

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2015366212 B2

(54) Title
Multimerization of recombinant protein by fusion to a sequence from lamprey

(51) International Patent Classification(s)
C07K 19/00 (2006.01) **C12N 15/62** (2006.01)

(21) Application No: **2015366212** (22) Date of Filing: **2015.12.18**

(87) WIPO No: **WO16/097369**

(30) Priority Data

(31) Number
14307096.9 (32) Date
2014.12.19 (33) Country
EP

(43) Publication Date: **2016.06.23**

(44) Accepted Journal Date: **2021.04.29**

(71) Applicant(s)
Sanofi Pasteur

(72) Inventor(s)
Sodoyer, Régis;Legastelois, Isabelle

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
WO 2012128580 A1
S.-C. LEE ET AL, "Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, (2012-02-28), vol. 109, no. 9, pages 3299 - 3304

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2016/097369 A1

(43) International Publication Date

23 June 2016 (23.06.2016)

(51) International Patent Classification:

C07K 19/00 (2006.01) C12N 15/62 (2006.01)

(21) International Application Number:

PCT/EP2015/080653

(22) International Filing Date:

18 December 2015 (18.12.2015)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

14307096.9 19 December 2014 (19.12.2014) EP

(71) Applicant: SANOFI PASTEUR [FR/FR]; 2 avenue du Pont Pasteur, F-69367 Lyon Cedex 07 (FR).

(72) Inventors: SODOYER, Régis; 9 rue de la Garenne, F-69290 Saint Genis Les Ollières (FR). LEGASTELOIS, Isabelle; 392 rue de la Joannas, F-69700 Saint Andéol le Château (FR).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2016/097369 A1

(54) Title: MULTIMERIZATION OF RECOMBINANT PROTEIN BY FUSION TO A SEQUENCE FROM LAMPREY

(57) Abstract: The present invention relates to polymerized recombinant proteins, to recombinant nucleic acids coding for the polymerized recombinant proteins, to expression cassettes comprising the recombinant nucleic acids, to host cells transformed by the expression cassettes and to a method for multimerizing a recombinant protein. The polymerized proteins of the invention may be used in pharmaceutical or immunogenic compositions. In particular, the recombinant proteins may be antigens, antibodies or scaffolds. In particular, the polymerized recombinant protein may be an influenza haemagglutinin.

Multimerization of recombinant protein by fusion to a sequence from lamprey

5

Field of the Invention

[0001] This invention relates generally to the production of multimeric recombinant proteins.

10 **Background of the Invention**

[0002] Proteins are responsible for a majority of the cellular functions such as molecular recognition (for example in the immune system), signaling pathways (hormones), the transport of metabolites and nutrients and the catalysis of biochemical reactions (enzymes).

15 **[0003]** The function of proteins results from their three-dimensional structure, that is to say how the amino acids of the polypeptide chain are arranged relative to each other in space. It is usually only in its folded state (native state) that a protein can exert its biological activity.

20 **[0004]** Whereas most proteins have a primary structure (amino acid sequence), a secondary structure (alpha-helices and beta-sheets), and a tertiary structure (three-dimensional), protein oligomers have an additional level called the quaternary structure that is part of the three-dimensional structure. Oligomers are complexes of several polypeptides. They can contain several copies of an identical protein referred to as a sub-unit and are referred to as homo-oligomers, 25 or they may consist of more than one type of protein sub-unit, in which case they are referred to as hetero-oligomers. Hemoglobin, the oxygen carrier in blood, is

an example of a protein containing identical subunits. Nitrogenase, the microbial enzyme responsible for the reduction of nitrogen gas to ammonia, is an example of a protein containing non-identical sub-units.

[0005] Numerous recombinant proteins of interest are oligomeric in nature, for example antibodies, many transmembrane proteins such as transmembrane receptors, porins, viral surface antigens, heat shock proteins, viral capsid proteins, ferritin, insulin, many enzymes such as glutathione peroxidase, catalase or superoxide dismutase, collagen and many others.

[0006] For instance, influenza virus haemagglutinin (HA) is a homotrimeric glycoprotein on the surface of the virus which is responsible for interaction of the virus with host cell receptors. The three-dimensional structure of HA is described in detail in *Nature*, 289, 366-373 (1981). Protective immune responses induced by vaccination against influenza virus are primarily directed to the viral HA protein. Recombinant HA protein (rHA) represents therefore an interesting antigen for the development of influenza vaccines.

[0007] Another oligomeric antigen of interest is the Invasion Plasmid Antigen D (IpaD) protein of *Shigella* that was found to form either pentamers, or in the presence of IpaB, tetramers, at the needle tip of the bacteria (Cheung *et al.*, *Molecular Microbiology*, 95(1), 31-50 (2015)).

[0008] A further oligomeric antigen of interest is the Membrane expression of Ipa H (MxiH) protein of *Shigella* that was found to form a helical assembly of subunits that produces the *Shigella* needle (Cordes *et al.*, *The Journal of Biological Chemistry*, 278(19), 17103-17107 (2003)).

[0009] One of the challenges in the recombinant protein field is that recombinant proteins do not always have the same three-dimensional

conformation as the native protein. Yet the function of proteins often results from their three-dimensional structure.

[0010] Similarly, in respect of oligomers, if the recombinant protein does not keep the quaternary structure of the native protein, the function of the recombinant protein may be altered or suppressed.

[0011] For instance, William C. Weldon *et al.*, in *Plos One*, 5(9), e12466 (2010), showed that poor trimerization of a recombinant influenza haemagglutinin could play a role in its low immunogenicity.

[0012] There is therefore a need to produce recombinant proteins which better retain the oligomeric structure and desired biological function of the native protein.

[0013] Chih-Jen Wei *et al.*, in *Journal of Virology*, 82(13), 6200-6208 (2008), describe the trimerization of influenza rHA using the foldon sequence of the T4 phage.

15

Summary of the Invention

[0014] The inventors have surprisingly determined that a fragment of the sequence of the lamprey variable lymphocyte receptor B (VLR-B) antibody may be used to multimerize a heterologous fusion protein.

[0015] Lamprey is a jawless vertebrate with an adaptive immune system comprised of clonally diverse lymphocytes that express variable lymphocyte receptors (VLRs) created by combinatorial assembly of leucine-rich repeat gene segments. The VLR-B can be secreted and can function analogously to antibodies in jawed vertebrates.

[0016] Surprisingly we found that fusion of a nucleic acid sequence encoding a protein of interest and a nucleic acid sequence encoding a peptide found at the extreme C-terminus of lamprey VLR-B antibodies, i.e. C-terminal to the Stalk region (the domain named “C-TERM” in Figure 11C of WO 5 2008/016,854), encodes a recombinant protein which is capable of oligomerization with several degrees of oligomerization.

[0017] More surprisingly we found that the multimeric recombinant proteins obtained are stable.

10 **[0018]** And even more surprisingly we found that the stable multimeric recombinant proteins obtained have several degrees of oligomerization while retaining the biological activity of their native form.

15 **[0019]** According to an embodiment, a molecule is obtained which comprises a first amino acid sequence which has at least 80% identity to SEQ ID NO: 1 and a second amino acid sequence which is heterologous to said first sequence.

[0020] According to another embodiment, a recombinant protein is obtained which comprises a first amino acid sequence which has at least 80% identity to SEQ ID NO: 1 and a second amino acid sequence which is heterologous to said first sequence.

20 **[0021]** According to another embodiment a recombinant nucleic acid is constructed which comprises a first nucleic acid sequence with at least 80% identity to SEQ ID NO: 3 and a second nucleic acid sequence which is heterologous to said first sequence.

[0022] Another aspect is directed to an expression cassette comprising a recombinant nucleic acid as described above wherein the recombinant nucleic acid is operably linked to a promoter.

[0023] Another aspect is directed to a host cell transformed with the 5 expression cassette.

[0024] The invention is also directed to a stable homo-multimeric recombinant protein which comprises a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein, which is fused to a protein having an amino acid 10 sequence with at least 80% identity to SEQ ID NO: 1.

[0025] Another embodiment is directed to a pharmaceutical composition comprising a molecule or a recombinant protein of the invention and a pharmaceutically acceptable carrier or diluent.

[0026] In another aspect the invention provides an immunogenic 15 composition comprising a molecule or a recombinant protein of the invention.

[0027] In another embodiment, the molecule or the recombinant protein of the invention is for use as a medicament.

[0028] In a further aspect of the invention, the molecule or the recombinant protein of the invention is for use in inducing an immune response to an antigen 20 in a subject.

[0029] The invention is also directed to a method for multimerizing a recombinant protein comprising:

a) fusing a nucleic acid sequence having at least 80% identity to SEQ ID NO: 3 to the nucleic acid sequence coding for said recombinant protein, with the 25 proviso that said recombinant protein is not a lamprey VLR-B antibody protein,

b) expressing the fusion protein encoded by said nucleic acid sequence, under conditions which lead to the multimerization of said recombinant protein.

Definitions

5

[0030] In the context of the invention, protein “oligomers” or “polymers” or “multimers” have the same meaning, i.e. proteins having a quaternary structure, being complexes of at least two polypeptides, said polypeptides may be identical or different. Accordingly, in the context of the invention, “multimerization”, 10 “oligomerization” and “polymerization” have the same meaning, as do “multimerized”, “oligomerized” and “polymerized” or “multimerizing”, “oligomerizing” and “polymerizing”.

[0031] “Recombinant proteins” are proteins encoded by recombinant nucleic acids. They are expressed from recombinant nucleic acids in a host cell. 15 “Recombinant nucleic acid” is used herein to describe a nucleic acid molecule which, by virtue of its origin or manipulation is not associated with all or a portion of the polynucleotide with which it is associated in nature and/or is linked to a polynucleotide other than that to which it is linked in nature. The recombinant proteins of the invention comprise a protein fragment from the VLR-B antibody of 20 lamprey and a protein of interest which is heterologous to the protein fragment from the VLR-B antibody of lamprey. As described herein, the recombinant proteins of the invention comprise a protein fragment from the extreme C-terminus of VLR-B antibodies of Lamprey.

[0032] In the context of the invention, a “molecule” is the junction by any 25 means between a protein fragment from the VLR-B antibody of lamprey and a

protein of interest which is heterologous to the protein fragment from the VLR-B antibody of lamprey. For example, a molecule of the present invention may be created by joining the VLR-B protein and the heterologous protein of interest *via* a covalent linkage. Examples of such covalent linkages include a peptide bond, 5 an ester linkage, an amide linkage and a disulfide bond. As described herein, the protein fragment from the VLR-B antibody of lamprey comes from the extreme C-terminus of VLR-B antibodies of Lamprey.

[0033] By “first amino acid sequence” and “second amino acid sequence” in the description of the molecule or the recombinant protein of the invention, it is 10 not meant that a specific order of the sequences is contemplated. It is just for clarity of the embodiment to better distinguish the two sequences comprised in the molecule or recombinant protein of the invention.

[0034] By “first nucleic acid sequence” and “second nucleic acid sequence” in the description of the recombinant nucleic acid of the invention, it is not meant 15 that a specific order of the sequences is contemplated. It is just for clarity of the embodiment to better distinguish the two sequences comprised in the recombinant nucleic acid of the invention.

[0035] In the context of the invention, the first sequence, either amino acid 20 or nucleic acid sequence, designates respectively, an amino acid or a nucleic acid sequence, derived from the C-terminus of the VLR-B antibody of lamprey. According to the invention, the size of the first polypeptide sequence is typically between 24 and 43 amino acids long, particularly between 30 and 43 amino acids long, the bounds being included. Accordingly the size of the first polypeptide sequence may preferably be about 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 25 42 or 43 amino acids long. According to the invention, the size of the first nucleic

acid sequence is typically between 72 and 129 base pairs long, particularly between 90 and 129 base pairs long, the bounds being included. Accordingly the size of the first nucleic acid sequence may preferably be about 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 5 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 or 129 base pairs long.

10 [0036] In the context of the invention, the second sequence, either amino acid or nucleic acid sequence, designates respectively the amino acid sequence of a protein of interest or a fragment thereof or the nucleic acid sequence encoding a protein of interest or a fragment thereof. In the context of the present invention, a "fragment" of a protein as referred to herein retains the biological function of the full-length protein from which it is derived. Thus a fragment according to the present invention may be at least 20, at least 50, at least 75, at least 100 or at least 150 amino acids long.

15 [0037] Two sequences which are contained within a single recombinant molecule are "heterologous" relative to each other when they are not normally associated with each other in nature. In the context of the invention, a second sequence that is heterologous to a first sequence, either amino acid or nucleic acid sequence, means that the second heterologous sequence is not or does not 20 comprise a sequence from the VLR-B antibody of lamprey. In the context of the invention, the heterologous sequence is not an amino acid sequence of, or a nucleic acid sequence coding for a polyhistidine-tag (His-tag). Furthermore, it is preferred that the heterologous sequence according to the present invention is at least 5, at least 10 or at least 15 amino acids long (or is a nucleotide sequence 25 encoding such an amino acid sequence).

[0038] “Fusion proteins” are proteins created through the joining of two or more genes that originally coded for separate proteins. This typically involves removing the stop codon from a DNA sequence coding for the first protein, then appending the DNA sequence of the second protein in frame through ligation or 5 overlap extension PCR. If more than two genes are fused, the other genes are added in frame in the same manner. The resulting DNA sequence will then be expressed by a cell as a single protein. The fusion proteins of the invention are obtained from a nucleic acid coding for a protein fragment from the VLR-B antibody of lamprey fused to a nucleic acid coding for any or all of proteins of 10 interest or fragments thereof. In the context of the invention, the protein can be engineered to include the full sequence of a protein of interest, or only a portion of a protein of interest. The joining of the two or more genes may be made in any order, i.e. the sequences coding for proteins of interest, or fragments thereof, are located either 3' or 5' from the sequence coding for a fragment of the lamprey 15 VLR-B antibodies. Preferably, the sequences coding for the proteins of interest, or fragments thereof, are located 5' from the sequence coding for a fragment of the lamprey VLR-B antibodies. As described elsewhere herein, in the context of the present invention, the protein fragment from the VLR-B antibody of lamprey comes from the extreme C-terminus of the lamprey VLR-B antibody.

20 **[0039]** As used herein, a first sequence having at least x% identity to a second sequence means that x% represents the number of amino acids in the first sequence which are identical to their matched amino acids of the second sequence when both sequences are optimally aligned *via* a global alignment, relative to the total length of the second amino acid sequence. Both sequences 25 are optimally aligned when x is maximum. The alignment and the determination

of the percentage of identity may be carried out manually or automatically using a global alignment algorithm, for instance the Needleman and Wunsch algorithm, described in Needleman and Wunsch, J. Mol Biol., 48, 443-453 (1970), with for example the following parameters for polypeptide sequence comparison:

5 comparison matrix: BLOSUM62 from Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA., 89, 10915-10919 (1992), gap penalty: 8 and gap length penalty: 2; and the following parameters for polynucleotide sequence comparison: comparison matrix: matches = +10, mismatch = 0; gap penalty: 50 and gap length penalty: 3.

10 **[0040]** A program which may be used with the above parameters is publicly available as the "gap" program from Genetics Computer Group, Madison WI. The aforementioned parameters are the default parameters respectively for peptide comparisons (along with no penalty for end gaps) and for nucleic acid comparisons.

15 **[0041]** An "antigen" refers to any agent, preferably a macromolecule, which can elicit an immunological response in an individual. The term may be used to refer to an individual macromolecule or to a homogeneous or heterogeneous population of antigenic macromolecules. As used herein, "antigen" is preferably used to refer to a protein molecule or portion thereof which contains one or more epitopes. An epitope is the part of the antigen that is recognized by antibodies or T cell receptors. Some epitopes are referred to as discontinuous conformational epitope. This means that the amino acids comprising these epitopes are proximal to each other in the three-dimensional structure of the protein, but appear distant from each other when one looks strictly at the one-dimensional linear amino acid

20

sequence. Consequently, it is clear that the three-dimensional structure of the protein is extremely important in terms of what the immune system actually sees.

[0042] The “ectodomain” is the portion of a transmembrane anchored protein that extends beyond the membrane into the extracellular space.

5 **[0043]** “Scaffolds” are specific ligand-binding artificial structures usually generated from a combinatorial library of a chosen protein scaffold, by selective random mutagenesis of appropriate exposed surface residues followed by selection of variants with the desired binding activity. Kaspar Binz *et al.* reviewed numerous alternative protein scaffolds, in *Nature Biotechnology*, 86 (10), 1257-1268 (2005), and the well-established techniques to design the combinatorial library from them and to select the relevant variant, most predominantly phage display and related methods.

Brief Description of the Drawings

15 **[0044]** Various features of the embodiments can be more fully appreciated, with reference to the following detailed description of the embodiments and accompanying figures, in which:

[0045] Fig. 1 shows expression cassettes used to produce recombinant influenza HA ectodomain proteins.

20 (a) pLexsy-I-bleo2 expression cassette.

(b) Seq1 corresponds to SEQ ID NO: 7 and is the nucleic acid sequence, coding for the first tested sequence, fused to the nucleic acid sequence coding for the ectodomain of the HA protein of the influenza A/California/07/2009 (H1N1).

(c) Seq2 corresponds to SEQ ID NO: 8 and is the nucleic acid sequence, coding for the second tested sequence, fused to the nucleic acid sequence coding for the ectodomain of the HA protein of the influenza A/California/07/2009 (H1N1).

(d) Seq3 corresponds to SEQ ID NO: 9 and is the nucleic acid sequence, coding for the third tested sequence, fused to the nucleic acid sequence coding for the ectodomain of the HA protein of the influenza A/California/07/2009 (H1N1).

[0046] Fig. 2 shows the Western Blot of a SDS PAGE gel of different recombinant HA ectodomain proteins.

- Lane 1: molecular weight size marker
- Lane 2: negative control - no induction of the promoter, with heat treatment
- Lane 3: negative control - no induction of the promoter
- Lane 4: negative control – non relevant antigen (flu antibody), with heat treatment
- Lane 5: positive control – rHA ectodomain with no polymerizing sequence, with heat treatment
- Lane 6: positive control – rHA ectodomain with no polymerizing sequence
- Lane 7: rHA ectodomain fused to the polymerizing sequence SEQ ID NO: 1, according to an embodiment, with heat treatment
- Lane 8: rHA ectodomain fused to the polymerizing sequence SEQ ID NO: 1, according to an embodiment
- Lane 9: rHA ectodomain fused to the polymerizing sequence SEQ ID NO: 2, according to an embodiment, with heat treatment
- Lane 10: rHA ectodomain fused to the polymerizing sequence SEQ ID NO: 2, according to an embodiment

- Lane 11: rHA ectodomain fused to the polymerizing sequence SEQ ID NO: 5, with heat treatment
- Lane 12: rHA ectodomain fused to the polymerizing sequence SEQ ID NO: 5

5 [0047] Fig. 3 shows the inhibition of haemagglutination mean antibody titers in mice immunized with the multimeric rHA according to an embodiment.

[0048] Fig. 4 shows the pEE14.4 expression cassette used to produce recombinant influenza HA ectodomain proteins in CHO cells.

10 [0049] Fig. 5 shows the Western Blot of a SDS PAGE gel of different recombinant HA ectodomain proteins expressed in CHO cells.

[0050] Fig. 6 shows the pM1800 expression cassette used to produce recombinant *Shigella flexneri* IpaD proteins in *E.coli*.

[0051] Fig. 7 shows the Western Blot of a SDS PAGE gel of different recombinant *Shigella flexneri* IpaD proteins.

15 [0052] Fig. 8 shows the Western Blot of a SDS PAGE gel of different recombinant *Shigella flexneri* IpaD proteins with His-tag.

[0053] Fig. 9 shows the Western Blot of a SDS PAGE gel of different heat-treated recombinant *Shigella flexneri* IpaD proteins.

20 [0054] Fig. 10 shows the Western Blot of a SDS PAGE gel of different recombinant *Shigella flexneri* MxiH proteins. "IS" means insoluble (pellet sample) while "S" means soluble (supernatant sample).

[0055] Fig. 11 shows the Western Blot of a SDS PAGE gel of different recombinant *Shigella flexneri* MxiH proteins with His-tag. "IS" means insoluble (pellet sample) while "S" means soluble (supernatant sample)

Description of the Embodiments

[0056] According to an embodiment, a molecule is obtained which comprises a first amino acid sequence which has at least 80% identity to SEQ ID NO: 1 and a second amino acid sequence which is heterologous to said first sequence. In particular, the molecule according to the invention comprises a first amino acid sequence which has at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 1.

[0057] According to an embodiment, a molecule is obtained which comprises a first amino acid sequence which has at least 80% identity to SEQ ID NO: 2 and a second amino acid sequence which is heterologous to said first sequence. In particular, the molecule according to the invention comprises a first amino acid sequence which has at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 2.

[0058] In a preferred embodiment the 7 cysteines that correspond to positions 2, 7, 13, 19, 21, 24 and 27 of SEQ ID NO: 1 are conserved in the first amino acid sequence. The molecule of the invention does not comprise a lamprey VLR-B antibody protein.

[0059] In a preferred embodiment the 8 cysteines that correspond to positions 2, 15, 20, 26, 32, 34, 37 and 40 of SEQ ID NO: 2 are conserved in the first amino acid sequence. The molecule of the invention does not comprise a lamprey VLR-B antibody protein.

[0060] According to an embodiment, a recombinant protein is obtained which comprises a first amino acid sequence which has at least 80% identity to

SEQ ID NO: 1 and a second amino acid sequence which is heterologous to said first sequence. In particular, the recombinant protein according to the invention comprises a first amino acid sequence which has at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at 5 least 99% identity or even 100% identity to SEQ ID NO: 1.

[0061] According to an embodiment, a recombinant protein is obtained which comprises a first amino acid sequence which has at least 80% identity to SEQ ID NO: 2 and a second amino acid sequence which is heterologous to said first sequence. In particular, the molecule according to the invention comprises a 10 first amino acid sequence which has at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 2.

[0062] In a preferred embodiment the 7 cysteines that correspond to positions 2, 7, 13, 19, 21, 24 and 27 of SEQ ID NO: 1 are conserved in the first 15 amino acid sequence. The recombinant protein of the invention does not comprise a lamprey VLR-B antibody protein.

