Office de la Proprieté Canadian CA 2533568 C 2013/07/16

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 533 568
Findustrie Canada Industry Canada 12 BREVET CANADIEN
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2006/01/20 (51) CLInt./Int.Cl. GO6F 77/00(2006.01),

(41) Mise a la disp. pub./Open to Public Insp.: 2006/08/25 GO6F 9/44 (2006.01)
(72) Inventeurs/Inventors:

(45) Date de delivrance/lssue Date: 2013/07/16 DAVIS. TRISTAN A.. US:

(30) Priorité/Priority: 2005/02/25 (US11/066,117) TALEGHANI ALl US:
SAWICKI, MARCIN, US;
LITTLE, ROBERT A., US;
JONES, BRIAN M., US

(73) Proprietaire/Owner:
MICROSOFT CORPORATION, US

(74) Agent: SMART & BIGGAR

(54) Titre : MAGASIN DE DONNEES POUR DOCUMENTS D'APPLICATION LOGICIELLE
(54) Title: DATA STORE FOR SOFTWARE APPLICATION DOCUMENTS

B) o l[:" 08 COMPUTING DEVICE
oo B, :
| REMOVABLE I
| SYSTEM MEMORY
: | 104 STORAGE N
. ROM/RAM 109
[| e
: Ogigg:\:le NON-REMOVABLE | |,
) [S— \os STORAGE N
| APPLICATIONS PROCESSING UNIT :1 10
| | W 106 : | D (S) :
ORD \. NPUT DEVICE(S
I
PROCESSOR | | |\ | \E\
I | | 120 ! b
_ ! ,
] |
] ' | OuTPUT DEVICE(S) {-‘f
———]
| I
I PROGRAM [T\ | 114
|
| HATA 107 COMMUNICATION | |
CONNECTION(S) |
o 116
b o e e e i !
11 Bx:
OTHER
COMPUTING
DEVICES

(57) Abrégée/Abstract:
A data store Is provided for storing, relating and for allowing use of data associated with a computer-generated document. Data for

structuring Information associated with a document, such as document metadata, Is maintained Iin the data store where

R N
RO TR S o
N "'c‘-‘-.u:-:{\: . N7
S
N

» . _
‘ l an a dH http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C
OPIC - CIPO 191

CA 2533568 C 2013/07/16

anen 2 533 568
13) C

(57) Abrege(suite)/Abstract(continued):

relationships between different pieces of data are maintained in a location distinct from the surface level view of a document. The
data store exposes interfaces to the various pieces of data In the data store for allowing different applications to access and operate
on one or more of the data pieces. The pieces of data may be structured according to a markup language such as the Extensible

Markup Language (XML), and XML schemas may be associated with each piece of data for allowing the data store to validate the
structure applied to the data based on an XML schema associated with a given piece of data.

10

CA 02533568 2006-01-20

DATA STORE FOR SOFTWARE APPLICATION DOCUMENTS

Abstract

A data store is provided for storing, relating and for allowing use of data
associated with a computer-generated document. Data for structuring information
assoclated with a document, such as document metadata, is maintained in the data store
where relationships between different pieces of data are maintained in a location distinct
from the surface level view of a document. The data store exposes interfaces to the
various pieces of data in the data store for allowing different applications to access and
operate on one or more of the data pieces. The pieces of data may be structured
according to a markup language such as the Extensible Markup Language (XML), and
XML schemas may be associated with each piece of data for allowing the data store to
validate the structure applied to the data based on an XML schema associated with a

given piece of data.

10

15

20)

235

CA 02533568 2006-01-20

M&G No. 14917.0082US01/MS311572.01

DATA STORE FOR SOFTWARE APPLICATION DOCUMENTS

Field of the Invention
The present invention generally relates to managing data associated with
computer-generated documents. More particularly, the present invention relates a data
store for storing and relating data associated with computer-generated documents 1n a

separate location from presentation data for a document’s typical presentation format.

Background of the Invention
With the advent of the computer age, computer and software users have grown

accustomed to user-friendly software applications that help then write, calculate,
organize, prepare presentations, send and receive electronic mail, make music, and the
like. For example, modern electronic word processing applications allow users to
prepare a variety of useful documents. Modern spreadsheet applications allow users to
enter, manipulate, and organize data. Modern electronic slide presentation applications
allow users to create a variety of slide presentations containing text, pictures, data or
other useful objects.

