
SET ROLLBACK INSTRUCTION SET ROLLBACK INSTRUCTION
TO THE ROLLBACK POINT TO THE SOURCE INSTRUCTION

Y

WIDEN DESIRED TYPE OF
ROLLBACK INSTRUCTION

Y

SET CONVERT (ROLLBACK
INSTRUCTION) TO TRUE

y

RESUME CONVERSION AT
ROLLBACK INSTRUCTION

A

RECONVERT ROLLBACK
INSTRUCTION

(END)

FiG. 19

SUBTITUTE SHEET (RULE 26)

WO 01/35201

14/15

PCT/US00/31029

(' PROPAGATE RESULTS)

!

GET SUCCESSOR
INSTRUCTION

| 290

INSTRUCTION
BEEN VISITED
PREVIOUSLY 298
204 ? , /
\ ' MERGE INFORMATION

SET CONVERSION INFORMATION
FOR SUCCESSOR INSTRUCTION

EQUAL TO CONVERSION INFORMATION

FOR CURRENT INSTRUCTION

FOR CURRENT INSTRUCTION
CONVERSION AND
SUCCESSOR INSTRUCTION

296

YES

Y

SET CONVERT (SUCCESSOR
INSTRUCTION) = TRUE

300

VALUE
MODIFIED
?

NO

(EllJD)

FIG. 20

(_ MERGE INFORMATION

)

COMPARE
CORRESPONDING
INPUTS FOR BOTH
CONTROL PATHS

312

TYPES
DIFFERENT
?

YES

ROLLBACK WITH
SMALLER TYPE

/310

/
314 :EN:D

FIG. 21

SUBTITUTE SHEET (RULE 26)

WO 01/35201

320

Source

ibad a
ibad b
iadd
ibad ¢
idiv
i2s
istore

Sload a
Sload b
Sadd
Sload ¢
Sdiv

PCT/US00/31029

15/15

3? 318
Source Converted

lloada —— > Sload A
lloadb ——— > Sload B

ladd —————>§ADD
12s loadC
lioad ¢ ?Sdiv
Idiv Sstore ¢
I2S /
Istore c
FIG. 22A
332
Correct 334
T l Types
1 l Correct
l T Types g3
1 l Rollback l Correct
l Types
Rollback Rollback
344
340 Converted
/ 342 Sload a
S2i
Sload a / Slo_ad b
S2i Sload b Szl
Sload b S2i iadd
Sadd jadd Sloadc Sloadc
Sload ¢ S2i S2i
Idiv Idiv Idiv
i2s
Sstore
FIG. 22B

SUBTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/31029

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 3/00
USCL :717/9

According to International Patent Classification (IPC) or to both n

ational classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed

Uus. : 7179

by classification symbols)

Documentation searched other than minimum documentation to the

extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

East

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X USA 5,493,675 A (FAIMAN, JR. et al.) 20 February 1996, col. 1| 1-9,12,
lines 42-46, col. 2 lines 6-36, col. 35 line 11-col. 37 line 14, col. 37 14-23,26,
line 51-col. 38 line 45, col. 41 line 54-col. 42 line 52 28-33

X,P USA 6,005,942 A (CHAN et al.) 21 December 1999, fig. 3A, col. | 10-11, 13,
8 lines 30-53, 24-25,27,

34-35

A USA 5,844,218 A (KAWAN et al.) 01 December 1998, abstract. 35

A USA 6,092,147 A (LEVY et al.) 18 July 2000, abstract. 35

A GRAY et al. 1998 Advanced Card Technology Sourcebook, p.150-| 35
154.

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier document published on or after the international filing date

“L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

ok document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than

the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the

principle or theory underlying the invention

document of particuiar relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 DECEMBER 2000

Date of mailing of the international search report

09 JAN 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
R Motthas

(703) 305-9600

JOHN CHAVI
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)*

INTERNATIONAL SEARCH REPORT

International application No.

175.

PCT/US00/31029
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A DREIFUS et al., Smart Cards, John Wiley & Sons, Inc., p. 159- 35

Form PCT/ISA/210 (continuation of second sheet) (July 1998)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