[0063] Preferably, a molecule or recombinant protein of the invention does not comprise a leucine-rich repeat (LRR) module from a lamprey VLR-B antibody. A consensus sequence for an LRR module from a lamprey VLR-B antibody is 20 LXXLXXLXLXXNXLXXXPXPXGXFDX, where X may be any amino acid (SEQ ID NO: 29). Preferably, a molecule or recombinant protein of the invention does not comprise a sequence falling within the scope of the group of sequences defined by SEQ ID NO: 29, i.e. a molecule or recombinant protein of the invention does not comprise SEQ ID NO: 29. Specific examples of LRR modules (see Figure 25 11C of WO 2008/016854) include an N-terminal cap LRR (referred to as LRRNT),

LRR1, variable LRR modules (referred to as LRRV), an end LRRV (known as LRRVe) and a C-terminal cap LRR (referred to as LRRCT). Preferably, a molecule or recombinant protein of the invention does not comprise one or more of an LRRNT, an LRR1, an LRRV and an LRRCT module from a lamprey VLR-B antibody. Lamprey VLR-B antibodies also comprise a connecting peptide (CP) and a Stalk region in addition to the LRR modules. Preferably, a molecule or recombinant protein of the invention does not comprise a CP or a Stalk region from a lamprey VLR-B antibody. Preferably, a molecule or recombinant protein of the invention does not comprise an LRR module, a CP or a Stalk region from a lamprey VLR-B antibody. Preferably, the only lamprey-derived amino acid sequence in a molecule or recombinant protein of the present invention is derived from the extreme C-terminus of a lamprey VLR-B antibody (i.e. the section of the protein C-terminal to the Stalk region, see Figure 11C of WO 2008/016854). Preferably, the only lamprey-derived amino acid sequence in a molecule or recombinant protein of the present invention is a sequence having at least 80% identity to SEQ ID NO: 1 or SEQ ID NO: 2, for example at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 1 or SEQ ID NO: 2.

20 **[0064]** Another embodiment is directed to a recombinant nucleic acid which comprises a first nucleic acid sequence with at least 80% identity to SEQ ID NO: 3 and a second nucleic acid sequence which is heterologous to said first sequence. In particular, the recombinant nucleic acid according to the invention comprises a first nucleic acid sequence which has at least 85% identity, at least

90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 3.

[0065] Another embodiment is directed to a recombinant nucleic acid which comprises a first nucleic acid sequence with at least 80% identity to SEQ ID NO: 4 and a second nucleic acid sequence which is heterologous to said first sequence. In particular, the recombinant nucleic acid according to the invention comprises a first nucleic acid sequence which has at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 4.

[0066] In a preferred embodiment the first nucleic acid sequence encodes an amino acid sequence which comprises cysteine residues at positions within said amino acid sequence that correspond to positions 2, 7, 13, 19, 21, 24 and 27 of SEQ ID NO:1. The recombinant nucleic acid of the invention does not encode a lamprey VLR-B antibody. In a preferred embodiment the first nucleic acid sequence encodes an amino acid sequence which comprises cysteine residues at positions within said amino acid sequence that correspond to positions 2, 15, 20, 26, 32, 34, 37 and 40 of SEQ ID NO: 2.

[0067] Preferably, a recombinant nucleic acid of the invention does not encode a leucine-rich repeat (LRR) module from a lamprey VLR-B antibody. In particular, a recombinant nucleic acid as described herein does not encode an amino acid sequence having the sequence of SEQ ID NO: 29. Preferably, a recombinant nucleic acid of the invention does not encode one or more of an LRRNT module, an LRR1 module, an LRRV module, an LRRCT module, a CP and a Stalk region from a lamprey VLR-B antibody. Preferably, the only lamprey-derived amino acid sequence which is encoded by a recombinant nucleic acid of

the present invention is derived from the extreme C-terminus of a lamprey VLR-B antibody (i.e. the section of the protein C-terminal to the Stalk region, see Figure 11C of WO 2008/016854). Preferably, the only lamprey-derived nucleic acid sequence in a recombinant nucleic acid of the present invention is a sequence 5 having at least 80% identity to SEQ ID NO: 3 or SEQ ID NO: 4, for example at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 3 or SEQ ID NO: 4.

[0068] A linker may be inserted between the first amino acid sequence and 10 the second heterologous amino acid sequence. Linkers may be a short peptide sequence or another suitable covalent link between protein domains. Preferably, the linker is a short peptide sequence. Preferably said peptide linkers are composed of flexible residues like glycine (G) and serine (S) so that the adjacent protein domains are free to move relative to one another. Preferably said linker is 15 at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or at least 15 amino acid residues long. Any possible linker known by the person skilled in the art may be used for the purpose of the invention. For instance the linker may be G6S9 (which means 20 6 glycines followed by 9 serines) as used by William C. Weldon *et al.*, in Plos One, 5(9), e12466 (2010); G8 as used by Ludmilla Sissoëff *et al.*, in Journal of General Virology, 86, 2543-2552 (2005), or G4S3.

[0069] A spacer nucleic acid sequence coding for a peptide linker as described above may be inserted between the first nucleic acid sequence and the second heterologous nucleic acid sequence.

[0070] In a preferred embodiment the heterologous protein of interest is an 25 antigen or fragment thereof. In this embodiment, the heterologous amino acid

sequence is from an antigen amino acid sequence or the heterologous nucleic acid sequence is from an antigen nucleic acid sequence. For the purpose of the present invention, antigens can be obtained or derived from any appropriate source. Preferably, the source of the antigen is selected from the group

5 consisting of influenza virus, HIV, cytomegalovirus, dengue virus, yellow fever virus, tick-borne encephalitis virus, hepatitis virus, japanese encephalitis virus, human papillomavirus, coxsackievirus, herpes simplex virus, rubella virus, mumps virus, measles virus, rabies virus, polio virus, rotavirus, respiratory syncytial virus, Ebola virus, Chikungunya virus, *Mycobacterium tuberculosis*,
10 *Staphylococcus aureus*, *Staphylococcus epidermidis*, *E. coli*, *Clostridium difficile*, *Bordetella pertussis*, *Clostridium tetani*, *Haemophilus influenzae* type b, *Chlamydia pneumoniae*, *Chlamydia trachomatis*, *Porphyromonas gingivalis*, *Pseudomonas aeruginosa*, *Mycobacterium diphtheriae*, *Shigella*, *Neisseria meningitidis*, *Streptococcus pneumoniae* and *Plasmodium falciparum*. Preferably,
15 the antigen has a molecular weight of less than 150 kDa, less than 125 kDa or less than 100 kDa. Most preferably, the antigen has a molecular weight of less than 100 kDa.

[0071] Preferably, the source of the antigen is selected from the group consisting of influenza virus, cytomegalovirus, dengue virus, yellow fever virus,

20 hepatitis virus, japanese encephalitis virus, human papillomavirus, herpes simplex virus, rabies virus, polio virus, rotavirus, respiratory syncytial virus, Ebola virus, Chikungunya virus, *Mycobacterium tuberculosis*, *Staphylococcus aureus*, *Staphylococcus epidermidis*, *E. coli*, *Clostridium difficile*, *Bordetella pertussis*, *Clostridium tetani*, *Haemophilus influenzae* type b, *Mycobacterium diphtheriae*,

Shigella, *Neisseria meningitidis* and *Streptococcus pneumoniae*. Preferably, the source of the antigen is selected from influenza virus and *Shigella*.

[0072] In some embodiments a molecule or a recombinant protein of the invention may comprise more than one antigen which is heterologous to the 5 lamprey VLR-B sequence as described herein. When the molecule or the recombinant protein comprises several antigens, these antigens are independently a complete protein of interest or a fragment of a protein of interest, and may be from the same organism or from different organisms. The antigen may be a fusion antigen from different proteins, or fragments thereof, of the same 10 organism or from different organisms.

[0073] Preferably, the antigen for use in a molecule or a recombinant protein of the present invention is from an influenza virus. The influenza virus may be a seasonal or a pandemic influenza virus. The influenza virus may be any subtype of A strains, B strains, or C strains. In particular, the influenza A virus is 15 selected from the group consisting of the H1N1, H2N2, H3N1, H3N2, H3N8, H5N1, H7N1, H7N7, H1N2, H9N2, H7N2, H7N3, and H10N7 viruses.

[0074] Preferably, the influenza antigen is selected from a haemagglutinin (HA), or fragment thereof, a matrix 2 protein (M2) (Holsinger *et al.*, *Virology*, 183, 20 32-43 (1991)), or fragment thereof, and an HAM2 fusion protein. In the HAM2 fusion protein, HA and M2 are independently the complete protein or a fragment of the protein. In a more preferred embodiment, the antigen is an influenza haemagglutinin or fragment thereof.

[0075] Furthermore, for the purposes of the present invention, an antigen includes a protein having modifications, such as deletions, additions and 25 substitutions to the native sequence, as long as the protein maintains sufficient

immunogenicity. These modifications may be deliberate, for example through site-directed mutagenesis, or may be accidental, such as mutations which occur during expression of the antigens in a host cell. The antigen may also be a protein or a fragment thereof encoded by a consensus sequence.

5 [0076] Preferably, the antigen is the ectodomain of a transmembrane anchored protein. The ectodomain corresponds to the native protein wherein the transmembrane domain and cytoplasmic tail, if any, have been deleted in order to allow its secretion in the host which produces the antigen and its easy downstream purification.

10 [0077] Preferably, the antigen is the ectodomain of influenza virus HA.

[0078] In another preferred embodiment the protein of interest (i.e. the antigen for use in an antigen or recombinant protein of the present invention) is selected from cytomegalovirus (CMV) glycoprotein B (gB) (Scheffczick *et al.*, FEBS Letters, 506, 113-116 (2001)), or a fragment thereof, cytomegalovirus 15 UL130 protein (Patrone *et al.*, J. Virol. 79(13), 8361-8373 (2005)) or a fragment thereof, or a gB-UL130 fusion protein, and the HIV glycoprotein 41 (Gp41) (Pancera *et al.*, Nature, 514(7523), 455-461 (2014)), or a fragment thereof. In the gB-UL130 fusion protein, gB and UL130 are independently the complete protein or a fragment thereof.

20 [0079] In a more preferred embodiment, the antigen is the ectodomain of the CMV gB protein or of the HIV Gp41 protein. In the gB-UL130 fusion protein, gB is the complete protein or the ectodomain of the gB protein. In another preferred embodiment, the antigen is selected from the group consisting of the HIV Gp41 protein and the cytomegalovirus UL130 protein.

[0080] In another preferred embodiment, the antigen is a bacterial protein, for example a protein from *Shigella* sp. Preferably the antigen is from *Shigella sonnei* or *Shigella flexneri*. Preferably the antigen is IpaD or MxiH from *Shigella sonnei* or *Shigella flexneri*. In certain embodiments, the antigen is preferably not 5 the CMV gB protein or the ectodomain of the CMV gB protein.

[0081] In another preferred embodiment, the protein of interest is an antibody or a scaffold. In this embodiment, the heterologous amino acid sequence is from an antibody or scaffold amino acid sequence or the heterologous nucleic acid sequence is from an antibody or scaffold nucleic acid 10 sequence.

[0082] In a preferred embodiment the antibody or scaffold is specific for an antigen, i.e. specifically binds to an antigen. For the purpose of the present invention, antigens for which the antibody or scaffold is specific for can be obtained or derived from any appropriate source. Preferably, the source of the 15 antigen is selected from the group consisting of influenza virus, HIV, cytomegalovirus, dengue virus, yellow fever virus, tick-borne encephalitis virus, hepatitis virus, japanese encephalitis virus, human papillomavirus, coxsackievirus, herpes simplex virus, rubella virus, mumps virus, measles virus, rabies virus, polio virus, rotavirus, respiratory syncytial virus, Ebola virus, 20 Chikungunya virus, *Mycobacterium tuberculosis*, *Staphylococcus aureus*, *Staphylococcus epidermidis*, *E. coli*, *Clostridium difficile*, *Bordetella pertussis*, *Clostridium tetani*, *Haemophilus influenzae* type b, *Chlamydia pneumoniae*, *Chlamydia trachomatis*, *Porphyromonas gingivalis*, *Pseudomonas aeruginosa*, *Mycobacterium diphtheriae*, *Shigella*, *Neisseria meningitidis*, *Streptococcus pneumoniae* and *Plasmodium falciparum*. 25

[0083] Preferably, the source of the antigen is selected from the group consisting of influenza virus, cytomegalovirus, dengue virus, yellow fever virus, hepatitis virus, japanese encephalitis virus, human papillomavirus, herpes simplex virus, rabies virus, polio virus, rotavirus, respiratory syncytial virus, Ebola virus, Chikungunya virus, *Mycobacterium tuberculosis*, *Staphylococcus aureus*, *Staphylococcus epidermidis*, *E. coli*, *Clostridium difficile*, *Bordetella pertussis*, *Clostridium tetani*, *Haemophilus influenzae* type b, *Mycobacterium diphtheriae*, *Shigella*, *Neisseria meningitidis* and *Streptococcus pneumoniae*.

[0084] In a preferred embodiment the antibody is one of the alternative formats described by Roland Kontermann in Current Opinion in Molecular Therapeutics, 12(2), 176-183 (2010). In particular, the antibody is selected from the group consisting of a monoclonal antibody, a single domain antibody (dAb), a single-chain variable fragment (scFv), a Fab, a F(ab')2 and a diabody (Db). In this embodiment, the heterologous amino acid sequence or the heterologous nucleic acid sequence is respectively from a monoclonal antibody, a dAb, a scFv, a Fab, a F(ab')2 or a Db amino acid sequence, or from a monoclonal antibody, a dAb, a scFv, a Fab, a F(ab')2 or a Db nucleic acid sequence.

[0085] Roland Kontermann also described bi-specific antibody formats in Current Opinion in Molecular Therapeutics, 12(2), 176-183 (2010). In some embodiments, the molecule, e.g. a recombinant protein, of the invention is a bi-specific antibody or a bi-specific scaffold, i.e. an antibody or a scaffold specific for two different antigens, or is a multi-specific antibody or a multi-specific scaffold, i.e. an antibody or a scaffold specific for more than two different antigens. In these embodiments, the heterologous amino acid sequence comprises at least two different antibody, monoclonal antibody, dAb, scFv, Fab, F(ab')2, Db or

scaffold amino acid sequences, or the heterologous nucleic acid sequence comprises at least two different antibody, monoclonal antibody, dAb, scFv, Fab, F(ab')2, Db or scaffold nucleic acid sequences. The joining of the two or more genes may be made in any order, i.e. the sequences coding for the two or more 5 proteins of interest, or fragments thereof, are located either 3' or 5' of the sequence coding for the fragment of the lamprey VLR-B antibody according to the present invention, or one of the sequences coding for a protein of interest, or fragment thereof, is located 5' of the sequence coding for the fragment of the lamprey VLR-B antibody according to the present invention and the other 10 sequence coding for a protein of interest, or fragment thereof, is located 3'. Preferably, the sequences coding for the two or more proteins of interest, or fragments thereof, are located 5' from the sequence coding for the fragment of the lamprey VLR-B antibody according to the present invention.

[0086] The molecule or the recombinant protein of the invention may be 15 synthesized by any method well-known to the skilled person. Such methods include conventional chemical synthesis, in solid phase (R. B. Merrifield, J. Am. Chem. Soc., 85 (14), 2149–2154 (1963)), or in liquid phase, enzymatic synthesis (K. Morihara, Trends in Biotechnology, 5(6), 164-170 (1987)) from constitutive 20 amino acids or derivatives thereof, cell-free protein synthesis (Katzen *et al.*, Trends in Biotechnology, 23(3), 150-156 (2005)), as well as biological production methods by recombinant technology.

[0087] Any method known to the skilled person may be used for the 25 chemical conjugation between the first amino acid sequence and the second amino acid sequence. Such methods include conventional chemical conjugation via a peptide bond (e.g. expression of the first and second amino acid sequences

as a fusion protein from a recombinant nucleic acid), optionally with a peptide linker, or conjugation *via* any covalent link, e.g. a peptide bond, an ester linkage, an amide linkage or a disulfide bond. Preferably the first and second amino acid sequences are expressed together as a fusion protein.

5 **[0088]** Chemical synthesis of the molecule or recombinant protein of the invention can be particularly advantageous because it allows high purity, the absence of undesired by-products and ease of production.

[0089] The molecule or protein of the invention obtained by such methods can then optionally be purified using any method known to the skilled person.

10 **[0090]** Preferably, the recombinant protein of the invention is obtained using a biological production process with a recombinant host cell. In such a process, an expression cassette, containing a nucleic acid encoding the protein or fusion protein of the invention, is transferred into a host cell, which is cultured in conditions enabling expression of the corresponding protein or fusion protein.

15 The protein or fusion protein thereby produced can then be recovered and purified.

[0091] The present invention is also directed to an expression cassette comprising a recombinant nucleic acid of the invention, wherein the recombinant nucleic acid is operably linked to a promoter. A number of expression cassettes 20 have been described in the art, each of which typically comprises all of the elements which allow the transcription of a DNA or DNA fragment into mRNA and the translation of the latter into protein, inside a host cell. Typically, the elements necessary for the expression of a nucleic acid in a host cell include a promoter that is functional in the selected host cell and which can be constitutive or 25 inducible; a ribosome binding site; a start codon (ATG); a region encoding a

signal peptide, necessary for the recombinant protein to be secreted; a stop codon; and a 3' terminal region (translation and/or transcription terminator). Other transcription control elements, such as enhancers, operators, and repressors can be also operatively associated with the polynucleotide to direct transcription and/or translation in the cell. The signal peptide-encoding region is preferably adjacent to the nucleic acid coding for the recombinant protein of the invention and placed in proper reading frame. The signal peptide-encoding region can be homologous or heterologous to the DNA molecule encoding the protein of interest or fusion protein of the invention and can be specific to the secretion apparatus of the host used for expression.

[0092] The open reading frame constituted by the recombinant nucleic acid of the invention, solely or together with the signal peptide, is placed under the control of the promoter so that transcription and translation occur in the host cell. Promoters and other elements necessary for the expression of a nucleic acid in a host cell are widely known and available to those skilled in the art.

[0093] Lastly, the nucleic acid sequences of the present invention may be codon optimized such that the transcription of the DNA encoding the proteins and/or the fusion proteins of the invention is enhanced and/or the translation of the mRNA encoding the proteins and/or the fusion proteins is prolonged.

[0094] A "codon-optimized DNA or mRNA sequence" means a nucleic acid sequence that has been adapted for a better expression into the host cell, by replacing one or more codons with one or more codons that are more frequently used in the genes of said host cell as described in US 2004/0209241 in the case of codon-optimized DNA sequences or to maximize the G/C content of the mRNA sequence according to the host cell used as described in US 2011/0269950 in

the case of codon-optimized mRNA sequences. The codon optimization of the nucleic acid sequences is properly managed such that it does not change the amino acid sequence of the proteins and/or the fusion proteins, which are expressed in the host cells.

5 [0095] In another embodiment a host cell is transformed with an expression cassette of the invention. A host cell can be any cell, i.e., any eukaryotic or prokaryotic cell, into which an expression cassette can be inserted. According to the present invention, preferred host cells are eukaryotic or prokaryotic cells, including, but not limited to, animal cells (e.g., mammalian, bird, 10 insect and fish host cells), plant cells (including eukaryotic algal cells), fungal cells, yeast cells, bacterial cells, and protist cells. Preferred prokaryote host cells useful in the invention include *Escherichia coli*, bacteria of *Bacillus* genus, *Lactococcus lactis*, *Pseudomonas fluorescens*, bacteria of *Caulobacter* genus, *Corynebacterium glutamicum* and *Ralstonia eutropha*. A particularly preferred 15 prokaryote host cell for use in the present invention is *Escherichia coli*. Preferred eukaryote host cells useful in the invention include *Leishmania tarentolae*, *Tetrahymena thermophila*, *Willaertia magna*, Vero cell, CHO cell, 293 cell, 293T cell, SF9 cell, S2 cell, EB66 duck cell, *Pichia pastoris*, *S. cerevisiae*, *Hansenula polymorpha*, *Nicotiana benthamiana* cell, *Physcomitrella patens* cell, *Oryza sativa* 20 cell, *Oryza glaberrima* cell, *Medicago truncatula* cell, *Zea mays* cell, *Schizochytrium* sp., *Phaeodactylum tricornutum* and *Myceliophthora thermophila*. A particularly preferred eukaryote host cell for use in the present invention is *Leishmania tarentolae* or CHO.

25 [0096] As glycosylation in eukaryote cells is different from and more complex than glycosylation in prokaryote cells, a protein of interest which is

naturally expressed in an eukaryote cell is preferably expressed, as a fusion protein with the fragment of the lamprey VLR-B antibody according to the present invention, in an eukaryote host cell. Similarly, a protein of interest which is naturally expressed in a prokaryote cell is preferably expressed, as a fusion protein with the fragment of the lamprey VLR-B antibody according to the present invention, in a prokaryote host cell.

[0097] There are a variety of means and protocols for inserting expression cassettes into host cells including, but not limited to, transformation, transfection, cell or protoplast fusion, use of a chemical treatment (e.g., polyethylene glycol treatment of protoplasts, calcium treatment, transfecting agents such as LIPOFECTIN™ and LIPOFECTAMINE™ transfection reagents available from Invitrogen (Carlsbad, Calif.)), use of various types of liposomes, use of a mechanical device (e.g., nucleic acid coated microbeads), use of electrical charge (e.g., electroporation), and combinations thereof. It is within the skill of a practitioner in the art to determine the particular protocol and/or means to use to insert a particular vector molecule described herein into a desired host cell.

[0098] Recombinant host cells may be grown under a variety of specified conditions as determined by the requirements of the cells. For example, a host cell may possess certain nutritional requirements or a particular resistance or sensitivity to physical (e.g. temperature) and/or chemical (e.g. antibiotic) conditions. In addition, specific culture conditions may be necessary to regulate the expression of a desired gene (e.g. the use of inducible promoters). These varied conditions and the requirements to satisfy such conditions are understood and appreciated by practitioners in the art.

[0099] Methods for the purification of proteins are well-known to the skilled person. The obtained recombinant protein or fusion protein can be purified from lysates and cell extracts, from the culture medium supernatant, by methods used individually or in combination, such as fractionation, chromatographic methods, 5 immunoaffinity methods using specific mono- or polyclonal antibodies, etc. Preferably the obtained recombinant protein or fusion protein is purified from the culture medium supernatant.

[00100] Another embodiment is directed to a molecule or a recombinant protein of the invention which is capable of forming a stable multimer. In a 10 preferred embodiment, the stable multimer of the present invention is a stable homo-multimeric recombinant protein comprising a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein fused to a protein having an amino acid sequence which has at least 80% identity to SEQ ID NO: 1. In particular, the 15 stable homo-multimeric recombinant protein comprises a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein fused to a protein having an amino acid sequence which has at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 20 100% identity to SEQ ID NO: 1. Preferably the protein is influenza HA protein.