According to prior methods and systems, documents created by such
applications (e.g. word processing documents, spreadsheets, slide presentation
documents) have limited facility for storing/transporting the contents of arbitrary
metadata required by the context of the documents. For example, a solution built on top
of a word processing document may require the storage of workflow data that describes
various states of the document, for example, previous workflow approval states (dates,
times, names), current approval states, future workflow states before completion, name
and office address of document author, document changes, and the like. According to
such prior methods and systems, the options for storing this information were primarily
limited to the use of document variables or existing custom object linking and

embedding (OLE) document properties that have several limitations. For example, such

10

15

20

25

CA 02533568 2006-01-20

prior methods can only store name/value pairs (no hierarchical data). Such methods are
limited to 255 characters maximum. Such methods are built to contain only text. All
properties for such methods are stored in a single store, for example, an OLE properties
store, which means the properties have a possibility of conflicting. Further, such stored
properties have no data validation because they are plain text. The result of these
limitations is that it is difficult for users of such applications and related documents to
store arbitrary data with documents, which is a common need of many users.

Another problem with prior methods and systems is that structured markup
language data, for example Extensible Markup Language (XML) data may not be
concurrently edited by multiple clients (for example, multiple add-ins each
independently running in the context of a word processing document.) However, in the
context of many documents, there is a higher likelihood that the scenarios involving this
metadata will require concurrent editing by one or more sources.

Accordingly, there is a need for a data store for storing and relating data
associated with a computer-generated document and for allowing use and manipulation
of such data by one or more software applications. It is with respect to these and other

considerations that the present invention has been made.

Summary of the Invention

Embodiments of the invention solve the above and other problems by providing
a data store within the document, yet separate in location (and possibly format) from the
primary presentation storage location for storing, relating and for allowing use of data
associated with a computer-generated document.

According to one aspect of the invention, data for structuring information
associated with a document, such as document metadata, is maintained 1n a data store
where relationships between different pieces of data are maintained. The data store
exposes interfaces to the various pieces of data in the data store for allowing ditferent
applications to access and operate on one or more of the data pieces.

According to another aspect of the invention, the pieces of data are structured

according to a markup language such as the Extensible Markup Language (XML).

2

10

15

20

235

30

CA 02533568 2006-01-20

XML schemas may be associated with each piece of data, and the data store may
validate the XML structure applied to the data based on an XML schema associated
with a given piece of data. According to this aspect of the invention, documents may
contain any number of arbitrary data items, for example metadata, structured according
to the Extensible Markup Language (XML). Accordingly, document solution providers
may store arbitrary metadata as XML with a given document and have that information
automatically processed by a given solution having access to the data when the
document 1s opened/edited/saved by a user.

According to another aspect of the invention programmatic access is provided to
the data in its XML form while the document is being edited. Thus, a standard
mechanism is provided that is familiar to solution developers via which the data may be
accessed and modified programmatically while the document is open. This
programmatic access mimics standard XML interfaces. Programmatic access to the
data is provided via application programming interfaces to one or more editing client
applications (for example, document editing or creating applications and/or third party
application add-in solutions, and the like). According to this aspect, multiple client
applications may access and edit the same piece of document data, and any contlicting
changes to a given piece of data are resolved. “Side effects” to any given change may
be made (for example, in response to setting a company name to “Microsoft,” changing
a stock symbol to “MSFT”). In addition, changes to data and any associated side
effects may be “bundled” by the data store so that undoing one or more changes
reverses all related changes. This removes the burden of development from the solution
itself to ensure that it has reversed all changes when the user initiates an undo of the
original change from the document surface, for example, by pressing an Undo
command.

According to another aspect of the invention, standard XML schemas (XSDs)
may be used to define the contents of any of the pieces of custom XML data associated
with document metadata in order to ensure that XML data applied to the document data
are valid. These schemas may be attached to any instance of XML data stored in the

document, and the data store will disallow any change to the XML data that would

3

10

15

20

25

30

CA 02533568 2013-04-08

51028-90

result in the XML structure (that 1s, the XML tags as opposed to their contents) of that data
from becoming invalid. This ensures that the solution developer can attach a specific piece of
XML metadata to a document and ensure that the XML data will continue to be structurally

“correct” according to the associated schema, regardless of which processes (for example,

add-1ns) are used to modify that data.

According to another aspect of the invention, there 1s provided a computer-
implemented method for generating an accessible metadata store in a source document, the
method comprising: generating the source document on a source application, wherein the
source document includes surface view data that 1s exposed on a presentation layer when the
source document 1s rendered and metadata that 1s unexposed on the presentation layer when
the source document is rendered; structuring the metadata of the source document into a
mark-up language (ML) document; storing the ML document that includes the metadata of the
source document in the metadata store separate from the surface view data ot the source
document, wherein the metadata store and the surface view data are stored in the source
document; attaching an ML schema file to the ML document that includes the metadata of the
source document, wherein the ML schema file is stored in the metadata store of the source
document; exposing application programming interfaces (APIs) to the metadata store, wherein
the APIs provide other applications having application types different than the source
application access to the ML document that includes the metadata of the source document via
object models of the other applications, wherein the exposed APIs for the metadata store

permit the other applications to: load the metadata, stored in the metadata store that is stored

in the source document, independent of the surface view data, monitor modifications to the
metadata, stored in the metadata store that is stored in the source document, independent of
the surface view data, modify the metadata, stored in the metadata store that is stored in the
source document, independent of the surface view data, when a modification of the metadata
is received at the metadata store, receive a change notification from the metadata store of the
modification to the metadata, stored in the metadata store that is stored 1n the source
document, independent of the surface view data, and undo modifications to the metadata,

stored in the metadata store that is stored in the source document, independent of the surface

view data.

