

US 20100311057A1

(19) **United States**

(12) **Patent Application Publication**

Parr et al.

(10) **Pub. No.: US 2010/0311057 A1**

(43) **Pub. Date: Dec. 9, 2010**

(54) **MITOCHONDRIAL DNA DELETION
BETWEEN ABOUT RESIDUES 12317-16254
FOR USE IN THE DETECTION OF CANCER**

(76) Inventors: **Ryan Parr**, Thunder Bay (CA); **Jennifer Creed**, Thunder Bay (CA); **Kerry Robinson**, Thunder Bay (CA); **Andrea Maggrah**, Thunder Bay (CA); **Katrina Maki**, Porcupine (CA); **Gabriel Dakubo**, Thunder Bay (CA); **Brian Reguly**, Vancouver (CA); **Andrew Harbottle**, Tyne and Wear (GB); **Jude Alexander**, Petawawa (CA)

Correspondence Address:

MORGAN LEWIS & BOCKIUS LLP
1111 PENNSYLVANIA AVENUE NW
WASHINGTON, DC 20004 (US)

(21) Appl. No.: **12/742,032**

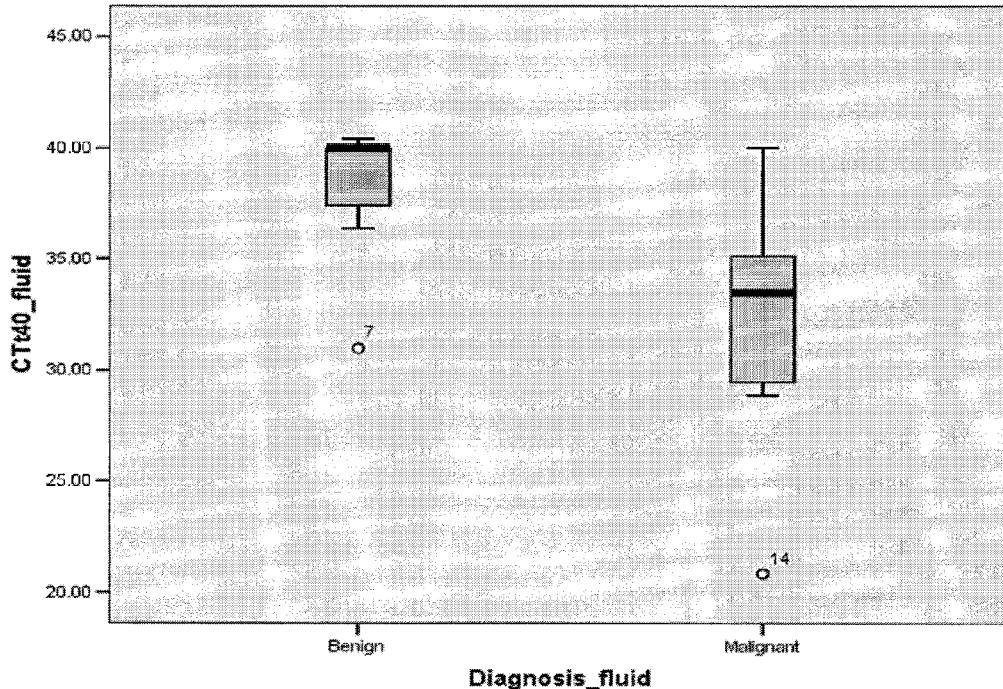
(22) PCT Filed: **Nov. 10, 2008**

(86) PCT No.: **PCT/CA2008/001956**

§ 371 (c)(1),
(2), (4) Date: **Aug. 25, 2010**

Related U.S. Application Data

(60) Provisional application No. 61/002,637, filed on Nov. 9, 2007.


Publication Classification

(51) **Int. Cl.** *C12Q 1/68* (2006.01)

(52) **U.S. Cl.** **435/6**

ABSTRACT

The present invention relates to methods for predicting, diagnosing and monitoring cancer. The methods comprise obtaining biological samples, extracting mitochondrial DNA (mtDNA) from the samples, quantifying mitochondrial DNA mutation in the sample and comparing the level of mtDNA mutation with a reference value. The methods of the invention may also be effective in screening for new therapeutic agents and treatment regimes, and may also be useful for monitoring the response of a subject to a preventative or therapeutic treatment.

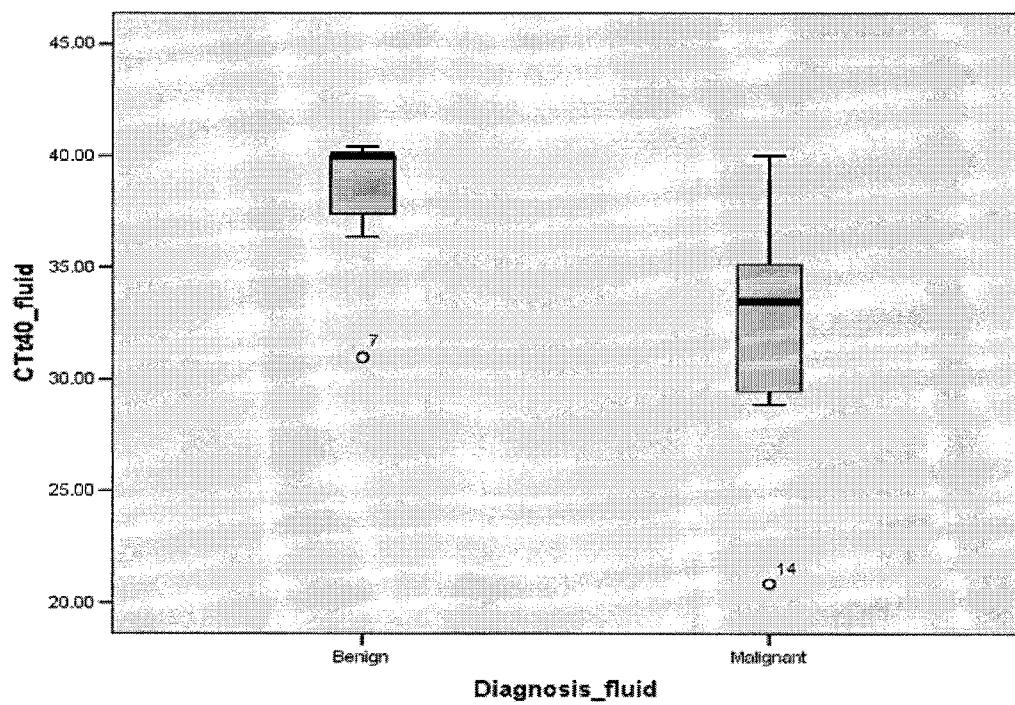
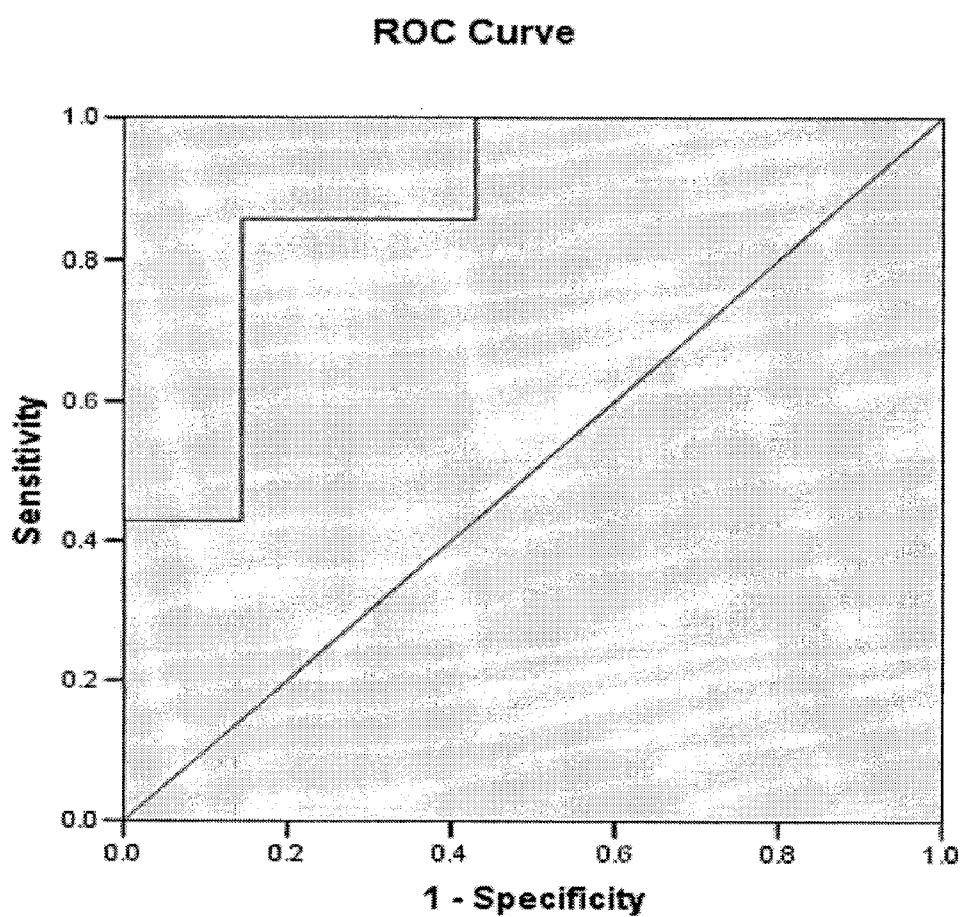
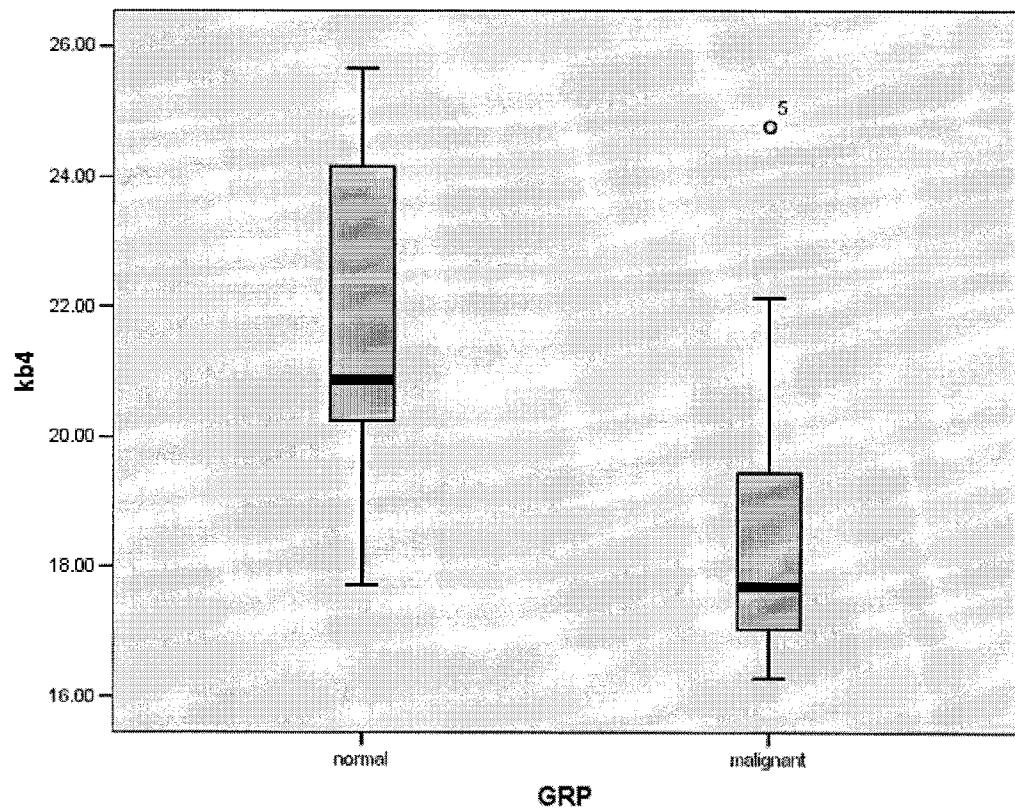
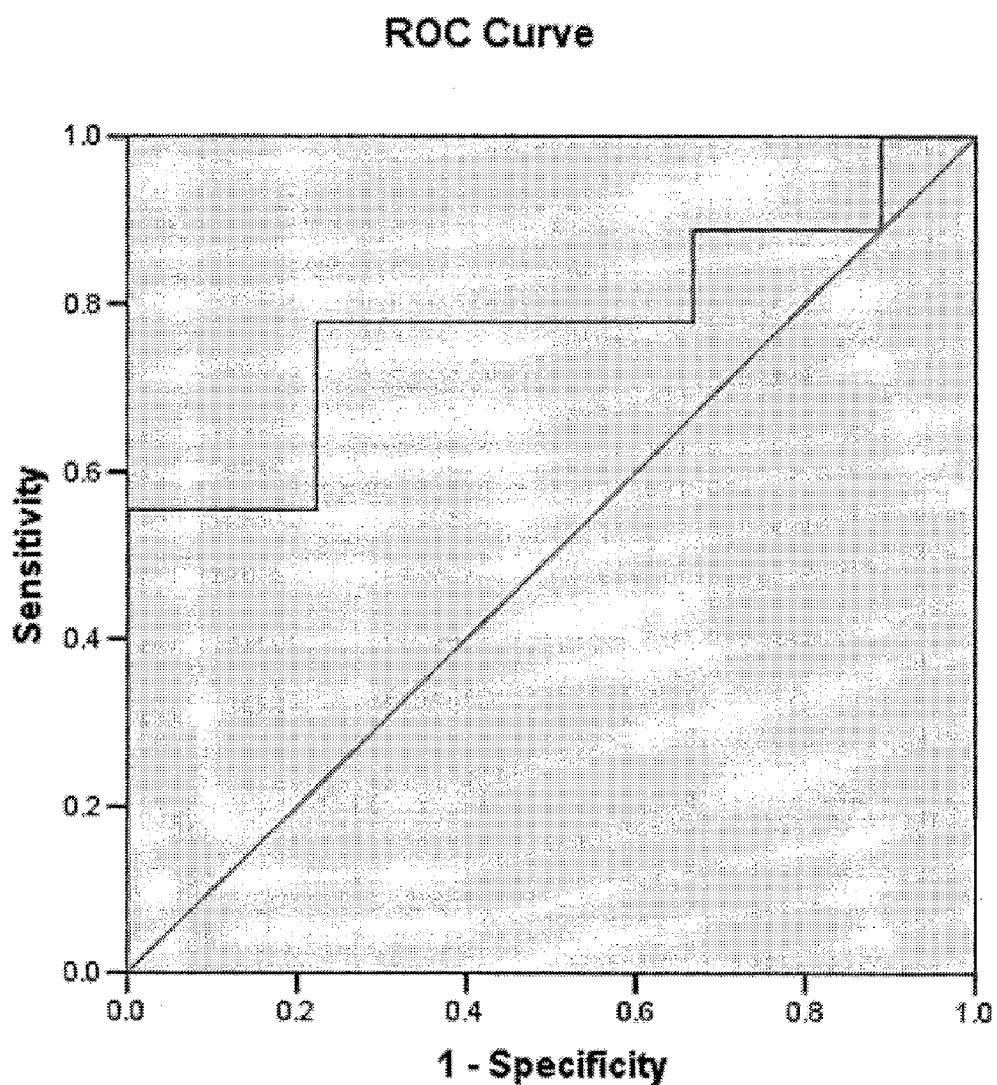



