wO 2008/130545 A2 |10 00 0000 0 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f ‘1”1‘

International Bureau) IO O OO O

(10) International Publication Number

WO 2008/130545 A2

(43) International Publication Date
30 October 2008 (30.10.2008)

(51) International Patent Classification: (74) Agents: IANDIORIO, Joseph, S. et al.; [andiorio Teska &
HO3M 7/00 (2006.01) Coleman, 260 Bear Hill Road, Waltham, MA 02451 (US).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2008/004853 kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BR, BW,BY, BZ, CA,
(22) International Filing Date: 15 April 2008 (15.04.2008) CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
) EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
(25) Filing Language: English IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
(26) Publication Language: English LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
(30) Priority Data: PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
11/788,095 19 April 2007 (19.04.2007) US SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,

ZA, 7M, ZW.

(71) Applicant (for all designated States except US): ANA-
LOG DEVICES, INC. [US/US]; Three Technology Way. (84) Designated States (unless otherwise indicated, for every
kd .) k)

Norwood, MA 02062 (US). kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(72) Inventors; and ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(75) Inventors/Applicants (for US only): STEIN, Yosef European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[IL./US]; 4 Turning Mill Road, Sharon, MA 02067 (US). FR, GB,GR,HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,

KABLOTSKY, Joshua [US/US]; 99 Nickles Lane, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
Carlisle, MA 01741 (US). CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SIMPLIFIED PROGRAMMABLE COMPUTE SYSTEM FOR EXECUTING AN H.264 BINARY DECODE SYM-
BOL INSTRUCTION

(57) Abstract: An improved programmable com-
pute system and method for executing an H.264 bi-

Context nary decode symbol using only a single instruction
1028 1042 108a 1062 o : o
300 and two compute units is achieved by providing not
CABAG decode Range iLPS Ctx Value just one rLLPS value but all four next possible rLPS
i i : values of the current context next state so that there is
[irs-aror = l_/107 no delay initially while calculating the correct rL.LPS
= <7:6>
|11213|11F?0|10718]20(?5| — 5 — 1108 because all four are present and any one can be cho-
100" __N\ [Range =Range-rrsi | sen; further all the parameters e.g. value, range, con-

(Range<7:6;/\

-~

text, and rLPS can be served by only two available
32 bit registers by generating, locally, the MSB ninth
bit, of range based on the fact that the range is nor-

114a

Bit =IMPS Bit= MPS malized to a known value in the MSB.
Value = Value - Range _
Range = rLPSi State = transMPS(State)

123

IrLPS = RangeTb1LPS[nState[State]]

[]
124a
\ I Renormalize[Range,Vaiue] I/

1 1302 l 132a 11343

!
e | (es) [vawoe | (o)

R
205]—=x
109

FIG. 3

128a

WO 2008/130545 A2 | NI DA 000 00 00010000 0 0 O

Published:
— without international search report and to be republished
upon receipt of that report

WO 2008/130545 PCT/US2008/004853
1

SIMPLIFIED PROGRAMMABLE COMPUTE SYSTEM FOR EXECUTING AN
H.264 BINARY DECODE SYMBOL INSTRUCTION

FIELD OF THE INVENTION
This invention relates to a programmable compute system and method for

executing an h.264 binary decode symbol.

BACKGROUND OF THE INVENTION

Arithmetic coding processes such as JPEG2000, JPEG, On2, or H.264 often
use Context -based Adaptive Binary Arithmetic Coding (CABAC). The original
principle of binary arithmetic coding is based on recursive subdivision of the interval
width Range. [For a full description of the H264 CABAC standards and details see
ITU-T Series H: Audiovisual and Multimedia Systems Infrastructure of audiovisual—
coding of moving video]. Given the estimation of probability ppps of Least Probable
Symbol (LPS), the interval is subdivided into two subintervals: one interval width
rLPS = Range " pLps which is associated with the LPS, and the other interval width
rMPS = Range- rLPS, which is assigned to the Most Probable Symbol (MPS).
Depending on whether the observed bit to be encoded is MPS or LPS , the
corresponding subinterval is chosen as the new interval. The binary arithmetic coding
process keeps updating the interval width register Range which marks the range of the
interval and the code register Value which marks the lower bound of the interval.
According to H.264 CABAC process, the Range " p;ps required to perform the
interval subdivision is approximated using a 4x64 2-D pre-stored table. Range value
is approximated by four quantized values (2-bits) using an equal-partition of the

whole range 28 < Range < 2° and the value of pLps is approximated by 64 quantized