10

15

20

25

30

CA 02533568 2013-04-08

51028-90

According to another aspect of the present invention, there is provided a
computer-readable storage medium having stored thereon computer executable instructions
for generating an accessible metadata store in a source document, the instructions comprising:
generating the source document on a source application, wherein the source document
includes surface view data that 1s exposed on a presentation layer when the source document
1s rendered and metadata that 1s unexposed on the presentation layer when the source
document 1s rendered; structuring the metadata of the source document into a mark-up
language (ML) document; storing the ML document that includes the metadata of the source
document in the metadata store separate from the surface view data of the source document,
wherein the metadata store and the surface view data are stored in the source document;
attaching an ML schema file to the ML document that includes the metadata of the source
document, wherein the ML schema file is stored in the metadata store of the source document;
exposing application programming interfaces (APIs) to the metadata store, wherein the APIs
provide other applications having application types different than the source application
access to the ML. document that includes the metadata of the source document via object
models of the other applications, wherein the exposed APIs for the metadata store permit the
other applications to: load the metadata, stored in the metadata store that 1s stored 1n the
source document, independent of the surface view data, monitor modifications to the
metadata, stored in the metadata store that is stored in the source document, independent of
the surface view data, modify the metadata, stored in the metadata store that is stored in the
source document, independent of the surface view data, when a modification of the metadata
is received at the metadata store, receive a change notification from the metadata store of the
modification to the metadata, stored in the metadata store that is stored in the source
document, independent of the surface view data, and undo modifications to the metadata,

stored in the metadata store that is stored in the source document, independent of the surface

view data.

According to another aspect of the present invention, there is provided a
system for generating an accessible metadata store in a source document, the system
comprising: a processor; and a memory having computer-executable instructions stored

thereon, wherein the computer executable instructions are configured for: generating the

43

10

15

20

25

CA 02533568 2013-04-08

51028-90

source document on a source application, wherein the source document includes surface view
data that 1s exposed on a presentation layer when the source document 1s rendered and
metadata that 1s unexposed on the presentation layer when the source document is rendered,;
structuring the metadata of the source document into a mark-up language (ML) document;
storing the ML document that includes the metadata of the source document in the metadata
store separate from the surface view data of the source document, wherein the metadata store
and the surface view data are stored in the source document; attaching an ML schema file to
the ML document that includes the metadata of the source document, wherein the ML schema
file is stored in the metadata store of the source document; exposing application programming
interfaces (APIs) to the metadata store, wherein the APIs provide other applications having
application types different than the source application access to the ML document that
includes the metadata of the source document via object models of the other applications,
wherein the exposed APIs for the metadata store permit the other applications to: load the
metadata, stored in the metadata store that is stored in the source document, independent of
the surface view data, monitor modifications to the metadata, stored in the metadata store that
is stored in the source document, independent of the surface view data, modify the metadata,
stored in the metadata store that is stored in the source document, independent of the surface
view data, when a modification of the metadata is received at the metadata store, receive a
change notification from the metadata store of the modification to the metadata, stored in the
metadata store that is stored in the source document, independent of the surface view data, and
undo modifications to the metadata, stored in the metadata store that is stored in the source

document, independent of the surface view data.

These and other features and advantages, which characterize the present
invention, will be apparent from a reading of the following detailed description and a review
of the associated drawings. It is to be understood that both the foregoing general description

and the following detailed description are exemplary and explanatory only and are not

restrictive of the invention as claimed.

4b

10

15

CA 02533568 2013-04-08

51028-90

Other embodiments of the invention provide computer readable media having
computer executable instructions stored thereon for execution by one or more computers, that

when executed implement a method as summarized above or as detailed below.

Brief Description of the Drawings

FIGURE 1 illustrates an exemplary computing device that may be used in one

exemplary embodiment of the present invention.

FIGURE 2 is a block diagram illustrating a relationship between one or more
client applications and a data store and the contents of the data store according to

embodiments of the present invention.