[00101] According to another preferred embodiment, the stable multimer of the present invention is a stable homo-multimeric recombinant protein comprising a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein fused to a protein 25 having an amino acid sequence which has at least 80% identity to SEQ ID NO: 2.

In particular, the stable homo-multimeric recombinant protein comprises a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein fused to a protein having an amino acid sequence which has at least 85% identity, at least 90% identity, at 5 least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 2. Preferably the protein is influenza HA protein.

[00102] In a preferred aspect of these embodiments of the invention (i.e. the stable multimers), the 7 cysteines which correspond to positions 2, 7, 13, 19, 21, 10 24 and 27 of SEQ ID NO: 1 (or the 8 cysteines which correspond to positions 2, 15, 20, 26, 32, 34, 37 and 40 of SEQ ID NO: 2) are conserved in the amino acid sequence of the protein which is derived from the C-terminus of a Lamprey VLR-B and which is fused to a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* 15 MxiH protein. In some embodiments a linker may be inserted between the amino acid sequence of the protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein and the fused amino acid sequence.

[00103] Preferably, the stable multimers of the invention do not comprise a 20 leucine-rich repeat (LRR) module from a lamprey VLR-B antibody. In particular, a stable multimer as described herein does not comprise an amino acid sequence having the sequence of SEQ ID NO: 29. Preferably, a stable multimer of the invention does not comprise one or more of an LRRNT module, an LRR1 module, an LRRV module, an LRRCT module, a CP and a Stalk region from a lamprey 25 VLR-B antibody. Preferably, the only lamprey-derived amino acid sequence

which is present within a stable multimer of the present invention is derived from the extreme C-terminus of a lamprey VLR-B antibody (i.e. the section of the protein C-terminal to the Stalk region, see Figure 11C of WO 2008/016854). Preferably, the only lamprey-derived amino acid sequence which is present in a 5 stable multimer of the present invention is a sequence having at least 80% identity to SEQ ID NO: 1 or SEQ ID NO: 2, for example at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 1 or SEQ ID NO: 2.

10 [00104] The invention also provides a stable homo-multimeric recombinant protein produced by an expression system from a nucleic acid molecule comprising a nucleic acid sequence encoding a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein fused to a nucleic acid sequence having at least 80% 15 identity to SEQ ID NO: 3. In particular, the stable homo-multimeric recombinant protein is produced by an expression system from a nucleic acid molecule comprising a nucleic acid sequence encoding a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein fused to a nucleic acid sequence having has at least 20 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 3. Preferably the nucleic acid sequence encodes an influenza HA protein.

25 [00105] In some embodiments, the stable homo-multimeric recombinant protein is produced by an expression system from a nucleic acid molecule comprising a nucleic acid sequence encoding a protein selected from the group

consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein fused to a nucleic acid sequence with at least 80% identity to SEQ ID NO: 4. In particular, the stable homo-multimeric recombinant protein is produced by an expression system from a nucleic acid molecule comprising a nucleic acid sequence encoding a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein fused to a nucleic acid sequence having at least 85% identity, at least 90% identity, at least 95% identity, at least 97% identity, at least 98% identity, at least 99% identity or even 100% identity to SEQ ID NO: 4.

10 Preferably the nucleic acid sequence encodes an influenza HA protein.

[00106] In a preferred aspect of these embodiments of the invention, the nucleic acid sequence which encodes the amino acid sequence derived from the C-terminus of a Lamprey VLR-B antibody (and which is fused to a nucleic acid sequence coding for a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein) encodes an amino acid sequence which comprises cysteine residues at positions within said amino acid sequence that correspond to positions 2, 7, 13, 19, 21, 24 and 27 of SEQ ID NO: 1 (or comprises cysteine residues at positions within said amino acid sequence that correspond to positions 2, 15, 20, 26, 32, 34, 37 and 40 of SEQ ID NO: 2). In some embodiments a spacer nucleic acid sequence coding for a peptide linker may be inserted between nucleic acid sequence coding for a protein selected from the group consisting of the ectodomain of an influenza HA protein, a *Shigella* IpaD protein and a *Shigella* MxiH protein and the fused nucleic acid sequence.

[00107] The invention also provides a pharmaceutical composition comprising a molecule or a recombinant protein of the invention and a pharmaceutically acceptable carrier or diluent. In a preferred embodiment, an immunogenic composition comprises a molecule or a recombinant protein of the invention. The molecule or the recombinant protein of the invention may also be for use as a medicament. In a preferred embodiment the molecule or the recombinant protein of the invention is for use in inducing an immune response to an antigen in a subject. In another preferred embodiment, a molecule or a recombinant protein, comprising an influenza antigen according to the invention, is for use in inducing an immune response against influenza virus. In a more preferred embodiment, the recombinant influenza HA protein according to the invention is for use in inducing an immune response against influenza virus. In another preferred embodiment, the immunogenic composition of the invention is a vaccine composition.

[00108] The pharmaceutical composition and the immunogenic composition of the invention may be formulated as conventional pharmaceutical or vaccine preparations. This can be done using standard pharmaceutical or vaccine formulation chemistries and methodologies, which are available to those skilled in the art. Any solvent, dispersing medium, charge, adjuvant, etc., commonly used in the formulation of pharmaceuticals and vaccines to enhance stability, sterility, potency or deliverability of the active agent, which does not produce any secondary reaction, for example an allergic reaction, especially in humans, may be used. The excipient is selected on the basis of the pharmaceutical or vaccine form chosen, the method and the route of administration. Appropriate excipients, and requirements in relation to pharmaceutical formulation, are described in

“Remington's Pharmaceutical Sciences” (19th Edition, A.R. Gennaro, Ed., Mack Publishing Co., Easton, PA (1995)), which represents a reference work in the field. Examples of pharmaceutically acceptable excipients are water, phosphate-buffered saline solutions and 0.3% glycine solution.

5 [00109] The pharmaceutical compositions and the immunogenic compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged and stored in liquid form or lyophilized, the lyophilized preparation being reconstituted with a sterile aqueous carrier prior to administration. In a preferred embodiment the pharmaceutical compositions and the immunogenic compositions are packaged and stored as micropellets *via* a prilling process as described in WO2009109550. The pH of the preparations typically will be between 3 and 11, e.g., between 5 and 9, 6 and 8, or 7 and 8, such as 7 to 7.5.

10 [00110] Once formulated or reconstituted, the pharmaceutical compositions and the immunogenic compositions can be delivered to a subject *in vivo* using a variety of known routes and techniques. For example, the liquid preparations can be provided as an injectable solution, suspension or emulsion and administered *via* parenteral, subcutaneous, intradermal, intramuscular, intravenous injection using a conventional needle and syringe, or using a liquid jet injection system. 15 Liquid preparations can also be administered topically to skin or mucosal tissue, or provided as a finely divided spray suitable for respiratory or pulmonary administration. Other modes of administration include oral administration, suppositories, and active or passive transdermal delivery techniques.

[00111] For oral administration, the pharmaceutical compositions and the immunogenic compositions may be formulated as, for example, a capsule, a tablet, a suspension, or a liquid.

[00112] The pharmaceutical compositions and the immunogenic compositions may also be prepared in a solid form (including granules, 5 micropellets, powders or suppositories).

[00113] Another embodiment is directed to method for treating a patient, said method comprising administering to said patient a pharmaceutical composition of the invention. A preferred embodiment contemplates a method for 10 inducing an immune response to an antigen in a patient, said method comprising administering to said patient an immunogenic composition or a vaccine composition, of the invention.

[00114] Another embodiment is directed to a method for multimerizing a recombinant protein comprising:

15 a) fusing a nucleic acid sequence having at least 80% identity to SEQ ID NO: 3 to the nucleic acid sequence coding for said recombinant protein, with the proviso that said recombinant protein is not a lamprey VLR-B antibody protein,
b) expressing the fusion protein encoded by said nucleic acid sequence, under conditions which lead to the multimerization of said recombinant protein.

20 These conditions are known by the skilled person and essentially consist of avoiding extreme conditions, e.g. high concentration of solutes, extremes of pH, mechanical forces and the presence of chemical denaturants.

[00115] Another embodiment is directed to a method for multimerizing a recombinant protein comprising:

a) fusing a nucleic acid sequence having at least 80% identity to SEQ ID NO: 4 to the nucleic acid sequence coding for said recombinant protein, with the proviso that said recombinant protein is not a lamprey VLR-B antibody protein,

5 b) expressing the fusion protein encoded by said nucleic acid sequence, under conditions which lead to the multimerization of said recombinant protein.

[00116] In a preferred embodiment the method is for multimerizing an antigen, an antibody or a scaffold. In a most preferred embodiment the method is for multimerizing a recombinant influenza HA or HA ectodomain protein.

10

Example 1: polymerization of a recombinant influenza HA ectodomain protein

[00117] Two sequences derived from the C-terminus of VLR-B antibodies of 15 lamprey were evaluated through fusion to the C-terminus of the HA protein. The first tested sequence was SEQ ID NO: 1 and the second tested sequence was SEQ ID NO: 2. SEQ ID NO: 1 is a shortened version of SEQ ID NO: 2. SEQ ID NO: 1 corresponds to the 30 amino acids at the extreme C-terminus of VLR-B antibodies of Lamprey and SEQ ID NO: 2 corresponds to the 43 amino acids at 20 the extreme C-terminus of VLR-B antibodies of Lamprey (see Figure 11C of WO 2008/016,854). By extreme C-terminus it is meant the portion of the VLR-B C-terminal to the Stalk region.

[00118] A third sequence tested was the foldon sequence of the T4 phage (SEQ ID NO: 5).

25 **[00119]** The nucleic acid sequence coding for the HA ectodomain from influenza strain A/California/07/09 (H1N1), (which comprised its own signal sequence, but which did not comprise the sequences of the transmembrane and

cytoplasmic tail regions of HA), was optimized for codon usage in *Leishmania tarentolae* by Geneart (Regensburg, Germany). This sequence is referred to herein as SEQ ID NO: 10.

[00120] The nucleic acid sequences coding for the three tested multimerization sequences (i.e. the two sequences derived from the C-terminus of the VLR-B antibody and the T4 phage foldon sequence) were individually fused to the nucleic acid sequence SEQ ID NO: 10 (which encodes the ectodomain of the HA protein from influenza strain A/California/07/2009) by Geneart (Regensburg, Germany). Accordingly, SEQ ID NO: 7 is the nucleic acid sequence SEQ ID NO: 3 (which is the nucleic acid sequence encoding the amino acid sequence SEQ ID NO: 1, i.e. the shortened fragment of the lamprey VLR-B antibody according to the present invention) fused to the nucleic acid sequence SEQ ID NO: 10. SEQ ID NO: 8 is the nucleic acid sequence SEQ ID NO: 4 (which is the nucleic acid sequence encoding the amino acid sequence SEQ ID NO: 2, i.e. the “long” (not shortened) fragment of the lamprey VLR-B antibody according to the present invention) fused to the nucleic acid sequence SEQ ID NO: 10 and SEQ ID NO: 9 is the nucleic acid sequence SEQ ID NO: 6 (which is the nucleic acid sequence encoding the amino acid sequence SEQ ID NO: 5, i.e. the foldon sequence of the T4 phage) fused to the nucleic acid sequence SEQ ID NO: 10.

[00121] SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 were each separately inserted into the Sall/NotI restriction site of the pLexsy-l-bleo2 expression cassette as shown in figure 1. SEQ ID NO: 10 was inserted into the Ncol/NotI restriction site of the pLexsy-l-bleo2 expression cassette. This expression cassette allows the integration of the gene of interest into the

chromosomal ornithine decarboxylase (odc) locus of the *Leishmania tarentolae* T7-TR recipient strain (Kushnir *et al.*, Protein Expr. Purif., 42(1), 37-46 (2005)), that constitutively expresses bacteriophage T7 RNA polymerase and TET repressor under the control of host RNA polymerase I. Induction of the 5 expression of the protein of interest is carried out *via* the T7 promoter inducible by tetracycline addition (user's guide EGE-1400, Jena Bioscience, Jena, Germany).

[00122] The expression cassettes containing the HA sequence with or without one of the polymerization sequences were then digested by Swal, and 1 µg of each purified linear Swal fragment was, in separate experiments, 10 transfected into the *L. tarentolae* T7-TR host strain *via* nucleoporation using the Nucleofector II device (Amaxa Biosystems, Cologne, Germany) and following the instructions of the Basic Parasite Nucleofector™ Kit 1 (Lonza, Bale, Switzerland). The transfected cells were transferred into 10 ml of BHI (Brain-Heart Infusion) medium (Jena Bioscience) containing 5 µg/ml Hemin, 50 units/ml penicillin, 50 15 µg/ml streptomycin (Pen/Strep to avoid bacterial contamination), 100 µg/ml nourseothricin (NTC) and 100 µg/ml hygromycin (NTC/Hygro: for maintaining T7 polymerase and TET repressor genes respectively in the T7-TR host) and incubated overnight at 26°C in the dark. Twenty-four hours post transfection, a 2 ml aliquot of the suspension was centrifuged for 5 min at 2000g, the pellet was 20 resuspended in 50-100 µl of BHI medium and the cells were gently plated on fresh BHI-agar plates containing antibiotics plus 100 µg/ml of bleomycin (selective growth medium) for the selection of recombinant parasites. Approximately 7-9 days after plating, small colonies were visible and transferred to 0.2 ml of selective growth medium. Each recombinant clone of parasites was 25 expanded into 10 ml of selective medium in a shake flask at 26°C.

[00123] Confirmation of the integration of the expression cassette containing HA sequences into the genome was performed by diagnostic PCR following the Jena Bioscience recommendation.

[00124] The confirmed recombinant parasites were cultivated in 100 ml BHI medium supplemented as described above with Hemin and antibiotics at 26°C, and agitated at 100 rpm in the dark. In order to induce the production of the rHA protein, the T7 driven transcription was induced by addition of 10 µg/ml of Tetracycline into the supplemented medium at the time of inoculation of the parasites.

10 **[00125]** For fermentation, 1 liter Biostat Qplus 12 fermenters (Sartorius AG, Aubagne, France), were used. Briefly 700 ml of supplemented BHI medium was inoculated with 1/10 of a recombinant parasite starter culture in exponential growth (0.4 OD₆₀₀) and cultivated in the dark at 26°C, 100 rpm, 40% pO₂, pH 7.4 ± 0.1. Culture parameters were recorded using the MFCS/WIN software (Sartorius AG). Induction using 10 µg/ml of Tetracycline was performed in parallel with inoculation of the recombinant parasites (as was done for the shake flask cultures). Regulation of the pH with HCl 1N/NaOH 1N, and infusion of a 100 g/L solution of glucose at 1.5 ml/h began 43h after induction while P1860 anti protease cocktail (1/800, Sigma, Saint Quentin Fallavier, France) was added at 15 the same time.

15 20

[00126] Samples of the culture were taken every day in order to determine the optical density (OD₆₀₀) of the culture (one OD₆₀₀ is equivalent to approximately 1.5x10⁷ parasites/ml), the concentration of various metabolites (Gln, Glu, Gluc, Lac, NH₄⁺), and the cell mobility by microscopy.

[00127] After 48h, the supernatants of the transformed *Leishmania tarentolae* cultures were collected and filtered on a 0.2 µm filter. Proteins were quantified in the samples by optical density measurement at 595nm and samples were normalized.

5 **[00128]** 20µl of each sample was loaded and run on a SDS-PAGE gel (NuPAGE® Novex Bis Tris 4-12%, Life Technologies, Carlsbad, USA). The supernatant from a transformed *Leishmania tarentolae* culture cultivated over 48h in the absence of the transcription inductor tetracycline served as a negative control.

10 **[00129]** To test the thermal stability of the different recombinant HA proteins obtained using the different expression plasmids, the three test samples and the negative control sample were divided in two, with one half of the sample being heated to 99°C for 15 minutes using a heating block before migration on the SDS-PAGE gel, and the other half not being heated before migration on the SDS-15 PAGE gel. A further control sample on the gel contained a heated culture supernatant of *Leishmania tarentolae* (15 minutes at a temperature of 99°C) transformed with a plasmid expressing another protein (i.e. an antibody against influenza).

20 **[00130]** A Western Blot of the SDS-PAGE gel was made using a nitrocellulose membrane (BioRad Laboratories, Hercules, USA), followed by a treatment with PBS, Tween 20 0,1% and milk 5% (DIFCO-BD, Sparks, USA) in order to block non-specific fixation sites.

25 **[00131]** The blot was probed using a rabbit polyclonal antibody against influenza A/California/07/09 HA, with a titer of 8000 (inhibition of haemagglutination) and a titer of 32 000 (seroneutralization), followed by an anti-

rabbit IRDdye800CW antibody (Li-Cor BioSciences, Lincoln, USA) and the OPTI-4CN™ (BioRad Laboratories) substrate. The Western Blot was analyzed with an ODYSSEY (Li-Cor BioSciences) imaging system.

[00132] The results of the Western Blot are shown in figure 2. The results

5 were really remarkable. Firstly, whilst the HA protein fused to the T4 foldon sequence (SEQ ID NO: 5, lanes 11-12) was only in trimeric form, the HA protein fused to the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 1 (lanes 7-8), or to the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 2 (lanes 9-10), were produced not only as trimers but also as tetramers, pentamers and 10 other higher polymerized forms. In addition, the HA proteins fused to the VLR-B antibody C-terminal sequences were mostly secreted into the supernatant of the culture, as very little or no HA was detected intracellularly and no lysis was observed (results not shown). The secretion of a recombinant protein into the culture supernatant is highly advantageous for downstream purification when 15 compared with purification of a recombinant protein that remains inside the host cell. Furthermore, it can be seen that the polymers obtained from the HA protein fused to either one of the tested lamprey VLR-B antibody C-terminal domains were stable following heat treatment (lanes 7 and 9), while the HA protein fused to the T4 foldon sequence lost its trimeric form after heat treatment (lane 11). The 20 thermal stability of the polymers obtained from the HA protein fused to one of the lamprey VLR-B antibody C-terminal domains tested is of great interest, since increased stability should increase the shelf-life of an immunogenic composition containing such an antigen. Furthermore, a thermostable recombinant protein antigen is also expected to have a longer *in vivo* stability when injected into a 25 patient.

Example 2: Immunogenicity study of a recombinant influenza HA protein polymerized by fusion to a lamprey VLR-B antibody C-term domain

5 [00133] Recombinant HA ectodomain protein polymerized by fusion to the lamprey VLR-B antibody C-term domain SEQ ID NO: 2 (rHA poly) was produced as described in example 1.

[00134] After 72h of induction with tetracycline in the medium of the *L. tarentolae* culture, shake flask harvests were performed and centrifuged for 30 10 min at 5,000g. After concentration and diafiltration on a Sartorius sartocon slice 200 cassette, supernatants were placed on a Con A Sepharose 4B column of 1 ml. The recombinant HA was eluted using a 0.5M alpha-D-Methylmannoside in PBS-MM buffer. The eluate was dialysed against PBS/tween, concentrated on Ultracell 10K and filtered with a 0.22µm filter. The recombinant HA was titrated by 15 the microbradford technique. Each sample was resuspended in PBS + Tween 0.005%.

[00135] Two groups of 10 female Balb/C ByJ mice aged 8 weeks received two immunizations, one on day 0 and one on day 28, *via* the intramuscular (IM) route, of either 10µg of influenza A/California/07/2009 rHA ectodomain protein 20 polymerized by fusion to the lamprey VLR-B antibody C-term domain SEQ ID NO: 2 (rHA poly) (produced as described in example 1), or 10µg of influenza A/California/07/2009 rHA ectodomain monomeric protein (rHA mono) produced in *Leishmania tarentolae* transformed with a plasmid expressing only the rHA ectodomain, i.e. not fused to a polymerization sequence (SEQ ID NO: 11). The

10µg rHA proteins were resuspended in a Buffer (PBS + Tween 0.005%) and the volume injected was 2x50µl (100µl in total).

[00136] Finally, 5 female Balb/C ByJ mice aged 8 weeks received 100µl of Buffer (2x50µl).

5 **[00137]** Three weeks after the booster injection, blood samples were taken under anesthesia at D49 from all the animals. The anesthesia was performed by Imalgene® (1.6 mg of Ketamine) and Rompun (0.32 mg of Xylazine) administered in a volume of 200 µl *via* the intraperitoneal route. 1 ml of blood was collected in vials containing clot activator and serum separator (BD Vacutainer 10 SST ref 367783). After a single night at +4°C or one hour at 37°C, the blood was centrifuged at 10,000 rpm for 5 minutes or 3,000 rpm for 20 minutes and the serum was stored at -20°C until analysis.

15 **[00138]** The presence of haemagglutination inhibitory antibodies against the influenza A/California/07/09 (H1N1) strain was assessed using chicken red blood cells (cRBCs). Assays were performed on individual Receptor Destroying Enzyme (RDE) treated serum samples and titers were expressed as the reciprocal of the highest dilution showing no haemagglutination, as described by Kendal *et al.*, Haemagglutination inhibition, in Concepts and procedures for laboratory-based influenza surveillance, US Department of Health and Human 20 Services and Pan-American Health Organization, Atlanta, GA, 1982, pp. B17-B35.9.

25 **[00139]** The results of the inhibition of haemagglutination assay are shown in figure 3. The hemagglutination-inhibition (HAI) titers obtained by immunization of mice with a polymeric rHA ectodomain are significantly higher than those obtained by immunization of mice with a monomeric rHA ectodomain. Table I

shows that the polymeric rHA ectodomain, obtained by fusion of influenza A/California/07/2009 rHA ectodomain protein to the lamprey VLR-B antibody C-term domain SEQ ID NO: 2, is 4 times more immunogenic than the influenza A/California/07/2009 monomeric rHA ectodomain.

Table I: HAI titers

Group #	IM immunization	Mouse	HAI_D50	Geo mean
B	Buffer#2 – 100µl	6	5	
		7	5	
		8	5	5
		9	5	
		10	5	
F	rHA poly 10µg	41	320	
		42	2560	
		43	160	
		44	160	
		45	640	422
		46	1280	
		47	640	
		48	320	
		49	160	
		50	320	
G	rHA mono 10µg	51	320	
		52	80	
		53	20	
		54	2560	
		55	80	
		56	40	106
		57	40	
		58	40	
		59	160	
		60	160	

Example 3: Polymerization of a recombinant influenza HA ectodomain protein expressed in CHO cells

[00140] The polymerization of recombinant influenza HA ectodomain protein 5 via fusion with the lamprey sequences was also tested in another host cell.