WO 2008/130545 PCT/US2008/004853
2
values indexed by a 6-bit MPS or LPS state . If the code offset (Value) is less than the
current Range, the MPS path is taken where the most probable symbol (MPS) is
designated as the next output bit, and the state transition is preformed based on the
most probable symbol (MPS) look-up table. If Value is greater than current range, the
LPS path is taken where the MPS bit is inverted, the current Value is determined from
the previous Value and the range, then range becomes rLPS. If the current LPS state
equals zero, the MPS is inverted, and the state transition is performed based on the
least probable symbol (LPS) look-up table, followed by the renormalization process
where the range and value are renormalized. Range is renormalized to the [511,256]
interval by left-shifting range the required amount of bits; the Value is scaled up
accordingly and the lower bits are appended from the incoming bit stream. One
approach suggested in co-pending application U.S. Patent Application Serial No.
11/527,001, filed September 26, 2006, entitled "lterative Process with Rotated
Architecture for Reduced Pipeline Dependency” (AD-473), and co-pending U.S.
Patent Application Serial No. 11/788.094 filed on April 19, 2007 entitled "A
Programmable Compute System for Executing an H.264 Binary Decode Symbol
Instruction"(AD-505J), each of which are incorporated by reference herein uses three
compute units to solve the algorithm in a single instruction or two compute units with
two instructions. While that was a significant improvement, it still required
significant power and area if three compute units are used or twice as many MIPS
(Million Instructions Per Second).
BRIEF SUMMARY OF THE INVENTION
It is therefore an object of this invention to provide an improved

programmable compute system and method for executing an H.264 binary decode

WO 2008/130545 PCT/US2008/004853

symbol.

It is a further object of this invention to provide such an improved
programmable compute system and method for executing an H.264 binary decode
symbol which requires only two compute units and a single instruction.

It is a further object of this invention to provide such an improved
programmable compute system and method for executing an H.264 binary decode
symbol which removes the rLPS dependency from the look-up table by providing the
context with all four possible rLLPS values for the current context state.

It is a further object of this invention to provide such an improved
programmable compute system and method for executing an H.264 binary decode
symbol which has twice the speed and requires only half the area.

It is a further object of this invention to provide such an improved
programmable compute system and method for executing an H.264 binary decode
symbol which uses less of the available look-up table space.

It is a further object of this invention to provide such an improved
programmable compute system and method for executing an H.264 binary decode
symbol in which all the parameters, e.g. value, range, context and rLPS are provided
in only the two available 32 bit registers.

It is a further object of this invention to provide such an improved
programmable compute system and method for executing an H.264 binary decode
symbol in which one register provides all four possible rLPS values of the current
context states and the other register provides a 16 bit field for value, 8 bit range field
and 8 bit context field including state and MPS.

It is a further object of this invention to provide such an improved

WO 2008/130545 PCT/US2008/004853
4
programmable compute system and method for executing an H.264 binary decode
symbol in which the range input is an 8 bit value with the MSB ninth bit being locally
generated based on the fact the range is normalized to a known value.

It-is a-further-object of this invention to-provide-such-an-improved.- -
programmable compute system and method for executing an H.264 binary decode
symbol in which both value and range can be normalized in parallel using but one
shifter.

It is a further object of this invention to provide such an improved
programmable compute system and method for executing an H.264 binary decode
symbol which uses the compute unit look up table for storing the rLPS, MPS and LPS
state table and saves area and power.

It is a further object of this invention to provide such an improved
programmable compute system and method for executing an H.264 binary decode
symbol which uses the compute unit lookup table for implementing the arithmetic
coding bit stream FIFO.

It is a further object of this invention to provide an improved programmable
compute system and method for executing an H.264 binary decode symbol which
rotates the H.264 arithmetic coding algorithm to best fit the compute unit hardware
dependencies.

It is a further object of this invention to provide such H.264 decoding
arithmetic coding symbol instruction which uses existing compute units.

This invention results from the realization that an improved programmable
compute system and method for executing an H.264 binary decode symbol using only

a single instruction and two compute units can be achieved by providing not just one

WO 2008/130545 PCT/US2008/004853
5

rLPS value but all four next possible rLPS values for the next state of the current
context so that there is no delay initially while calculating the correct rLPS because all
four are present and any one can be chosen. The invention further realizes that all the
parameters e.g. value;-range; context, and-rTPS-can-be served by-only two available
32 bit registers by generating, locally, the MSB ninth bit, of range based on the fact
that the range is normalized to a known value in the MSB.

The subject invention, however, in other embodiments, need not achieve all
these objectives and the claims hereof should not be limited to structures or methods
capable of achieving these objectives.

This invention features a programmable compute system for executing an
h.264 binary decode symbol instruction including a first compute unit having a first
range circuit responsive to four possible current rLPS values for selecting the current
rLPS value in accordance with the current range value to define the current rLPS and,
in response to the selected current rLPS value and the current range value, calculating
the MPS range. A next state rLPS circuit is responsive to the MPS range and current
values to generate a flag and includes a first look-up table responsive to the flag and
the state of the current context value to generate the next four possible rLPS values of
the current context next state. A second compute unit includes a second range circuit
responsive to four possible current rLPS values for selecting the current rLPS value in
accordance with the current range value to define the current rLPS and, in response to
the selected current rLPS value and the current range value, calculating the MPS
range; and in response to the flag selecting one of the MPS and LPS ranges. A value
update circuit, responsive to the current value and the difference between the current

range and current rLPS calculates MPS and LPS value values and responsive to the

WO 2008/130545 PCT/US2008/004853

6
second flag selects one of them. A value normalization circuit, responsive to the
selected range value and the selected value value provides in parallel the normalized next
value and next range. A current context update circuit is responsive to current context
-MPS-and-state,-for-determining MPS-and-L.PS-state-from a second look-up table and
selecting one of them in response to the flag and generating an MPS and negated MPS
bit and providing the next context MPS and state and the decode symbol.