Detailed Description

As briefly described above, embodiments of the present invention are directed
to methods and systems for storing and relating data associated with a computer-generated
document and for efficiently allowing use and manipulation of data associated with a
computer-generated document by one or more software applications. These embodiments
may be combined, other embodiments may be utilized, and structural changes may be made
without departing from the spirit or scope of the present invention. The following detailed
description is therefore not to be taken in a limiting sense and the scope of the present

invention is defined by the appended claims and their equivalents.

i¥e

CA 02533568 2011-01-20

91028-90

10

15

20

23

30

With reference to FIGURE 1, one exemplary system for implementing the
invention includes a computing device, such as computing device 100. In a very basic
configuration, computing device 100 typically includes at least one processing unit 102
and system memory 104. Depending on the exact configuration and type of computing
device, system memory 104 may be volatile (such as RAM), non-volatile (such as
ROM, flash memory, etc.) or some combination of the two. System memory 104
typically includes an operating system 105, one or more applications 106, and may
include program data 107. In one embodiment, application 106 may include a word
processor application 120. This basic configuration is illustrated in FIGURE 1 by those
components within dashed line 108.

Computing device 100 may have additional features or functionality. For
example, computing device 100 may also include additional data storage devices
(removable and/or non-removable) such as, for example, magnetic disks, optical disks,
or tape. Such additional storage is illustrated in FIGURE 1 by removable storage 109
and non-removable storage 110. Computer storage media may include volatile and
nonvolatile, removable and non-removable media implemented in any method or
technology for storage of information, such as computer readable instructions, data
structures, program modules, or other data. System memory 104, removable
storage 109 and non-removable storage 110 are all examples of computer storage
media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or
other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be used to store the desired
information and which can be accessed by computing device 100. Any such computer
storage media may be part of device 100. Computing device 100 may also have input
device(s) 112 such as keyboard, mouse, pen, voice input device, touch input device, etc.
Output device(s) 114 such as a display, speakers, printer, etc. may also be included.
These devices are well known 1n the art and need not be discussed at length here.

Computing device 100 may also contain communication connections 116 that

allow the device to communicate with other computing devices 118, such as over a

S

10

15

20

25

30

CA 02533568 2006-01-20

network. Communication connection 116 is one example of communication media.
Communication media may typically be embodied by computer readable instructions,
data structures, program modules, or other data in a modulated data signal, such as a
carrier wave or other transport mechanism, and includes any information delivery
media. The term “modulated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the signal.
By way of example, and not limitation, communication media includes wired media
such as a wired network or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. The term computer readable media as
used herein includes both storage media and communication media.

A number of program modules and data files may be stored in the system
memory 104 of the computing device 100, including an operating system 105 suitable
for controlling the operation of a networked personal computer, such as the WINDOWS
operating systems from MICROSOFT Corporation of Redmond, Washington. System
memory 104 may also store one or more program modules, such as word processor
application 120, and others described below. Word processor application 120 1is
operative to provide functionality for creating, editing, and processing electronic
documents.

According to one embodiment of the invention, the word processor application
120 comprises the WORD program from MICROSOFT Corporation. It should be
appreciated, however, that word processor application programs from other

manufacturers may be utilized to embody the various aspects of the present invention.

It should further be appreciated that illustration of a word processing application is for
purposes of example only and is not limiting of other types of applications that may
produce and operate on documents according to the present invention. For example,
other application programs 106 which are capable of processing various forms of
content (e.g. text, images, pictures, etc.), such as spreadsheet application programs,
database application programs, slide presentation application programs, drawing or
computer-aided application programs, etc. are equally applicable to embodiments of the

present invention. An example application program 106 that produces and operates on

6

10

15

20

25

CA 02533568 2006-01-20

a variety of different types of documents includes OFFICE from MICROSOFT
Corporation.

Embodiments of the invention may be implemented as a computer process, a
computing system, or as an article of manufacture such as a computer program product
or computer readable media. The computer program product may be a computer
storage media readable by a computer system and encoding a computer program of
instructions for executing a computer process. The computer program product may also
be a propagated signal on a carrier readable by a computing system and encoding a
computer program of instructions for executing a computer process.

Throughout the specification and claims, the following terms take the meanings
associated herein, unless the context of the term dictates otherwise.

The term “data” may refer to document surface level or presentation level
information such as words, sentences, paragraphs and the like, as well as,
supplementary information, for example, metadata, which is carried with, referred to, or
used by the word processing document. This information is often large and is likely not
exposed on the presentation layer of the document.

The terms "markup language" or "ML" refer to a language for special codes
within a document that specify how parts of the document are to be interpreted by an
application. In a word processor file, the markup language specifies how the text is to
be formatted or laid out.

The term "element" refers to the basic unit of an XML document. The element

may contain attributes, other elements, text, and other content regions for an XML

document.

The term “presentation™ refers to the visible portion of the document — the text
and layout that would appear if the document were printed.

The term "tag" refers to a character inserted in a document that delineates
elements within an XML document. Each element can have no more than two tags: the
start tag and the end tag. It is possible to have an empty element (with no content) in

which case one tag is allowed.

10

15

20

25

30

CA 02533568 2006-01-20

The XML content between the tags i1s considered the element’s “children” (or
descendants). Hence other elements embedded in the element’s content are called
“child elements” or “child nodes” or the element. Text embedded directly in the
content of the element is considered the element’s “child text nodes”. Together, the
child elements and the text within an element constitute that element’s “content”.