[00141] The nucleic acid sequence coding for the HA ectodomain from influenza strain A/California/04/09 (H1N1) (Genbank Accession Number FJ966082), which comprised its own signal sequence, but which did not comprise the sequences of the transmembrane and cytoplasmic tail regions of HA, was 10 optimized for codon usage in CHO by Geneart (Regensburg, Germany). This sequence is referred to herein as SEQ ID NO: 12.

[00142] The nucleic acid sequences coding for the three tested multimerization sequences (i.e. the two sequences derived from the C-term of the VLR-B antibody and the T4 phage foldon sequence), optimized for codon usage 15 in CHO, were individually fused to the nucleic acid sequence SEQ ID NO: 12. Accordingly, SEQ ID NO: 13 is the nucleic acid sequence SEQ ID NO: 3 fused to the nucleic acid sequence SEQ ID NO: 12. SEQ ID NO: 14 is the nucleic acid sequence SEQ ID NO: 4 fused to the nucleic acid sequence SEQ ID NO: 12 and SEQ ID NO: 15 is the nucleic acid sequence SEQ ID NO: 6 fused to the nucleic 20 acid sequence SEQ ID NO: 12. SEQ ID NO: 26 is the protein sequence encoded by SEQ ID NO: 13. SEQ ID NO: 27 is the protein sequence encoded by SEQ ID NO: 14. SEQ ID NO: 28 is the protein sequence encoded by SEQ ID NO: 15.

[00143] SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15 were each separately inserted into the HindIII/EcoRI restriction site of the

pEE14.4 expression cassette shown in figure 4. With this expression cassette no induction is needed as the recombinant proteins are constitutively expressed.

[00144] The expression cassettes containing the HA sequence with or without one of the polymerization sequences were transfected into a CHO host cell (CHOK169 ATCC Number CB-CCL-61pUnK). 10 µg of each plasmid was separately introduced into 10x10⁶ CHO cells *via* nucleoporation using the Nucleofector II device (Amaxa Biosystems, Cologne, Germany). The CHO cells were then plated on 2 ml of Ex-Cell® CHO fusion animal component free medium (SAFC Biosciences Sigma-Aldrich) containing 4 mM of L-glutamine at 37°C. The cultures were statically maintained at 37°C under 5% CO₂ for 24h and then with agitation (100 rpm) for 48h.

[00145] 72h after nucleoporation, the supernatants of the transformed CHO cultures were collected by centrifugation for 10 seconds at 10,000 rpm.

[00146] 15 µl of each sample mixed with 5 µl NuPAGE® LDS Sample Buffer (4x) (Life Technologies) was loaded and run on a SDS-PAGE gel (NuPAGE® Novex 3-8% Tris-Acetate, Life Technologies, Carlsbad, USA). The supernatant from a CHO culture that was electroporated in the absence of any expression cassette served as a negative control. 20 µl of HiMark™ Pres stained High molecular Weight Protein Standard (LC5699 Life technologies) was used as a molecular weight marker.

[00147] Sample separation was performed at 150V in Tris-acetate Buffer for 40 minutes (Life Technologies).

[00148] A Western Blot of the SDS-PAGE gel was made using a nitrocellulose membrane (BioRad Laboratories, Hercules, USA), followed by an

overnight treatment with PBS and milk 5% (DIFCO-BD, Sparks, USA) in order to block non-specific fixation sites.

[00149] The blot was probed using a rabbit polyclonal antibody against influenza A/California HA diluted at 1/1000 in PBS, for 1h at room temperature.

5 The blot was then washed three times with PBS and Tween 20 0.05% before incubation with an anti-rabbit IRDdye800 sheep antibody (Rockland, Limerick, USA) diluted at 1/5000 in PBS. The Western Blot was analyzed with an ODYSSEY (Li-Cor BioSciences) imaging system.

[00150] The results of the Western Blot are shown in figure 5. The results 10 were again remarkable. Firstly, whilst the HA protein fused to the T4 foldon sequence was only in a dimeric or a trimeric form, the HA protein fused to the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 1 (short lamprey sequence), or to the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 2 15 (long lamprey sequence), were produced not only as dimers or trimers but also as tetramers, pentamers and other higher polymerized forms. In addition, the HA proteins were secreted into the supernatant of the culture, as the Blot was conducted on the supernatant of the cultures. The secretion of a recombinant protein into the culture supernatant is highly advantageous for downstream 20 purification when compared with purification of a recombinant protein that remains inside the host cell.

Example 4: Polymerization of a recombinant *Shigella flexneri* IpaD protein expressed in *E. coli*

25 **[00151]** The nucleic acid sequence coding for the IpaD protein from *Shigella flexneri* Serotype 2a Strain 301 (Q. Jin *et al.*, Nucleic Acids Research, 30 (20),

4432-4441 (2002), Genbank Accession Number AF386526), was optimized for codon usage in *E. coli* by Geneart (Regensburg, Germany). This sequence is referred to herein as SEQ ID NO: 16.

[00152] SEQ ID NO: 16 was fused to the nucleic acid sequence SEQ ID

5 NO: 4 also codon optimized for *E. coli* by Geneart (Regensburg, Germany) to generate SEQ ID NO: 17. The corresponding protein sequence is SEQ ID NO: 18. SEQ ID NO: 16 and SEQ ID NO: 17 were also fused to a sequence coding for a polyhistidine-tag (6x His) *via* a GGSLE linker, thus generating SEQ ID NO: 19 (IpaD-His, the GGSLE linker is between the IpaD sequence and the His-tag) and 10 SEQ ID NO: 20 (IpaD-lamprey-His, the GGSLE linker is between the IpaD-lamprey sequence and the His-tag) respectively.

[00153] SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 19 and SEQ ID NO:

20 were each separately inserted into the Ncol/Xhol restriction site of the pM1800 expression cassette as shown in figure 6. Induction of the expression of the 15 protein of interest is carried out *via* addition of IPTG.

[00154] 5 µg of the plasmids containing the IpaD sequence with or without

the polymerization sequence and with or without the linker and His-tag sequence were suspended in 10 µl of water. 0.5 µl of the suspension corresponding to the 20 IpaD sequence with or without the polymerization sequence and without the linker and His-tag sequence was added to cultures of either *E. coli* BL21 DE3 C6000-03 (Life Technologies) or *E. coli* Shuffle (B) ref C3029H (New England Biolabs, i.e.

E. coli engineered to promote the formation of disulfide bonds within proteins). 0.5 µl of the suspensions corresponding to the IpaD sequence with or without the polymerization sequence but with the linker and His-tag sequence were added to 25 *E. coli* Shuffle (B). After mixing, the samples were placed on ice for 15 minutes.

Then the samples were heat shocked at 42°C for 30 seconds. The samples were then placed on ice for 2 minutes before dilution with 500 µl of room temperature S.O.C. Medium (Thermofisher). The samples were then incubated at 37°C for 60 minutes before vigorous shaking (250 rpm).

5 [00155] 100 µl of each sample was diluted and spread onto a LB medium containing Kanamycin (25 µg/ml) plate and incubated overnight at 37°C. A colony from each transformation plate was picked using a sterile inoculation loop and added to 2 ml LB broth/kanamycin 25 µg/ml. The cultures were then diluted in 25 ml of LB+Kanamycin (25 µg/ml) medium in order to obtain an optical density for 10 seeding of OD₆₀₀ = 0.05.

[00156] After 2h of growth at 37°C with agitation (200 rpm), when the cultures reached a OD₆₀₀ of 0.4-0.8, the production of the recombinant protein was induced by IPTG 1mM (i.e. addition of 25 µl of IPTG 1M).

[00157] The bacteria were maintained at 37°C for about 4 h with agitation.

15 One OD₆₀₀ unit is taken from each Erlen flask and centrifuged. After removal of the supernatants, the pellet was stored at -20°C.

[00158] The pellets were resuspended in 75 µl of Tris EDTA (10 mM Tris, 1 mM EDTA, pH 8.0, Novagen) + 1 µl of Ready lyse 35KU/µl (Epicentre) diluted at 1/50 + 1 µl of Benzonase 25U/µl (Novagen). The samples were then agitated for 20 minutes at 37°C before adding 25 µl of NuPAGE® LDS Sample Buffer (4X) (Invitrogen). 20 µl of each sample was loaded and run on SDS-PAGE gels (NuPAGE® Novex® 3-8% Tris-Acetate, Life Technologies, Carlsbad, USA). 15 µl of HiMark™ Pres stained High molecular Weight Protein Standard (LC5699 Life technologies) was used as a molecular weight marker.

[00159] pM1800 containing no IpaD sequence, inserted in the *E.coli* induced by IPTG, served as a negative control. Sample separation was performed at 150V in Tris-acetate Buffer for 1 hour (Life Technologies).

[00160] Western Blots of the SDS-PAGE gels were made using 5 nitrocellulose membranes (BioRad Laboratories, Hercules, USA), followed by a treatment for 1h with PBS and milk 5% (DIFCO-BD, Sparks, USA).

[00161] The blots were probed using a mouse monoclonal antibody against IpaD, followed by an Alexa fluor Goat anti-mouse antibody (Invitrogen) or an anti-mouse IRDye 800 antibody (Rockland) diluted at 1/5000 in PBS. The Western 10 Blots were analyzed with an ODYSSEY (Li-Cor BioSciences) imaging system.

[00162] The results of the Western Blots are shown in figures 7 and 8. They are similar to the ones observed with rHA in examples 1 and 3 above. Indeed, figure 7 shows that while the IpaD protein without the lamprey sequence is expressed as a dimer (IpaD monomer has an expected molecular weight of 36.6 15 kDa), the IpaD protein fused to the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 2 was produced not only as a dimer but also as trimers, tetramers, pentamers and other higher polymerized forms (the fusion IpaD-lamprey monomer has an expected molecular weight of 41.2 kDa). The polymerized IpaD proteins were produced at the highest quantities in the Shuffle *E. coli* strain.

[00163] The results in figure 8 show that the addition of a His-Tag, useful for 20 downstream purification of the recombinant protein, has no detrimental effect on the polymerization of the IpaD protein by the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 2.

[00164] To test the thermal stability of the different recombinant IpaD 25 proteins obtained, a further SDS-PAGE and Western Blot was conducted as

described above, except that the test samples and the negative control sample were heated to 95°C for 10 minutes using a heating block before migration on the SDS-PAGE gel.

[00165] The results of this Western Blot are shown in figure 9. It can be seen that the polymers obtained from the IpaD protein fused to the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 2 were stable following heat treatment. The thermal stability of the polymers obtained from the IpaD protein fused to the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 2 is of great interest, since increased stability should increase the shelf-life of an immunogenic composition containing such an antigen. Furthermore, a thermostable recombinant protein antigen is also expected to have a longer *in vivo* stability when injected into a patient.

Example 5: Polymerization of a recombinant *Shigella flexneri* MxiH protein expressed in *E.coli*

[00166] The nucleic acid sequence coding for the MxiH protein from *Shigella flexneri* Serotype 2a Strain 301 was optimized for codon usage in *E. coli* by Geneart. This sequence is referred to herein as SEQ ID NO: 21.

[00167] SEQ ID NO: 21 was fused to the nucleic acid sequence SEQ ID NO: 4 also codon optimized for *E. coli* by Geneart to generate SEQ ID NO: 22. The corresponding protein sequence is SEQ ID NO: 23. SEQ ID NO: 21 and SEQ ID NO: 22 were also fused to a sequence coding for a polyhistidine-tag (6x His) *via* a GGSLE linker, thus generating SEQ ID NO: 24 (MxiH-His, the GGSLE linker is between the MxiH sequence and the His-tag) and SEQ ID NO: 25 (MxiH-

lamprey-His, the GGSLE linker is between the MxiH-lamprey sequence and the His-tag) respectively.

[00168] SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 24 and SEQ ID NO: 25 were each separately inserted into the Ncol/Xhol restriction site of the pM1800 expression cassette. Induction of the expression of the protein of interest is carried out *via* addition of IPTG

[00169] 5 µg of the plasmids containing the MxiH sequence with or without the polymerization sequence and with or without the linker and His-tag sequence were suspended in 10 µl of water. 0.5 µl of each suspension was added to either *E. coli* BL21 DE3 C6000-03 or *E. coli* Shuffle (B) ref C3029H and the bacteria were heat shocked as explained in example 4.

[00170] The samples were then cultured on LB medium, induced with IPTG, centrifuged and the cell pellets stored at -20°C as described in Example 4.

[00171] The pellets were resuspended in 63 µl of Tris EDTA (10 mM Tris, 1 mM EDTA, pH 8.0, Novagen) + 1 µl of Ready lyse 20KU/µl (Epicentre) diluted at 1/20 + 1µl of Benzonase 25U/µl (Novagen). The samples were then agitated for 10 minutes at 37°C before centrifugation at 13,000 rpm for 10 minutes.

[00172] 60 µl of the supernatant was mixed with 20 µl of NuPAGE® LDS Sample Buffer (4X) (Invitrogen), while the pellet was suspended in 60 µl of Tris EDTA and 20 µl of NuPAGE® LDS Sample Buffer (4X) (Invitrogen).

[00173] 15 µl of each sample was loaded and run on an SDS-PAGE gel (NuPAGE® 4-12% Bis-Tris gel, Life Technologies, Carlsbad, USA). 15 µl of SeeBlue® Plus2 Pre-Stained Standard (Life Technologies) was used as a molecular weight marker.

[00174] pM1800 containing no MxiH sequence, inserted in IPTG-induced *E. coli*, served as a negative control. Sample separation was performed at 200V in MES buffer for 30 minutes (Life Technologies).

[00175] Western Blots of the SDS-PAGE gels were made as described in 5 Example 4.

[00176] The blots were probed using a mouse polyclonal antibody against MxiH, diluted at 1/1000 in PBS, followed by Rabbit anti mouse IRDye 800 antibody (Rockland) diluted at 1/5000 in PBS. Another Western Blot was probed using a mouse monoclonal antibody against His (Sigma) diluted at 1/1000 in 10 PBS, followed by Rabbit anti mouse IRDye 800 antibody (Rockland) diluted at 1/5000 in PBS. The blots were analyzed with an ODYSSEY (Li-Cor BioSciences) imaging system.

[00177] The results of the Western blots are shown in figures 10 and 11. The results in figure 10, showing the blot probed with a mouse polyclonal 15 antibody against MxiH, are similar to the ones observed with rHA in examples 1 and 3, and with IpaD in example 4, above. Indeed, figure 10 shows that the MxiH protein fused to the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 2 was produced as dimers, trimers, tetramers, pentamers and other higher polymerized forms (the fusion MxiH-lamprey monomer has an expected 20 molecular weight of 13.86 kDa) in the BL21 and Shuffle *E.coli* strains (with the strongest expression in Shuffle). MxiH was found in the pellet (insoluble fraction: IS on figures 10 and 11). The results in figure 11, displaying the blot probed with a mouse monoclonal antibody against His, show that the addition of a His-Tag 25 has no detrimental effect on the polymerization of the MxiH protein by the lamprey VLR-B antibody C-terminal domain SEQ ID NO: 2. In figures 10 and 11

MxiH is not visible. The inventors consider that MxiH without a lamprey sequence is produced in a quantity too small to be revealed by the antibodies on the blots.

[00178] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

[00179] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

CLAIMS

1. A molecule which comprises a first amino acid sequence which has at least 80% identity to SEQ ID NO:1 and a second amino acid sequence which is heterologous to said first sequence, wherein said molecule does not comprise a leucine-rich repeat (LRR) module from a lamprey VLR-B antibody.
2. A molecule according to claim 1, wherein said molecule does not comprise a sequence selected from the group of sequences defined by SEQ ID NO: 29.
3. A molecule according to claim 1 or claim 2, wherein the only amino acid sequence in said molecule which is derived from a lamprey VLR-B antibody is the sequence having at least 80% identity to SEQ ID NO:1.
4. The molecule according to any one of claims 1 to 3 wherein said molecule is a recombinant protein.
5. The molecule according to any one of claims 1 to 4 which comprises cysteine residues at the positions within the molecule corresponding to positions 2, 7, 13, 19, 21, 24 and 27 of SEQ ID NO:1.
6. The molecule according to any one of claims 1 to 5 wherein the first amino acid sequence has at least 90% identity or 100% identity to SEQ ID NO:1.
7. The molecule according to any one of claims 1 to 6 which comprises SEQ ID NO:2.
8. The molecule according to any one of claims 1 to 7, wherein there is a linker between the first amino acid sequence and the heterologous amino acid sequence.

9. The molecule according to any one of claims 1 to 8, wherein the heterologous amino acid sequence encodes an antigen.

10. The molecule of claim 9 wherein the antigen is selected from the group consisting of influenza virus, HIV, cytomegalovirus, dengue virus, yellow fever virus, tick-borne encephalitis virus, hepatitis virus, japanese encephalitis virus, human papillomavirus, coxsackievirus, herpes simplex virus, rubella virus, mumps virus, measles virus, rabies virus, polio virus, rotavirus, respiratory syncytial virus, Ebola virus, Chikungunya virus, *Mycobacterium tuberculosis*, *Staphylococcus aureus*, *Staphylococcus epidermidis*, *E. coli*, *Clostridium difficile*, *Bordetella pertussis*, *Clostridium tetani*, *Haemophilus influenzae* type b, *Chlamydia pneumoniae*, *Chlamydia trachomatis*, *Porphyromonas gingivalis*, *Pseudomonas aeruginosa*, *Mycobacterium diphtheriae*, *Shigella*, *Neisseria meningitidis*, *Streptococcus pneumoniae* and *Plasmodium falciparum*.

11. The molecule of claim 10, wherein the antigen is from influenza virus and is selected from the group consisting of a haemagglutinin (HA), a matrix 2 protein (M2), and an HAM2 fusion protein.

12. The molecule of claim 11, wherein the antigen is an influenza haemagglutinin, preferably the ectodomain of an influenza haemagglutinin.

13. The molecule of claim 10, wherein the antigen is from *Shigella* and is selected from the group consisting of IpaD and MxiH.

14. The molecule according to any one of claims 1 to 8, wherein the heterologous amino acid sequence encodes an antibody or a scaffold.

15. The molecule of claim 14 wherein the antibody is selected from the

group consisting of a monoclonal antibody, a single domain antibody (dAb), a single-chain variable fragment (scFv), a Fab, a F(ab')2 and a diabody (Db).

16. The molecule of claim 14 wherein the heterologous amino acid sequence encodes an antibody or scaffold selected from the group consisting of a bi-specific antibody, a multi-specific antibody, a bi-specific scaffold, and a multi-specific scaffold.

17. A recombinant nucleic acid which comprises a first nucleic acid sequence with at least 80% identity to SEQ ID NO:3 and a second nucleic acid sequence which is heterologous to said first sequence, wherein said recombinant nucleic acid does not encode a leucine-rich repeat (LRR) module from a lamprey VLR-B antibody.

18. The recombinant nucleic acid of claim 17 wherein said first nucleic acid sequence encodes an amino acid sequence which comprises cysteine residues at positions within said amino acid sequence that correspond to positions 2, 7, 13, 19, 21, 24 and 27 of SEQ ID NO:1.

19. The recombinant nucleic acid of claim 17 or claim 18 wherein the first nucleic acid sequence has at least 90% identity or 100% identity to SEQ ID NO:3.

20. The recombinant nucleic acid of claim 17 or claim 18 which comprises SEQ ID NO:4.

21. A pharmaceutical composition comprising a molecule as claimed in any one of claims 1 to 16, and a pharmaceutically acceptable carrier or diluent.

22. A method for multimerizing a recombinant protein comprising:
a) fusing a nucleic acid sequence having at least 80% identity to SEQ ID

NO:3 to the nucleic acid sequence coding for said recombinant protein, with the proviso that said recombinant protein does not comprise a leucine-rich repeat (LRR) module from a lamprey VLR-B antibody,

b) expressing the fusion protein encoded by said nucleic acid sequence, under conditions which lead to the multimerization of said recombinant protein.