In a preferred embodiment the first range circuit may include a first selection
circuit for selecting one of four current rLPS values for the current rLPS range in
accordance with the current range value and a subtraction circuit for generating the
MPS range from the current range and the current rLPS. The next state rLPS circuit
may include a decision circuit responsive to the MPS range and current value to
generate the flag and the first look-up table may contain the four possible rLPS values
for each state which are permuted according to the next state of current state. The
first look-up table may respond to the state and the flag to provide the four possible
values for the next state of the current context. The first look-up table may include an
MPS and LPS state table and the flag may determine which table will be addressed.
The range circuit input may be an eight bit value and the current range most
significant bit may be locally generated. The second range circuit may include a first
selection circuit for selecting one of four current rLPS values for the current rLPS
range in accordance with the current range value; a subtraction circuit for generating
the MPS range from the current range and the current rLLPS; and a second selection
circuit responsive to the flag for selecting one of the LPS and MPS ranges. The
normalization circuit may include a leading zero detection circuit responsive to the

selected range value, a shift circuit responsive to the number of leading zeros from the

WO 2008/130545 PCT/US2008/004853

7
leading zero detection circuit the selected value value, the selected range value for
shifting in parallel the range value and value value and a bit FIFO for appending the -
number of leading zeros to the shifted value value to generate the next value and next
range. -The second look up-table may include a-state table-and-a bit FIFO. The
current context may include the most probable symbol, state, and the four possible
rLPS values of the context state.

This invention also features a method of operating a compute system for
executing an H.624 binary decode symbol instruction including selecting, from four
possible current rLPS values, the current rLPS value in accordance with the current
range value to define the current r(LPS. The MPS range is calculated from the
selected current rLPS value and the current range value. A flag is generated from the
MPS range and current value. The next four possible rLPS values of then current
context next state are generated from a look-up table in response to the flag and the
state of the current context value. One of the MPS and LPS ranges is selected in
response to the flag. MPS and LPS value values are calculated in response to the
current value and the difference between the current range and current rLPS. The
selected range value and value value are normalized in parallel to provide the next
value and range. The MPS and LPS state are determined from current context MPS
and state from a second look-up table. One of them is selected in response to the flag
and an MPS and negated MPS bit are generated providing the next context MPS and
state and decode symbol.

This invention also features a method of executing an H.264 binary decode
symbol including selecting, from four possible current rLPS values, the current rLPS

value in accordance with the current range value to define the current rLPS,

WO 2008/130545 PCT/US2008/004853
8
calculating the MPS range from the selected current in rLPS value and the current
range value and comparing the MPS range and current value to determine an MPS or
LPS path. In the MPS path the next state of the current context is generated from an
MPS state look-up table and-in-the-LLPS path the-next-state of the-current context is
generated using the LPS state look-up table. Range is updated to the selected current
rLPS value and value is updated from the current value and MPS range. From a
permutated look-up table the next four possible rLPS values of the current context
next state are obtained and the range and value are normalized to obtain next range,
next rLPS, next value, nexf context and the output bit.
In a preferred embodiment the current context may include the most probable

symbol, state, and the four possible rLLPS values of the context state.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Other objects, features and advantages will occur to those skilled in the art
from the following description of a preferred embodiment and the accompanying
drawings, in which:

Fig. 1 is a flow block diagram of a prior art method of H.264 CABAC
decoding;

Fig. 2 is a flow block diagram of a method of H.264 CABAC decoding
according to tﬁe invention of co-pending application Serial No. 11/527,001 (AD-
473));

Fig. 3 is a flow block diagram of a method of H.264 CABAC decoding
according to this invention;

Fig. 4 is a diagrammatic view of an rLPS as a function of the next state of the

WO 2008/130545 PCT/US2008/004853
9

current context look up table useable in Fig. 3;

Fig. 5 shows the allocation of the look up table of Fig. 4 within the compute
unit internal lookup table space ;

Fig. 6 is a-diagrammatic view-of-the-MPS;-L.PS- state lookup table and the bit
FIFO allocation within the compute unit internal lookup table space , a portion of
thich is usable in the process of Fig. 3;

Fig. 7 is a schematic block diagram of an arithmetic processor with two
compute units for implementing this invention; and

Fig. 8 is a key to Figs. 8A and 8B which are schematic block diagram of first
and second compute units in a programmable compute system for executing an H.264

binary decode symbol instruction according to this invention.