The term "attribute" refers to an additional property set to a particular value and
associated with the element. Elements may have an arbitrary number of attribute
settings associated with them, including none. Attributes are used to associate
additional information with an element that will not contain additional elements, or be
treated as a text node.

"XPath" is an operator that uses a pattern expression to identify nodes in an
XML document. An XPath pattern is a slash-separated list of child element names that
describe a path through the XML document. The pattern "selects" elements that match
the path.

The term "XML data store" refers to a container within a document, such as a
word processor document, a spreadsheet document, a slide presentation document, etc.,
which provides access for storage and modification of the data (in XML format, for
example) stored in the document while the file i1s open. Further definition of XML data
store 1s provided below with respect to Figure 2.

Figure 2 1s a block diagram 1llustrating a relationship between one or more client
applications and a data store and the contents of the data store according to
embodiments of the present invention. Referring to Fig. 2, the document data 220
includes XML structure data and associated document data representing the surface or
presentation level view of a document. For example the document data 220 may
include XML structure (e.g., heading tags, body tags, conclusion tags) and associated
surface view data (e.g., words, sentences, paragraphs) of a word processing document,
spreadsheet document, slide presentation document, and the like.

The data store 208 is a document data repository for storing one or more pieces
of structured data associated with one or more types of data associated with a given

document. The metadatal 225 (structured data item) may include XML structure data

8

10

15

20

25

30

CA 02533568 2006-01-20

and associated data for a first piece of metadata associated with the document. For
example, the metadatal 225 may include XML structure data (e.g., date tags, name tags,
etc.) applied to metadata listing the document author, date of document creation, date of
document last change/save, and the like. The metadata2 230 (structured data item) may
include XML structure data (tags) and associated metadata representing a second piece
of metadata associated with the document. As should be understood, the metadatal and
metadata2 are for purposes of example and are not limiting of the variety and number of
different types of data that may be maintained in the data store 208 in association with a
given document. For example, as described herein, arbitrary data may be structured and
added to the document by one or more software application as desired by solution
providers or users having access to the document data.

Referring still to Fig. 2, a schema file 240, 245 may be attached to each piece of
data stored in the data store 208 for dictating the syntax and validation rules associated
with Extensible Markup Language (XML) data applied to each piece of data 225, 230.
As known to those skilled in the art, XML schema files provide a way to describe and
validate data in an XML environment. A schema file states what XML markup data,
including elements and attributes, are used to describe content in an XML document,
and the schema file defines XML markup syntax, including where each element 1is
allowed, what types of content are allowed within an element and which elements can
appear within other elements. The use of schema files ensures that the document (or
individual piece of data in this case) is structured in a consistent and predictable
manner. Schema files 240, 245 may be created by a user and generally supported by an
associated markup language, such as XML.

This schematization of the document allows the data store to provide the ability
to “guarantee” the structural validity of the document by rejecting any change that
violates a given schema file at the data store level. According to an embodiment, the
data store 208 utilizes a schema validation module 260 for validating XML structure
added to or changes made to a given piece of data against an associated schema file.
For example, 1f a document creator or editor makes XML structural changes to a given

piece of data, for example, the metadatal, wherein the editor adds or removes a given

9

10

15

20

235

30

CA 02533568 2006-01-20

XML tag, the data store 208 will utilize the schema validation module to check the
XML structural changes against the associated schema file to ensure the validity of the
change. If the change 1s not valid, an error can be generated to the editor. As 1s
understood, such control of the XML structure applied to a given piece of data allows
for structural consistency and predictability which is especially important for allowing
client and third party applications to interact with associated data.

According to an embodiment of the invention, the data store 208 provides one or
more application programming interfaces (API) 270 which can be accessed by client
applications 205 (e.g., word processing applications, spreadsheet applications, slide
presentation applications, etc.), as well as, third party applications 210, 215 via the
object models (OM) of the respective applications 205, 210, 215. These interfaces
allow client applications and third party applications to load any existing XML file into
a given document’s data store 208, thus ensuring that that data is now part of the
document and will travel within that document for its lifetime (e.g., through
opening/editing/saving/renaming/etc.) or until the data is deleted from the data store.
According to one embodiment, the data in the data store is available in its XML format
even when a source application for a given piece of data 225, 230 1s closed or 1s
otherwise not available. That is, a given piece of data 225, 230 may be accessed via the
APIs 270 by other applications (other than a source application). As described below,
the APIs also allow client and third party applications to make changes to the XML
markup data applied to the data items 225, 230.