Figure 1

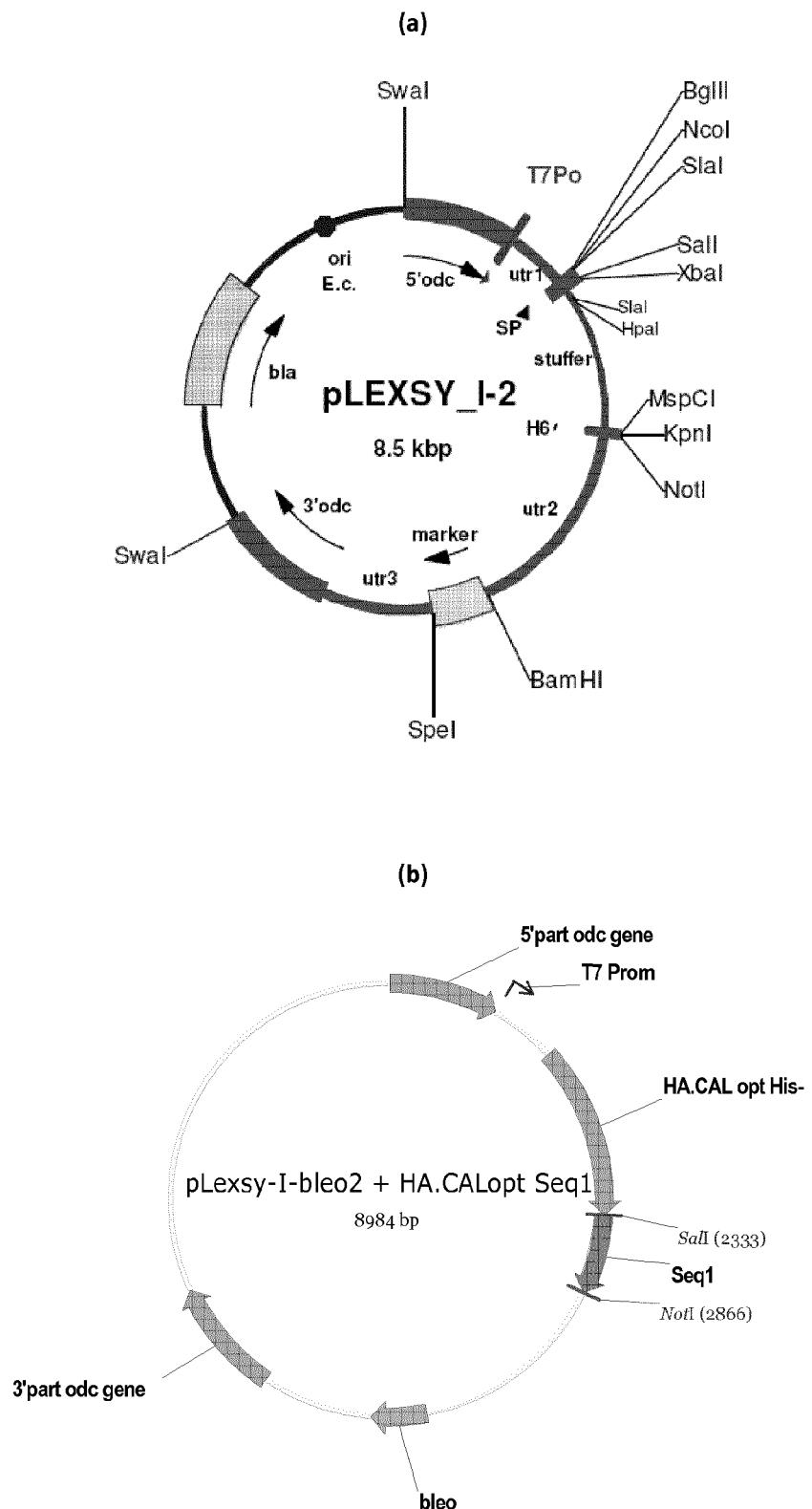
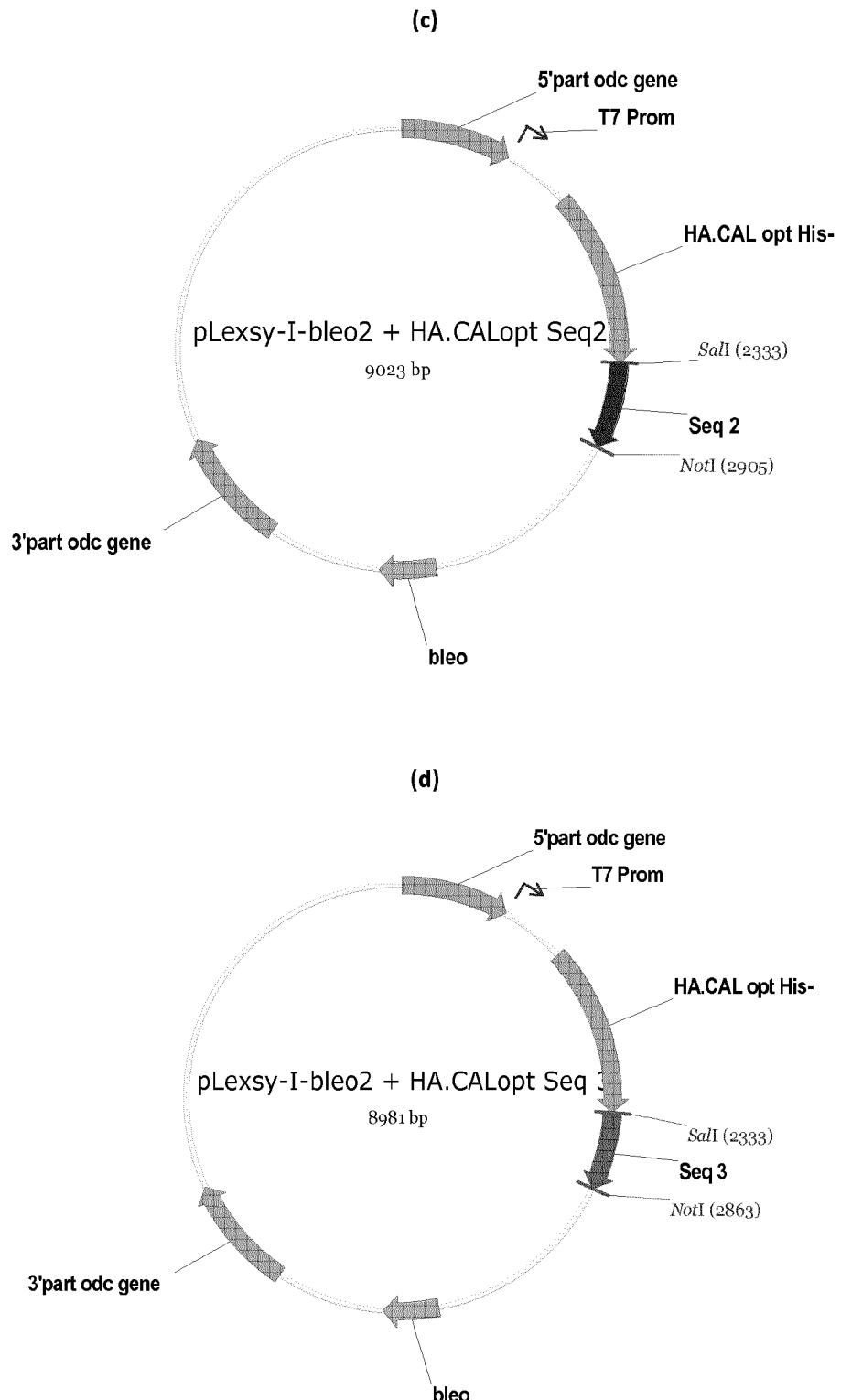



Figure 1 cont'd

3/9

Figure 2

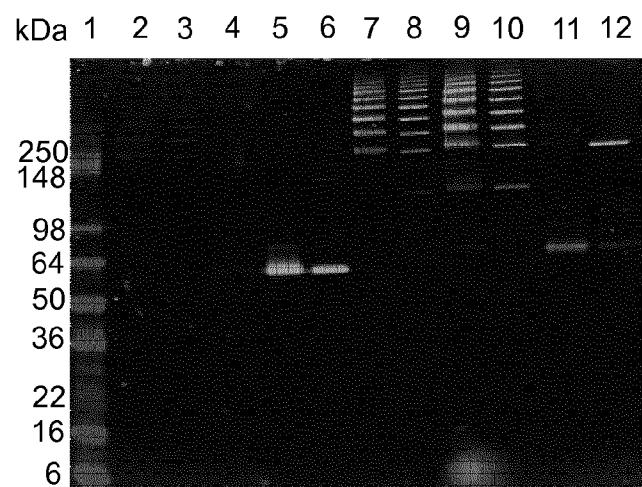


Figure 3

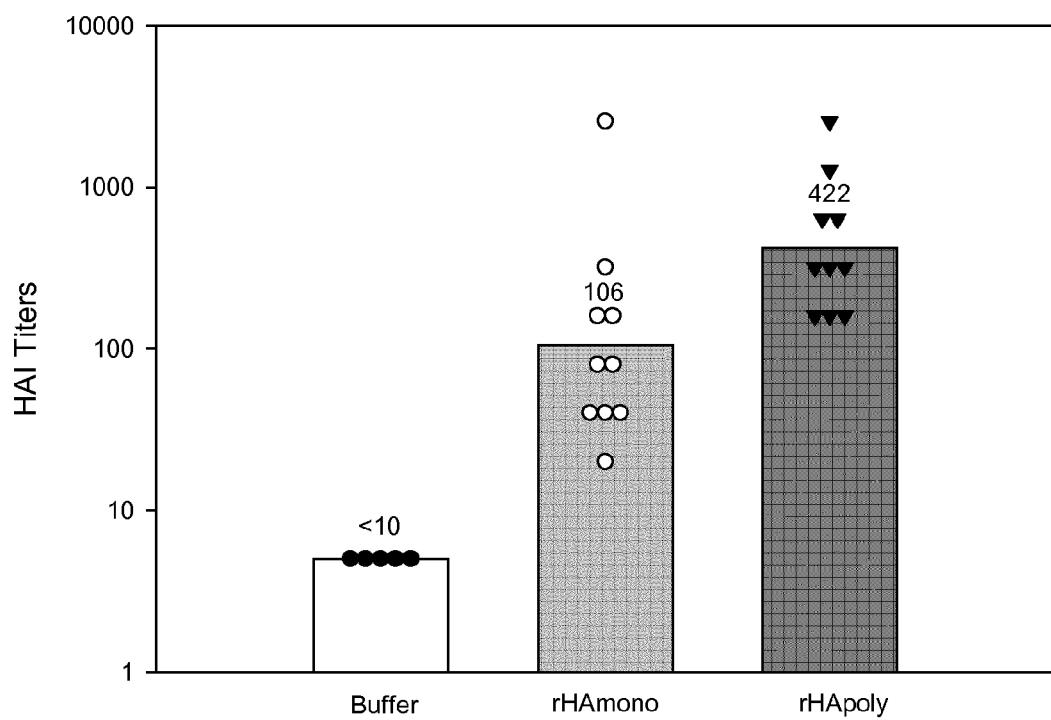
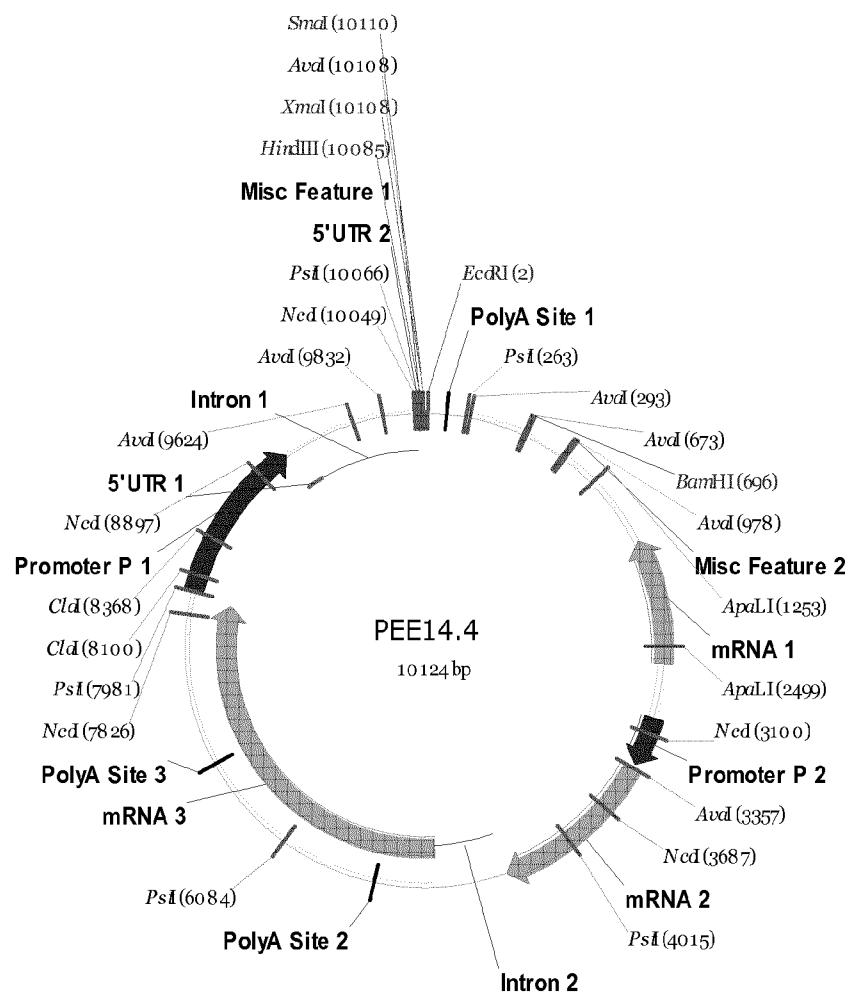



Figure 4

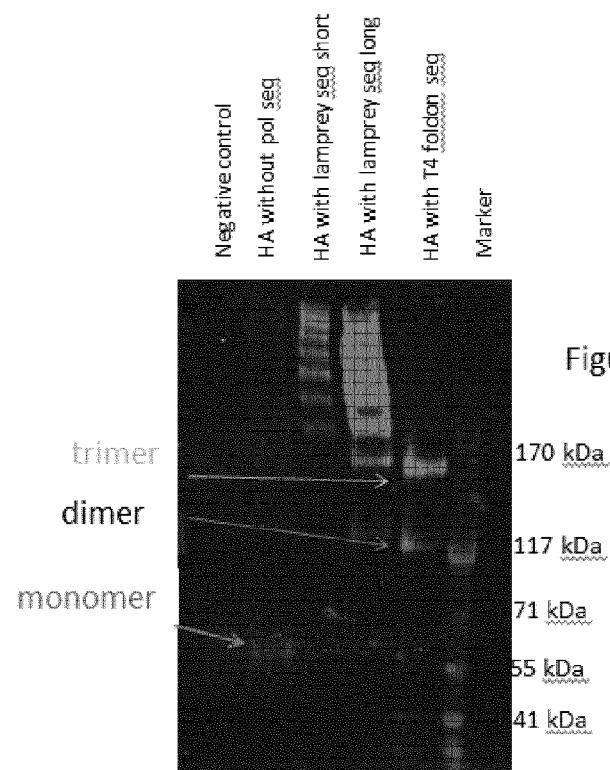


Figure 5

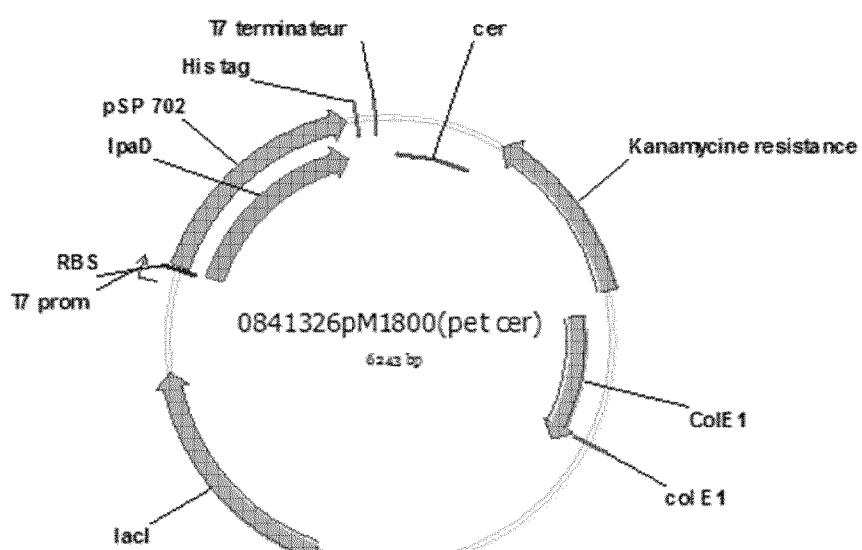


Figure 6

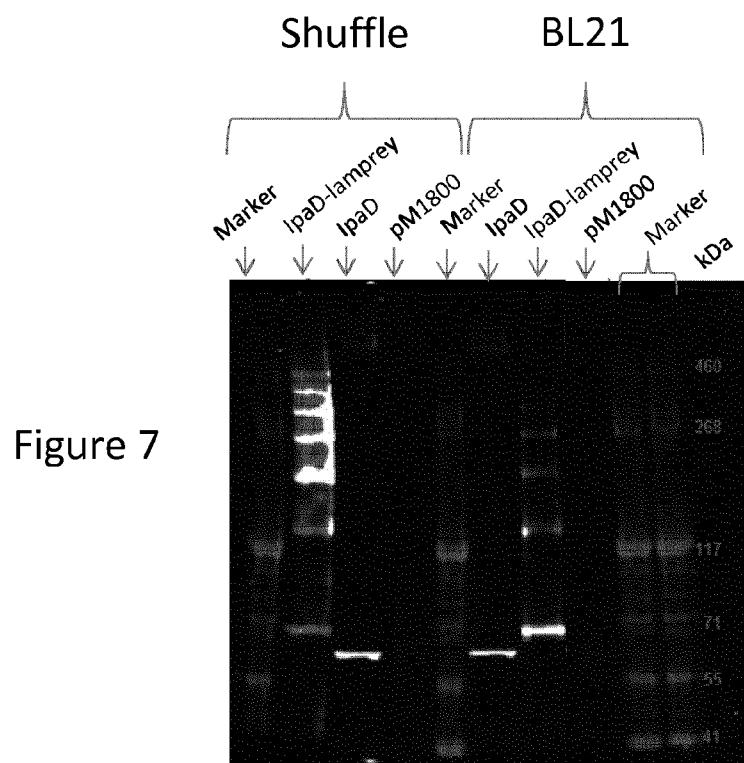


Figure 7

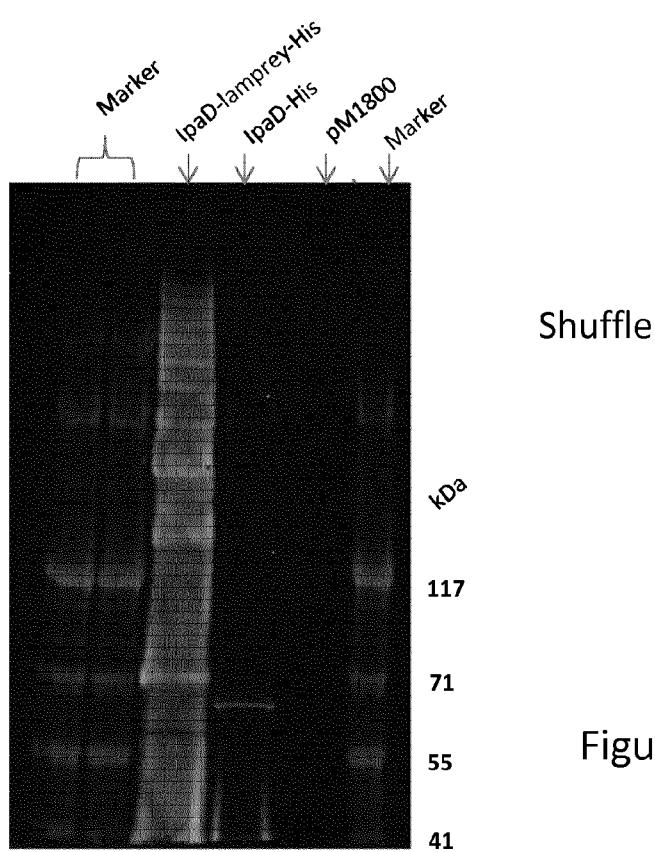


Figure 8

Figure 9

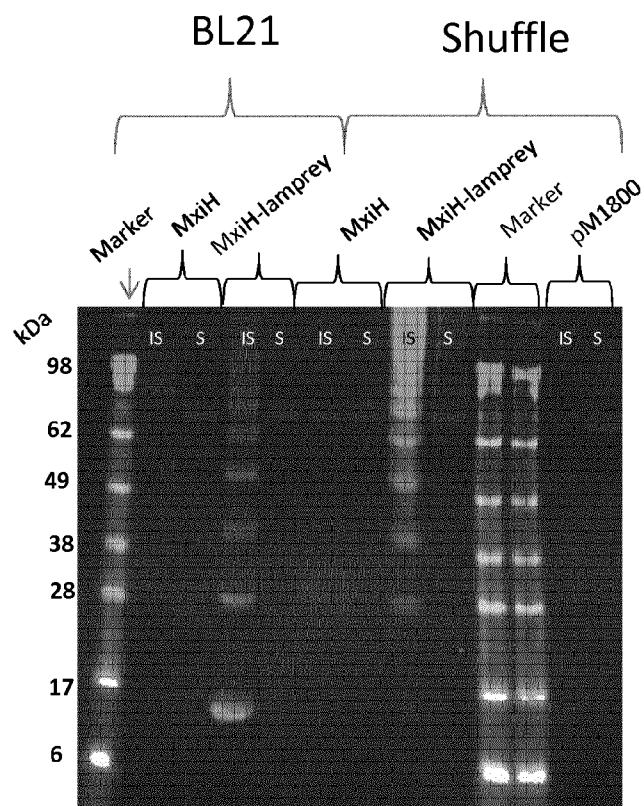
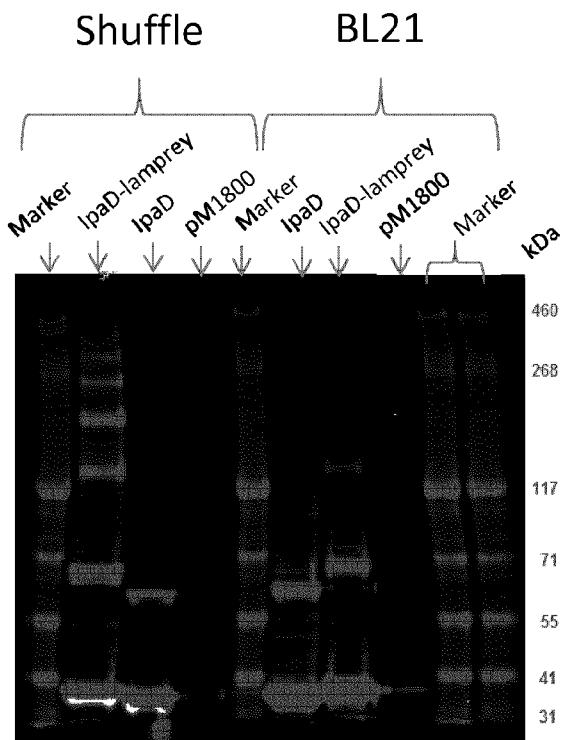



Figure 10

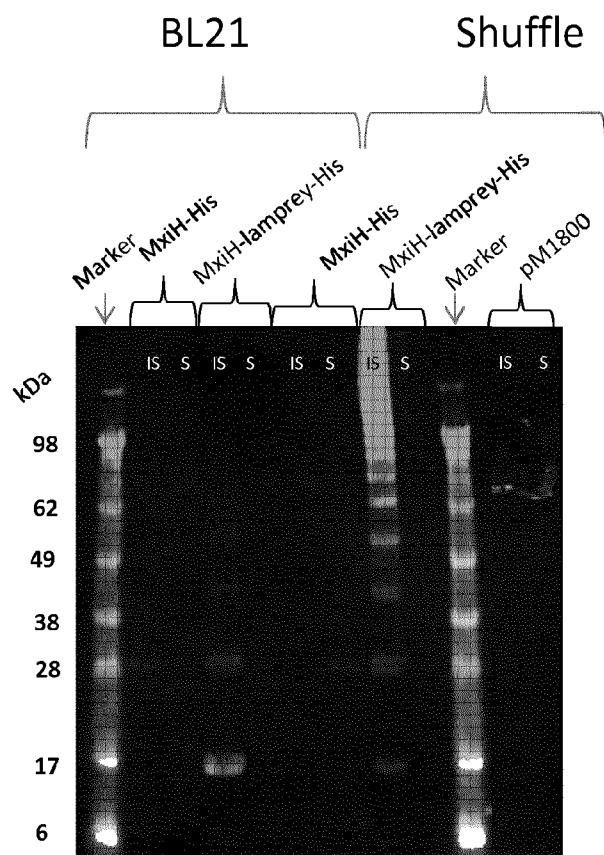


Figure 11

SEQUENCE LISTING eol f-seql

<110> Sanofi Pasteur SA

<120> Multimerization of recombinant protein by fusion to a sequence from lamprey