DETAILED DESCRIPTION OF THE INVENTION

Aside from the preferred embodiment or embodiments disclosed below, this
invention is capable of other embodiments and of being practiced or being carried out
in various ways. Thus, it is to be understood that the invention is not limited in its
application to the details of construction and the arrangements of components set forth
in the following description or illustrated in the drawings. If only one embodiment is
described herein, the claims hereof are not to be lIimited to that embodiment.
Moreover, the claims hereof are not to be read restrictively unless there is clear and
convincing evidence manifesting a certain exclusion, restriction, or disclaimer.

In a H.264 CABAC process 8a, Fig. 1, there are three inputs, present range 80,
value 82, and context 84. In the first step 86, rLPS and intermediate range~ are

calculated. rLPS is typically generated using a 4x64 2D look-up table in an

WO 2008/130545 PCT/US2008/004853
10

associated compute unit. Instep 88 it is determined as to whether value is greater
than the intermediate range~. If it is not greater than the intermediate range~, the
Most probable symbol path is taken where in step 90 MPS is assigned as the output
bit and the state of the context is updated using a second look-up table (the MPS-
transition table). If the valué is greater that the range the Least probable symbol path
is‘taken where in step 92 an inverted MPS is assigned as the output bit, the next value
is calculated from the value and the intermediate range~ and the next range is
determined from the rLPS. Following this in step 94, if the state is equal to zero the
MPS is negated in step 96. If state is not equal to zero following step 94, orAfollowing
step 96, a new state is determined 98 from a third look-up table (the LPS- transition
table) . Finally, whether the value is greater than or less than the range, the respective
outputs are renormalized 100. fo a range between 256 and 512, the Value is scaled up
accordingly and the new LSB bits of Value are appended from the bit stream FIFO.
I‘he outputs‘ resulting then are the normalized next range, range’, normalized next
value, value', and next context, context'. The operation of process 8a is effected by
arithmetic decoder 135.

In contrast CABAC decoder processor 30a in accordance with the inventic;ns
of U.S. Patent Application Serial No. 11/527,001, filed September 26, 2006, entitled
"lterative Process with Rotated Architecture for Reduced Pipeline Dependency” (AD-
473) and U.S. Patent Application Serial No. 11/788.094 filed on April 19, 2007,
entitled "A Programmable Compute System for Executing an H.264 Binary Decode
Symbol Instruction” (AD-505J), each of which are incorporated by reference herein,
Fig. 2, has four inputs, present range, 102, present rLPS 104, present value 106, and

present context 108. In the process 30a according to this invention the present rLPS

WO 2008/130545 PCT/US2008/004853
11
104 is supplied either externally initially, and then once the operation is running, by
the preliminary generation of the next rLPS'. With the rLPS being supplied the
dependency of range~ on the two dimensional state/range look-up table of rLPS result
is resolved, and the intermediate range~ is determined from the present range and the
present rLPS in step 110. Then in step 112 it is determined whether the value is
greater than the intermediate range, if it is not, once again the Most probable symbol
path is taken where in step 114 1_he MPS is assigned to a bit and the state of the
context is updated by reference to a first MPS-transition look-up table. If the value is
greater than the intermediate range then the Least probable symbol path is taken
where MPS has assigned to it the inverted bit, next value' is determined from present
value and intermediate range~ and the next range' is determined from the rLPS. In
step 118 inquiry is made as to whether the state is equal to zero. If it is the MPS is
negated in step 120. In step 122 the new context state is determined from a second
LPS-transition look-up table. In either case in step 124 the system is renormalized as
previously explained. Then in 126 the first two operations in step 86 of the prior art
device, Fig. 4, are now performed. There in step 126 the next rLPS, rLPS', is
determined from the normalized next range' and the updated context next state’ using
a third 2D look-up table. The output then is the next range, range' 128 the next rLPS,
rLPS' 130, the next value, value' 132, and the next context, context' 134. The
operation of process 30a is effected by arithmetic decoder 135a.
~ Note that the next rLPS', which is anticipatorily generated as shown in Fig. 2,

is based on a particular context value 108. As long as this context is going to be used
in the next iteration the anticipatory next rLPS, rLPS' being calculated in advance is

proper. However, occasionally context itself may change in which case a new context

WO 2008/130545 PCT/US2008/004853

12
next rLPS' or, TLPS" will have to be created for the new context.

In accordance with the process 30b, Fig. 3, of this invention the values of
range, 102a, rLPS 104a, context 108a and value 106a are still presented but now the
context:includes both rEPS-and-context-105 -and-the r=PS-input-has-not-just-the
current rLPS value but all four of the rLPS values for the context state. Thus the
dependency of rLPS on the current context state is resolved; there is no need to "
calculate the next rLPS with the incumbent delay: it can merely be chosen in
accordance with the range<7:6>. Significantly, this means that the third compute unit
required in U.S. Serial No. 11/527,001, filed September 26, 2006, entitled "Iferative
Process with Rotated Architecture for Reduced Pipeline Dependency"” (AD-473), and"
U.S. Patent Application Serial No. 11/788.094 filed on April 19, 2007, entitled "A
Programmable Compute Systém for Executing an H.264 Binary Decode Symbol
Instruction” (AD-5057), each of which are incorporated by reference herein, is no
longer required to determine the next rLPS’’ for a new context and so the third
compute unit (or reconfiguration of the first compute unit to function as a third
compute) is not necessary and only one instead of two instructions are necessary.
Process 30b, Fig. 3, operates just as process 30a, Fig. 2, but in step 107 with all four
of the rLPS values present 109, one is chosen in accordance with the range<7:6>.
Then the process proceeds as previously explained. But in step 123, not one but all
four next rLLPS values 109" are determined in anticipation of the next operation.