Once XML data 225, 230 is loaded into the data store for association with a
document 220, 1t can be manipulated as standard XML using the data store interfaces
designed to provide similar methods to existing XML editing interfaces in order to
leverage developers’ existing knowledge of the XML programming standard. This
allows users to perform standard XML operations on XML data added to the data store
for a document, such as adding elements and attributes, removing elements and
attributes, changing the value of existing elements/attributes, and reading the values of
any existing part of the associated XML tree. Using these XML standard operations,

solutions may store structured complex metadata with a document subject to none of the

10

10

15

20

25

30

CA 02533568 2006-01-20

previous restrictions on the length/size of the data or structure of the data, which
enables the use of this XML data store for significantly more structured solutions than
prior solutions. For example, a third party application 215 may be written for locating
and extracting document author names and document creation dates from a number of
documents 204 by reading the metadatal 225 added to the data store 208 for each
document. The example third party application may be a spreadsheet application
programmed for making a list of document author names and document creation dates
for all documents created by a given organization. In accordance with embodiments of
the present invention, the third party application may utilize the XML structure applied
to the metadatal for efficiently locating and extracting the desired data. For example,
the third party application may be written to parse the XML structure of the metadatal
file to locate XML tags, such as <docauthor> and <doccreationdate> for obtaining and
using data associated with those tags. As should be appreciated, the forgoing 1s just one
example of the many ways one or more applications may interact with structured data
that 1s associated with the document via the data store 208.

In addition, the data store 208 provides any number of API interfaces 270 to any
individual piece of XML data 220, 225, 230 (also known as a store item) to enable
multiple applications 205, 210, 215 to work with the same piece of data. For example,
several solutions, such as a client application (e.g., word processing application) and
third party application solutions (e.g., the example spreadsheet application described
above), may work with the same set of document properties (e.g., properties contained
in the metadata2 230 file). Using the data store 208, each of these applications receive
separate access to the desired XML data 230 through their own data store API interface
270 for allowing each application to communicate with the data via its own OM

without having to deal with the complexity of having multiple processes accessing the

same piece of data.

In order to allow for these multiple applications 205, 210, 215 to access the
same data, the data store 208 notifies each of these applications when any part of the
XML data 1s changed by another application so that a given application may respond to

that change (both internally to its own process and externally by other changes to the

11

10

15

20

25

30

CA 02533568 2006-01-20

same data). When one application requests a change to a given data item, that request is
automatically sent to all other applications to allow other applications to decide how or
1if to respond to the requested change. According to one embodiment, this is
accomplished by allowing each application to register to “listen” to any part of the
XML data to which 1t has an interface so that a given application solution/program only
receives those messages which are pertinent to its own logic. For example, one type of
application 210 may wish to register to listen to all changes made to a given XML data
in order to provide detailed business logic capabilities to a third party solution, but
another type of application 215 may wish to only listen to changes to one or two
specific XML elements within the same data because its logic does not care about
changes to any other part of the XML data.

According to this embodiment, the multiple applications 205, 210, 215 may
access and edit the same piece of document data, and any conflicting changes to a given
piece of data are resolved. For example, “side effects” to any given change may be
made when one change by on application causes a side effect change by another
application. For example, a first application 210 may be tasked with extracting
company names from one or more data items 225, 230 associated with a given
document for translating those names into corresponding stock symbols, if available, for
compiling a list of company stock symbols related to a given document. If a second
application 215 causes a given company name in a given piece of metadata to be added
or to be changed, for example, changing a company name from “Company ABC” to
Company XYZ,” the first application may listen to this change for automatically
updating its list of stock symbols to include the stock symbol for “Company XYZ”
instead of “Company ABC.” In addition, such changes and any associated side effects
may be bundled by the data store 208 so that undoing one or more changes reverses all
related changes.

As described herein, embodiments of the invention provide a data store for
storing, relating and for allowing use of data associated with a computer-generated
document. It will be apparent to those skilled in the art that various modifications or

variations may be made in the present invention without departing from the scope or

12

CA 02533568 2006-01-20

spirit of the invention. Other embodiments of the invention will be apparent to those
skilled in the art from consideration of the specification and practice of the invention

disclosed herein.

13

10

15

20

CA 02533568 2013-04-08

51028-90

CLAIMS:

L. A computer-implemented method for generating an accessible metadata store

in a source document, the method comprising:

generating the source document on a source application, wherein the source
document includes surface view data that is exposed on a presentation layer when the source

document is rendered and metadata that is unexposed on the presentation layer when the

source document 1s rendered;

structuring the metadata of the source document into a mark-up language (ML)

document;

storing the ML document that includes the metadata of the source document 1n

the metadata store separate from the surface view data of the source document, wherein the

metadata store and the surface view data are stored in the source document;

attaching an ML schema file to the ML document that includes the metadata of
the source document, wherein the ML schema file is stored in the metadata store of the source

document;

exposing application programming interfaces (APIs) to the metadata store,
wherein the APIs provide other applications having application types different than the source
application access to the ML document that includes the metadata of the source document via

object models of the other applications, wherein the exposed APIs for the metadata store

permit the other applications to:

load the metadata, stored in the metadata store that 1s stored in the source

document, independent of the surface view data,

monitor modifications to the metadata, stored in the metadata store that 1s

stored in the source document, independent of the surface view data,

14

10

15

20

CA 02533568 2013-04-08

51028-90

modify the metadata, stored in the metadata store that is stored in the source

document, independent of the surface view data,

when a modification of the metadata is received at the metadata store, receive a
change notification from the metadata store of the modification to the metadata, stored in the

metadata store that is stored 1n the source document, independent of the surface view data, and

undo modifications to the metadata, stored 1n the metadata store that is stored

in the source document, independent of the surface view data.