<160> 29

<170> Bi SSAP 1.2

<210> 1

<211> 30

<212> PRT

<213> Petromyzontidae

<400> 1

Asp	Cys	Gly	Lys	Pro	Ala	Cys	Thr	Thr	Leu	Leu	Asn	Cys	Ala	Asn	Phe
1					5				10					15	
Leu	Ser	Cys	Leu	Cys	Ser	Thr	Cys	Ala	Leu	Cys	Arg	Lys	Arg		
					20			25					30		

<210> 2

<211> 43

<212> PRT

<213> Petromyzontidae

<400> 2

Asn	Cys	Thr	Ser	Ile	Gln	Gl u	Arg	Lys	Asn	Asp	Gly	Gly	Asp	Cys	Gly
1				5				10					15		
Lys	Pro	Ala	Cys	Thr	Thr	Leu	Leu	Asn	Cys	Ala	Asn	Phe	Leu	Ser	Cys
				20			25					30			
Leu	Cys	Ser	Thr	Cys	Ala	Leu	Cys	Arg	Lys	Arg					
					35		40								

<210> 3

<211> 90

<212> DNA

<213> Petromyzontidae

<220>

<221> source

<222> 1..90

<223> /mol_type="unassigned DNA"
/organism="Petromyzontidae"

<400> 3

gattgcggca aaccggcgtg caccaccctg ctgaactgcg cgaactttct gagctgcctg

60

tgcagcacct gcgcgctgtg ccgcaaacgc

90

<210> 4

<211> 129

<212> DNA

<213> Petromyzontidae

<220>

<221> source

<222> 1..129

<223> /mol_type="unassigned DNA"
/organism="Petromyzontidae"

<400> 4

aactgcacca gcattcagga acgcaaaaac gatggcggcg attgcggcaa accggcgtgc

60

		eol f-seql														
accaccctgc	tgaactgcgc	gaactttctg	agctgcctgt	gcagcacctg	cgcgctgtgc	120										
cgcaaacgc						129										
<210>	5															
<211>	29															
<212>	PRT															
<213>	T4-like viruses															
<400>	5															
Gl y	Ser	Gl y	Tyr	Il e	Pro	Gl u	Al a	Pro	Arg	Asp	Gl y	Gl n	Al a	Tyr	Val	
1				5				10						15		
Arg	Lys	Asp	Gl y	Gl u	Trp	Val	Leu	Leu	Ser	Thr	Phe	Leu				
		20					25									
<210>	6															
<211>	87															
<212>	DNA															
<213>	T4-like viruses															
<220>																
<221>	source															
<222>	1..87															
<223>	/mol_type="unassigned DNA"															
	/organism="T4-like viruses"															
<400>	6															
ggcagcggct	atattccgga	agcgcgcgc	gatggccagg	cgtatgtgcg	caaagatggc										60	
gaatgggtgc	tgctgagcac	ctttctg													87	
<210>	7															
<211>	1680															
<212>	DNA															
<213>	Artificial Sequence															
<220>																
<221>	source															
<222>	1..1680															
<223>	/mol_type="unassigned DNA"															
	/note="Influenza virus HA fused to lamprey multimerizing shortened sequence"															
	/organism="Artificial Sequence"															
<400>	7															
atgaaggcga	tcctgggtgt	gctgctgtac	acgttcgcga	cggccaacgc	ggatacgctg										60	
tgcacatcggt	accacgcgaa	caacagcagc	gacaccgtgg	acacggtgct	cgagaagaac										120	
gtgacggta	cgcacagcgt	gaacctgctt	gaggacaagg	acaacggcaa	gctgtgcaag										180	
ctgcgtggcg	tggctccgct	gcacctgggc	aagtgcaca	ttgctggctg	gatcctgggc										240	
aaccaggat	gcgagagcct	gagcacggcg	tcgtcttgg	gctacatcgt	ggagacgccc										300	
agcagcaca	acggcacgt	ctatccgggt	gacttcatcg	actacgaaga	gctgcgcgag										360	
cagctgtcg	cggtgagcag	cttgaacgc	ttcgagattt	tccccaaagac	gagcagctgg										420	
ccgaaccacg	actcgaacaa	gggcgtgacg	gctgcgtg	cacacgctgg	tgccaagagc										480	
ttctacaaga	acctgatctg	gctggtaag	aaggcaaca	gctacccgaa	gctgagcaag										540	
agctacatca	acgacaaggg	caaagaagt	ctcgccctgt	ggggcatcca	ccacccgagc										600	

eol f-seql	
acgagcgctg accagcagag cctgtaccag aacgcccaca cctacgtgtt cgtggcagc	660
agccgctaca gcaagaagtt caagcccgag atcgcgattc gtccaaaggt gcgcgaccaa	720
gagggtcgca tgaactacta ctggacgctc gtggagccag gcgacaagat cacgttcgag	780
gcgacggca acctggtcgt gccacgctac gccttcgcca tggaaacgcaa cgctggcagc	840
ggcatcatca tcagcgacac gccagtgcac gactgcaaca cgacgtgcca gacgccgaag	900
ggtgcgatca acacgagcct gccgttccag aacatccacc cgatcacgat cgcaagtgc	960
ccgaagtacg tgaagagcac gaagctgcgc ctggcgtacgg gtctgcgcaa catcccgagc	1020
atccagtctc gtggtctgtt tggcgctatc gctggcttca tcgagggtgg ctggacggc	1080
atggtggacg gctggtacgg ctaccaccac cagaacgagc agggcagcgg ctacgctgcg	1140
gacctgaagt cgacgcagaa cgcgatcgac gagatcacga acaaggtgaa cagcgtgatc	1200
gagaagatga acacgcagtt cacggctgtg ggcaaagagt tcaaccacct tgagaagcgc	1260
atcgagaacc tgaacaagaa ggtggacgac ggcttcctgg acatctggac gtacaacgcg	1320
gagctgctgg tgctgcttga gaacgagcgc acgctggact accacgattc gaacgtgaag	1380
aacctctacg agaaggtgcg cagccagctg aagaacaacg cggcaacggc	1440
tgcttcgagt tctaccacaa gtgcgacaac acgtgcattt aaacggtgaa gaacggcacg	1500
tacgactacc cgaagtactc ggaagaggcc aagctgaacc gcgaagagat cgacggcgt	1560
aagcttgaga gcacgcgcat ctaccaggat tgcggcaaac cggcgtgcac caccctgctg	1620
aactgcgcga actttcttagt ctgcctgtgc agcacctgcg cgctgtgccc caaacgctag	1680

<210> 8
 <211> 1719
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <222> 1..1719
 <223> /mol_type="unassigned DNA"
 /note="Influenza virus HA ectodomain fused to lamprey multimeric sequence"
 /organism="Artificial Sequence"

atgaaggcga tcctgggtgt gctgctgtac acgttcgcga cggccaaacgc ggatacgctg	60
tgcacggctt accacgcgaa caacagcagc gacaccgtgg acacgggtctt cgagaagaac	120
gtgacggta cgcacagcgtt gaaacctgtt gaggacaagc acaacggcaa gctgtgcaag	180
ctgcgtggcg tggctccgctt gcacctgggc aagtgcaca ttgctggctt gatcctggc	240
aaccctggat gcgagagcctt gggcacggcg tcgtcttggaa gctacatcg ggagacgccc	300
agcagcgaca acggcacgtt ctatccgggtt gacttcatcg actacgaaga gctgcgcgag	360
cagctgtcgtt cggtgagcag ctttgaacgc ttgcggat ttcccaagac gagcagctgg	420
ccgaaccacg actcgaacaa gggcgtgacg gctgcgtgtc cacacgctgg tgccaaagac	480
ttcttacaaga acctgatctt gctgggtgaag aaggcaaca gctacccgaa gctgagcaag	540

eol f-seql

agctacatca acgacaaggg caaagaagt ctcgtcctgt ggggcatcca ccacccgagc	600
acgagcgctg accagcagag cctgtaccag aacgccaca cctacgtgtt cgtggcagc	660
agccgctaca gcaagaagtt caagcccag atcgcgattc gtccaaaggt gcgcgaccaa	720
gagggtcgca tgaactacta ctggacgctc gtggagccag gcgacaagat cacgttcag	780
gacgacggca acctggcgt gccacgctac gccttcgcca tggAACGCAA cgctggcagc	840
ggcatcatca tcagcgacac gccagtgcac gactgcaaca cgacgtgcca gacgcccgaag	900
ggtgcgtaca acacgagcct gccgttccag aacatccacc cgatcacat cggtcaagtgc	960
ccgaagtacg tgaagagcac gaagctgcgc ctggcgtacgg gtctgcgcaa catcccgagc	1020
atccagtctc gtggctgtt tggcgctatc gctggcttca tcgagggtgg ctggacgggc	1080
atggtgacg gctggtacgg ctaccaccac cagaacgagc agggcagcgg ctacgctgca	1140
gacctgaagt cgacgcagaa cgcgatcgac gagatcacga acaaggtaa cagcgtgatc	1200
gagaagatga acacgcagtt cacggctgtg ggcaaaagagt tcaaccaccc tgagaagcgc	1260
atcgagaacc tgaacaagaa ggtggacgac ggcttcctgg acatctggac gtacaacgca	1320
gagctgctgg tgctgcttga gaacgagcgc acgctggact accacgattc gaacgtgaag	1380
aacctctacg agaagggtgcg cagccagctg aagaacaacg cggaaagagat cggcaacggc	1440
tgcttcgagt tctaccacaa gtgcgacaac acgtgcattt aaagcgtgaa gaacggcagc	1500
tacgactacc cgaagtactc ggaagaggcc aagctgaacc gcgaagagat cgacggcgt	1560
aagcttgaga gcacgcgcat ctaccagaac tgcaccagca ttccaggaacg caaaaacgt	1620
ggcggcgtt gggcaaaacc ggcgtgcacc accctgtga actgcgcgaa ctttctgagc	1680
tgcctgtca gcacctgcgc gctgtccgc aaacgctag	1719

<210> 9
 <211> 1677
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <222> 1..1677
 <223> /mol_type="unassigned DNA"
 /note="Influenza virus HA ectodomain fused T4 donor sequence"
 /organism="Artificial Sequence"

atgaaggcga tcctgggtt gctgctgtac acgttcgcga cggccaacgc ggatacgctg	60
tgcattggct accacgcgaa caacagcagc gacaccgtgg acacgggtct cgagaagaac	120
gtgacgggtga cgcacagcgt gaacctgttt gaggacaagc acaacggcaa gctgtcaag	180
ctgcgtggcg tggctccgt gcacctgggc aagtcaaca ttgctggctg gatcctgggc	240
aacccagagt gcgagagcct gagcacggcg tcgtcttgg a gctacatcg ggagacgccc	300
agcagcgaca acggcacgtc ctatccgggt gacttcatcg actacgaaga gctgcgcgag	360
cagctgtcgt cggtgagcag ctttgaacgc ttccgagattt tccccaagac gagcagctgg	420

eol f-seql

ccgaaccacg	actcgaacaa	ggcggtgacg	gctgcgtgtc	cacacgctgg	tgccaagagc	480
ttctacaaga	acctgatctg	gctggtaag	aaggcaaca	gctacccgaa	gctgagcaag	540
agctacatca	acgacaaggg	caaagaagt	ctcgtcctgt	ggggcatcca	ccacccgagc	600
acgagcgctg	accagcagag	cctgtaccag	aacgcccaca	cctacgtgtt	cgtggcagc	660
agccgctaca	gcaagaagtt	caagcccgag	atcgcgattc	gtccaaaggt	gcgcgaccaa	720
gagggtcgca	tgaactacta	ctggacgctc	gtggagccag	gcgacaagat	cacgttcgag	780
gcgacgggca	acctggtcgt	gccacgctac	gccttcgcca	tggaacgcaa	cgctggcagc	840
ggcatcatca	tcagcgacac	gccagtgcac	gactgcaaca	cgacgtgcca	gacgcccaga	900
gtgcgatca	acacgagcct	gccgttccag	aacatccacc	cgatcacgat	cggcaagtgc	960
ccgaagtacg	tgaagagcac	gaagctgcgc	ctggcgacgg	gtctgcgcaa	catcccgagc	1020
atccagtctc	gtggctgttt	tggcgctatc	gctggcttca	tcgagggtgg	ctggacgggc	1080
atggtgacg	gctggtaacgg	ctaccaccac	cagaacgagc	agggcagcgg	ctacgctgcg	1140
gacctgaagt	cgacgcagaa	cggatcgac	gagatcacga	acaagggtgaa	cagcgtgatc	1200
gagaagatga	acacgcagtt	cacggctgt	ggcaaagagt	tcaaccacct	tgagaagcgc	1260
atcgagaacc	tgaacaagaa	ggtgacgac	ggcttcctgg	acatctggac	gtacaacgcg	1320
gagctgctgg	tgctgcttga	gaacgagcgc	acgctggact	accacgattc	gaacgtgaag	1380
aacctctacg	agaaggtgcg	cagccagctg	aagaacaacg	cggaaagagat	cgcaacggc	1440
tgcttcgagt	tctaccacaa	gtggacaaac	acgtgcattgg	aaagcgtgaa	gaacggcagc	1500
tacgactacc	cgaagtactc	ggaagaggcc	aagctgaacc	gcgaagagat	cgacggcgtg	1560
aagcttgaga	gcacgcgcat	ctaccaggc	agcggctata	ttccggaaagc	gccgcgcgat	1620
ggccaggcgt	atgtgcgcaa	agatggcga	tgggtgtgc	tgagcacctt	tctgtag	1677

<210> 10
 <211> 1587
 <212> DNA
 <213> Infl uenza A vi rus

<220>
 <221> source
 <222> 1.. 1587
 <223> /mol_type="unassi gned DNA"
 /organism="Infl uenza A vi rus"

<400> 10	atgaaggcga	tcctggtggt	gctgctgtac	acgttcgcga	cggccaacgc	ggatacgctg	60
	tgcacggct	accacgcgaa	caacagcacg	gacaccgtgg	acacggtgct	cgagaagaac	120
	gtgacggta	cgcacagcgt	gaacctgctt	gaggacaagc	acaacggcaa	gctgtgcaag	180
	ctgcgtggcg	tggctccgct	gcacctgggc	aagtgcaca	ttgctggctg	gatcctgggc	240
	aacccagagt	gcgagagcct	gagcacggcg	tcgtcttga	gctacatcg	ggagacgccc	300
	agcagcgaca	acggcacgt	ctatccgggt	gacttcatcg	actacgaaga	gctgcgcgag	360

eol f-seql

cagctgtcgt	cggtgagcag	cttgaacgc	ttcgagattt	tccccaaagac	gagcagactgg	420
ccgaaccacg	actcgaacaa	gggcgtgacg	gctgcgtgtc	cacacgctgg	tgccaagagc	480
ttctacaaga	acctgatctg	gctgggtgaag	aagggaacaaca	gctacccgaa	gctgagcaag	540
agctacatca	acgacaaggg	caaagaagt	ctcgtcctgt	ggggcatcca	ccacccgagc	600
acgagcgtg	accagcagag	cctgtaccag	aacgcccaca	cctacgtgtt	cgtggcagc	660
agccgctaca	gcaagaagtt	caagcccag	atcgcgattc	gtccaaaggt	gcgccaccaa	720
gagggtcgca	tgaactacta	ctggacgctc	gtggagccag	gcgacaagat	cacgttcgag	780
gcgacggca	acctggcgt	gccacgctac	gccttcgcca	tggaacgcaa	cgctggcagc	840
ggcatcatca	tcagcgacac	gccagtgcac	gactgcaaca	cgacgtgcca	gacgcccaga	900
ggtgcgatca	acacgagcct	gccgttccag	aacatccacc	cgatcacgat	cgccaagtgc	960
ccgaagtacg	tgaagagcac	gaagctgcgc	ctggcgtacgg	gtctgcgcaa	catcccgagc	1020
atccagtctc	gtggctgtt	tggcgtatc	gctggcttca	tcgagggtgg	ctggacgggc	1080
atggtgacg	gctggtacgg	ctaccaccac	cagaacgagc	agggcagcgg	ctacgctgcg	1140
gacctgaagt	cgacgcagaa	cgcgatcgac	gagatcacga	acaaggtgaa	cagcgtgatc	1200
gagaagatga	acacgcagtt	cacggctgt	ggcaaagagt	tcaaccacct	tgagaagcgc	1260
atcgagaacc	tgaacaagaa	ggtgacgac	ggcttcctgg	acatctggac	gtacaacgcg	1320
gagctgctgg	tgctgcttga	gaacgagcgc	acgctggact	accacgattc	gaacgtgaag	1380
aacctctacg	agaaggtgcg	cagccagct	aagaacaacg	cggaaagagat	cggcaacggc	1440
tgcttcgagt	tctaccacaa	gtgcgacaac	acgtgcacgg	aaagcgtgaa	gaacggcacg	1500
tacgactacc	cgaagtactc	ggaagaggcc	aagctgaacc	gcaagagat	cgacggcgt	1560
aagcttgaga	gcacgcgcat	ctaccag				1587

<210> 11
 <211> 529
 <212> PRT
 <213> Infl uenza A vi rus

<400> 11
 Met Lys Al a Ile Leu Val Val Leu Leu Tyr Thr Phe Al a Thr Al a Asn
 1 5 10 15
 Al a Asp Thr Leu Cys Ile Gly Tyr His Al a Asn Asn Ser Thr Asp Thr
 20 25 30
 Val Asp Thr Val Leu Gl u Lys Asn Val Thr Val Thr His Ser Val Asn
 35 40 45
 Leu Leu Gl u Asp Lys His Asn Gl y Lys Leu Cys Lys Leu Arg Gl y Val
 50 55 60
 Al a Pro Leu His Leu Gl y Lys Cys Asn Ile Al a Gl y Trp Ile Leu Gl y
 65 70 75 80
 Asn Pro Gl u Cys Gl u Ser Leu Ser Thr Al a Ser Ser Trp Ser Tyr Ile
 85 90 95
 Val Gl u Thr Pro Ser Ser Asp Asn Gl y Thr Cys Tyr Pro Gl y Asp Phe
 100 105 110
 Ile Asp Tyr Gl u Gl u Leu Arg Gl u Gl n Leu Ser Ser Val Ser Ser Phe
 115 120 125
 Gl u Arg Phe Gl u Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp
 130 135 140

eol f-seql

Ser Asn Lys Gl y Val Thr Al a Al a Cys Pro His Al a Gl y Al a Lys Ser
145 150 155 160
Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gl y Asn Ser Tyr Pro
165 170 175
Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gl y Lys Gl u Val Leu Val
180 185 190
Leu Trp Gl y Ile His His Pro Ser Thr Ser Al a Asp Gl n Gl n Ser Leu
195 200 205
Tyr Gl n Asn Al a Asp Thr Tyr Val Phe Val Gl y Ser Ser Arg Tyr Ser
210 215 220
Lys Lys Phe Lys Pro Gl u Ile Al a Ile Arg Pro Lys Val Arg Asp Gl n
225 230 235 240
Gl u Gl y Arg Met Asn Tyr Tyr Trp Thr Leu Val Gl u Pro Gl y Asp Lys
245 250 255
Ile Thr Phe Gl u Al a Thr Gl y Asn Leu Val Val Pro Arg Tyr Al a Phe
260 265 270
Al a Met Gl u Arg Asn Al a Gl y Ser Gl y Ile Ile Ile Ser Asp Thr Pro
275 280 285
Val His Asp Cys Asn Thr Thr Cys Gl n Thr Pro Lys Gl y Al a Ile Asn
290 295 300
Thr Ser Leu Pro Phe Gl n Asn Ile His Pro Ile Thr Ile Gl y Lys Cys
305 310 315 320
Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Al a Thr Gl y Leu Arg
325 330 335
Asn Ile Pro Ser Ile Gl n Ser Arg Gl y Leu Phe Gl y Al a Ile Al a Gl y
340 345 350
Phe Ile Gl u Gl y Gl y Trp Thr Gl y Met Val Asp Gl y Trp Tyr Gl y Tyr
355 360 365
His His Gl n Asn Gl u Gl n Gl y Ser Gl y Tyr Al a Al a Asp Leu Lys Ser
370 375 380
Thr Gl n Asn Al a Ile Asp Gl u Ile Thr Asn Lys Val Asn Ser Val Ile
385 390 395 400
Gl u Lys Met Asn Thr Gl n Phe Thr Al a Val Gl y Lys Gl u Phe Asn His
405 410 415
Leu Gl u Lys Arg Ile Gl u Asn Leu Asn Lys Lys Val Asp Asp Gl y Phe
420 425 430
Leu Asp Ile Trp Thr Tyr Asn Al a Gl u Leu Leu Val Leu Leu Gl u Asn
435 440 445
Gl u Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Gl u
450 455 460
Lys Val Arg Ser Gl n Leu Lys Asn Asn Al a Lys Gl u Ile Gl y Asn Gl y
465 470 475 480
Cys Phe Gl u Phe Tyr His Lys Cys Asp Asn Thr Cys Met Gl u Ser Val
485 490 495
Lys Asn Gl y Thr Tyr Asp Tyr Pro Lys Tyr Ser Gl u Gl u Al a Lys Leu
500 505 510
Asn Arg Gl u Gl u Ile Asp Gl y Val Lys Leu Gl u Ser Thr Arg Ile Tyr
515 520 525
Gl n

<210> 12

<211> 1590

<212> DNA

<213> Infl uenza A vi rus

<220>

<221> source

<222> 1..1590

<223> /mol_type="unassigned DNA"

/note="Infl uenza vi rus HA ectodomai n optimi zed for codon usage in
CHO"

/organism="Infl uenza A vi rus"

<400> 12

atgaaggcca tcctgggtgt gctgctgtac accttcgcca ccggccaaacgc cgacaccctg

60

tgcatcggtt accacgccaa caactccacc gacaccgtgg ataccgtgct ggaaaagaac

120

eol f-seql

gtgaccgtga cccactccgt	gaacctgctg	gaagataagc	acaacggcaa	gctgtcaag	180
ctgcgggcg	tggccctct	gcacctggc	aagttaata	tcgcccgtg	240
aaccccgagt	gcgagtcct	gtccaccgccc	tccagctgg	cctacatcg	300
tccagcgaca	acggcacctg	ttacccggc	gacttcatcg	actacgagga	360
cagctgtcct	ccgtgtccag	tttcgagaga	ttcgagatct	tccccaagac	420
cccaaccacg	actccaacaa	ggcgtgacc	gccgcctgtc	ctcacgctgg	480
ttctacaaga	acctgatctg	gctggtaaaa	aaggcaact	cctacccaa	540
tcctacatca	acgacaaggg	caaagaggtg	ctgggtctgt	ggggcatcca	600
acctccgccc	accagcagtc	cctgtaccag	aacgcccata	cctacgtgtt	660
tcccggtact	ccaagaagtt	caagcccgag	atcgccatcc	ggcccaaagt	720
gaaggccgga	tgaactacta	ctggaccctg	gtggAACCCG	gcgacaagat	780
gccaccggca	atctgggtgt	gccagatac	gccttcgcca	tggAACGGAA	840
ggcatcatca	tctccgacac	ccccgtgcac	gactgcaaca	ccacctgtca	900
ggcgccatca	acacccct	gcccttccag	aacatccacc	ccatcaccat	960
cccaaatacg	tgaagtccac	caagctgcgg	ctggctaccg	gcctgcggaa	1020
atccagtctc	ggggcctgtt	cggcgctatc	gctggcttca	tcgagggcgg	1080
atggtgacg	gttggtaacgg	ctaccaccac	cagaacgagc	agggctccgg	1140
gacctgaagt	ctacccagaa	cggccatcgac	gagatcacca	acaaagtgaa	1200
gagaagatga	acacccagtt	caccgcgtg	ggcaaagagt	tcaaccacct	1260
atcgagaacc	tgaacaagaa	ggtgacgac	ggcttcctgg	atacaacgcc	1320
gagctgctgg	tgctgctgga	aaacgagcgg	accctggact	accacgacag	1380
aacctgtacg	agaaagtgcg	gtcccagctg	aagaacaacg	ccaaagagat	1440
tgcttcgagt	tctaccacaa	gtgcgacaac	acctgtatgg	caacgtgaag	1500
tacgactacc	ccaagtactc	cgaggaagcc	aagctgaacc	ggaaagagat	1560
aagctggaat	ccacccggat	ctatcagtga			1590

<210> 13
<211> 1680
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<222> 1..1680
<223> /mol_type="unassigned DNA"
/note="Influenza virus HA ectodomain fused to lamprey
multimerizing shortened sequence, optimized for codon usage in
CHO"
/organism="Artificial Sequence"

<400> 13
atgaaggcca tcctgggtgt gctgctgtac accttcgcca ccgccaacgc cgacaccctg

eol f-seql

tgcatcggt accacgcca acaactccacc gacaccgtgg ataccgtgct ggaaaagaac	120
gtgaccgtga cccactccgt gaacctgctg gaagataagc acaacggcaa gctgtcaag	180
ctgcggggcg tggccctct gcacctggc aagtgtata tcgcccgtg gatcctggc	240
aaccccgagt gcgagtcct gtccaccgccc tccagctggt cctacatcgat ggaaacccccc	300
tccagcaca acggcacctg ttacccggc gacttcatcg actacgagga actgcgcgag	360
cagctgtcct ccgtgtccag cttcgagaga ttcgagatct tccccaagac ctcctctgg	420
cccaaccacg actccaacaa gggcgtgacc gcccgcgtc ctcacgctgg cgccaagtcc	480
ttctacaaga acctgatctg gctggtaaaa aaggcaact cctaccccaa gctgtccaag	540
tcctacatca acgacaaggg caaagaggtg ctgggtctgt ggggcattca ccacccttcc	600
acctccgccc accagcagtc cctgtaccag aacgcccata cctacgtgtt cgtggctcc	660
tcccggtact ccaagaagtt caagcccggat atcgccatcc gggccaaagt gcgggaccag	720
gaaggccgga tgaactacta ctggaccctg gtggAACCCG gcgacaagat cacccgtcag	780
gccaccggca atctgggtt gcccagatac gccttcgcca tggaaacggaa cgccgctcc	840
ggcatcatca tctccgacac ccccggtcac gactgcaaca ccacctgtca gaccccaag	900
ggcgcacatca acacccctt gcccgtccag aacatccacc ccatcaccat cggcaagtgc	960
cccaaatacg tgaagtccac caagctgcgg ctggctaccg gcctgcggaa catccctcc	1020
atccagtctc gggcctgtt cggcgctatc gctggcttca tcgagggcgg ctggaccggc	1080
atgggtggacg gttgggtacgg ctaccaccac cagaacgagc agggctccgg ctacccgc	1140
gacctgaagt ctacccagaa cgcacatcgac gagatcacca acaaagtgaa ctccgtatc	1200
gagaagatga acacccagtt caccgcgtg ggcaaaagagt tcaaccaccc ggaaaagcgg	1260
atcgagaacc tgaacaagaa ggtggacgac ggcttcctgg acatctggac ctacaacgccc	1320
gagctgctgg tgctgctgaa aaacgagcgg accctggact accacgacag caacgtgaag	1380
aacctgtacg agaaagtgcg gtcccagctg aagaacaacg ccaaagagat cggcaacggc	1440
tgcttcgagt tctaccacaa gtgcgacaac acctgtatgg aatccgtgaa gaacggcacc	1500
tacgactacc ccaagtactc cgaggaagcc aagctgaacc gggaaagagat cgacggcgtg	1560
aagctggaat ccacccggat ctaccaggac tgcggcaagc ccgcctgcac caccctgtcg	1620
aactgcgcca acttcctgtc ctgcctgtgc tctacctgcg ccctgtgccc gaagagatga	1680

<210> 14
 <211> 1719
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> source
 <222> 1..1719
 <223> /mol_type="unassigned DNA"
 /note="Influenza virus HA ectodomain fused to lamprey
 multi-merizing long sequence, optimized for codon usage in CHO"
 /organism="Artificial Sequence"

eol f-seql

<400> 14
atgaaggcca tcctggtgt gctgctgtac accttcgcca ccgccaacgc cgacaccctg 60
tgcatcggt accacgcca caactccacc gacaccgtgg ataccgtgct ggaaaagaac 120
gtgaccgtga cccactccgt gaacctgctg gaagataagc acaacggcaa gctgtcaag 180
ctgcggggcg tggccctct gcacctggc aagtgtataa tcgcccgtg gatcctggc 240
aaccccgagt gcgagtcct gtccaccgccc tccagctggt cctacatcgt ggaaacccccc 300
tccagcgaca acggcacctg ttacccggc gacttcatcg actacgagga actgcgcgag 360
cagctgtcct ccgtgtccag cttcgagaga ttcgagatct tccccaagac ctccctcgg 420
cccaaccacg actccaacaa gggcgtgacc gccgcctgtc ctcacgctgg cgccaagtcc 480
ttctacaaga acctgatctg gctggtgaaa aaggcaact cctaccccaa gctgtccaag 540
tcctacatca acgacaaggg caaagaggtg ctgggtctgt ggggcatcca ccacccttcc 600
acctccgccc accagcagtc cctgtaccag aacgcccata cctacgtgtt cgtggctcc 660
tcccggtact ccaagaagtt caagcccgag atcgccatcc ggcccaaagt gcgggaccag 720
gaaggccgga tgaactacta ctggaccctg gtggAACCG ggcacaagat cacccctcgag 780
gccaccggca atctggtgtt gcccagatac gccttcgcca tggaaacggaa cgccgctcc 840
ggcatcatca tctccgacac cccctgtcac gactgcaaca ccacctgtca gaccccaag 900
ggcgcctatca acaccccttccatcc gacccatccacc ccatcaccat cgcaagtgc 960
cccaaatacg tgaagtccac caagctgcgg ctggctaccg gcctgcggaa catccctcc 1020
atccagtctc gggcctgtt cggcgctatc gctggcttca tcgagggcgg ctggaccggc 1080
atgggtggacg gttggcacgg ctaccaccac cagaacgagc agggctccgg ctacccggcc 1140
gacctgaagt ctacccagaa cgcacatcgac gagatcacca acaaagtgaa ctccgtatc 1200
gagaagatga acacccagtt caccgcgtg ggcaaaagagt tcaaccacat ggaaaagcgg 1260
atcgagaacc tgaacaagaa ggtggacgac ggcttcgttccatccatctggac ctacaacgccc 1320
gagctgctgg tgctgctgga aaacgagcgg accctgact accacgacag caacgtgaag 1380
aacctgtacg agaaagtgcg gtcccagctg aagaacaacg ccaaagagat cgcaacggc 1440
tgcttcgagt tctaccacaa gtgcacaaac acctgtatgg aatccgtgaa gaacggcacc 1500
tacgactacc ccaagtactc cgaggaagcc aagctgaacc gggaaagagat cgacggcgtg 1560
aagctggaat ccacccggat ctaccagaac tgcaccagca tccaggaacg gaagaacgac 1620
ggcggcgtact gcccacggcc tgcctgcacc accctgctga actgcgcctaa cttccctgtcc 1680
tgcctgtgct ctacccgtgcg cctgtgccgg aagagatga 1719

<210> 15
<211> 1677
<212> DNA
<213> Artificial Sequence

<220>
<221> source

eol f-seql

<222> 1..1677

<223> /mol_type="unassigned DNA"

/note="Influenza virus HA ectodomain fused to T4 fiber domain
multi-merizing sequence, optimized for codon usage in CHO"
/organism="Artificial Sequence"

<400> 15

atgaaggcca	tcctggtgt	gctgctgtac	accttcgcca	ccgccaacgc	cgacaccctg	60
tgcatcggt	accacgcca	caactccacc	gacaccgtgg	ataccgtgct	ggaaaagaac	120
gtgaccgtga	cccactccgt	gaacctgctg	gaagataagc	acaacggcaa	gctgtgcaag	180
ctgcggggcg	tggccctct	gcacctgggc	aagttaata	tcgcccgtg	gatcctgggc	240
aaccccgagt	gcgagtcct	gtccaccgccc	tccagctgg	cctacatcg	ggaaaccccc	300
tccagcgaca	acggcacctg	ttaccccgcc	gacttcatcg	actacgagga	actgcgcgag	360
cagctgtcct	ccgtgtccag	tttcgagaga	ttcgagatct	tccccaagac	ctcctcctgg	420
cccaaccacg	actccaacaa	gggcgtgacc	gccgcctgtc	ctcacgctgg	cgccaagtcc	480
ttctacaaga	acctgatctg	gctggtgaaa	aaggcaact	cctaccccaa	gctgtccaag	540
tcctacatca	acgacaaggg	caaagaggtg	ctgggtctgt	ggggcatcca	ccacccttcc	600
acctccgccc	accagcagtc	cctgtaccag	aacgcccata	cctacgtgtt	cgtggctcc	660
tcccggtact	ccaagaagtt	caagcccgag	atgcctatcc	ggcccaaagt	gcgggaccag	720
gaaggccgga	tgaactacta	ctggaccctg	gtggAACCCG	gcgacaagat	cacttcgag	780
gccaccggca	atctggtgt	gccagatac	gccttcgcca	tggAACGGAA	cggcggctcc	840
ggcatcatca	tctccgacac	ccccgtgcac	gactgcaaca	ccacctgtca	gaccccaag	900
ggcgcacatca	acacccctt	gcccttccag	aacatccacc	ccatcaccat	cggcaagtgc	960
cccaaatacg	tgaagtccac	caagctgcgg	ctggctaccg	gcctgcggaa	catccctcc	1020
atccagtctc	ggggcctgtt	cggcgctatc	gctggcttca	tcgagggcgg	ctggaccggc	1080
atgggtggacg	gttggtacgg	ctaccaccac	cagaacgagc	agggtccgg	ctacggcc	1140
gacctgaagt	ctacccagaa	cgcacatcgac	gagatcacca	acaaagtgaa	ctccgtgatc	1200
gagaagatga	acacccagtt	caccgcgtg	ggcaaagagt	tcaaccac	ggaaaagcgg	1260
atcgagaacc	tgaacaagaa	gttggacgac	ggcttcctgg	acatctggac	ctacaacgccc	1320
gagctgctgg	tgctgctgga	aaacgagcgg	accctggact	accacgacag	caacgtgaag	1380
aacctgtacg	agaaagtgcg	gtcccagctg	aagaacaacg	ccaaagagat	cggcaacggc	1440
tgcttcgagt	tctaccacaa	gtgcgacaac	acctgtatgg	aatccgtgaa	gaacggcacc	1500
tacgactacc	ccaagtactc	cgaggaagcc	aagctgaacc	ggaaagagat	cgacggcgtg	1560
aagcttggaaat	ccacccggat	ctaccaggc	agcggctaca	tccctgaggc	ccccagagat	1620
ggccaggcct	acgtgcggaa	ggacggcggag	tgggtgctgc	tgagcacatt	tctgtga	1677

<210> 16

<211> 996

<212> DNA

<213> Shigella flexneri 2a str. 301

eol f-seql

<220>
<221> source
<222> 1.. 996
<223> /mol_type="unassigned DNA"
 /note="IpaD sequence optimized for codon usage in E. coli"
 /organism="Shigella flexneri 2a str. 301"

<400> 16
atgaatatta ccaccctgac caatagcatt agcaccagca gcttttagccc gaataatacc 60
aatggtagca gcaccgaaac cgtaatagc gatattaaaa ccaccaccc tagccatccg 120
gttagcagcc tgaccatgct gaatgatacc ctgcataata ttcgttaccac caatcaggca 180
ctgaaaaaaag aactgagcca gaaaaccctg accaaaacca gcctggaaga aattgcactg 240
catagcagcc agattagcat ggatgttaat aaaagcgcac agctgctgga tattctgtct 300
cgccatgaat atccgattaa taaagatgca cgcgaaactgc tgcatacgcc accgaaagaa 360
gcagaactgg acggcgatca gatgattagc catcgtaac tgtggcaaa aattgcgaat 420
agcattaatg atattaatga acagtatctg aaagtgtatg aacatgccgt tagcagctat 480
acccagatgt atcaggattt ttctgcccgtt ttaagctctc tggctggctg gatttctccg 540
ggtggtaatg atggtatag cgtgaaactg caggttaata gcctgaaaaaa agccctggaa 600
gaactgaaag aaaaatataa agataaaccg ctgtatccgg ctaataatac cgtagccaa 660
gaacaggcaa ataaatggct gaccgaaactg ggtggcacca ttggtaaagt gtctcagaaa 720
aatggtggtt atgtggtag cattaatatg accccgattt gataatatgct gaaaagcctg 780
gataatctgg gtggtaatgg tgaagttgtt ctggataatg ccaaataatca ggcataatgg 840
gccggttta gcgcgaaga tgaaccatg aaaaataatc tgcagaccct gttcagaaa 900
tatagcaatg ccaatagcat tttgataat ctggtaaag ttctgtcttag caccattagc 960
agctgtaccg ataccgataa actgtttctg catttt 996

<210> 17
<211> 1125
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<222> 1.. 1125
<223> /mol_type="unassigned DNA"
 /note="Shigella IpaD fused to lamprey multimerizing long sequence, optimized for codon usage in E. coli"
 /organism="Artificial Sequence"

<400> 17
atgaatatta ccaccctgac caatagcatt agcaccagca gcttttagccc gaataatacc 60
aatggtagca gcaccgaaac cgtaatagc gatattaaaa ccaccaccc tagccatccg 120
gttagcagcc tgaccatgct gaatgatacc ctgcataata ttcgttaccac caatcaggca 180
ctgaaaaaaag aactgagcca gaaaaccctg accaaaacca gcctggaaga aattgcactg 240
catagcagcc agattagcat ggatgttaat aaaagcgcac agctgctgga tattctgtct 300

eol f-seql

cgccatgaat atccgattaa taaagatgc	360
cgagaactgg acggcgatca gatgattagc	420
agcattaatg atattaatga acagtatctg	480
acccagatgt atcaggattt ttctgccgtt	540
ggtggtaatg atggtatag cgtgaaactg	600
gaactgaaag aaaaatataa agataaaccg	660
gaacaggcaa ataaatggct gaccgaactg	720
aatggtggtt atgtggtag cattaatatg	780
gataatctgg gtggtaatgg tgaagttgtt	840
ccaaatatca ggcatggaaat	900
tatagcaatg ccaatagcat tttgataat	960
ctggtaaag gtaccagcat tcaagagcgc	1020
aaaaatgatg gtggtgattt tggtaaaccg	1080
ccctgctgaa ttgtgcaaattttctgagct	1125

<210> 18

<211> 375

<212> PRT

<213> Artificial Sequence

<220>

<223> *Shigella* IpaD fused to lamprey multimerizing long sequence

<400> 18

Met Asn Ile Thr Thr Leu Thr Asn Ser	Ile Ser Thr Ser Ser Phe Ser	
1 5 10 15		
Pro Asn Asn Thr Asn Glu Ser Ser	Thr Glu Thr Val Asn Ser Asp Ile	
20 25 30		
Lys Thr Thr Ser Ser His Pro Val	Ser Ser Leu Thr Met Leu Asn	
35 40 45		
Asp Thr Leu His Asn Ile Arg	Thr Thr Asn Glu Ala Leu Lys Lys Glu	
50 55 60		
Leu Ser Glu Lys Thr Leu Thr Lys	Thr Ser Leu Glu Glu Ile Ala Leu	
65 70 75 80		
His Ser Ser Glu Ile Ser Met Asp	Val Asn Lys Ser Ala Glu Leu Leu	
85 90 95		
Asp Ile Leu Ser Arg His Glu Tyr	Pro Ile Asn Lys Asp Ala Arg Glu	
100 105 110		
Leu Leu His Ser Ala Pro Lys	Gl u Ala Glu Leu Asp Gl y Asp Gl u Met	
115 120 125		
Ile Ser His Arg Glu Leu Trp	Ala Lys Ile Ala Asn Ser Ile Asn Asp	
130 135 140		
Ile Asn Glu Glu Tyr Leu Lys Val	Tyr Glu His Ala Val Ser Ser Tyr	
145 150 155 160		
Thr Glu Met Tyr Glu Asp Phe Ser	Ala Val Leu Ser Ser Leu Ala Glu	
165 170 175		
Trp Ile Ser Pro Glu Glu Asn Asp	Gl y Asn Ser Val Lys Leu Gl u Val	
180 185 190		
Asn Ser Leu Lys Lys Ala Leu Gl u	Gl u Leu Lys Gl u Lys Tyr Lys Asp	
195 200 205		
Lys Pro Leu Tyr Pro Ala Asn Asn	Thr Val Ser Gl u Gl u Gl n Ala Asn	
210 215 220		
Lys Trp Leu Thr Glu Leu Gl y Gl y	Thr Ile Gl y Lys Val Ser Gl n Lys	
225 230 235 240		

eol f-seql

Asn	Gly	Gly	Tyr	Val	Val	Ser	Ile	Asn	Met	Thr	Pro	Ile	Asp	Asn	Met
				245					250						255
Leu	Lys	Ser	Leu	Asp	Asn	Leu	Gly	Gly	Asn	Gly	Glu	Val	Val	Leu	Asp
			260				265					270			
Asn	Ala	Lys	Tyr	Gln	Ala	Trp	Asn	Ala	Gly	Phe	Ser	Ala	Glu	Asp	Glu
				275			280				285				
Thr	Met	Lys	Asn	Asn	Leu	Gln	Thr	Leu	Val	Gln	Lys	Tyr	Ser	Asn	Ala
	290				295					300					
Asn	Ser	Ile	Phe	Asp	Asn	Leu	Val	Lys	Val	Leu	Ser	Ser	Thr	Ile	Ser
	305				310				315					320	
Ser	Cys	Thr	Asp	Thr	Asp	Lys	Leu	Phe	Leu	His	Phe	Asn	Cys	Thr	Ser
			325				330					335			
Ile	Gln	Glut	Arg	Lys	Asn	Asp	Gly	Gly	Asp	Cys	Glut	Lys	Pro	Ala	Cys
			340				345					350			
Thr	Thr	Leu	Leu	Asn	Cys	Ala	Asn	Phe	Leu	Ser	Cys	Leu	Cys	Ser	Thr
		355			360					365					
Cys	Ala	Leu	Cys	Arg	Lys	Arg									
		370			375										

<210> 19

<211> 1032

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<222> 1..1032

<223> /mol_type="unassigned DNA"

/note="Shigella IpaD fused to a His-tag, optimized for codon usage in E. coli"

/organism="Artificial Sequence"

<400> 19

atgaatatta	ccaccctgac	caatagcatt	agcaccagca	gcttagccc	gaataatacc	60
aatggtagca	gcaccgaaac	cgttaatagc	gatattaaaa	ccaccaccc	tagccatccg	120
gttagcagcc	tgaccatgct	gaatgatacc	ctgcataata	ttcgtaccac	caatcaggca	180
ctgaaaaaag	aactgagcca	gaaaaccctg	acccaaacca	gcctggaaga	aattgcactg	240
catagcagcc	agattagcat	ggatgttaat	aaaagcgcac	agctgctgga	tattctgtct	300
cgccatgaat	atccgattaa	taaagatgca	cgcgaactgc	tgcatacgcg	accgaaagaa	360
gcagaactgg	acggcgatca	gatgattagc	catcgtgaac	tgtggcaaa	aattgcgaat	420
agcattaatg	atattaatga	acagtatctg	aaagtgtatg	aacatgccgt	tagcagctat	480
acccagatgt	atcaggattt	ttctgcccgtt	ttaagctctc	tggctggctg	gatttctccg	540
ggtggtaatg	atggtatag	cgtgaaactg	caggttaata	gcctgaaaaa	agccctggaa	600
gaactgaaag	aaaaatataa	agataaaccg	ctgtatccgg	ctaataatac	cgttagccaa	660
gaacaggcaa	ataaatggct	gaccgaactg	ggtggcacca	ttggtaaagt	gtctcagaaa	720
aatggtggtt	atgtggtgag	cattaatatg	accccgattg	ataatatgct	gaaaagcctg	780
gataatctgg	gtggtaatgg	tgaagttgtt	ctggataatg	ccaaatatca	ggcatggaat	840
gccggttta	gcccggaga	tgaaaccatg	aaaaataatc	tgcagaccct	ggttcagaaa	900
tatagcaatg	ccatagcat	tttgataat	ctggtaaag	ttctgtctag	caccattagc	960
agctgtaccg	ataccgataa	actgtttctg	cattttggtg	gtagcctcga	gcaccaccac	1020
caccaccact	ga					1032

eol f-seql

<210> 20
<211> 1158
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<222> 1..1158
<223> /mol_type="unassigned DNA"
/note="Shigella IpaD fused to Lamprey multimerizing long sequence
and to a His-tag, optimized for codon usage in E. coli"
/organism="Artificial Sequence"