The four possible rLPS values are generated by permuted look-up table 136,
Fig. 4 including context section 138 and rLPS section 140. Lookup table 136 is
responsive to the flag and the state of the current context value to generate the next

four possible rLPS values of the current context next state.- From the current state

WO 2008/130545 PCT/US2008/004853

13
142, section 138 provides the next state 144. From that, all four of the rLPS values
109 for the next state are retrieved and all four are presented at rLPS 104a, Fig. 5.
Look-up table 136 is actually portioned in two parts: LPS 146 and MPS 148. A
seeend-look»up-t-ab-]e~149,—F—ig.—6,—-i—s-a-lso-emp]oyed-.-in-t.he;process.-B.Ob,.-only-half_of it is
used to provide the MPS, LPS state tables 150 and bit FIFO 151.

Process 30b, Fig. 3, may be implemented in a pair of compute units 160, 162,
Fig. 7, each including a variety of components including e.g., multiplier 164,
polynomial multiplier 166, look-up table 168, arithmetic logic unit 170, barrel shifter
172, accumulator 174, mux 176, byte ALUs 178. Compute units 160, 162 perform
the method or process 30b of Fig. 3, and look-up tables 168, 168a fill the role of the
necessary look-up tables in steps 123, and 114a and 122a referred to in Fig. 3.
Compute units 160, and are accessed through register file 161.

Fig. 8 is a key to Figs. 8A and 8B which together show one implementation of
the programmable compute system for executing an H.264 binary decode symbol
instruction in accordance with this invention 200. There is a first compute unit 202
and a second compute unit 204. The first compute unit 202 receives four inputs rLPS
206, range 208, value 210, and context 212. Note that the context now includes rLPS
206 and context 212. Note also that it receives all four rLPS values at 206. The first
compute unit includes a range circuit 214, and next state rLPS circuit 218. Range
circuit 214 includes a selection circuit 220, which selects one of the four rLPS values
in accordance with range<7:6> to provide the current rLPS. Range circuit 214 also
includes a subtraction circuit 222 which responds to the current rLPS input 224 from
selection circuit 220 and current range 208 to determine the MPS range 226.

Next state rLPS circuit 218 includes a decision circuit 226 and look up table

WO 2008/130545 PCT/US2008/004853

14
136. Decision circuit 226 responds to MPS range from subtraction circuit 222 and
current value 210 to develop flag 228 which together with the current state 230 from
context 212 addresses the féur possible rLPS values in look-up table 136 to provide
the-next-four-possiblerL.PS-values-for-the next-context-state.232-

Compute unit 204 receives the same inputs rLPS .206, range 208, value 216
aﬁd context 212 and has a range circuit 215, normalization circuit 217 and context
update circuit 219 and value update circuit 221. Range circuit 215 is similar to rénge
circuit 214 but includes in addition a selection circuit 250 which responds to the
curfent rLPS from selection circuit 220a, which is the LPS range, and the MPS range
from subtraction circuit 222a to provide one of those as an output in accordance with

- the flag on line 252. This is the same ﬂag as generated by decision circuit 226 and is
used throughout both computé units 202 and 204.

Value update circuit 225 includes a decision circuit 254 which responds to the
MPS range from subtraction unit 222a and current value 210 to produce both LPS
value and MPS value to selection circuit 250 which chooses one in accordance with
the ﬂég on line 252 generated from decision circuit 226a. |

Normalization circuit 217 includes a leading zero detector circuit 258, rLPS
shifter 260, value shifter 262, bit FIFO 264 and ORgate 266. Leading zero detector
circuit 258 detects the leading zeros in the selected MPS or LPS range for selection
circuit 250 and causes shifters 260 and 262 to simultaneously shift range and value
thereby accomplishing both in one operation. range shifter 260 then output the next
raﬁge 208" while the absent value bits are supplied by bit FIFO 264 and the OR circuit
266 appends them to value which then provides the next value 210

One obstacle to the realization of this invention was the compute unit

WO 2008/130545 PCT/US2008/004853
15

constraint of having to work with only two 32 bit input registers addressable only in
eight, sixteen and thirty two bits. Thus first 32 bit register 234 can accommodate the
four possible current context rLPS values 8bit each but the second 32 bit register 236
has-to-accommodate-a-nine-bitvaluewhich-uses-a-16-bit-section-23 8;-while. MPS
and state with seven bits use another eight bit section 240. This leaves only one eight
bit section 241 for the nine bits of range value.