2. The computer-implemented method of claim 1, wherein the ML document is

an Extensible Mark-up Language (XML) document.

3. The computer-implemented method of claim 1, wherein said structuring the
metadata of the source document into the MIL. document includes structuring the metadata into
a plurality of ML documents, wherein each of the plurality of ML documents includes a

portion of the metadata of the source document.

4, The computer-implemented method of claim 1, wherein the ML document 1s
validated by the ML schema file.

5. The computer-implemented method of claim 1, wherein the surtface view data

is stored in the source document in a separate data store from the metadata store.

6. The computer-implemented method of claim 1, wherein the exposed APIs

permit other applications to simultaneously:

load the metadata, stored in the metadata store that 1s stored in the source

document, independent of the surface view data,

monitor modifications to the metadata, stored in the metadata store that 1s

stored in the source document, independent of the surface view data,

15

10

15

20

25

CA 02533568 2013-04-08

51028-90

modily the metadata, stored in the metadata store that i1s stored 1n the source

document, independent of the surface view data,

when the modification of the metadata is received at the metadata store receive

the change notification from the metadata store of the modification to the metadata, stored in

the metadata store that is stored in the source document, independent of the surtace view data,

and

undo modifications to the metadata, stored in the metadata store that 1s stored

in the source document, independent of the surface view data.

7. A computer-readable storage medium having stored thereon computer

executable instructions for generating an accessible metadata store in a source document, the

instructions comprising:

generating the source document on a source application, wherein the source
document includes surface view data that is exposed on a presentation layer when the source

document is rendered and metadata that is unexposed on the presentation layer when the

source document 1s rendered;

structuring the metadata of the source document into a mark-up language (ML)

document;

storing the ML document that includes the metadata of the source document in
the metadata store separate from the surface view data of the source document, wherein the

metadata store and the surface view data are stored in the source document;

attaching an ML schema file to the ML document that includes the metadata of
the source document, wherein the ML schema file is stored in the metadata store of the source

document;

exposing application programming interfaces (APIs) to the metadata store,
wherein the APIs provide other applications having application types different than the source

application access to the ML document that includes the metadata of the source document via

16

10

15

20

CA 02533568 2013-04-08

51028-90

object models of the other applications, wherein the exposed APIs for the metadata store

permit the other applications to:

load the metadata, stored in the metadata store that 1s stored in the source

document, independent of the surface view data,

montitor modifications to the metadata, stored in the metadata store that 1s

stored in the source document, independent of the surface view data,

modify the metadata, stored in the metadata store that is stored in the source

document, independent of the surface view data,

when a modification of the metadata is received at the metadata store, recelve a
change notification from the metadata store of the modification to the metadata, stored in the

metadata store that is stored in the source document, independent of the surface view data, and

undo modifications to the metadata, stored in the metadata store that 1s stored

in the source document, independent of the surface view data.

8. The computer-readable storage medium of claim 7, wherein the MLL document

is an Extensible Mark-up Language (XML) document.

9. The computer-readable storage medium of claim 7, wherein said structuring
the metadata of the source document into the ML document includes structuring the metadata

into a plurality of ML documents, wherein each of the plurality of ML documents includes a

portion of the metadata of the source document.

10. The computer-readable storage medium of claim 7, wherein the ML document

is validated by the ML schema file.

11, The computer-readable storage medium of claim 7, wherein the surface view

data is stored in the source document in a separate data store from the metadata store.

17

10

15

20

CA 02533568 2013-04-08

51028-90

12. The computer-readable storage medium of claim 7, wherein the exposed APIs

permit other applications to simultaneously:

load the metadata, stored in the metadata store that is stored in the source

document, independent of the surface view data,

monitor modifications to the metadata, stored in the metadata store that is

stored 1n the source document, independent of the surface view data,

modify the metadata, stored in the metadata store that is stored in the source

document, independent of the surface view data,

when the modification of the metadata is recetved at the metadata store, receive
the change notification from the metadata store of the modification to the metadata, stored in

the metadata store that is stored in the source document, independent of the surface view data,

and

undo modifications to the metadata, stored in the metadata store that 1s stored

in the source document, independent of the surface view data.