Figure 1

Figure 2

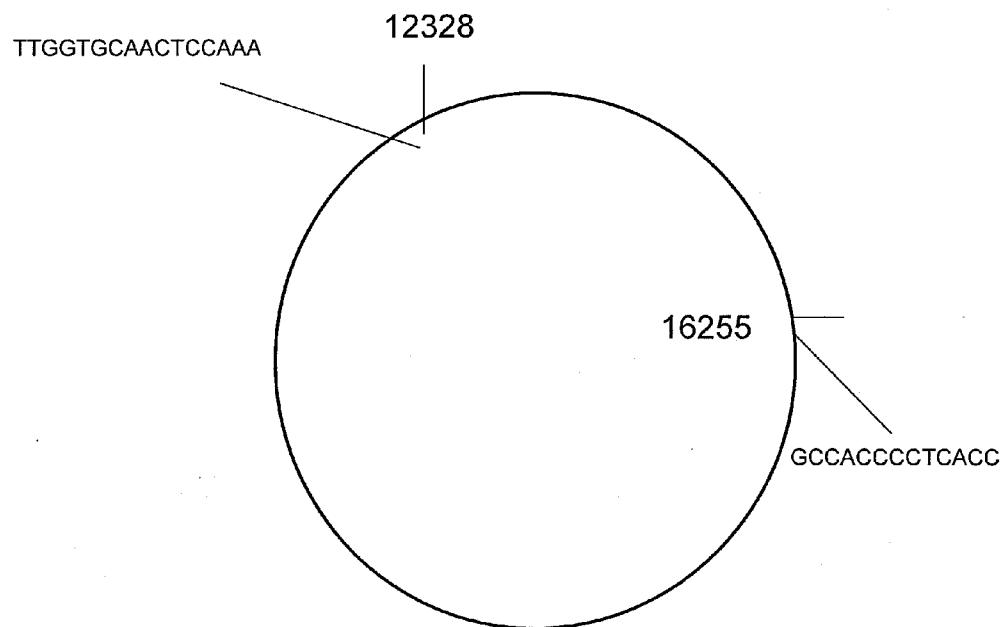
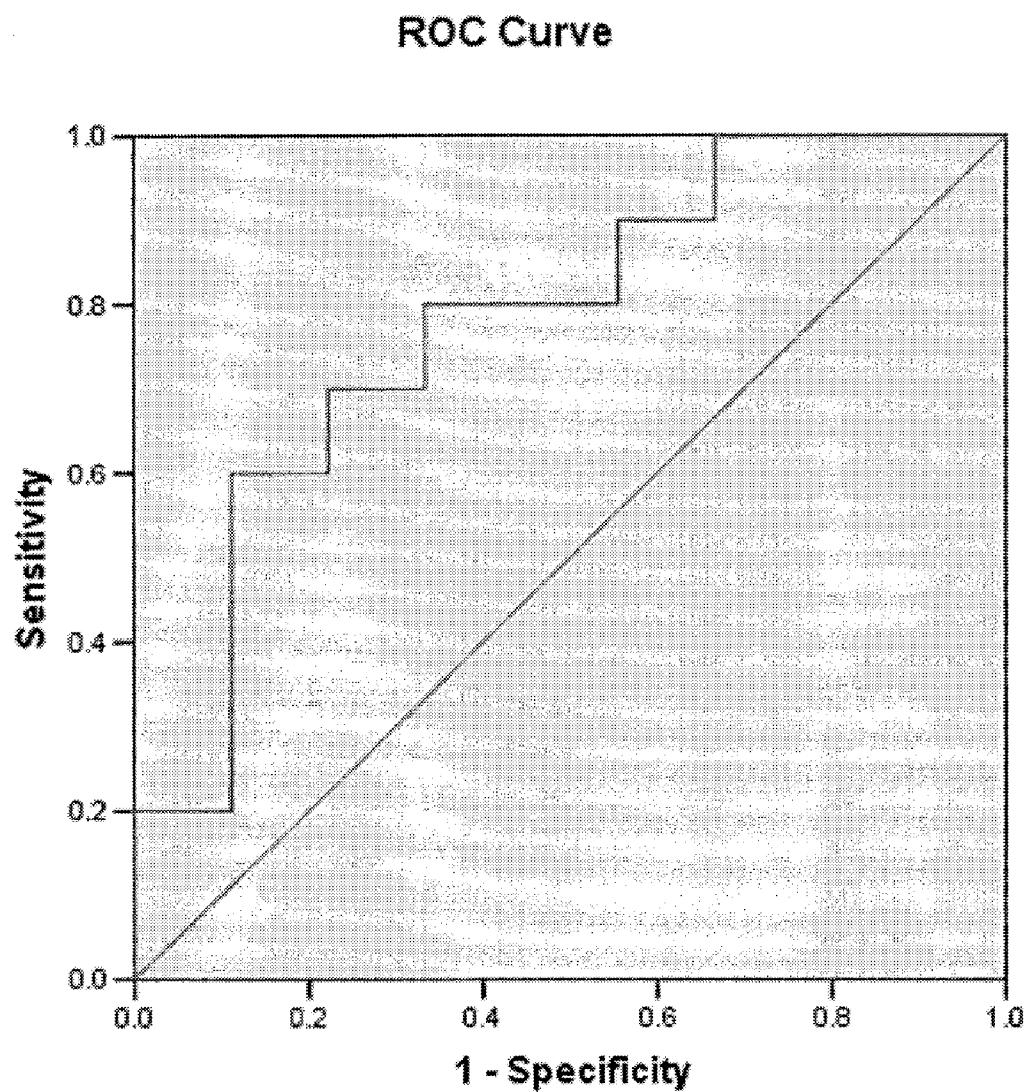

Figure 3

Figure 4


Agent Ref. 102222/00050
21826003.1

Primer Design for 4kb Deletion Detection

PRIMER SEQUENCE 5'-TTGGTGCAACTCCAAAGCCACCCCTCACC-3'

Figure 5

Figure 6

**MITOCHONDRIAL DNA DELETION
BETWEEN ABOUT RESIDUES 12317-16254
FOR USE IN THE DETECTION OF CANCER**

**CROSS-REFERENCE TO RELATED
APPLICATIONS**

[0001] This application claims priority from U.S. Application No. 61/002,637, filed Nov. 9, 2007, the entire contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention pertains to the field of mitochondrial genomics. In particular it is related to the detection of human mitochondrial genome mutations and their utility as an indicators of cancer.

BACKGROUND OF THE INVENTION

Mitochondrial DNA as a Diagnostic Tool

[0003] Mitochondrial DNA (mtDNA) sequence dynamics are important diagnostic tools. Mutations in mtDNA are often preliminary indicators of developing disease, often associated with nuclear mutations, and act as biomarkers specifically related to: disease, such as but not limited to, tissue damage and cancer from smoking and exposure to second hand tobacco smoke (Lee et al., 1998; Wei, 1998); longevity, based on accumulation of mitochondrial genome mutations beginning around 20 years of age and increasing thereafter (von Wurmb, 1998); metastatic disease caused by mutation or exposure to carcinogens, mutagens, ultraviolet radiation (Birch-Machin, 2000); osteoarthritis; cardiovascular, Alzheimer, Parkinson disease (Shoffner et al., 1993; Sherratt et al., 1997; Zhang et al., 1998); age associated hearing loss (Seidman et al., 1997); optic nerve degeneration and cardiac dysrhythmia (Brown et al., 1997; Wallace et al., 1988); chronic progressive external exophthalmoplegia (Taniike et al., 1992); atherosclerosis (Bogliolo et al., 1999); papillary thyroid carcinomas and thyroid tumours (Yeh et al., 2000); as well as others (e.g. Naviaux, 1997; Chinnery and Turnbull, 1999).

[0004] Mutations at specific sites of the mitochondrial genome can be associated with certain diseases. For example, mutations at positions 4216, 4217 and 4917 are associated with Leber's Hereditary Optic Neuropathy (LHON) (Mitochondrial Research Society; Huoponen (2001); MitoMap). A mutation at 15452 was found in 5/5 patients to be associated with ubiquinol cytochrome c reductase (complex III) deficiency (Valnot et al. 1999).

[0005] Specifically, these mutations or alterations include point mutations (transitions, transversions), deletions (one base to thousands of bases), inversions, duplications, (one base to thousands of bases), recombinations and insertions (one base to thousands of bases). In addition, specific base pair alterations, deletions, or combinations thereof have been found to be associated with early onset of prostate, skin, and lung cancer, as well as aging (e.g. Polyak et al., 1998), premature aging, exposure to carcinogens (Lee et al., 1998), etc.

Prostate Cancer

[0006] Prostate cancer is a frequently diagnosed solid tumour that most likely originates in the prostate epithelium (Huang et al. 1999). In 1997, nearly 10 million American men were screened for prostate specific antigen (PSA), the pres-

ence of which suggests prostate cancer (Woodwell, 1999). Indeed, this indicates an even higher number of men screened by an initial digital rectal exam (DRE). In the same year, 31 million men had a DRE (Woodwell, 1999). Moreover, the annual number of newly diagnosed cases of prostate cancer in the United States is estimated at 179,000 (Landis et al., 1999). It is the second most commonly diagnosed cancer and second leading cause of cancer mortality in Canadian men. In 1997 prostate cancer accounted for 19,800 of newly diagnosed cancers in Canadian men (28%) (National Cancer Institute of Canada). It is estimated that 30% to 40% of all men over the age of forty-nine (49) have some cancerous prostate cells, yet only 20% to 25% of these men have a clinically significant form of prostate cancer (SpringNet—CE Connection, internet, www.springnet.com/ce/j803a.htm). Prostate cancer exhibits a wide variety of histological behaviour involving both endogenous and exogenous factors, i.e. socio-economic situations, diet, geography, hormonal imbalance, family history and genetic constitution (Konishi et al. 1997; Hayward et al. 1998). Although certain mtDNA alterations have been previously associated with prostate cancer, the need exists for further markers for the detection of prostate cancer.

Breast Cancer

[0007] Breast cancer is a cancer of the glandular breast tissue and is the fifth most common cause of cancer death. In 2005, breast cancer caused 502,000 deaths (7% of cancer deaths; almost 1% of all deaths) worldwide (World Health Organization Cancer Fact Sheet No. 297). Among women worldwide, breast cancer is the most common cancer and the most common cause of cancer death (World Health Organization Cancer Fact Sheet No. 297). Although certain mtDNA alterations have been previously associated with breast cancer, for example in Parrella et al. (Cancer Research: 61, 2001), the need exists for further markers for the detection of breast cancer.

[0008] This background information is provided for the purpose of making known information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.

SUMMARY OF THE INVENTION

[0009] The present invention pertains to mitochondrial DNA mutations for use in the detection of cancer. In accordance with an aspect of the present invention, there is provided a method of detecting a cancer in an individual comprising:

[0010] a) obtaining a biological sample from the individual;

[0011] b) extracting mitochondrial DNA (mtDNA) from the sample;

[0012] c) quantifying the amount of mtDNA in the sample having a deletion in the mtDNA sequence between about residue 12317 and about residue 16254 of the human mtDNA genome; and

[0013] d) comparing the amount of mtDNA in the sample having the deletion to at least one known reference value.

[0014] In accordance with another aspect of the present invention, there is provided a method of monitoring an individual for the development of a cancer comprising:

[0015] a) obtaining a biological sample;

[0016] b) extracting mitochondrial DNA (mtDNA) from the sample;

[0017] c) quantifying the amount of mtDNA in the sample having a deletion in the mtDNA sequence between about residue 12317 and about residue 16254 of the human mtDNA genome; and

[0018] d) repeating steps a) to c) over a duration of time;

[0019] wherein an increasing level of the deletion over the duration of time is indicative of cancer.

[0020] In accordance with another aspect of the present invention, there is provided a method of detecting a cancer in an individual comprising:

[0021] a) obtaining a biological sample from the individual;

[0022] b) extracting mitochondrial DNA (mtDNA) from the sample;

[0023] c) quantifying the amount of mtDNA in the sample having a sequence corresponding to the sequence as set forth in SEQ ID NO: 1 or SEQ ID NO: 2; and

[0024] d) comparing the amount of mtDNA in the sample corresponding to SEQ ID NO: 1 or SEQ ID NO: 2 to at least one known reference value.

[0025] In accordance with another aspect of the present invention, there is provided a diagnostic kit for carrying out the method of the invention comprising:

[0026] (a) material for collecting one or more biological samples; and

[0027] (b) suitable primers and reagents for detecting the mtDNA deletion.

BRIEF DESCRIPTION OF THE FIGURES

[0028] These and other features of the invention will become more apparent in the following detailed description in which reference is made to the appended drawings.

[0029] FIG. 1 is a graph showing cycle threshold as related to Example 1.

[0030] FIG. 2 shows a ROC curve illustrating the specificity and sensitivity of one embodiment of the present invention.

[0031] FIG. 3 is a graph showing cycle threshold as related to Example 2.

[0032] FIG. 4 shows a ROC curve illustrating the specificity and sensitivity of another embodiment of the present invention.

[0033] FIG. 5 is a schematic diagram showing the design and sequence of a primer useful for the detection of the 4 kb deletion.

[0034] FIG. 6 shows a ROC curve illustrating the specificity and sensitivity of another embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0035] The present invention provides methods of predicting, diagnosing and monitoring cancer. The methods comprise obtaining one or more biological samples, extracting mitochondrial DNA (mtDNA) from the samples, quantifying the amount of a mitochondrial mutation in the samples and comparing the quantity of the mutation in a sample with a

reference value. In this regard, the methods provide a comprehensive tool for determining disease onset and for assessing the predisposition of an individual to cancer. The methods also allow for the monitoring of an individual's risk factors over time and/or for monitoring a patient's response to therapeutic agents and treatment regimes.

DEFINITIONS

[0036] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

[0037] As used herein, the term "about" refers to an understood variation from the stated value. It is to be understood that such a variation is always included in any given value provided herein, whether or not it is specifically referred to.