However, it.-was realized that since the range and value have been normalized
as in normalization circuit 217 by shifting out the leading zeros the MSB must
necessarily be a "one". Therefore, only the least significant 8 bits of range need be
stored in register 236 because the most significant ninth bit can be locally generated
as "1" and provided to subtraction units 222 and 222a at the "1" inputs 223 and 223a.

Current context update circuit 219 in second compute unit 204 includes a
sixteen bit 64 entries look up table 270 which typically stores the MPS and LPS state
transition tables as implemented in table 149, Fig. 6. Context input 212 includes
rL.PS, MPS and state values. The MPS value is delivered to negater circuit 272 and to
selector circuit 250._ The other input to selector circuit 250 comes from negater circuit
272 so that it receives the MPS signal on line 274 and negated MPS signal on line
276. One of these is selected in accordance with the condition of the flag signal on
line 252. The output, then, is the actual symbol output on line 278. Look up table
270 provides both the MPS and LPS states to selector circuit 248 and the condition of
the flag signal on line 252 determines which of the MPS or LPS state will be selected.
That state is delivered to the next context output 212’ on line 282 and will be the state
for the next context. Similarly the MPS and negated MPS signals on lines 274 and

276, respectively, are delivered to selector circuit 284, which also responds to flag -

WO 2008/130545 PCT/US2008/004853

16
sighal 243 that identifies if the LPS path was selected and the state equals zero, to .
select one of the two and provide it to the next context output 212’ as the next MPS.
Signal 243 is derived from decision circuit 245 flaged state =0> which responds to the
current-value 210-and-flag-252-

Although specific features of the invention are shown in some drawings and
not in others, this is for convenience only as each feature may be combined with any
or all of the other features in accordance with the invention. The words “including”,
“comprising”, “having”, and “with” as used herein are to be interpreted broadly and
comprehensively and are not limited to any physical interconnection. Moredver, any
embodiments disclosed in the subject application are not to be taken as the only
possible embodiments.

In addition, any amendment presented during the prosecution of the patent
application for this patent is not a disclaimer of any claim element presented in the
application as filed: those skilled in the art cannot reasonably be expected to draft a
claim that would literally encompass all possible equivalents, many equivalents will
be unforeseeable at the time of the amendment and are beyond a fair interpretation of
what is to be surrendered (if anything), the rationale underlying the amendment may
bear no more than a tangential relation to many equivalents, and/or there are many
other reasons the applicant can not be expected to describe certain insubstantial
substitutes for any claim element amended.

Other embodiments will occur to those skilled in the art and are within the
following claims.

What is claimed is:

WO 2008/130545 PCT/US2008/004853

17

CLAIMS

1. A programmable compute system for executing an h.264 binary decode
symbol instruction comprising:

a first compute unit including a first range circuit responsive to
four possible current rLLPS values for selecting the current rLPS value in accordance with
the current range value to define the current rLPS and, in response to said selected current
rLPS value and said current range value, calculating the MPS range; and a next state
rLPS circuit responsive to said MPS range and current values to generate a flag and
including a first look-up table responsive to said flag and the state of the current context
value to generate the next four possible rLLPS values of the current context next state; and

a second compute unit including a second range circuit responsive
to four possible current rLPS values for selecting the current rLPS value in accordance
with the current range value to define the current rLPS and, in response to said selected
current rLLPS value and said current range value, calculating the MPS range; and in
response to said flag selecting one of said MPS and LPS ranges; and a value update
circuit, responsive to the current value and the difference between the current range and
current rLPS for calculating MPS and LPS value values and responsive to said second flag
to select one of them; a value normalization circuit, responsive to said selected range value
and said selected value value to provide in parallel the normalized next value, next range;
and a current context update circuit responsive to current context MPS and state, for
determining MPS and LPS state from a second look up table and selecting one of them in

response to said flag and generating an MPS and negated MPS bit and providing the next

WO 2008/130545 PCT/US2008/004853

18

context MPS and state and the decode symbol.

2. The programmable compute Systent of claim 17T which saidTirst range
circuit includes a first selection circuit for selecting one of four current rLPS values for
the current rLLPS range in accordance with the current range value and a subtraction

circuit for generating the MPS range from the current range and the current rLPS.

3. The programmable compute system of claim 2 in which said next state
rLPS circuit includes a decision circuit responsive to said MPS range and current value to
generate said flag and said first look-up table contains the four possible rLPS values for

each state which are permuted according to the next state of current state.

4. The programmable compute system of claim 3 in said first look-up table
responds to the state and said flag to provide the four possible values for the next state of

said current context.

5. The programmable compute system of claim 3 in which said first look-up
table includes an MPS and LPS state table and said flag determines which table will be

addressed.

6. The programmable compute system of claim 1 in which said range circuit

input is an eight bit value and said current range most significant bit is locally generated.