<400> 20
atgaatatta ccaccctgac caatagcatt agcaccagca gcttagccc gaataatacc 60
aatggtagca gcaccgaaac cgttaatgc gatataaaa ccaccaccc tagccatccg 120
gttagcagcc tgaccatgct gaatgatacc ctgcataata ttcgtaccac caatcaggca 180
ctgaaaaaaag aactgagcca gaaaaccctg accaaaacca gcctggaaga aattgcactg 240
catagcagcc agattagcat ggtatgttaat aaaagcgcac agctgctgga tattctgtct 300
cgccatgaat atccgattaa taaagatgca cgcgaactgc tgcatacgcc accgaaagaa 360
gcagaactgg acggcgatca gatgattagc catcgtgaac tgtggcaaa aattgcgaat 420
agcattaatg atattaatga acagtatctg aaagtgtatg aacatgccgt tagcagctat 480
acccagatgt atcaggattt ttctgcccgtt ttaagctctc tggctggctg gatttctccg 540
ggtggtaatg atggtatacg cgtaaactg caggttaata gcctgaaaaa agccctggaa 600
gaactgaaag aaaaatataa agataaaccg ctgtatccgg ctaataatac cgtagccaa 660
gaacaggcaa ataaatggct gaccgaactg ggtggcacca ttggtaaagt gtctcagaaa 720
aatggtggtt atgtggtag cattaatatg accccgattt ataataatgct gaaaagcctg 780
gataatctgg gtggtaatgg tgaagttgtt ctggataatg ccaaataatca ggcatggaaat 840
gccggttta gcgccgaaga taaaaccatg aaaaataatc tgcagaccct ggttcagaaa 900
tatagcaatg ccaatagcat tttgataat ctggtaaag ttctgtctag caccattagc 960
agctgtaccg ataccgataa actgtttctg catttttaatt gtaccagcat tcaagagcgc 1020
aaaaatgatg gtggtgattt tggtaaaccg gcatgtacca ccctgctgaa ttgtgcaaatt 1080
tttctgagct gtctgttag caccgtgca ctgtgtcgta aacgtggtgg tagcctcgag 1140
caccaccacc accaccac 1158

<210> 21
<211> 249
<212> DNA
<213> Shigella flexneri 2a str. 301

<220>
<221> source
<222> 1..249
<223> /mol_type="unassigned DNA"
/note="MxiH sequence, optimized for codon usage in E. coli"
/organism="Shigella flexneri 2a str. 301"

eol f-seql

<400> 21
atgagtgtta ccgttccgaa tcatgttgg accctgagca gcctgagcga aaccttgat 60
gatggcaccc agacactgca gggtaactg accctggcac tggataaact ggcaaaaaat 120
ccgagcaatc cgcatgtct ggcagaatat cagagcaaac tgagcgaata taccctgtat 180
cgtaatgcac agagcaatac cgtgaaagtg attaaagatg ttgtatgcagc catcatccag 240
aactttcg 249

<210> 22
<211> 378
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<222> 1..378
<223> /mol_type="unassigned DNA"
/note="Shigella Mxi H fused to Lamprey multimerizing long sequence, optimized for codon usage in E. coli"
/organism="Artificial Sequence"

<400> 22
atgagcgtta ccgttccgaa tcatgttgg accctgagca gcctgagcga aaccttgat 60
gatggcaccc agacactgca gggtaactg accctggcac tggataaact ggcaaaaaat 120
ccgagcaatc cgcatgtct ggcagaatat cagagcaaac tgagcgaata taccctgtat 180
cgtaatgcac agagcaatac cgtgaaagtg attaaagatg ttgtatgcagc catcatccag 240
aattttcgta attgtaccag catccaagag cgcaaaaaatg atggtggtga ttgtggtaaa 300
ccggcatgta ccaccctgct gaattgtgca aattttctga gctgtctgtg tagcacctgt 360
gcactgtgtc gtaaacgt 378

<210> 23
<211> 126
<212> PRT
<213> Artificial Sequence

<220>
<223> Shigella Mxi H fused to Lamprey multimerizing long sequence

<400> 23
Met Ser Val Thr Val Pro Asn Asp Asp Trp Thr Leu Ser Ser Leu Ser
1 5 10 15
Glu Thr Phe Asp Asp Gly Thr Glu Thr Leu Glu Glu Glu Leu Thr Leu
20 25 30
Ala Leu Asp Lys Leu Ala Lys Asn Pro Ser Asn Pro Glu Leu Leu Ala
35 40 45
Glu Tyr Glu Ser Lys Leu Ser Glu Tyr Thr Leu Tyr Arg Asn Ala Glu
50 55 60
Ser Asn Thr Val Lys Val Ile Lys Asp Val Asp Ala Ala Ile Ile Glu
65 70 75 80
Asn Phe Arg Asn Cys Thr Ser Ile Glu Glu Arg Lys Asn Asp Gly Gly
85 90 95
Asp Cys Gly Lys Pro Ala Cys Thr Thr Leu Leu Asn Cys Ala Asn Phe
100 105 110
Leu Ser Cys Leu Cys Ser Thr Cys Ala Leu Cys Arg Lys Arg
115 120 125

eol f-seql

<210> 24
<211> 282
<212> DNA

<213> Artificial Sequence

<220>
<221> source
<222> 1..282
<223> /mol_type="unassigned DNA"
/note="Shigella Mxi H fused to a His-tag, optimized for codon
usage in E. coli"
/organism="Artificial Sequence"

<400> 24
atgagtgtta ccgttcccaa tggatgttgg accctgagca gcctgagcga aacctttgat 60
gatggcaccc agacactgca gggtaactg accctggcac tggataaact ggcaaaaaat 120
ccgagcaatc cgcatgtct ggcagaatat cagagcaaac tgagcgaata taccctgtat 180
cgtaatgcac agagcaatac cgtgaaagtg attaaagatg ttgatgcagc catcatccag 240
aattttcgta gtggtagcct cgagcaccac caccaccacc ac 282

<210> 25
<211> 411
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<222> 1..411
<223> /mol_type="unassigned DNA"
/note="Shigella Mxi H fused to lamprey multimerizing long sequence
and to a His-tag, optimized for codon usage in E. coli"
/organism="Artificial Sequence"

<400> 25
atgagtgtta ccgttcccaa tggatgttgg accctgagca gcctgagcga aacctttgat 60
gatggcaccc agacactgca gggtaactg accctggcac tggataaact ggcaaaaaat 120
ccgagcaatc cgcatgtct ggcagaatat cagagcaaac tgagcgaata taccctgtat 180
cgtaatgcac agagcaatac cgtgaaagtg attaaagatg ttgatgcagc catcatccag 240
aattttcgta attgtaccag catccaagag cgcaaaaaatg atgggtgtga ttgtgtaaa 300
ccggcatgta ccaccctgtct gaattgtgca aattttctgta gctgtctgtg tagcacctgt 360
gcactgtgtc gtaaacgtgg tggtagcctc gagcaccacc accaccacca c 411

<210> 26
<211> 559
<212> PRT
<213> Artificial Sequence

<220>
<223> Influenza virus HA ectodomain fused to lamprey multimerizing
shortened sequence

<400> 26
Met Lys Ala Ile Leu Val Val Leu Leu Tyr Thr Phe Ala Thr Ala Asn
1 5 10 15
Ala Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr
20 25 30

eol f-seql

Val	Asp	Thr	Val	Leu	Gl u	Lys	Asn	Val	Thr	Val	Thr	His	Ser	Val	Asn
35					40							45			
Leu	Leu	Gl u	Asp	Lys	His	Asn	Gl y	Lys	Leu	Cys	Lys	Leu	Arg	Gl y	Val
50					55						60				
Al a	Pro	Leu	His	Leu	Gl y	Lys	Cys	Asn	Ile	Al a	Gl y	Trp	Ile	Leu	Gl y
65					70				75		80				
Asn	Pro	Gl u	Cys	Gl u	Ser	Leu	Ser	Thr	Al a	Ser	Ser	Trp	Ser	Tyr	Ile
								85		90			95		
Val	Gl u	Thr	Pro	Ser	Ser	Asp	Asn	Gl y	Thr	Cys	Tyr	Pro	Gl y	Asp	Phe
								100		105			110		
Ile	Asp	Tyr	Gl u	Gl u	Leu	Arg	Gl u	Gl n	Leu	Ser	Ser	Val	Ser	Ser	Phe
								115		120			125		
Gl u	Arg	Phe	Gl u	Ile	Phe	Pro	Lys	Thr	Ser	Ser	Trp	Pro	Asn	His	Asp
								130		135			140		
Ser	Asn	Lys	Gl y	Val	Thr	Al a	Al a	Cys	Pro	His	Al a	Gl y	Al a	Lys	Ser
								145		150			155		160
Phe	Tyr	Lys	Asn	Leu	Ile	Trp	Leu	Val	Lys	Lys	Gl y	Asn	Ser	Tyr	Pro
								165		170			175		
Lys	Leu	Ser	Lys	Ser	Tyr	Ile	Asn	Asp	Lys	Gl y	Lys	Gl u	Val	Leu	Val
								180		185			190		
Leu	Trp	Gl y	Ile	His	His	Pro	Ser	Thr	Ser	Al a	Asp	Gl n	Gl n	Ser	Leu
								195		200			205		
Tyr	Gl n	Asn	Al a	Asp	Thr	Tyr	Val	Phe	Val	Gl y	Ser	Ser	Arg	Tyr	Ser
								210		215			220		
Lys	Lys	Phe	Lys	Pro	Gl u	Ile	Al a	Ile	Arg	Pro	Lys	Val	Arg	Asp	Gl n
								225		230			235		240
Gl u	Gl y	Arg	Met	Asn	Tyr	Tyr	Trp	Thr	Leu	Val	Gl u	Pro	Gl y	Asp	Lys
								245		250			255		
Ile	Thr	Phe	Gl u	Al a	Thr	Gl y	Asn	Leu	Val	Val	Pro	Arg	Tyr	Al a	Phe
								260		265			270		
Al a	Met	Gl u	Arg	Asn	Al a	Gl y	Ser	Gl y	Ile	Ile	Ile	Ser	Asp	Thr	Pro
								275		280			285		
Val	His	Asp	Cys	Asn	Thr	Thr	Cys	Gl n	Thr	Pro	Lys	Gl y	Al a	Ile	Asn
								290		295			300		
Thr	Ser	Leu	Pro	Phe	Gl n	Asn	Ile	His	Pro	Ile	Thr	Ile	Gl y	Lys	Cys
								305		310			315		320
Pro	Lys	Tyr	Val	Lys	Ser	Thr	Lys	Leu	Arg	Leu	Al a	Thr	Gl y	Leu	Arg
								325		330			335		
Asn	Ile	Pro	Ser	Ile	Gl n	Ser	Arg	Gl y	Leu	Phe	Gl y	Al a	Ile	Al a	Gl y
								340		345			350		
Phe	Ile	Gl u	Gl y	Gl y	Trp	Thr	Gl y	Met	Val	Asp	Gl y	Trp	Tyr	Gl y	Tyr
								355		360			365		
His	His	Gl n	Asn	Gl u	Gl n	Gl y	Ser	Gl y	Tyr	Al a	Al a	Asp	Leu	Lys	Ser
								370		375			380		
Thr	Gl n	Asn	Al a	Ile	Asp	Gl u	Ile	Thr	Asn	Lys	Val	Asn	Ser	Val	Ile
								385		390			395		400
Gl u	Lys	Met	Asn	Thr	Gl n	Phe	Thr	Al a	Val	Gl y	Lys	Gl u	Phe	Asn	His
								405		410			415		
Leu	Gl u	Lys	Arg	Ile	Gl u	Asn	Leu	Asn	Lys	Lys	Val	Asp	Asp	Gl y	Phe
								420		425			430		
Leu	Asp	Ile	Trp	Thr	Tyr	Asn	Al a	Gl u	Leu	Leu	Val	Leu	Leu	Gl u	Asn
								435		440			445		
Gl u	Arg	Thr	Leu	Asp	Tyr	His	Asp	Ser	Asn	Val	Lys	Asn	Leu	Tyr	Gl u
								450		455			460		
Lys	Val	Arg	Ser	Gl n	Leu	Lys	Asn	Asn	Al a	Lys	Gl u	Ile	Gl y	Asn	Gl y
								465		470			475		480
Cys	Phe	Gl u	Phe	Tyr	His	Lys	Cys	Asp	Asn	Thr	Cys	Met	Gl u	Ser	Val
								485		490			495		
Lys	Asn	Gl y	Thr	Tyr	Asp	Tyr	Pro	Lys	Tyr	Ser	Gl u	Gl u	Al a	Lys	Leu
								500		505			510		
Asn	Arg	Gl u	Gl u	Ile	Asp	Gl y	Val	Lys	Leu	Gl u	Ser	Thr	Arg	Ile	Tyr
								515		520			525		
Gl n	Asp	Cys	Gl y	Lys	Pro	Al a	Cys	Thr	Thr	Leu	Leu	Asn	Cys	Al a	Asn
								530		535			540		
Phe	Leu	Ser	Cys	Leu	Cys	Ser	Thr	Cys	Al a	Leu	Cys	Arg	Lys	Arg	
								545		550			555		

eol f-seqI

<211> 572

<212> PRT

<213> Artificial Sequence

<220>

<223> Influenza virus HA ectodomain fused to lamprey multimerizing long sequence

<400> 27

Met Lys Ala Ile Leu Val Val Leu Leu Tyr Thr Phe Ala Thr Ala Asn
1 5 10 15
Ala Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr
20 25 30
Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn
35 40 45
Leu Leu Glu Asp Lys His Asn Gly Lys Leu Cys Lys Leu Arg Gly Val
50 55 60
Ala Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Ile Leu Gly
65 70 75 80
Asn Pro Glu Cys Glu Ser Leu Ser Thr Ala Ser Ser Trp Ser Tyr Ile
85 90 95
Val Glu Thr Pro Ser Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe
100 105 110
Ile Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe
115 120 125
Glu Arg Phe Glu Ile Phe Pro Lys Thr Ser Ser Trp Pro Asn His Asp
130 135 140
Ser Asn Lys Gly Val Thr Ala Ala Cys Pro His Ala Gly Ala Lys Ser
145 150 155 160
Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gly Asn Ser Tyr Pro
165 170 175
Lys Leu Ser Lys Ser Tyr Ile Asn Asp Lys Gly Lys Glu Val Leu Val
180 185 190
Leu Trp Gly Ile His His Pro Ser Thr Ser Ala Asp Gln Gln Ser Leu
195 200 205
Tyr Gln Asn Ala Asp Thr Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser
210 215 220
Lys Lys Phe Lys Pro Glu Ile Ala Ile Arg Pro Lys Val Arg Asp Gln
225 230 235 240
Glu Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly Asp Lys
245 250 255
Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe
260 265 270
Ala Met Glu Arg Asn Ala Gly Ser Gly Ile Ile Ile Ser Asp Thr Pro
275 280 285
Val His Asp Cys Asn Thr Thr Cys Gln Thr Pro Lys Gly Ala Ile Asn
290 295 300
Thr Ser Leu Pro Phe Gln Asn Ile His Pro Ile Thr Ile Gly Lys Cys
305 310 315 320
Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Leu Ala Thr Gly Leu Arg
325 330 335
Asn Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly
340 345 350
Phe Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr
355 360 365
His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Leu Lys Ser
370 375 380
Thr Gln Asn Ala Ile Asp Glu Ile Thr Asn Lys Val Asn Ser Val Ile
385 390 395 400
Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn His
405 410 415
Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe
420 425 430
Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn
435 440 445
Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Glu
450 455 460
Lys Val Arg Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly

eol f-seqI

465	470	475	480												
Cys	Phe	Gl u	Phe	Tyr	Hi s	Lys	Cys	Asp	Asn	Thr	Cys	Met	Gl u	Ser	Val
				485					490				495		
Lys	Asn	Gl y	Thr	Tyr	Asp	Tyr	Pro	Lys	Tyr	Ser	Gl u	Gl u	Al a	Lys	Leu
					500			505					510		
Asn	Arg	Gl u	Gl u	Ile	Asp	Gl y	Val	Lys	Leu	Gl u	Ser	Thr	Arg	Ile	Tyr
						515			520			525			
Gl n	Asn	Cys	Thr	Ser	Ile	Gl n	Gl u	Arg	Lys	Asn	Asp	Gl y	Gl y	Asp	Cys
						530		535			540				
Gl y	Lys	Pro	Al a	Cys	Thr	Thr	Leu	Leu	Asn	Cys	Al a	Asn	Phe	Leu	Ser
						545		550		555			560		
Cys	Leu	Cys	Ser	Thr	Cys	Al a	Leu	Cys	Arg	Lys	Arg				
						565			570						

<210> 28

<211> 558

<212> PRT

<213> Artificial Sequence

<220>

<223> Infl uenza vi rus HA ectodomai n fused to T4 fol don multimerizing sequence

<400> 28

1	5	10	15														
Met	Lys	Al a	Ile	Leu	Val	Val	Leu	Leu	Tyr	Thr	Phe	Al a	Thr	Al a	Asn		
Al a	Asp	Thr		Leu	Cys	Ile	Gl y	Tyr	Hi s	Al a	Asn	Asn	Ser	Thr	Asp	Thr	
						20		25						30			
Val	Asp	Thr	Val	Leu	Gl u	Lys	Asn	Val	Thr	Val	Thr	Hi s	Ser	Val	Asn		
						35		40				45					
Leu	Leu	Gl u	Asp	Lys	Hi s	Asn	Gl y	Lys	Leu	Cys	Lys	Leu	Arg	Gl y	Val		
						50		55			60						
Al a	Pro	Leu	Hi s	Leu	Gl y	Lys	Cys	Asn	Ile	Al a	Gl y	Trp	Ile	Leu	Gl y		
						65		70			75			80			
Asn	Pro	Gl u	Cys	Gl u	Ser	Leu	Ser	Thr	Al a	Ser	Ser	Trp	Ser	Tyr	Ile		
						85			90				95				
Val	Gl u	Thr	Pro	Ser	Ser	Asp	Asn	Gl y	Thr	Cys	Tyr	Pro	Gl y	Asp	Phe		
						100		105				110					
Ile	Asp	Tyr	Gl u	Gl u	Leu	Arg	Gl u	Gl n	Leu	Ser	Ser	Val	Ser	Ser	Phe		
						115		120			125						
Gl u	Arg	Gl u	Ile	Phe	Pro	Lys	Thr	Ser	Ser	Trp	Pro	Asn	Hi s	Asp			
						130		135			140						
Ser	Asn	Lys	Gl y	Val	Thr	Al a	Al a	Cys	Pro	Hi s	Al a	Gl y	Al a	Lys	Ser		
						145		150			155			160			
Phe	Tyr	Lys	Asn	Leu	Ile	Trp	Leu	Val	Lys	Lys	Gl y	Asn	Ser	Tyr	Pro		
						165			170			175					
Lys	Leu	Ser	Lys	Ser	Tyr	Ile	Asn	Asp	Lys	Gl y	Lys	Gl u	Val	Leu	Val		
						180		185			190						
Leu	Trp	Gl y	Ile	His	His	Pro	Ser	Thr	Ser	Al a	Asp	Gl n	Gl n	Ser	Leu		
						195		200			205						
Tyr	Gl n	Asn	Al a	Asp	Thr	Tyr	Val	Phe	Val	Gl y	Ser	Ser	Arg	Tyr	Ser		
						210		215			220						
Lys	Lys	Phe	Lys	Pro	Gl u	Ile	Al a	Ile	Arg	Pro	Lys	Val	Arg	Asp	Gl n		
						225		230			235			240			
Gl u	Gl y	Arg	Met	Asn	Tyr	Tyr	Trp	Thr	Leu	Val	Gl u	Pro	Gl y	Asp	Lys		
						245			250			255					
Ile	Thr	Phe	Gl u	Al a	Thr	Gl y	Asn	Leu	Val	Val	Pro	Arg	Tyr	Al a	Phe		
						260		265			270						
Al a	Met	Gl u	Arg	Asn	Al a	Gl y	Ser	Ile	Ile	Ile	Ser	Asp	Thr	Pro			
						275		280			285						
Val	Hi s	Asp	Cys	Asn	Thr	Thr	Cys	Gl n	Thr	Pro	Lys	Gl y	Al a	Ile	Asn		
						290		295			300						
Thr	Ser	Leu	Pro	Phe	Gl n	Asn	Ile	Hi s	Pro	Ile	Thr	Ile	Gl y	Lys	Cys		
						305		310			315			320			
Pro	Lys	Tyr	Val	Lys	Ser	Thr	Lys	Leu	Arg	Leu	Al a	Thr	Gl y	Leu	Arg		
						325			330			335					
Asn	Ile	Pro	Ser	Ile	Gl n	Ser	Arg	Gl y	Leu	Phe	Gl y	Al a	Ile	Al a	Gl y		
						340			345			350					

eol f-seqI
Phe Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr
355 360 365
His His Glu Asn Glu Glu Ser Gly Tyr Ala Ala Asp Leu Lys Ser
370 375 380
Thr Glu Asn Ala Ile Asp Glu Ile Thr Asn Lys Val Asn Ser Val Ile
385 390 395 400
Glu Lys Met Asn Thr Glu Phe Thr Ala Val Gly Lys Glu Phe Asn His
405 410 415
Leu Glu Lys Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe
420 425 430
Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn
435 440 445
Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Glu
450 455 460
Lys Val Arg Ser Glu Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Glu
465 470 475 480
Cys Phe Glu Phe Tyr His Lys Cys Asp Asn Thr Cys Met Glu Ser Val
485 490 495
Lys Asn Glu Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ala Lys Leu
500 505 510
Asn Arg Glu Ile Asp Glu Val Lys Leu Glu Ser Thr Arg Ile Tyr
515 520 525
Gln Glu Ser Glu Tyr Ile Pro Glu Ala Pro Arg Asp Glu Gln Ala Tyr
530 535 540
Val Arg Lys Asp Glu Trp Val Leu Leu Ser Thr Phe Leu
545 550 555

<210> 29

<211> 24

<212> PRT

<213> Artificial Sequence

<220>

<223> Consensus sequence for a LRR module from Lamprey VLR-B antibody

<220>

<223> X" is any amino acid

<400> 29

Leu Xaa Xaa Leu Xaa Xaa Leu Xaa Leu Xaa Xaa Asn Xaa Leu Xaa Xaa
1 5 10 15
Xaa Pro Xaa Glu Xaa Phe Asp Xaa
20