[0038] As defined herein, "biological sample" refers to a tissue or bodily fluid containing cells from which mtDNA can be obtained. For example, the biological sample can be derived from tissue such as breast or prostate tissue, or from blood, saliva, cerebral spinal fluid, sputa, urine, mucus, synovial fluid, peritoneal fluid, amniotic fluid and the like. The biological sample may be a surgical specimen or a biopsy specimen. The biological sample can be used either directly as obtained from the source or following a pre-treatment to modify the character of the sample. Thus, the biological sample can be pre-treated prior to use by, for example, preparing plasma or serum from blood, disrupting cells, preparing liquids from solid materials, diluting viscous fluids, filtering liquids, distilling liquids, concentrating liquids, inactivating interfering components, adding reagents, and the like.

[0039] As used herein, "cycle threshold" (C_T) is the point at which target amplification using real-time PCR rises above background, as indicated by a signal such as a fluorescence signal. The C_T is inversely related to the quantity of the sequence being investigated.

[0040] As used herein, "diagnostic" or "diagnosing" means using the presence or absence of a mutation or combination of mutations as a factor in disease diagnosis or management. The detection of the mutation(s) can be a step in the diagnosis of a disease.

[0041] As used herein, "deletion" means removal of a region of mtDNA from a contiguous sequence of mtDNA. Deletions can range in size from one base to thousands of bases or larger.

[0042] As used herein, "mitochondrial DNA" or "mtDNA" is DNA present in mitochondria.

[0043] As used herein, "mutation" encompasses any modification or change in mitochondrial DNA from the wild type sequence, including without limitation point mutations, transitions, insertions, transversions, translocations, deletions, inversions, duplications, recombinations or combinations thereof. The modification or change of the sequence can extend from a single base change to the addition or elimination of an entire DNA fragment.

[0044] As defined herein, "sensitivity" refers to the fraction of true positives (true positive rate) results obtained using the method of the present invention.

[0045] As defined herein, "specificity" refers to the fraction of false positives (false positive rate) results obtained using the method of the present invention.

[0046] The terms "therapy" and "treatment," as used interchangeably herein, refer to an intervention performed with

the intention of improving a subject's status. The improvement can be subjective or objective and is related to ameliorating the symptoms associated with, preventing the development of, or altering the pathology of a disease. Thus, the terms therapy and treatment are used in the broadest sense, and include the prevention (prophylaxis), moderation, reduction, and curing of a disease, at various stages. Preventing deterioration of a subject's status is also encompassed by the term. Subjects in need of therapy/treatment thus include those already having the disease, as well as those prone to, or at risk of developing, the disease, and those in whom the disease is to be prevented.

Assays for Predicting, Diagnosing and Monitoring Cancer

Assay for Detection of Mitochondrial Mutation

[0047] Mitochondrial DNA (mtDNA) dynamics are an important diagnostic tool.

[0048] Mutations in mtDNA are often preliminary indicators of developing disease and may act as biomarkers indicative of risk factors associated with disease onset. As discussed herein, measuring the level of mitochondrial DNA aberration in a biological sample can determine the presence of one or more cancers and identify the potential risk or predisposition of a patient to one or more cancers. Furthermore, measurement of mtDNA at regular intervals can provide health care professionals with a real-time, quantitative monitoring tool for measuring the progression of a patient over time and/or as an assessment for treatment recommendations in order to determine their effectiveness in preventing or treating cancer.

[0049] The present invention, therefore, provides methods for predicting, diagnosing or monitoring cancer, comprising obtaining one or more biological samples, extracting mitochondrial DNA (mtDNA) from the samples, and assaying the samples for mitochondrial mutation by: quantifying the amount of an mtDNA aberration in the sample and comparing the level of the aberration with a reference value. As would be understood by those of skill in the art, the reference value is based on whether the method seeks to predict, diagnose or monitor cancer. Accordingly, the reference value may relate to mtDNA data collected from one or more known non-cancerous biological samples, from one or more known cancerous biological samples, and/or from one or more biological samples taken over time. These reference values are used for comparison with the mtDNA data collected from the one or more biological samples wherein, for example, a similar or elevated amount of deletion in the biological sample compared to the reference sample is indicative of a predisposition to or the onset of cancer, or wherein an increasing level of the deletion over time is indicative of cancer onset.

[0050] In accordance with an aspect of the invention, the methods for predicting, monitoring and diagnosing cancer comprise an assay for detecting and quantifying one or more mitochondrial mutations. In accordance with one embodiment of the invention, the mutation is an mtDNA deletion. In accordance with another embodiment, the mutation is an mtDNA deletion of 3926 bp of mtDNA (referred to herein as "the 4 kb deletion" or "4 kb sequence"). In accordance with yet another embodiment, the mutation is an mtDNA deletion having the sequence as set forth in SEQ ID NO:1 or SEQ ID NO:2, there being no difference between SEQ ID NO: 1 and SEQ ID NO: 2 when in circular form.

[0051] The 4 kb deletion spans approximately nucleotides 12317 and 16254 of the human mtDNA genome. The human

mtDNA genome is listed herein as SEQ ID NO:3 (Genbank accession no. AC_000021). The 4 kb deletion is characterized by direct flanking repeats 12 bp in size, with the repeats located at positions 12317-12328 and 16243 to 16254. The repeat sequence is 5'-TGCAACTCCAAA-3'. Thus, in accordance with one embodiment of the invention, the mutation is an mtDNA deletion of between about residue 12317 and about residue 16254 of the human mtDNA genome.

[0052] The inventors have determined, as provided by way of example below, that this deletion is associated with cancer and in particular prostate and breast cancer. Therefore, such deletion provides an accurate biomarker and, therefore, a valuable tool for the detection, diagnosis, or monitoring of cancer in at least these tissues.

[0053] The deletion results in the creation of two deletion monomers, one of 4 kb in size (small sublimon) and one of approximately 12.5 kb in size (large sublimon). The occurrence of the deletion may be detected by either identifying the presence of the small sublimon or the large sublimon, the 4 kb or 12.5 kb sequence respectively.

[0054] Exemplary methods for assaying the mitochondrial mutation are provided in the Example section. Extraction of mtDNA from a sample may be undertaken using any suitable known method. MtDNA extraction is followed by amplification of all or a region of the mitochondrial genome, and may include sequencing of the mitochondrial genome, as is known in the art and described, for example, in Current Protocols in Molecular Biology (Ausubel et al., John Wiley & Sons, New York, 2007). Likewise, methods for detecting the presence of mutations in the mtDNA can be selected from suitable techniques known to those skilled in the art. For example, analyzing mtDNA can comprise sequencing the mtDNA, amplifying mtDNA by PCR, Southern, Northern, Western, South-Western blot hybridizations, denaturing HPLC, hybridization to microarrays, biochips or gene chips, molecular marker analysis, biosensors, melting temperature profiling or a combination of any of the above.

[0055] Any suitable means to sequence mitochondrial DNA may be used. Preferably, mtDNA is amplified by PCR prior to sequencing. The method of PCR is well known in the art and may be performed as described in Mullis and Faloona, 1987, *Methods Enzymol.*, 155: 335. PCR products can be sequenced directly or cloned into a vector which is then placed into a bacterial host. Examples of DNA sequencing methods are found in Brumley, R. L. Jr. and Smith, L. M., 1991, *Rapid DNA sequencing by horizontal ultrathin gel electrophoresis*, *Nucleic Acids Res.* 19:4121-4126 and Luckey, J. A., et al, 1993, *High speed DNA sequencing by capillary gel electrophoresis*, *Methods Enzymol.* 218: 154-172. The combined use of PCR and sequencing of mtDNA is described in Hopgood, R., et al, 1992, *Strategies for automated sequencing of human mtDNA directly from PCR products*, *Biotechniques* 13:82-92 and Tanaka, M. et al, 1996, *Automated sequencing of mtDNA*, *Methods Enzymol.* 264: 407-421.

[0056] Although real-time quantitative PCR methods, as described in the examples below, represent the preferred means for detecting and quantifying the presence or absence of the 4 kb deletion, other methods would be well known to an individual of skill in the art and could be utilized as indicated above. In addition, quantification of the deletion could be made using Bio-Rad's Bioplex™ System and Suspension

Array technology. Generally, the method requires amplification and quantification of sequences using any known methods.

[0057] The following primer sequences are examples of primers that may be used for the detection of the 4 kb deletion: [0058] 4 forward (binds to bases 12313-12328/16255-16267 of the human mtDNA genome) 5'-TTGGTG-CAACTCCAAAGCCACCCCTCACC-3' (SEQ ID NO: 4); [0059] 4 reverse (binds to bases 16391-16409 of the human mtDNA genome) 5'-AGGATGGTGGTCAAGGGAC-3' (SEQ ID NO: 5).

[0060] In one embodiment of the present invention, a pair of amplification primers are used to amplify a target region indicative of the presence of the 4 kb deletion. In this embodiment, one of the pair of amplification primers overlaps a spliced region of mtDNA after deletion of the 4 kb sequence has occurred and the mtDNA has reformed as a circular mtDNA molecule (eg. a splice at a position between 12328 and 16255 of the mtDNA genome). Therefore, extension of the overlapping primer can only occur if the 4 kb section is deleted. FIG. 5 is a schematic diagram showing the design and sequence of the primer (ie. SEQ ID NO: 4).

[0061] In another embodiment of the present invention, a pair of amplification primers are used to amplify a target region associated with the deleted 4 kb sequence. The deleted 4 kb sequence, upon deletion, may reform as a circular mtDNA molecule. In this embodiment, one of the pair of amplification primers overlaps the rejoining site of the ends of the 4 kb sequence. Thus, an increase in the amount of the 4 kb molecule detected in a sample is indicative of cancer.

[0062] In still another embodiment of the present invention, the breakpoint of the deletion is unknown thereby resulting in two possibilities for primer location. In this embodiment, two separate forward primers may be designed to amplify the target region associated with the deleted 4 kb sequence. The following primer sequences are examples of those that may be used for the detection of the 4 kb deletion in this scenario:

Forward Primers:

[0063] Primer A (binds to bases 12313-12328/16255-16267 of the human mtDNA genome) 5'-TTGGTG-CAACTCCAAAGCCACCCCTCACC-3' (SEQ ID NO: 4);

[0064] Primer B (binds to bases 12302-12316 of the human mtDNA genome) 5'-CCCAAAAATTTGGTCAACTC-CAAAGGCCAC-3' (SEQ ID NO: 6).

Reverse Primer:

[0065] Primer C (binds to bases 16391-16409 of the human mtDNA genome) 5'-AGGATGGTGGTCAAGGGAC-3' (SEQ ID NO: 5).

[0066] As would be understood by a person of skill in the art, the forward primers A or B can be used with reverse primer C to create PCR products that are useful in qPCR assays.

Biological Sample

[0067] The present invention provides for diagnostic tests which involve obtaining or collecting one or more biological samples. In the context of the present invention, "biological sample" refers to a tissue or bodily fluid containing cells from which mtDNA can be obtained. For example, the biological sample can be derived from tissue including, but not limited to, breast, prostate, nervous, muscle, heart, stomach, colon

tissue and the like; or from blood, saliva, cerebral spinal fluid, sputa, urine, mucous, synovial fluid, peritoneal fluid, amniotic fluid and the like. The biological sample may be obtained from a cancerous or non-cancerous tissue and may be a surgical specimen or a biopsy specimen.

[0068] The biological sample can be used either directly as obtained from the source or following a pre-treatment to modify the character of the sample. Thus, the biological sample can be pre-treated prior to use by, for example, preparing plasma or serum from blood, disrupting cells, preparing liquids from solid materials, diluting viscous fluids, filtering liquids, distilling liquids, concentrating liquids, inactivating interfering components, adding reagents, and the like.

[0069] One skilled in the art will understand that more than one sample type may be assayed at a single time (i.e. for the detection of more than one cancer). Furthermore, where a course of collections are required, for example, for the monitoring of risk factors or cancer over time, a given sample may be diagnosed alone or together with other sample taken throughout the test period. In this regard, biological samples may be taken once only, or at regular intervals such as biweekly, monthly, semi-annually or annually.

[0070] One of skill will also appreciate that mitochondrial DNA targets are in much greater abundance (approximately 1000 fold greater) than nucleic acid targets and as such sample sizes comprising extremely low yields of nucleic acids would be suitable for use with the present invention.

Applications for Predicating, Diagnosing and Monitoring Cancer

Diagnosing and Monitoring Cancer

[0071] The prevalence of cancer in most tissue types and age groups necessitates the availability of a tool to not only detect the presence of cancer, but also to monitor the success and appropriateness of preventative measures and therapies being advised to prevent onset, progression and spread of the disease. Measuring the level of mitochondrial DNA deletions in one or more biological samples of an individual can provide initial diagnosis of risk factors, cancer and/or stages of the disease.

[0072] The system and method of the present invention, for example, may be used to detect cancer at an early stage, and before any histological abnormalities. Furthermore, sample testing at regular intervals such as biweekly, monthly, semi-annually or annually (or any other suitable interval) can provide health care professionals with a real-time, quantitative monitoring tool to compare against treatment recommendations to determine their effectiveness in preventing or treating the disease.

[0073] Turning now to the examples, in one embodiment the present invention may be used for detecting the presence of pre-neoplasia, neoplasia and progression towards potential malignancy of prostate cancer and breast cancer. In one aspect, the present invention involves the detection and quantification of the 4 kb mtDNA deletion for the detection, diagnosis, and/or monitoring of cancer. In this method, mtDNA is extracted from a biological sample (for example body tissue, or body fluids such as urine, prostate massage fluid). The extracted mtDNA is then tested in order to determine the levels (ie. quantity) of the 4 kb deletion in the sample. In tests conducted by the present inventors, the levels of the deletion were found to be elevated in samples obtained from subjects

with cancer when compared to samples obtained from subjects without cancer. Based on the information and data supplied below, the inventors have concluded that elevated levels of the 4 kb deletion in human mtDNA is indicative of cancer. [0074] In another embodiment, samples of, for instance prostate tissue, prostate massage fluid, urine or breast tissue, are obtained from an individual and tested over a period of time (eg. years) in order to monitor the genesis or progression of cancer. Increasing levels of the 4 kb deletion over time could be indicative of the beginning or progression of cancer. [0075] One of ordinary skill in the art will appreciate that analysing one or more biological samples from an individual for quantification of a mitochondrial DNA target provides a means for a health care worker to monitor the effectiveness of treatment regimes. One of ordinary skill will also appreciate the utility of mtDNA analysis for use by health care providers in identifying (and providing recommendations for) lifestyle habits, such as poor diet and exercise, or activities that cause over exposure of an individual to known carcinogens (eg. tobacco, pollutants).