WO 2008/130545 PCT/US2008/004853

19

7. The programmable compute system of claim 1 in which said second range
circuit includes a first selection circuit for selecting one of four current rLPS values for
the current rLPS range in accordance with the current range value and a subtraction
circuit for generating the MPS range from the current range and the current rLPS and a
second selection circuit responsive to said flag for selecting one of said LPS and MPS

ranges.

8. The programmable compute system of claim 1 in which said
normalization circuit includes a leading zero detection circuit responsive to said selected
range value, a shift circuit responsive to the number of leading zeros from said leading
zero detection circuit the selected value value, the selected range value for shifting in
parallel the range value and value value and a bit FIFO for appending the number of

leading zeros to said shifted value value to generate said next value and next range.

9. The programmable compute system of claim 1 in which said second look

up table includes a state table and a bit FIFO.

10. The programmable compute system of claim 1 in which said current
context includes the most probable symbol, state, and the four possible rLPS values of the

context state.

WO 2008/130545 PCT/US2008/004853

20
11. A method of operating a compute system for executing an H.624 binary

decode symbol instruction comprising:

selecting, from four possible current TL'PS values, the current rLPS
value in accordance with the current range value to define the current rLPS.

calculating the MPS range from the selected current rLPS value
and the current range value;

generating a flag from the MPS range and current value;

generating, from a look-up table in response to the flag and the
state of the current context value, the next four possible rLLPS values of the current
context next state;

selecting one of said MPS and LPS ranges in response to the flag:

calculating MPS and LPS value values in response to the current
value and the difference between the current range and current rLPS;

normalizing in parallel the selected range value and value value to
provide the next value and range; and

determining from current context MPS and state, the MPS and LPS
state from a second look-up table and selecting one of them in response to the flag and
generating an MPS and negated MPS bit and providing the next context MPS and state

and decode symbol.

12. A method of executing an H.264 binary decode symbol comprising:

selecting, from four possible current rLPS values, the current rLPS

WO 2008/130545 PCT/US2008/004853

21

value in accordance with the current range value to define the current rLPS.

calculating the MPS range from the selected current rLPS value
and thé current range value; -

comparing the MPS range and current value to determine an MPS
or LPS path; in the MPS path generating the next state of the current context from an
MPS state look-up table and in the LPS path generating the next state of the current
context using the LPS state look-up table; updating range to the selected current rLPS
value and updating value from the current value and MPS range;

obtaining from a permutated look-up table the next four possible
rLPS values of the current context next state; and

normalizing the range and value to obtain next range, next rLPS,

next value, next context and the output bit.

13. The method of executing an H.264 binary decode symbol of claim 12 in
which said current context includes the most probable symbol, state, and the four possible

rLLPS values of the context state.

WO 2008/130545

135

PCT/US2008/004853
8a
80 82 8
Range Value Ctx

Rangeldx = (Range>>6)&3
rLPS = RangeTb1LPS[State][Rangeldx]

Range = Range - rLPS - LuT

Yes

Y

LPS -~
() Value>=Range

ng

y %

Bit = IMPS

Value' = Value - Range

Bit = MPS
State = transMPS(State)

Range' =rLPS

94 (LPS = = 0.5)
Yes
State = = LUT
139 a 96
MPS =™
98 ~
I |
State = transLPS(state)
Y Y
v r10() Ra/nge to 256 - 512
\ Renormalize]
~ /
Range' Value' Ctx'
F I G 1 arithmetic
[]

decoder

WO 2008/130545

PCT/US2008/004853

30a
f102 f104 f106 1108
S
Range rLPS Value Ctx state, MPS
135a
\' Y Y Y Y
110)
Range = Range - rLPS
112
Yes (LPS) . ~ No (MPS)
Value>=Range

‘ 116 ‘ 114

Bit = IMPS Bit = MPS

Value' = Value - Range
Range' = rLPS

118

(LPS ==0.5)
Yes

State = transMPS(State)

FIG.

State ==
MPS ="
122 -
1 y
State = transLPS(state)
Y /
v f-124
Renormalize
Y
3LUT
k Rangeldx = (Range’>>6)&3 L~ 126
rLPS' = RangeTb1LPS[State'][Rangeldx]
Range' rLPS' Value' Cix'

2

WO 2008/130545 PCT/US2008/004853
102 Context' 106
a a
104
v 04a /108a / 20b
CABAC decode [Range rLPS Ctx (Value
Y Y Y Y
107
11 10 01 o0 |rLPSi=rLPS[Range<7:6>]
[123]150[178]205] Y 110a
109—" __/’\ Range = Range - rLPSi
CRange<7:62) 112a
T Y(PS N (MPS
() Value>=Range ()
114a
I /116a \ /

Bit =IMPS

Range = rLPSi

Value = Value - Range

Bit = MPS
State = transMPS(State)

(LPS==0.5)

MPS =1
|

State =transLPS(state) |— 122a

!