13. A system for generating an accessible metadata store in a source document, the

system comprising:
a processor; and

a memory having computer-executable instructions stored thereon, wherein the

computer executable instructions are configured for:

generating the source document on a source application, wherein the source
document includes surface view data that is exposed on a presentation layer when the source
document is rendered and metadata that is unexposed on the presentation layer when the

source document 1s rendered;

18

10

15

20

CA 02533568 2013-04-08

51028-90

structuring the metadata of the source document into a mark-up language (ML)

document;

storing the ML document that includes the metadata of the source document in
the metadata store separate from the surface view data of the source document, wherein the

metadata store and the surface view data are stored in the source document:

attaching an ML schema file to the ML document that includes the metadata of

the source document, wherein the ML schema file is stored in the metadata store of the source

document;

exposing application programming interfaces (APIs) to the metadata store,
wherein the APIs provide other applications having application types different than the source
application access to the ML document that includes the metadata of the source document via

object models of the other applications, wherein the exposed APIs for the metadata store

permit the other applications to:

load the metadata, stored in the metadata store that 1s stored in the source

document, independent of the surface view data,

monitor modifications to the metadata, stored in the metadata store that is

stored in the source document, independent of the surface view data,

modity the metadata, stored in the metadata store that is stored in the source

document, independent of the surface view data,

when a modification of the metadata 1s received at the metadata store, receive a
change notification from the metadata store of the modification to the metadata, stored in the

metadata store that is stored in the source document, independent of the surface view data, and

undo modifications to the metadata, stored in the metadata store that is stored

in the source document, independent of the surface view data.

19

10

15

20

CA 02533568 2013-04-08

51028-90

14. The system of claim 13, wherein the ML document 1s an Extensible Mark-up

Language (XML) document.

15. The system of claim 13, wherein said structuring the metadata of the source

document into the ML document includes structuring the metadata into a plurality of ML

documents, wherein each of the plurality of ML documents includes a portion of the metadata

of the source document.

16. The system of claim 13, wherein the ML document is validated by the ML

schema file.

17. The system of claim 13, wherein the surface view data 1s stored in the source

document in a separate data store from the metadata store.

18. The system of claim 13, wherein the exposed APIs permit other applications to

simultaneously:

load the metadata, stored in the metadata store that 1s stored 1n the source

document, independent of the surface view data,

monitor modifications to the metadata, stored in the metadata store that is

stored in the source document, independent of the surface view data,

modify the metadata, stored in the metadata store that 1s stored in the source

document, independent of the surface view data,

when the modification of the metadata is received at the metadata store, receive
the change notification from the metadata store of the modification to the metadata, stored in

the metadata store that is stored in the source document, independent of the surface view data,

and

undo modifications to the metadata, stored in the metadata store that 1s stored

in the source document, independent of the surface view data.

20

CA 02533568 2006-01-20

S3I0INIQ
ONILNdNOD
H3HLO

]lllll Ill"llltlliIllllllilllll'lllllllll'llll

(S)NOILOANNOD
NOILYOINNWWO D

(S)321A3Qq LNdLNO

1IN} ONISS300¥d

JOVHO0LS
319VAOWIH-NON

601

JOVHOLS
319VAONTY

|
_
_
_
_
_
_
|
|
_
_
_
_
_
(S)30IA3Q LNdN| | |
_
|
_
_
_
_
_
_
|
“
_
_
_
_
_

[‘51

llllllllllllllllltllllltlllllllll

H0SS300Hd
4O

SNOILYDITddY

WILSAS
ONILYYIdO

WVH/NOY

AHOWIN W3LSAS

CA 02533568 2006-01-20

‘o1

80C gi\
JJdOLS VIV

=G 1 VINTHDS 057 VINTHDS
N VIVd VIIW | | LVLVA VIIW

0€T _ | |
A\ ZVIVd VIIW |9¢C ﬁr [VIVd VIIN

TINUJON
NOILLVdI'IVA
VYINWIHOS

09¢

| _ IlLT
0cc 0LC

0L¢C 0LC

GOC NOILLVOI'lddV
INAT'IO

NOILLVOI'lddV
ALAdVd JIdIHL

NOILLVOI'IddY |0IC
ALdVd AMIHL

GLC

| I
| | REMOVABLE

I
: SYSTEM MEMORY _\104 : e 1
: ROM/RAM /102 : :109
I
| OPERATING | :

N -

! SYSTEM -\ 4 | NON-REMOVABLE | |
| los i STORAGE |
I
: APPLICATIONS _\ PROCESSING UNIT | i110

|
: WORD _1 1106 Y, : INPUT DEVICE(S) '
| PROCESSOR \ | |
| 120 ! 112
| ' :
| | | ouTteuT DEVICE(S) |
f l |

I
: PROGRAM '"'“\ i :114
| DATA 107 | |
: 1 | COMMUNICATION | |
| | CONNECTION(S) |
o | T~ 116

I
118
\ ~_
OTHER
COMPUTING

DEVICES

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - abstract drawing