[0076] Another aspect of the invention provides methods for confirming or refuting the results of a cancer biopsy test from a biopsy sample (eg. prostate or breast cancer), comprising: obtaining non-cancerous tissue from a biopsy sample; and detecting and quantifying the amount of the 4 kb mtDNA deletion in the non-diseased tissue.

Determining Genetic Predisposition to Cancer

[0077] In order to fully evaluate an individual's risk of one or more cancers it is imperative that health care providers are provided with as much information as possible to understand and communicate their patient's risk factors. The utilization of the present invention to determine the level of mtDNA aberration will not only prove helpful in assessing an individual's susceptibility to one or more cancers, it provides a valuable tool to identify patients with greater risk who are potentially in need of more aggressive monitoring and treatment measures.

[0078] In this regard, the various examples provided below illustrate a difference in the amount of mtDNA having the 4 kb deletion between samples obtained from subjects having cancer, and subjects without cancer. The amount of the 4 kb deletion was found to be higher in the samples obtained from subjects having cancer. This determination was made by comparing the amount of the 4 kb deletion in the samples from known cancer cells and/or known non-cancer cells.

[0079] As such, the inventors determined that screening of biological samples would prove useful in identifying an individual's predisposition to one or more cancers. Thus, in accordance with one embodiment of the present invention there is provided a method for screening individuals for cancer from one or more biological samples comprising: obtaining the one or more samples, and detecting and quantifying the level of the 4 kb mtDNA deletion in the samples. In a specific embodiment of the invention, there is provided a method for screening individuals for prostate or breast cancer from a body fluid or tissue sample comprising: obtaining the body fluid or tissue sample, and detecting and quantifying the level of the 4 kb mtDNA deletion in the body fluid or tissue sample.

[0080] Age related accumulation of the 4 kb mtDNA deletion may also predispose an individual to, for example, prostate cancer or breast cancer, which is prevalent in middle aged and older men, and middle aged and older women, respec-

tively. Similarly, an accumulation of the 4 kb mtDNA deletion may be associated with a particular lifestyle based on an individual's diet, exercise habits, and exposure to known carcinogens. Thus, in accordance with one aspect of the invention, a method is provided wherein regular cancer screening may take place by monitoring over time the amount of the 4 kb deletion in one or more biological samples, non-limiting examples of which include breast and prostate tissues or body fluids such as prostate massage fluid, or urine.

Evaluation of Therapeutic Agents

[0081] The method of the present invention may also be used for screening potential therapeutic agents for use in cancer treatment or for monitoring the therapeutic effect of such agents. The method of the present invention may be used to measure various biomarkers associated with the cancers identified herein. The ability to assess the level of DNA damage in any biological sample at any time point provides the foundation for a unique and informative screening test for an individual's health and to assess the safety and efficacy of existing and new therapeutic agents and treatment regimes. Furthermore, by identifying the specific genetic changes underlying a subject's state of health, it may be readily determined whether and to what extent a patient will respond to a particular therapeutic agent or regime.

Kits

[0082] The present invention provides diagnostic/screening kits for use in a clinical environment. Such kits could not only include one or more sampling means, but other materials necessary for the identification of mtDNA mutations.

[0083] The kits can optionally include reagents required to conduct a diagnostic assay, such as buffers, salts, detection reagents, and the like. Other components, such as buffers and solutions for the isolation and/or treatment of a biological sample, may also be included in the kit. One or more of the components of the kit may be lyophilised and the kit may further comprise reagents suitable for the reconstitution of the lyophilised components.

[0084] Where appropriate, the kit may also contain reaction vessels, mixing vessels and other components that facilitate the preparation of the test sample. The kit may also optionally include instructions for use, which may be provided in paper form or in computer-readable form, such as a disc, CD, DVD or the like.

[0085] In one aspect of the invention there is provided a kit for diagnosing cancer comprising means for extraction of mtDNA, primers, reagents and instructions.

[0086] In another aspect of the invention there is provided a kit for diagnosing cancer, for example prostate or breast cancer, comprising means for extraction of mtDNA, primers having the nucleic acid sequences recited in SEQ ID NOs: 4 and 5, reagents and instructions.

[0087] In another aspect of the invention there is provided a kit for diagnosing cancer, for example prostate or breast cancer, comprising means for extraction of mtDNA, primers having the nucleic acid sequences recited in SEQ ID NOs: 6 and 5, reagents and instructions.

[0088] To gain a better understanding of the invention described herein, the following examples are set forth. It will be understood that these examples are intended to describe

illustrative embodiments of the invention and are not intended to limit the scope of the invention in any way.

EXAMPLES

Example 1

Association of Prostate Cancer with 4 kb Deletion in Human mtDNA

[0089] Urine samples were collected from five patients who had been diagnosed with prostate cancer and five who had a needle biopsy procedure which was unable to detect prostate malignancy. These samples were collected following a digital rectal exam (DRE) to facilitate the collection of prostate cells.

[0090] Upon receipt of the samples a 5 ml aliquot was removed and then 2 mls were centrifuged at 14,000×g to form a pellet. The supernatant was removed and discarded.

[0091] Pellets were resuspended in 200 μ l phosphate buffered saline solution. Both the resuspended pellet and the whole urine sample were subjected to a DNA extraction procedure using the QiaAMP DNA Mini Kit (Qiagen P/N 51304) according to the manufacturer's directions. The resulting DNA extracts were then quantified using a NanoDrop ND-1000 Spectrophotometer and normalized to a concentration of 0.1 ng/ μ l.

[0092] Samples were analyzed by quantitative real-time PCR with the 4 kb deletion specific primers according to the following:

[0093] 1× iQ SYBR Green Supermix (Bio-Rad product no. 170-8880)

[0105] 8. Melting Curve from 50° C. to 105° C., read every 1° C., hold for 3 seconds

[0106] 9. 10° C. Hold

Results

[0107] Results from the urine pellet did not yield significant differences in the mean cycle threshold observed or a useful cutoff point. However, the results from the whole urine sample did yield significant differences as provided below.

[0108] Tables 1 and 2, and FIG. 1 show the difference in the mean C_T scores for urine samples from subjects having prostate malignant tissue and benign tissue at the 0.04 significance level.

TABLE 1

Mean Values for C_T scores: Urine Samples				
	N	Mean	Std. Deviation	Std. Error
Benign	7	38.0357	3.40974	1.288876
Malignant	7	31.9300	6.12583	2.31534

TABLE 2

Significance Test for Mean C_T scores Independent Samples Test									
CTt40	Test for Equality Means								
	Levene's			Test for Equality Means					
	Test for Equality of Variances			Sig. (2- tailed)	Mean	Std. Error	95% Confidence Interval of the Difference		
fluid	F	Sig.	t	df	Diff.	Diff.	Lower	Upper	
Equal variances assumed	1.707	.216	2304	12	.040	610571	264985	.33218	11.87925
Equal variances not assumed				2304	.9392	.046	610571	264985	.14927 12.06215

[0094] 100 nmol forward primer (5'-TTGGTGCAACTC-CAAAGCCACCCCTCACC-3') (SEQ ID NO: 4)

[0095] 100 nmol reverse primer (5'-AGGATGGTGTC-CAAGGGAC-3') (SEQ ID NO: 5)

[0096] 1 ng template DNA in a 25 μ l reaction

[0097] Reactions were cycled on an Opticon 2 DNA Engine (Bio-Rad Canada) according to the following protocol:

[0098] 1. 95° C. for 3 minutes

[0099] 2. 95° C. for 30 seconds

[0100] 3. 69° C. for 30 seconds

[0101] 4. 72° C. for 30 seconds

[0102] 5. Plate Read

[0103] 6. Repeat steps 2-5 44 times

[0104] 7. 72° C. for 10 minutes

[0109] Tables 3 and 4, and FIG. 2 illustrate that when using a cut-off cycle threshold of 36.255 the sensitivity of the assay for prostate cancer is 86% and the specificity is 86%.

[0110] FIG. 2 is a Receiver Operating Characteristic (ROC) curve illustrating the specificity and sensitivity of the 4 kb mtDNA deletion as a marker for prostate cancer when testing urine. These results were obtained using a cutoff C_T of 36.255. The sensitivity of the marker at this C_T is 86%, while the specificity is 86%.

[0111] The determination of the cutoff C_T of 36.255 is shown in Table 3. The results listed in Table 3 show that a cutoff C_T of 36.255 provided the highest sensitivity and specificity.

[0112] The accuracy of the test depends on how well the test separates the group being tested into those with and without the prostate cancer. Accuracy is measured by the area under the ROC curve. Table 4 shows the calculation of the area under the curve for the present example.

TABLE 3

Determination of Specificity and Sensitivity		
Positive if \leq^a	Sensitivity	1 - specificity
19.86	.000	.000
24.87	.143	.000
29.48	.286	.000
30.54	.429	.000
32.235	.429	.143
33.77	.571	.143
35.11	.714	.143
36.255	.857	.143
37.415	.857	.286
39.23	.857	.429
39.995	1.000	.429
40.21	1.000	.857
41.42	1.000	1.000

^athe smallest cutoff value is the minimum observed test value minus 1 and the largest cutoff value is the maximum observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered observed test values.

TABLE 4

Results Showing Area Under the ROC Curve				
Area	Std. Error ^a	Asymptotic Sig. ^b	Asymptotic 95% Confidence Interval	
			Lower bound	Upper bound
.878	.096	.018	.689	1.066

Notes:

^aunder the non-parametric assumption

^bnull hypothesis: true area = 0.5

Example 2

Association of Breast Cancer with 4 kb Deletion in Human mtDNA

[0113] Twenty breast tissue samples were collected, ten of which were malignant and ten of which had benign breast

disease or no abnormalities. These samples were formalin-fixed paraffin embedded and 20 micron sections of each were cut into individual sample tubes for extraction according to the manufacturer's protocol for the QiaAMP DNA Mini Kit (Qiagen P/N 51304). DNA was then quantified using a Nano-drop ND-1000 and normalized to a concentration of 2 ng/ μ l.

[0114] Samples were then assayed for the levels of the 4 kb deletion by quantitative real-time PCR using the following protocol:

[0115] X iQ SYBR Green Supermix (Bio-Rad product no. 170-8880)

[0116] 175 nmol forward primer (5'-TTGGTGCAACTC-CAAAGCCACCCCTCACC-3') (SEQ ID NO: 4)

[0117] 175 nmol reverse primer (5'-AGGATGGTGGT-CAAGGGAC-3') (SEQ ID NO: 5)

[0118] 20 ng template DNA in a 25 μ l reaction

[0119] Reactions were cycled on an Opticon 2 DNA Engine (Bio-Rad Canada) according to the following protocol:

[0120] 1. 95° C. for 3 minutes

[0121] 2. 95° C. for 30 seconds

[0122] 3. 70° C. for 30 seconds

[0123] 4. 72° C. for 30 seconds

[0124] 5. Plate Read

[0125] 6. Repeat steps 2-5 44 times

[0126] 7. 72° C. for 10 minutes

[0127] 8. Melting Curve from 50° C. to 105° C., read every 1° C., hold for 3 seconds

[0128] 9. 10° C. Hold

[0129] Tables 5 and 6, and FIG. 3 show the difference in the mean C_T scores for breast tissue samples from subjects having malignant breast tissue and benign breast tissue at the 0.065 level.

TABLE 5

Mean Values for C_T scores: Breast Tissue Samples				
Group	N	Mean	Std. Dev.	Std. Error Mean
Normal	9	21.5278	2.71939	.90646
Malignant	9	18.9089	2.89126	.96375

TABLE 6

Significance Test for Mean C_T scores								
Test for Equality Means								
Levene's Test for Equality of Variances				95% Confidence Interval of the Difference				
Group	F	Sig.	t	df	tailed)	Sig. (2-	Std. Mean	Std. Error
CTt40 fluid								
Equal variances assumed	.007	.934	1.979	16	.065	2.61889	1.32306	-.18588
Equal variances not assumed						1.979	15.94	.065
							2.61889	1.32306
							-.18674	5.42452

[0130] Tables 7 and 8, and FIG. 4 illustrate that when using a cut-off cycle threshold of 19.845 the sensitivity of the assay for breast cancer is 78% and the specificity is 78%.

[0131] FIG. 4 is an ROC curve illustrating the specificity and sensitivity of the 4 kb mtDNA deletion as a marker for breast cancer when testing breast tissue. These results were obtained using a cutoff C_T of 19.845. The sensitivity of the marker at this C_T is 78%, while the specificity is 78%.

[0132] The determination of the cutoff C_T of 19.845 is shown in Table 7. The results listed in Table 7 show that a cutoff C_T of 19.845 provided the highest sensitivity and specificity.

[0133] The accuracy of the test depends on how well the test separates the group being tested into those with and without the breast cancer. Accuracy is measured by the area under the ROC curve. Table 8 shows the calculation of the area under the curve for the present example.

TABLE 7

Determination of Specificity and Sensitivity		
Positive if \leq^a	Sensitivity	1 - specificity
15.28	.000	.000
16.305	.111	.000
16.69	.222	.000
17.075	.333	.000
17.4	.444	.000
17.71	.556	.000
18.0	.556	.111
18.835	.556	.222
19.415	.667	.222
19.845	.778	.222
20.475	.778	.333
10.79	.778	.444
21.38	.778	.556
22.005	.778	.667
23.145	.889	.667
24.19	.889	.778
24.49	.889	.889
25.21	1.00	.889
26.66	1.00	1.00

^athe smallest cutoff value is the minimum observed test value minus 1 and the largest cutoff value is the maximum observed test value plus 1. All the other cutoff values are the averages of two consecutive ordered observed test values.

TABLE 8

Results Showing Area Under the ROC Curve				
Area	Std. Error ^a	Asymptotic Sig. ^b	Asymptotic 95% Confidence Interval	
			Lower bound	Upper bound
.778	.117	.047	.548	1.008

Example 3

Association of Prostate Cancer with 4 kb Deletion in Human mtDNA Using Needle Biopsy Samples

[0134] Prostate needle biopsy specimens were obtained from 19 individuals, 9 without prostate cancer and 10 with prostate cancer. Needle biopsy tissues were formalin-fixed paraffin embedded (FFPE) as is standard in the clinical diagnostic setting. 10 micron sections of each biopsy were deposited directly into centrifuge tubes and the DNA was extracted using the QiaAMP DNA Mini Kit (Qiagen, p/n 51306). DNA

extracts were quantified by absorbance at 260 nm using a NanoDrop ND-1000 Spectrophotometer. Yields ranged from 347 ng to 750 ng. These samples were diluted to 2 ng/ μ l and amplification reactions setup according to Table 9 and the following:

TABLE 9

Reagents and Concentrations for Amplification Reaction	
Reagent	Final Concentration
iQ SYBR Green Supermix (Bio-Rad Laboratories, p/n 170-8882)	1 X
Forward Primer 12303-12316/16243-16259F 5' - CCCAAAAATTGGTGCAACTCCAAAGCCAC -3' (SEQ ID NO: 6)	175 nmol
Reverse Primer 16410R 5' - AGGATGGTGGTCAAGGGAC -3' (SEQ ID NO: 5)	175 nmol
DNA extract	0.8 ng/ μ l

[0135] Nuclease-free water was added to a final reaction volume of 25 μ l. Amplifications were carried out on a DNA Engine Chromo4 Real Time PCR Instrument (Bio-Rad Laboratories) according the following cycling conditions:

- [0136] 1) 95° C. for 3 minutes
- [0137] 2) Followed by 45 cycles of
- [0138] 3) 95° C. for 30 seconds
- [0139] 4) 69° C. for 30 seconds
- [0140] 5) 72° C. for 30 seconds
- [0141] 6) Plate Read

Then

- [0142] 7) 72° C. for 10 minutes
- [0143] 8) Melting Curve 50° C.-105° C. reading every 1° C., hold for 3 seconds
- [0144] 9) 4° C. Hold

[0145] Results, shown in Table 10, demonstrate that those individuals with prostate cancer have a lower C_T value and therefore higher levels of the 4 kb deletion in prostate tissue than do those without prostate cancer. Patients with prostate cancer have an average C_T value of 30.7 while the patients without prostate cancer have an average C_T value of 36.4. This difference of 5.7 C_T corresponds to nearly 100 fold greater 4 kb deletion levels in the group with prostate malignancy than in the group without.

TABLE 10

Patient Diagnosis and Associated C_T Score	
Patient Number and Diagnosis	C_T
CUG 1301 Malignant	25.7
CUG 1268 Malignant	27.7
CUG RN 345 Normal	28.3
CUG 1272 Malignant	28.8
CUG 1375 Malignant	29.1
CUG 1259 Malignant	29.1
CUG 1381 Malignant	30.2
CUG RN 82 Normal	30.5
CUG 1372 Malignant	30.9

TABLE 10-continued

Patient Diagnosis and Associated C_T Score	
Patient Number and Diagnosis	C_T
CUG 1085 C T1 Normal	31.5
CUG 1317 Malignant	31.7
CUG 1377 F Normal	33.6
CUG 1365 B Normal	34.6
CUG 1370 Malignant	35.9
CUG RN 405 Normal	37.5
CUG 1366 Malignant	37.9
CUG RN 701 Normal	41.7
CUG RN 420 Normal	45
CUG RN 373 Normal	45

[0146] Tables 11 and 12 show the difference in the mean C_T scores for prostate tissue samples from subjects having normal and malignant prostate tissue.

TABLE 11

Mean Values for C_T Score: Prostate Needle Biopsy Tissue				
Group	N	Mean	Std. Dev.	Std. Error Mean
Normal	9	36.4111	6.25229	2.08410
Malignant	10	30.7	3.69534	1.16857

TABLE 12

Significance Test for C_T Scores									
Test for Equality Means									
Levene's Test for Equality of Variances				Sig. (2-tailed)	Mean	Std. Error	95% Confidence Interval of the Difference		
CTt40 fluid	F	Sig.	t	df	tailed)	Diff.	Diff.	Lower	Upper
Equal variances assumed	4.426	.051	2.455	17	.025	5.71111	2.32589	.80391	10.61831
Equal variances not assumed			2.390	12.705	.033	5.71111	2.38935	.53701	10.88522

[0147] Table 13 and FIG. 6 illustrate that when using a cutoff of C_T 32.65 the sensitivity and specificity of correctly diagnosing these patients is 80% and 67% respectively.

TABLE 13

Determination of Specificity and Sensitivity		
Positive if \leq^a	Sensitivity	1 - specificity
24.7	.000	.000
26.7	.100	.000
28.0	.200	.000
28.55	.200	.111
28.95	.300	.111
29.65	.500	.111
30.35	.600	.111
30.7	.600	.222

TABLE 13-continued

Determination of Specificity and Sensitivity		
Positive if \leq^a	Sensitivity	1 - specificity
31.2	.700	.222
31.6	.700	.333
32.65	.800	.333
34.1	.800	.444
32.25	.800	.556
36.7	.900	.556
37.7	.900	.667
39.8	1.000	.667
43.35	1.000	.778
46.0	1.000	1.000

[0148] Although the invention has been described with reference to certain specific embodiments, various modifications thereof will be apparent to those skilled in the art without departing from the spirit and scope of the invention as outlined in the claims appended hereto. All such modifications as would be apparent to one skilled in the art are intended to be included within the scope of the following claims. All documents recited in the present application are incorporated herein by reference.

REFERENCES

[0149] Birch-Machin M A, Online Conference Report (Sunburnt DNA), International Congress of Biochemistry and Molecular Biology, New Scientist, 2000(a)

[0150] Birch-Machin M A, Taylor R W, Cochran B, Ackrell B A C, Tumbull D M. *Ann Neurol* 48: 330-335, 2000(b)

[0151] Birch-Machin, M. A. (2000). Mitochondria and skin disease. *Clin Exp Dermatol*, 25, 141-6.

[0152] Brown, M. D., et al., *Am J. Humn Genet*, 60: 381-387, 1997

[0153] Bogliolo, M, et al., *Mutagenesis*, 14: 77-82, 1999

[0154] Chinnery P F and Turnbull D M., *Lancet* 354 (supplement 1): 17-21, 1999

[0155] Huoponen, Kirsi, *Leber hereditary optic neuropathy: clinical and molecular genetic findings*, *Neurogenetics* (2001) 3: 119-125.

[0156] Hayward S W, Grossfeld G D, Tlsty T D, Cunha G R., *Int J Oncol* 13:35-47, 1998

[0157] Huang G M, Ng W L, Farkas J, He L, Liang H A, Gordon D, Hood R., *Genomics* 59(2):178-86, 1999

[0158] Konishi N, Cho M, Yamamoto K, Hiasa Y. *Pathol. Int.* 47:735-747, 1997

[0159] Landis S H, Murray T, Bolden S, Wingo P A. *Cancer J. Clin.* 49:8-31

[0160] Lee H C, Lu C Y, Fahn H J, Wei Y Hu. *Federation of European Biochemical Societies*, 441:292-296, 1998

[0161] Mitochondrial Research Society <http://www.mito-research.org/diseases.html>.

[0162] MITOMAP: A human mt genome database (www.gen.emory.edu/mitomap.html)

[0163] Naviaux, R K., Mitochondrial Disease—Primary Care Physician's Guide. Psy-Ed. Corp D/B/A *Exceptional Parents Guide*: 3-10, 1997

[0164] Parrella P, Xiao Y, Fliss M, Sanchez-Cespedes M, Mazzarelli P, Rinaldi M, Nicol T, Gabrielson E, Cuomo C, Cohen D, Pandit S, Spencer M, Rabitti C, Fazio V M, Sidransky D: Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. *Cancer Res* 2001, 61:7623-7626

[0165] Polyak Y, et al., *Nature Genet.* 20 (3):291-293, 1998

[0166] Seidman, M. D. et al., *Arch. Otolaryngol Head Neck Surg.*, 123: 1039-1045, 1997

[0167] Sherratt E J, Thomas A W, Alcolado J C., *Clin. Sci.* 92:225-235, 1997

[0168] Shoffner J M, Brown M D, Torroni A, Lott M T, Cabell M F, Mirra S S, Beal M F, Yang C, Gearing M, Salvo R, Watts R L, Juncos J L, Hansen L A, Crain B J, Fayad M, Reckford C L, and Wallace D C., *Genomics* 17: 171-184, 1993

[0169] SpringNet—CE Connection: Screening, Diagnosis: Improving Primary Care Outcomes. Website: <http://www.springnet.com/ce/j803a.htm>

[0170] Taniike, M. et al., *BioChem BioPhys Res Comun.* 186: 47-53, 1992

[0171] Valnot, Isabelle, et al., A mitochondrial cytochrome b mutation but no mutations of nuclearly encoded subunits in ubiquinol cytochrome c reductase (complex III) deficiency, *Human Genetics* (1999) 104: 460-466

[0172] von Wurmb, N, Oehmichen, M, Meissner, C., *Mutat Res.* 422:247-254, 1998

[0173] Wallace et al., Mitochondrial DNA MUTatio Assoicated with Leber's Hereditary Optic Neuropathy, *Science*, 1427-1429

[0174] Wei Y H. Proceedings of the Nat. Sci. Council of the Republic of China April 22(2):5567, 1998

[0175] Woodwell D A. National Ambulatory Medical Care Survey: 1997 Summary. Advance data from vital and health statistics; no. 305. Hyattsville, Md.: National Center for Health Statistics. 1999

[0176] Yeh, J. J., et al., *Oncogene Journal*, 19: 2060-2066, 2000

[0177] Zhang et al., Multiple mitochondrial DNA deletions in an elderly human individual, *FEBS Lett.* 297, 34-38 1992

[0178] Zhang, C., et al., *BioChem. BioPhys. Res. Comun.*, 195: 1104-1110, 1993

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 6

<210> SEQ ID NO 1

<211> LENGTH: 3926

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

taaaagtaat aaccatgcac actactataa ccaccctaac cctgacttcc ctaattcccc 60
ccatccttac caccctcggt aaccctaaca aaaaaaactc ataccccat tatgtaaaat 120
ccattgtcgcc atccaccttt attatcagtc tcttccccac aacaatattc atgtgcctag 180
accaagaagt tattatctcg aactgacact gagccacaac ccaaacaacc cagctccccc 240
taagcttcaa actagactac ttctccataa tattcatccc tgttagcattt ttcgtttacat 300
ggtccatcat agaattctca ctgtgtatata taaactcaga cccaaacattt aatcgtttct 360
tcaaataatct actcatcttc ctaattacca tactaatctt agttaccgct aacaacctat 420
tccaactgtt catcggttga gagggcgttag gaattatatc cttcttgctc atcagttgtat 480
gatacgcccc agcagatgcc aacacagcag ccattcaagg aatcctatac aaccgtatcg 540
gcatatcggtt tttcatcttc gccttagcat gattttatctt acactccaaat tcatgagacc 600
cacaacaaat agcccttcta aacgctaatac caaggcttcac cccactacta ggcctctcc 660
tagcagcagc aggcaaatac gccaaattag gtctccaccc ctgactcccc tcagggatatag 720
aaggccccac cccagttctca gccctactcc actcaaggac tatagttgtat gcagggatct 780
tcttactcat ccqcttccac ccccttaqcaqaaaataqccc actaatccaa actctaaacac 840

-continued

tatgcttagg	cgctatcacc	actctgttcg	cagcagtctg	cgccttaca	caaaatgaca	900
tcaaaaaat	cgtagccttc	tccacttcaa	gtcaacttagg	actcataata	gttacaatcg	960
gcatcaacca	accacaccta	gcattcctgc	acatctgtac	ccacgccttc	ttcaaagcca	1020
tactatttat	gtgctccggg	tccatcatcc	acaaccttaa	caatgaacaa	gatattcgaa	1080
aaataggagg	actactcaa	accataccctc	tcacttcaac	ctccctcacc	attggcagcc	1140
tagcattagc	aggaataacct	ttcctcacag	gtttctactc	caaagaccac	atcatcgaaa	1200
ccgcaaacat	atcatacaca	aacgcctgag	ccctatctat	tactctcatc	gctacccc	1260
tgacaagcgc	ctatagcact	cgaataattc	ttctcaccct	aacaggtcaa	cctcgcttcc	1320
ccaccctta	taacattaac	gaaaataacc	ccaccctact	aaaccccatt	aaacgcctgg	1380
cagccggaag	cctattcgca	ggattttca	ttactaacaa	cattttcccc	gcattttccc	1440
tccaaacaac	aatccccctc	tacctaaaac	tcacagccct	cgctgtca	ttccttaggac	1500
ttctaacagc	cctagacctc	aactaccta	ccaacaaact	taaaataaaa	tccccactat	1560
gcacattta	tttctccaa	atactcgat	tctaccctag	catcacacac	cgcacaatcc	1620
cctatctagg	ccttcttacg	agccaaaacc	tgccccctact	cctccttagac	ctaaccgtac	1680
tagaaaagct	attacctaaa	acaatttcac	agcaccaaat	ctccaccc	atcatcacct	1740
caacccaaaa	aggcataatt	aaactttact	tcctctctt	cttctccca	ctcatoctaa	1800
ccctactcct	aatcacataa	cctattcccc	cgagcaatct	caattacaat	atatacacca	1860
acaacaatg	ttcaaccagt	aactactact	aatcaacgcc	cataatcata	caaagcccc	1920
gcaccaatag	gatcctcccg	aatcaaccc	gaccctctc	cttcataat	tattcagctt	1980
cctacactat	taaagttac	cacaaccacc	accccatcat	actcttcac	ccacagcacc	2040
aatctacact	ccatcgctaa	ccccactaaa	acactcacca	agacctaaac	ccctgacc	2100
catgcctcag	gatactcctc	aatagccatc	gctgttagt	atccaaagac	aaccatcatt	2160
ccccctaaat	aaataaaaaa	aactattaaa	cccatataac	ctccccaaa	attcagaata	2220
ataacacacc	cgaccacacc	gctaacaatc	aataactaaac	ccccataat	aggagaaggc	2280
ttagaagaaa	accccacaaa	ccccattact	aaacccacac	tcaacagaaa	caaagcatac	2340
atcattattc	tcgcacggac	tacaaccacg	accaatgata	tgaaaaacca	tcgttgatt	2400
tcaactacaa	gaacaccaat	gaccccaata	cgcaaaacta	acccctaat	aaaattaatt	2460
aaccactcat	tcatcgac	ccccacccca	tccaaacatct	ccgcatatg	aaacttcggc	2520
tcactcctg	gcgctgct	gatcctccaa	atcaccacag	gactattcct	agccatgcac	2580
tactcaccag	acgctcaac	cgctttca	tcaatcgccc	acatcactcg	agacgtaaat	2640
tatggctgaa	tcatccgcta	ccttcaegcc	aatggcgct	caatatttt	tatctgcctc	2700
ttcctacaca	tcggcgagg	cctatattac	ggatcatttc	tctactcaga	aacctgaaac	2760
atcggcatta	tcctcctgt	tgcactata	gcaacagcct	tcataggct	tgcctcccg	2820
tgaggccaaa	tatcattctg	agggggcaca	gtaattacaa	acttactatc	cgccatccc	2880
tacattggga	cagacctagt	tcaatgaatc	tgaggaggt	actcagtaga	cagtccacc	2940
ctcacacgt	tcttacctt	tcacttcatc	ttgccttca	ttattgcagc	cctagcaaca	3000
ctccaccc	tattcttgca	cgaaacggg	tcaaacaacc	cccttaggaat	cacccatccat	3060
tccgataaaa	tcaccc	cccttactac	acaatcaaag	acgcctcg	cttacttctc	3120

-continued

ttccttctct ccttaatgac attaacacta ttctcaccag acctcctagg cgaccaggac	3180
aattataccct tagccaaccc cttaaacacc cctccccaca tcaagccgatgatatttc	3240
ctattcgctt acacaattctt ccgatccgatc ccttaacaaac taggaggcgt ccttgcctt	3300
ttactatcca tcctcatctt agcaataatc cccatctcc atatatccaa acaacaaagc	3360
ataatatttc gcccactaag ccaatcaactt tattgactcc tagccgaga cctcctcatt	3420
ctaacctgaa tcggaggaca accagtaagc tacccttta ccatcattgg acaagttagca	3480
tccgtactat acttcacaac aatcctaatac ctaataccaa ctatctccct aattgaaaac	3540
aaaataactca aatgggcctg tccttgtagt ataaactaat acaccagtct tgtaaaccgg	3600
agatgaaaac cttttccaa ggacaaatca gagaaaaagt cttaactcc accattagca	3660
cccaaagcta agattctaat taaaactattt ctctgttcatggggaa gcagattgg	3720
gtaccaccca agtattgact cacccatcaa caaccgctat gtatttcgta cattactgcc	3780
agccaccatg aatattgtac ggtaccataa atacttgacc acctgttagta cataaaaaacc	3840
caatccacat caaaaccccc tccccatgtt tacaaggaaag tacagcaatc aaccctcaac	3900
tatcacacat caactgcaac tccaaa	3926

<210> SEQ ID NO 2

<211> LENGTH: 3926

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 2

tgcaactcca aataaaagta ataaccatgc acactactat aaccaccctt accctgactt	60
ccctaattcc ccccatcctt accaccctcg ttaaccctaa caaaaaaaaaac tcataaccccc	120
attatgtaaa atccattgtc gcatccaccc ttattatcag tctctcccc acaacaatata	180
tcatgtgcct agaccaagaa gtttattctt cgaactgaca ctgagccaca accccaaacaa	240
cccaagcttc cctaagcttc aaacttagact acttctccat aatattcatac cctgttagcat	300
tgttcgttac atggccatc atagaattctt cactgtgata tataaaactca gacccaaacaa	360
ttaatcagtt ctccaaatata ctactcatctt tcctaattac cataactatc ttatgttaccg	420
ctaaacaacctt attccaaactg ttcatcggtt gagagggcgtt aggaattata tccttccatc	480
tcatcagttt atgatacgtcc cgagcagatg ccaacacagc agccattcaa gcaatcttat	540
acaaccgtat cggcgatatc ggtttcatcc tcgccttagc atgattttatc ctacactcca	600
actcatgaga cccacaacaa atagcccttc taaacgctaa tccaagcttc accccactac	660
taggcctcctt cctagcagca gcaggcaat cagcccaattt aggtctccac ccctgactcc	720
cctcagccat agaaggcccc accccagttt cagccctactt ccactcaagc actatagtt	780
tagcaggaat ttcttacttcc atccgcttcc acccccttagc agaaaatagc ccactaatcc	840
aaactctaactt actatgttta ggccgtatca ccactctgtt cgcagcgtt tgccgcctt	900
cacaaaaatgtt catcaaaaaa atcgttagctt tctccacttc aagtcaacta ggactcataa	960
tagttacaat cggcatcaac caaccacacc tagcatttcc gcacatctgtt accccaccc	1020
tcttcaagc catactatccat atgtgtccgg ggtccatcat ccacaacccctt aacaatgtt	1080
agatatttcg aaaaatagga ggactactca aaaccatacc tctcactca acctccctca	1140
ccattggcag ccttagcattt gcaggaatacc ctttccttcc aggttttac tccaaagacc	1200

-continued

acatcatcga aaccgcaaac atatcataca caaacgcctg agccstatct attactctca	1260
tcgctacctc cctgacaagc gcctatacgca ctcgaataat tcttctcacc ctaacaggtc	1320
aacctcgctt cccccccctt actaacatta acgaaaataa cccccccctt ctaaaccctt	1380
ttaaacgcctt ggcagccgga agcctattcg caggatttct cattactaac aacattttcc	1440
ccgcatcccc cttccaaaca acaatcccc tctacctaa actcacagcc ctcgctgtca	1500
ctttcctagg acttcttaaca gccttagacc tcaactacct aaccaacaaa cttaaaataa	1560
aatccccact atgcacattt tatttctcca acatactcg attctaccct agcatcacac	1620
acccgcacaaat cccctatcta ggcccttta cgagccaaa cctgccccctt ctccctcttag	1680
acctaacctg actagaaaag ctattaccta aaacaatttc acagcaccaa atctccacct	1740
ccatcatcac ctcaacccaa aaaggcataa tttaacttta ctccctctt ttcttcttcc	1800
cactcatcct aaccctactc ctaatcacat aacctattcc cccgagcaat ctcaattaca	1860
atataatacac caacaacaa tttcaaccca gtaactacta ctaatcaacg cccataatca	1920
tacaaagccc cccgaccaat aggatctcc cgaatcaacc ctgacccttc tccttcttataa	1980
attattcagc ttccctacact attaaagttt accacaacca ccacccatc atacttttc	2040
acccacagca ccaatcctac ctccatcgct aacccacta aaacactcac caagacactca	2100
acccctgacc cccatgcctc aggatactcc tcaatagcca tcgctgtagt atatcoaaag	2160
acaaccatca ttccccctaa ataaattaaa aaaactatta aacccatata acctccccca	2220
aaattcagaa taataacaca cccgaccaca cccgtaacaa tcaataactaa accccataaa	2280
ataggagaag gcttagaaga aaacccacaa aacccattt ctaaaccac actcaacaga	2340
acaacagcat acatcattat tctcgacgg actacaacca cgaccaatga tatgaaaaac	2400
catcggtgtt tttcaactac aagaacacca atgacccaa tacgcaaaac taacccctta	2460
ataaaattaa ttaaccactc attcatecgac ctccccaccc catccacat ctccgatga	2520
tgaaacttgc gctacttgc tggcgctgc ctgatcttcc aaatcaccac aggactattc	2580
ctagccatgc actactcacc agacgcctca accgcctttt catcaatcgcc ccacatcact	2640
cgagacgtaa attatggctg aatcatcgcc taccttcacg ccaatggcgc ctcaatattc	2700
tttatctgcc tttccctaca catcgccgca ggcctatatt acggatcatt tctctactca	2760
gaaacctgaa acatcgccat tatccctctg cttgcaacta tagcaacagc cttcataggc	2820
tatgtccctcc cgtgaggcca aatatcattc tgaggggcca cagtaattac aaacttacta	2880
tccgcctcc catacatgg gacagaccta gttcaatgaa tctgaggagg ctactcagta	2940
gacagtccca ccctcacacg attctttacc tttcaattca tcttgcctt cattattgca	3000
gccctagcaa cactccacct cctattttc cacgaaacgg gatcaaacaa ccccttagga	3060
atcacctccc attccgataa aatcacccctt cacccttact acacaatcaa agacgcctc	3120
ggcttacttc tttcccttctt ctccttaatg acatccaacac tatttcacc agaccttctt	3180
ggcgacccag acaattatac cctagccaaac cccttaacaa cccctccca catcaagccc	3240
gaatgatatt ttcttgcgc ctacacaattt ctccgatccg tccctaaacaa actaggaggc	3300
gtccttggcc tattactatc catcctcattc ctagcaataa tccccatctt ccatatatcc	3360
aaacaacaaa gcataatatt tggccacta agccaaatcac tttattgact cctagccgca	3420
gaccccttca ttctaacctg aatcgaggaa caaccagtaa gctacccttt taccatcatt	3480

-continued

ggacaagtag catccgtact atacttcaca acaatcctaa tcctaataacc aactatctcc	3540
ctaattgaaa acaaataact caaatggcc tgccttgta gtataaacta atacaccagt	3600
cttgtaaacc ggagatgaaa accttttcc aaggacaaat cagagaaaaa gtcttaact	3660
ccaccattag cacccaaagc taagattcta atttaaacta ttctctgttc tttcatgggg	3720
aagcagattt gggtaccacc caagtattga ctcacccatc aacaaccgct atgtatttcg	3780
tacattactg ccagccacca tgaatattgt acggtaccat aaatacttga ccacctgttag	3840
tacataaaaa cccaatccac atcaaaaccc cctccccatg cttacaagca agtacagcaa	3900
tcaaccctca actatcacac atcaac	3926

<210> SEQ ID NO 3	
<211> LENGTH: 16569	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (3107)..(3107)	
<223> OTHER INFORMATION: n is a, c, g, or t	
<400> SEQUENCE: 3	
gatcacaggt ctatcacctt attaaccact cacggagct ctccatgcat ttggtatttt	60
cgtctggggg gtatgcacgc gatagcattt cgagacgcgtg gagccggagc accctatgtc	120
gcagtatctg tctttgatcc ctgcctcatc ctattattta tcgcacccatc gttcaatatt	180
acaggcgaac atacttacta aagtgtgtta attaattaat gctttaggaa cataataata	240
acaattgaat gtctgcacag ccacttcca cacagacatc ataacaaaaa atttcoacca	300
aaccccccctt ccccccgttc tggccacagc acttaaacac atctctgcca aacccaaaaa	360
acaagaacc ctaacaccag cctaaccaga tttcaaaattt tatctttgg cggatgcac	420
tttaacagt ccccccccaa ctaacacattt atttccctt cccactccca tactactaat	480
ctcatcaata caaccccccgc ccacccatc cagcacacac acaccgctgc taacccata	540
ccccgaacca accaaacccc aaagacaccc cccacagttt atgttagctt cctccctaaaa	600
gcaatacact gaaaatgttt agacgggctc acatcccccc ataaacaaat aggtttggc	660
ctagccttcc tattagctct tagtaagattt acacatgcaaa gcatccccgt tccagtgagt	720
tcaccctcta aatcaccacg atcaaaaaggaa acaagcatca agcacgcagc aatgcagctc	780
aaaacgctta gcctagccac acccccacgg gaaacagcagc tgattaaacctt ttagcaataa	840
acgaaagttt aactaagcta tactaaccctt agggttggc aatttgcgtc cagccacccgc	900
ggtcacacga ttaacccaaag tcaatagaag ccggcgtaaa gagtgttttta gatcaccccc	960
tccccaataa agctaaaactt cacctgagttt gtaaaaactt ccagttgaca caaaatagac	1020
tacgaaagtgc gctttaacat atctgaacac acaatagctt aacccaaac tgggattttaga	1080
taccccaacta tgcttagccc taaacctcaa cagttaaatc aacaaaactg ctcgcacagaa	1140
cactacgagc cacagcttaa aactcaaaagg acctgggggt gcttcataatc cctcttagagg	1200
agcctgttctt gtaatcgata aaccccgatc aacctcacca cctcttgctc agcctatata	1260
ccgccccatctt cagcaaaaccc tggatgtggc tacaaaggtaa ggcgtacatc ccacgtaaag	1320
acgtaggttc aagggtgtacccatccatggc gcaagaaatg ggctacatctt tctaccctt	1380
aaaactacgatca tagcccttat gaaacttaag gggtcgaaatgggatgttgc gtaaaactaag	1440

-continued

agttagagtgc	ttagttgaac	agggccctga	agcgcgtaca	caccgcccgt	caccctcctc	1500	
aagtatactt	caaaggacat	ttaactaaaa	cccctacgca	tttatataga	ggagacaagt	1560	
cgtaacatgg	taagtgtact	ggaaagtgc	cttggacgaa	ccagagtgt	gcttaacaca	1620	
aagcacccaa	cttacactta	ggagattca	acttaactt	accgctcgt	gctaaaccta	1680	
gccccaaacc	cactccacct	tactaccaga	caaccttagc	caaaccattt	acccaaataa	1740	
agtataggcg	atagaaattt	aaacctggcg	caatagatat	agtaccgaa	gggaaagatg	1800	
aaaaattata	accaagcata	atatacgaa	gactaacc	tataccttct	gcataatgaa	1860	
ttaactagaa	ataactttgc	aggagagac	aaagctaaga	cccccgaaac	cagacgagct	1920	
acctaagaac	agctaaaaga	gcacacccgt	ctatgtagc	aaatagtggg	aagattata	1980	
ggtagaggcg	acaaacacctac	cgagcctgg	gatacgctgt	tgtccaagat	agaatcttag	2040	
ttcaacttta	aatttgc	cagaacc	ctc	taaatccc	tgtaaattt	actgttagc	2100
caaagaggaa	cagctt	gacacttagga	aaaaacctt	tagagagat	aaaaaattt	2160	
acacccatag	taggc	taaa	agcagccacc	aattaagaaa	gcgttcaagc	tcaacaccca	2220
ctacctaaaa	aatccaaac	atataactg	actcctcaca	cccaattt	ccaaatctatc	2280	
accctataga	agaactaatg	ttagtataag	taacatgaaa	acattctc	ccgcataa	2340	
ctgcgtcaga	ttaaaacact	gaactgacaa	ttaacagcc	aatatctaca	atcaacacca	2400	
aagt	cattat	tac	cact	gtcaacccaa	cacaggc	atc	2460
aaagtaaaag	gaactcg	aatcttac	cc	ctgttta	ccaaa	acat	2520
atcaccagta	ttagaggc	ac	cg	ctgttta	cc	atcg	2580
aaccgtgca	aggtagcata	atcactt	gt	ctttaat	gg	ac	2640
acgagggtt	agctgtct	tactt	tt	ttttaac	gg	cc	2700
ggcataacac	agcaaga	gaagacc	tgg	at	ttt	ttt	2760
cctaaca	ccacagg	ttaactac	aa	cctgc	aa	ttcg	2820
cctcgg	gagc	aa	cc	atc	cc	atc	2880
ctactata	caattgat	act	atc	atc	aa	ttt	2940
gcgc	aaatc	ttt	atc	atc	aa	ttt	3000
ggacatcc	atgg	tc	atc	atc	aa	ttt	3060
gtgatctg	atc	atc	atc	atc	aa	ttt	3120
ctgtac	gaa	at	atc	atc	aa	ttt	3180
tatcatct	acttagt	at	atc	atc	aa	ttt	3240
agagcc	gtt	at	atc	atc	aa	ttt	3300
aacaacata	ccatgg	cc	ct	ct	cc	ttt	3360
ttccta	atcc	aa	cc	cc	cc	ttt	3420
gtttag	cc	ct	ac	cc	cc	ttt	3480
gagcc	aa	cc	cc	cc	cc	ttt	3540
ctcaccat	cc	ct	cc	cc	cc	ttt	3600
aacctagg	cc	ct	cc	cc	cc	ttt	3660
tcagggt	ca	ct	cc	cc	cc	ttt	3720

-continued

acaatctcat	atgaagtcac	cctagccatc	attctactat	caacattact	aataagtggc	3780
tccttaacc	tctccaccc	tatcacaaca	caagaacacc	tctgattact	cctgccatca	3840
tgacccttgg	ccataatatg	atttatctcc	acactagcag	agaccaaccg	aacccttgc	3900
gacccgtccg	aaggggagtc	cgaactagtc	tcaggctca	acatcgaata	cggccgaggc	3960
ccctcgccc	tattcttcat	agccgaatac	acaaacat	ttataataaa	caccctcacc	4020
actacaatct	tccttaggaac	aacatatgac	gcactctccc	ctgaactcta	cacaacat	4080
tttgcacca	agaccctact	tctaacc	ctgttcttat	gaattcgaac	agcataaccc	4140
cgattccgct	acgaccaact	catacac	ctatgaaaaa	acttcctacc	actcacc	4200
gcattactta	tatgatatgt	ctccat	attacaatct	ccagcattcc	ccctcaaa	4260
taagaaat	gtctgataaa	agagttactt	tgtatagagta	aataatagga	gcttaa	4320
ccttatttct	aggactatga	gaatcgaacc	catccctgag	aatccaaat	tctccgtgc	4380
acctatcaca	ccccatccta	aagtaagg	agctaaataa	gctatcgggc	ccataaccc	4440
aaaatgttgg	ttatacc	cccgtaactaa	ttaatcc	ggcccaaccc	gtcat	4500
ctaccatctt	tgcaggcaca	ctcatc	agcttaag	gcactgat	tttac	4560
taggcctaga	aataaacat	ctagttt	ttccagtt	aaccaaaaaa	ataaac	4620
gttccacaga	agctgccc	aagtatttcc	tcacgca	aaccgc	ataat	4680
taatagctat	cctttcaac	aatatact	ccggaca	aaccata	aataact	4740
atcaatactc	atcattaa	atcataat	ctatagca	aaaactag	atagcccc	4800
ttcacttctg	agtccc	agag	gttaccc	gacatcc	ctgttctt	4860
tcacatgaca	aaaactag	ccatct	tcata	aatct	tcactaa	4920
taaggcttct	cctcact	tcaat	ccatcat	aggcagt	ggtggat	4980
accaa	acca	gctacg	aaat	actcct	taccc	5040
tagcagtttct	acg	taca	cctaa	ccatt	ttaact	5100
taactactac	cgcatt	ctact	taaact	cacca	ctactact	5160
ctcgac	aaacaag	cta	gact	cac	tcc	5220
tagaggcct	gcccc	gcta	accgg	ttt	tgcc	5280
caaaaaacaa	tag	ctc	atccc	acca	tcc	5340
acttctac	acg	cta	tac	caat	ccat	5400
taaaaataaa	atg	aca	ttt	gaac	atc	5460
cccttaccac	gctact	cct	atct	ccccc	act	5520
ggttaata	agacca	aaag	cct	caa	act	5580
aacagcta	gact	ccca	act	ccat	gca	5640
ttaagcta	ccct	act	acc	aa	ttt	5700
aagcac	atca	act	ttc	ttc	ccg	5760
aaggcccc	agg	ttt	gaa	ttc	ggg	5820
ggagctggta	aaa	agg	ggcc	taac	ccctgt	5880
gccat	tttac	ctc	accc	ccca	ct	5940
aagacattgg	aa	act	ata	ac	ctt	6000

-continued

taaggctcct tattcgagcc gagctgggcc agccaggcaa ccttcttaggt aacgaccaca	6060
tctacaacgt tatcgctaca gcccattgtat ttgtataataat cttcttcata gtaataaccca	6120
tcataatcg aggctttggc aactgactag ttcccctaataat aatcggtgcc cccgatatgg	6180
cgtttccccg cataaacaac ataagcttct gactcttacc tccctctctc ctactctgc	6240
tcgcatctgc tatagtggag gcccggagcag gaacaggttg aacagttac cctcccttag	6300
cagggaaacta ctcccacccct ggagccctccg tagacctaact catcttcctcc ttacacctag	6360
caggtgtctc ctctatctta ggggcatca atttcatcac aacaattatac aatataaaac	6420
ccccctgccc aacccaataac caaaacgcccc tcttcgtctg atccgtctca atcacagcag	6480
tcctacttct cctatctctc ccagtcctag ctgctggcat cactataacta ctaacagacc	6540
gcaacacctaa caccacccctc ttgcacccccc ccggaggagg agacccattt ctataccaac	6600
acctattctg atttttcggt caccctgaag ttatattct tattcttacca ggcttcggaa	6660
taatctccca tattgttaact tactactccg gaaaaaaaaaaga accatttggta tacataggtt	6720
tggctctgagc tatgatatac atggcttcc tagggtttat cgtgtgagca caccatataat	6780
ttacagtagg aatagacgta gacacacgag catatccac ctccgctacc ataatcatcg	6840
ctatccccac cggcgtcaaa gtatttagct gactcgccac actccacggaa agcaatatga	6900
aatgatctgc tgcaatgttc tgagccctag gattcatctt tcttttacc gtaggtggcc	6960
tgactggcat tgtatttagca aactcatcac tagacatcgt actacacgac acgtactacg	7020
ttgttagccca ctccactat gtcctatcaa taggagctgtt atttgcacatc ataggaggct	7080
tcattcaactg atttccctta ttctcaggctt acaccctaga ccaaaccctac gccaatcc	7140
atttcaactat catattcatc gggttaatc taactttttt cccacaacac ttctcggcc	7200
tatccggaat gccccggact taactcgactt accccgtatgc atacaccaca tgaaaatcc	7260
tatcatctgt aggctcatc atttctctaa cagcgtatcata attaataatt ttcatgattt	7320
gagaaggcctt cggttcgaag cgaaaagtcc taatagtaga agaaccctcc ataaacctgg	7380
agtactata tggatgcccccc ccaccctacc acacattcga agaaccctgtatcataaaat	7440
ctagacaaaa aaggaaggaa tegaaccccccaaaatgggtt ttcaagccaa ccccatggcc	7500
tccatgactt tttcaaaaaag gtatggaaa aaccatttca taactttgtc aaagttaaat	7560
tataggctaa atcctatata tcttaatggc acatgcagcg caagtaggtc tacaagacgc	7620
tacttccctt atcatagaag agcttacatc ctttcatgtat caccgttca taatcatttt	7680
ccttatctgc ttctctgtcc tttatggccctt tttccataaca ctcacaacaa aactaactaa	7740
tactaacatc tcagacgttc agggaaataga aaccgtctga actatctgc cccgttcat	7800
ccttagtccctc atcgccctcc catccctacg catcccttac ataaacagacg aggtcaacga	7860
tccctccctt accatcaaataat caattggccca ccaatgggtac tgaacctacg agtacaccga	7920
ctacggcgga ctaatcttca actccctacat acttccccca ttatccctag aaccaggcgaa	7980
cctgtcgactc ttgtacgttg acaatcgagt agtactcccg attgttttttccatccgtat	8040
aataattaca tcacaagacg tcttgcactc atgagctgtc cccacattag gcttaaaaac	8100
agatgcaatt cccggacgttc taaacccaaac cacttttacc gctacacgac cgggggtata	8160
ctacgggtcaa tgctctgaaa tctgtggagc aaaccacagt ttcatgcccata tgcgttccat	8220
attaattccccccctt ctaaaaaatctt ttgtttttttt accctatagc accccctctta	8280

-continued

ccccctctag	agcccaactgt	aaagcttaact	tagcattaac	cttttaagtt	aaagattaag	8340
agaaccaaca	cctctttaca	gtgaaatgcc	ccaaactaaat	actaccgtat	ggcccacca	8400
aattacccccc	atactcctta	cactattcct	catcacccaa	ctaaaaatat	taaacacaaa	8460
ctaccaccta	cctccctcac	caaagcccat	aaaaataaaa	aattataaca	aaccctgaga	8520
acccaaatga	acgaaaatct	gttcgcttca	ttcattgccc	ccacaatcct	aggcctaccc	8580
gccgcagtac	tgatcattct	atttccccc	ctattgatcc	ccacccctcaa	atatctcatc	8640
aacaaccgac	taatcaccac	ccaacaatga	ctaatacAAC	taacctcaaa	acaaatgata	8700
accatacaca	acactaaagg	acgaacctga	tctcttatac	tagtattcctt	aatcattttt	8760
attgccacaa	ctaaccctct	cggactcctg	cctcactcat	ttacaccaac	cacccaaacta	8820
tctataaacc	tagccatggc	catccccctt	tgagcgggca	cagtgattat	aggcttcgc	8880
tctaagatta	aaaatgcct	agcccaacttc	ttaccacaaag	gcacacccat	accccttac	8940
ccctactat	ttattatcg	aaccatcgc	ctactcatc	accaatagc	cctggccgta	9000
cgcctaaccg	ctaacattac	tgcaaggccac	ctactcatgc	acctaattgg	aagegcacc	9060
ctagcaatata	caaccattaa	cctccctct	acacttatca	tcttcacaaat	tctaaattct	9120
ctgactatcc	tagaaatcgc	tgtcgctt	atccaaaggct	acgtttcac	acttctagta	9180
agcctctacc	tgcacgacaa	cacataatga	cccaacccat	acatgcctat	cataatagtaa	9240
aacccagccc	atgaccctta	acaggggcc	tctcagccct	cctaattgacc	tccggccctag	9300
ccatgtgatt	tcacttccac	tccataacgc	tcttcataact	aggcctacta	accaacacac	9360
taaccatata	ccaatgatgg	cgcgatgtaa	cacgagaaag	cacataccaa	ggccacccaca	9420
caccacctgt	ccaaaaaggc	cttcgatac	ggataatcct	atttattacc	tcagaagttt	9480
ttttttcgc	aggattttc	tgagccttt	accactccag	cctagccct	accccccata	9540
taggagggca	ctggccccca	acaggcatca	ccccgtaaa	tcccctgaa	gtcccaactcc	9600
taaacacatc	cgtattactc	gcatcaggag	tatcaatcac	ctgagetcac	catagtctaa	9660
tagaaaacaa	ccgaaaccaa	ataattcaag	cactgcttat	tacaatttt	ctgggtctct	9720
attttaccct	cctacaagcc	tcaagact	tctgacttcc	cttcaccatt	tccgacggca	9780
tctacggctc	aacattttt	gtagccacag	gttccacgg	acttcacgct	attattggct	9840
caacttccct	cactatctgc	ttcatccgccc	aactaatatt	tcacttaca	tccaaacatc	9900
actttggctt	cgaagccgccc	gcctgatact	ggcattttgt	agatgtggtt	tgactatttc	9960
tgtatgtctc	catctatgt	tgagggctt	actcttttag	tataaatagt	accgttaact	10020
tccaaattaac	tagtttgac	aacattcaaa	aaagagtaat	aaacttcgcc	ttaattttaa	10080
taatcaacac	cctccctagcc	ttactactaa	taattattac	attttgacta	ccacaactca	10140
acggctacat	agaaaaatcc	accccttacg	agtgcggctt	cgaccctata	tcccccggcc	10200
gcgtcccttt	ctccataaaa	ttcttcttag	tagcttattac	cttcttatta	tttgatctag	10260
aaattggccct	ccttttaccc	ctaccatgag	ccctacaaac	aactaacctg	ccactaata	10320
ttatgtcatc	cctcttatta	atcatcatcc	tagccctaa	tctggccat	gagtgactac	10380
aaaaaggatt	agactgaacc	gaattggat	atagttaaa	caaaacgaat	gatttcgact	10440
cattaaattt	tgataatcat	atttacaaa	tgccccctcat	ttacataat	attatactag	10500
catttaccat	ctcacttctt	ggaatactag	tatacgcctc	acacccata	tcctccctac	10560

-continued

tatgcctaga aggaataata ctatcgctgt tcattatagc tactctcata accctcaaca 10620
cccactccct cttagccaat attgtgccta ttgcctact agtcttgcc gcctgcgaag 10680
cagcgggtgg cctagcccta ctatgtctaa tctccaaac acatatggctta gactacgtac 10740
ataaacctaaa cctactccaa tgctaaaact aatcgccc acaattatata tactaccact 10800
gacatgactt tccaaaaaac acataattt aatcaacaca accaccacca gcctaattat 10860
tagcatcattc ccttctactat ttttaacca aatcaacaac aacctattta gctgtcccc 10920
aacctttcc tccgcccccc taacaacccc cctcctaata ctaactacct gactcctacc 10980
cctcacaatc atggcaagcc aacgcccattt atccagtgaa ccactatcac gaaaaaaact 11040
ctacctctatc atactaatct ccctacaat ctccttaattt ataacattca cagccacaga 11100
actaatcata ttttataatct tcttcgaaac cacacttaccc cccaccccttgg ctatcatcac 11160
ccgatggggc aaccagccag aacgcctgaa cgccaggaca tacttcttat tctacaccct 11220
agtaggctcc cttccctac tcatcgact aatttacact cacaacaccc taggctcact 11280
aaacattctta ctactcactc tcactgccc agaactatca aactcctgag ccaacaactt 11340
aatatgacta gcttacacaa tagttttat agtaaagata cctctttacg gactccactt 11400
atgactccctt aaagccccatg tcgaagcccc catcgctggg tcaatagttac ttgcccagtt 11460
actctttaaaa cttaggcggtt atggtataat acgcctcaca ctcatttcata accccctgac 11520
aaaacacata gcctaccct tccttgtact atccctatga ggcataatta taacaagctc 11580
catctgcctta cgacaaacacag acctaaaatc gctcattgc tacttctaa tcagccacat 11640
agccctcgta gtaacagccat ttctcatcca aacccctgaa agcttcacccg ggcagtcatt 11700
tctcataatc gcccacgggc ttacatcctc attactattc tgccttagaa actcaaacta 11760
cgaacgcactt cacagtcgca tcataatcct ctctcaagga cttcaaactc tactccact 11820
aatagcttt tgatgacttc tagcaaggctt cgctaaacctc gccttacccccc ccactattaa 11880
cctactggga gaactctctg tgcttagtaac cacgttctcc tgatcaaata tcactctcct 11940
acttacagga ctcaacatac tagtcacagc cctataacttc ctctacatata ttaccacaaac 12000
acaatggggc tcactcacc accacattaa caacataaaa ccctcattca cacgagaaaa 12060
caccctcatg ttccatcacc tatcccccat tctccttcata tccctcaacc ccgcacatcat 12120
tacggggttt tccttggta aatatagttt aacccaaacaa tcagattgtg aatctgacaa 12180
cagaggttta cgacccctta tttaccgaga aagctcacaac gaaactgttacatc tccatgcggcc 12240
catgtctaac aacatggctt tctcaacttt taaaggataa cagctatcca ttgggtttag 12300
gcocccaaaaaaa ttttggtgca actccaaata aaagtaataa ccatgcacac tactataacc 12360
accctaaaccc tgactccctt aattccccccatc tccatcatca cccctcgtaa cccttaacaaa 12420
aaaaactcat accccctatata tggtaaaatcc attgtcgatcc ccaccccttata tctatgtctc 12480
ttccccacaa caatattcat gtgccttagac caagaagttt ttatctcgaa ctgcacactga 12540
gccacaacccca aaacaacccca gctctcccta agttcaaaac tagactactt ctccataata 12600
ttcatccctg tagcattgtt cgatcatgg tccatcatag aattctcact gtgtatata 12660
aactcagacc caaacattaa tcagttctc aaatatctac tcatcttcata aattaccata 12720
ctaatcttag ttaccgctaa caacctatttca cactgttca tggctgaga gggcgttagga 12780
attatatactt tcttgcgtat cagttgttca taaagcccgag cagatgcacaa cacagcggcc 12840

-continued

attcaagcaa	tcctatacaa	ccgtatcgcc	gatatcggtt	tcatcctcg	cttagcatga	12900
tttacccatc	actccaaactc	atgagaccca	caacaaatag	cccttctaaa	cgctaatacc	12960
agcctcaccc	cactactagg	cctcctccta	gcagcagcag	gcaaattcagc	ccaatttaggt	13020
ctccacccct	gactccctc	agccatagaa	ggccccaccc	cagtctcagc	cctactccac	13080
tcaaggacta	tagttgtacg	aggaatcttc	ttactcatcc	gcttccaccc	cctaggagaa	13140
aatagcccac	taatccaaac	tctaacaacta	tgcttaggcg	ctatcaccac	tctgttcgca	13200
gcagtctgcg	cccttacaca	aaatgacatc	aaaaaaatcg	tagccttctc	cacttaagt	13260
caactaggac	tcataatagt	tacaatcgcc	atcaaccaac	cacacctagc	attcctgcac	13320
atctgtaccc	acgccttctt	caaagccata	ctatttatgt	gctccgggtc	catcatccac	13380
aaccttaaca	atgaacaaga	tattcgaaaa	ataggaggac	tactcaaaac	catacctctc	13440
acttcaacct	ccctcaccat	tggcagccta	gcattagcag	gaataccctt	cctcacaggt	13500
ttctactcca	aagaccacat	catcgaaacc	gcaaacatat	catacacaaa	cgcctgagcc	13560
ctatctatta	ctctcategc	tacctccctg	acaagcgcct	atagcactcg	aataatttt	13620
ctcaccctaa	caggtcaacc	tcgcttcccc	acccttacta	acattaacga	aaataacccc	13680
accctactaa	accccattaa	acgcctggca	gccggaagcc	tattcgcagg	atttctcatt	13740
actaacaaca	tttccccccgc	atcccccttc	caaacaacaa	tccccctcta	cctaaaaactc	13800
acagccctcg	ctgtcacttt	cctaggactt	ctaacagccc	tagacctcaa	ctacctaacc	13860
aacaaactta	aaataaaaatc	cccactatgc	acatttttt	tctccaaat	actcggattc	13920
tacccctagca	tcacacacog	cacaatcccc	tatctaggcc	ttcttacgag	ccaaaaactcg	13980
ccctctactcc	tccttagacct	aacctgacta	gaaaagctat	tacctaaaac	aatttcacag	14040
caccaaatact	ccacactccat	catcacctca	acccaaaaag	gcataatcaa	actttacttc	14100
ctctctttct	tcttcccact	catcctaacc	ctactcctaa	tcacataacc	tattcccccg	14160
agcaatctca	attacaataat	atacaccaac	aaacaatgtt	caaccagtaa	ctactactaa	14220
tcaacggcca	taatcataca	aagccccccgc	accaatagga	tcctccggaa	tcaacccctga	14280
ccccctctct	tcataaaatta	ttcagcttcc	tacactattha	aagttacca	caaccaccac	14340
cccatcatac	tctttcaccc	acagcaccaa	tcctacctcc	atcgctaacc	ccactaaaac	14400
actcaccaag	acctcaaccc	ctgaccccca	tgcctcagga	tactcctcaa	tagccatcgc	14460
tgttagtatat	ccaaagacaa	ccatcattcc	ccctaaataa	attaaaaaaa	ctattaaacc	14520
catataaccc	ccccaaaaat	tcagaataat	aacacacccg	accacacccg	taacaatcaa	14580
tactaaaccc	ccataaaatag	gagaaggctt	agaagaaaac	cccacaaacc	ccattactaa	14640
acccacactc	aacagaaaca	aagcatacat	cattattctc	gcacggacta	caaccacgac	14700
caatgatatg	aaaaaccatc	gttgtatttc	aactacaaga	acaccaatga	ccccaaatcg	14760
caaaactaac	cccctaataa	aattaattaa	ccactcatc	atcgacctcc	ccaccccatc	14820
caacatctcc	gcatgatgaa	acttcggctc	actccttggc	gcctgcctga	tcctccaaat	14880
caccacagga	ctattccctag	ccatgcacta	ctcaccagac	gcctcaacccg	cctttctatc	14940
aatcgcccac	atcactcgag	acgtaaattha	tggtctgaaatc	atccgctacc	ttcacgccaa	15000
tggcgccctca	atattctta	tctgcctctt	cctacacatc	gggcgaggcc	tatattacgg	15060
atcatttctc	tactcagaaa	cctgaaacat	cggcattatc	ctcctgctt	caactatagc	15120

-continued

```

aacagcctc ataggctatg tcctcccgta aggc当地 aata tcattctgag gggccacagt 15180
aattacaaac ttactatccg ccatcccata cattgggaca gacctagttc aatgaatctg 15240
aggaggctac tca tagtagaca gtccc当地 cccacgatc tttaccttcc acttc当地 15300
gcccttcatt attgcagccc tagcaacact ccacccctta ttcttgacg aaacgggatc 15360
aaacaacccc ctaggaatca cctccattc cgataaaaatc accttccacc cttactacac 15420
aatcaaagac gccc当地 ttttcttctt ctttcttcc ttaatgacat taacactatt 15480
ctcaccagac ctccctaggcg acccagadaa ttataccctt gccaaccct taaacacccc 15540
tccccacate aagccc当地 gatatttctt attc当地 cccac acaatttcc gatccgatcc 15600
taacaaacta ggaggcgtcc ttgc当地 ttttccatc actatccatc ctc当地 ctagt caataatccc 15660
catccctccat atatccaaac aacaaagcat aatatttccg ccactaaagcc aatcacttta 15720
ttgactccta gccc当地 gagacc tcctcattt aacctgaatc ggaggacaac cagtaagcta 15780
cccttttacc atcattggac aagtagcatc cgtactatac ttc当地 cccatc ttcttaatcc 15840
aataccaact atctccctaa ttgaaaacaa aatactcaaa tgggc当地 ttc ttgttagtat 15900
aaactaatac accagtcttg taaaccggag atgaaaacct ttttccaaagg acaaattcaga 15960
gaaaaagtct ttaactccac cattagcacc caaagctaaatcattt aaactattct 16020
ctgttcttccat atggggaaagc agatttgggtt accaccctaaag tattgactca cccatcaaca 16080
accgctatgt atttc当地 ttttccatc ttactgcccag ccaccatgaa tattgtacgg taccataat 16140
acttgaccac ctgttagtaca taaaacccca atccacatca aaacccttcc cccatgctt 16200
caagcaagta cagcaatcaa cc当地 tccatca actgcaactc caaagccacc 16260
cctcacccttccat taggataccca acaaacccttcc acccccttccatc cagtagatccatc tacataaagg 16320
catttaccgt acatagcaca ttacagtccatc atcccttccatc gtc当地 cccatgg atgacccttcc 16380
tcagataggg gtc当地 cccatggac caccatcctc cgtgaaatca atatcccgca caagagtgt 16440
acttc当地 tccatc tccatggccatc ataacacttg ggggttagctt aagtgaactt tattccatc 16500
ctgggttccat cttccatggccatc ataacacttg ggggttagctt aagtgaactt tattccatc 16560
atcaccatc 16569

```

```

<210> SEQ ID NO 4
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer

```

```
<400> SEQUENCE: 4
```

```
ttgggtgcaac tccaaagcca cccctcacc
```

```
29
```

```

<210> SEQ ID NO 5
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer.

```

```
<400> SEQUENCE: 5
```

```
aggatgggtgg tcaaggggac
```

```
19
```

-continued

```

<210> SEQ ID NO 6
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer

<400> SEQUENCE: 6

```

ccccaaaatt ttggtgcaac tccaaagcca c

31

1. A method of detecting a cancer in an individual comprising:
 - a) obtaining a biological sample from the individual;
 - b) extracting mitochondrial DNA (mtDNA) from the sample;
 - c) quantifying the amount of mtDNA in the sample having a deletion in the mtDNA sequence between about residue 12317 and about residue 16254 of the human mtDNA genome; and
 - d) comparing the amount of mtDNA in the sample having the deletion to at least one known reference value.
2. The method of claim 1 wherein the deletion has a sequence as set forth in SEQ ID NO: 1 or SEQ ID NO: 2.
3. The method of claim 1 wherein the at least one known reference value is the amount of the deletion in a reference sample of mtDNA from known non-cancerous tissue or body fluid.
4. The method of claim 3 wherein an elevated amount of the deletion in the biological sample compared to the reference sample is indicative of cancer.
5. The method of claim 4 further comprising the step of comparing the amount of mtDNA in the sample having the deletion to the amount of the deletion in a reference sample of mtDNA from known cancerous tissue or body fluid.
6. The method of claim 1 wherein the at least one known reference value is the amount of the deletion in a reference sample of mtDNA from known cancerous tissue or body fluid.
7. The method of claim 6 wherein a similar level of the deletion in the biological sample compared to the reference sample is indicative of cancer.
8. The method of claim 7 further comprising the step of comparing the amount of mtDNA in the sample having the deletion to the amount of the deletion in a reference sample of mtDNA from known non-cancerous tissue or body fluid.
9. The method of claim 1 wherein the step of quantifying is conducted using real-time PCR.
10. The method of claim 1 wherein the quantifying of the deletion includes first amplifying a target region of mtDNA that is indicative of the deletion, and quantifying the amount of the amplified target region.
11. The method of claim 10 wherein a PCR primer having a sequence corresponding to SEQ ID NO: 4 is used as part of a pair of amplification primers for amplifying the target region.
12. The method of claim 1 wherein the cancer is prostate cancer.
13. The method of claim 1 wherein the cancer is breast cancer.
14. The method of claim 1 wherein the biological sample is a body tissue or body fluid.
15. The method of claim 14 wherein the biological sample is selected from the group consisting of breast tissue, prostate tissue and urine.
16. The method of claim 10 wherein the reference value is a cycle threshold.
17. A method of monitoring an individual for the development of a cancer comprising:
 - a) obtaining a biological sample;
 - b) extracting mitochondrial DNA (mtDNA) from the sample;
 - c) quantifying the amount of mtDNA in the sample having a deletion in the mtDNA sequence between about residue 12317 and about residue 16254 of the human mtDNA genome; and
 - d) repeating steps a) to c) over a duration of time; wherein an increasing level of the deletion over the duration of time is indicative of cancer.
18. The method of claim 17 wherein the deletion has a sequence as set forth in SEQ ID NO: 1 or SEQ ID NO: 2.
19. The method of claim 17 further comprising at least one step selected from the group consisting of: (a) comparing the amount of mtDNA in the sample having the deletion to the amount of the deletion in a reference sample of mtDNA from known non-cancerous tissue or body fluid; and (b) comparing the amount of mtDNA in the sample having the deletion to the amount of the deletion in a reference sample of mtDNA from known cancerous tissue or body fluid.
20. The method of claim 17 wherein the quantifying of the deletion includes amplifying a target region of mtDNA that is indicative of the deletion, and quantifying the amount of the amplified target region.
21. The method of claim 20 wherein the step of quantifying is conducted using real-time PCR.
22. The method of claim 20 wherein a PCR primer having a sequence corresponding to SEQ ID NO: 2 is used as part of a pair of amplification primers for amplifying the target region.
23. The method of claim 17 wherein the cancer is prostate cancer.
24. The method of claim 17 wherein the cancer is breast cancer.
25. The method of claim 17 wherein the biological sample is a body tissue or body fluid.
26. The method of claim 25 wherein the biological sample is selected from the group consisting of breast tissue, prostate tissue and urine.
27. The method of claim 10 wherein the amplifying of the target region is conducted using a pair of amplification primers, one of the pair of amplification primers overlapping a splice joining regions on opposite ends of the deletion.

28. A method of detecting a cancer in an individual comprising:

- a) obtaining a biological sample from the individual;
- b) extracting mitochondrial DNA (mtDNA) from the sample;
- c) quantifying the amount of mtDNA in the sample having a deletion corresponding to the sequence as set forth in SEQ ID NO: 1 or SEQ ID NO: 2; and
- d) comparing the amount of mtDNA in the sample corresponding to SEQ ID NO: 1 or SEQ ID NO: 2 to at least one known reference value.

29. The method of claim **28** wherein the at least one known reference value is the amount of the sequence corresponding to SEQ ID NO: 1 or SEQ ID NO: 2 in a reference sample of mtDNA from known non-cancerous tissue or body fluid.

30. The method of claim **28** wherein the at least one known reference value is the amount of the sequence corresponding to SEQ ID NO: 1 or SEQ ID NO: 2 in a reference sample of mtDNA from known cancerous tissue or body fluid.

31. The method of claim **28** wherein the step of quantifying is conducted using real-time PCR.

32. The method of claim **31** wherein the quantifying of the deletion includes first amplifying a target region of mtDNA that is indicative of the deletion, and quantifying the amount of the amplified target region.

33. The method of claim **32** wherein one of a pair of PCR primers used in the amplifying of the target region overlaps a rejoining site of the sequence corresponding to SEQ ID NO: 1 or SEQ ID NO: 2, after the sequence has re-circularized.

34. The method of claim **28** wherein the cancer is prostate cancer.

35. The method of claim **28** wherein the cancer is breast cancer.

36. The method of claim **28** wherein the biological sample is a body tissue or body fluid.

37. The method of claim **36** wherein the biological sample is selected from the group consisting of breast tissue, prostate tissue and urine.

38. The method of claim **32** wherein the reference value is a cycle threshold.

39. A diagnostic kit for carrying out the method of claim **1** comprising:

- (a) material for collecting one or more biological samples; and
- (b) suitable primers and reagents for detecting the mtDNA deletion.

* * * * *