1

rLPS = RangeTb1LPS[nState[State])

123

]

Renormalize[Range,Value]

_124a

132a 134a

(ies) [voe

[Ctx'

{123]150{178]|205|— x

~—109"

FIG. 3

WO 2008/130545 PCT/US2008/004853

136
138 140
Context / \ rLPS[nState[state]]
U) .
2| nstate - Range<7:6>
= 11 1 10 | 01 [00
1281176 | 208 | 240
144 109 {501 167 | 197 | 220 /’Es__\‘
// \\\128 158 | 187 | 216 ;;,_“_Efﬁ_,
0 30 | *~{ 123 150[178 [205 "

116|142 169 [195
1111135 160 | 185

FIG. 4 | 105 | 128|152 | 175

100 | 122 | 144 | 166

State

142/

136 149

S B

| I

| °r | | 0 State }-’O |

| 5 < I | Table |

LP 128

' || gt |151 |

| Permuted | | frFo |

| 2561 rLPS || 256 |

Table
| || |
N

| 148 | |

| s11l || 51 '
| LUTO | LUT1

] | L l

WO 2008/130545 PCT/US2008/004853

5/7
Context
~102a " ~104a ~108a ~106a
Range rLPS Ctx Value
yop[31:0] Y ' ! L
xop[31:0] 11
A Y

\ Y V4 \)
N multipl \V4 y |
178 byte Py byte polymul
164 178 166
[y * } + A
f barrel /
shifter 17;0\ ALU LUTO
1
72 1
YY

1

/ 174 iy RS
160 \ Acco B A 1
S

61
t
| at mux £ k
>
>

A
| / sat mux X R15

162 (| AcC1 X
\ 1743 * \ 168a

| T %
164a~ \T/ 178a 166a$)
olymul
178 b/Yt\e >m”mp'y b/Yt\e I
A) } /LA [})
Y ¥
xop[31:0] T
yop[31:0]
Y Y Y \
Value' rLPS' Range' Context’

+\128 +\130 }\132 +\134

FIG. 8 FIG. 8A | FIG. 8B

WO 2008/130345 PCT/US2008/004853
I
To FIG. 8B |
238 yop 241 240 I
A S e N
f Xop \ (9 1 6 .
T - —T |
@ |
rLPS[range<7:6>] Value Range % State .
. . !
N
234 Context 236 |
206 212] |
Xop / 208 Yopbl 210 Yop.h vopbo [|202 i
Current Current Current Current Context |
Four rLPS Range Value MPS<7>State<5:0> !
mm——] _ _ _—m—— |
M |
| (214 32 .
I = I
| 222 2 I |
1|3 218 o |
1l 2 2 ||
O 5 :
'] g Control Subtraction 2 l I
Il s rLPs Range-rLPS 5 I
|] = n | -
I 226 3 | !
: MPS Range (Tmp / : |
I
: Decision 230 : |
Value>=rTmp .
| 228 State / L
flag 1 '
: S <5:0> T : l
| 136 LUT(flag][state] | !

r i

I 4 Where the LUT is permuted I |
l LUT[i] = [flag][nstate[state]] : |
| .
I | |
I : I
| .
| 2L P!
I | |
{ ¢mpo |\ _} :
Next |
232/ rLPS :
Rd1 .
ToFIG. 8B |

FIG. 84

WO 2008/130545 PCT/US2008/004853

|
| FromFIG.8A = _ | -
I
. 200
!
I Context
ontex
I 206 212
| Xop// 208 Yop.b1 210 Yoph voppo [| 204
I Current | | Current Current Current Context
| rLPS Range Value MPS<7> State <5:0>
| Me—m—m—m—— S——__if_—_
21 tate = 219
|: = %y Range value Il 150> MPS -
<7:6> Update - IMPS
220a f——"2 dat
: : t— 225a vy Circuit \ 272 =
221 16bit LUT[State] 8
| : = 22\zi 8 1 B Mps & Ips state | 276 | 274 | ©
3] Subtraction m— \ \ 2
115 LPS/ Range - rLPS 254 1]3—8_ "é
| I']5 ran ———— (<1 <5:0> 2
ge : pos
| | S 3 ’ 5
l | & MPS | 252 Dec]i'sioln Values >J= g
b Range | Value - rTmp rTmp ©
| | LPS_] MPS / Flag
| \. 250 A Value Value
— 226
=| oL 256 a\\m,/’lﬁ
' 252
I I Detecting Decision 252
I : Leading Zeroes Flag && State ==
I | 258 / 243~ &
|| 282
l | Shifter 260 Shifter 262 BEF 264 W,
| rTmp<<Zeros Value<<Zeros [zeros] 298
| I L 1 | State |MPS /
| 8 6 1 .
! | 17 -1~ Normalization OR | o6 P !13“
l I T Circuit - P
| |__Comp1 9t
l Next | 208 1 Next Next Context Next
| Range 210" Value / MPS<5:0>State<7> Bit
| Rd0.b1 Rdoh 212 Rd0.b0 cc
I
| From FIG. 8A
I

FIG. 8B

L

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings

