
(19) United States
US 2005O289067A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0289067 A1
LampSOn et al. (43) Pub. Date: Dec. 29, 2005

(54) SYSTEM AND METHOD FOR SECURE
STORAGE OF DATA USING A KEY

(75) Inventors: Butler W. Lampson, Cambridge, MA
(US); John D. De Treville, Seattle, WA
(US); Paul England, Bellevue, WA
(US)

Correspondence Address:
LEE & HAYES PLLC
421 W RIVERSIDEAVENUE SUTE 500
SPOKANE, WA 992.01

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 11/207,917

(22) Filed: Aug. 19, 2005

Related U.S. Application Data

(63) Continuation of application No. 10/430,994, filed on
May 7, 2003, which is a continuation of application
No. 09/227,568, filed on Jan. 8, 1999.

(60) Provisional application No. 60/105,891, filed on Oct.
26, 1998.

Publication Classification

(51) Int. Cl. ... H04L 9/00

(52) U.S. Cl. .. 705/51

(57) ABSTRACT

In one aspect, a data Structure to be encrypted is received in
a device, the data structure including content along with a
Statement of conditions under which the content may be
decrypted. The data Structure is encrypted using a symmetric
key of a processor of the device. In another aspect, a data
Structure is decrypted using a processor Symmetric key. A
Statement of conditions under which content in the data
Structure can be decrypted is obtained, and testing is per
formed as to whether the conditions are satisfied. The
decrypted content is returned only if the conditions are
Satisfied.

Suscriber Unit 124

Key Pair
-1

(KCPU, KCPU)

Volatile Memory

Sound System

NonVolatile

Network interface

US 2005/0289067 A1 Patent Application Publication Dec. 29, 2005 Sheet 1 of 12

99

Patent Application Publication Dec. 29, 2005 Sheet 2 of 12 US 2005/0289067 A1

Suscriber Unit 124

NonVolatile
Memory

Operating
Cryptography System
ACCelerator

Key Pair 1
(KcPU, KcPU)

Mfr. Certificate

S/WID Reg.

BOOt Stack

Wolatile Memory N

Sound System Display

Patent Application Publication Dec. 29, 2005 Sheet 3 of 12 US 2005/0289067 A1

200

CONTENT

Patent Application Publication Dec. 29, 2005 Sheet 4 of 12 US 2005/0289067 A1

301

EXECUTE
BOOT
LOADER

CHECK
COMPONENT
SIGNATURE

CHECK TRUST
LEVEL

RENOUNCE
TRUSTED
IDENTITY

Y

LOAD
COMPONENT

ASSUME
IDENTITY

Patent Application Publication Dec. 29, 2005 Sheet 5 of 12 US 2005/0289067 A1

400 N.
403 405 4O7

600 N.
605 606-N 607

()

601

601

6O1

Patent Application Publication Dec. 29, 2005 Sheet 6 of 12 US 2005/0289067 A1

LOAD &
RECORD

COMPONENTS

501

GET 1ST KEY
PAR

503

LOAD &
RECORD BOOT

BLOCK

505

GET NEW KEY
PAR

507

RECORD NEW
PUBLIC KEY IN

LOG

509

SIGN LOG WITH
PREV. PRIVATE

KEY

511

DELETE
PREVIOUS

PRIVATE KEY

CREATE
SENTINEL 8.
DEL KEYS

Patent Application Publication Dec. 29, 2005 Sheet 7 of 12 US 2005/0289067 A1

701 703 705

700 PUB.
BOOT CODE SIGN.

711 BASIC BOOT CODE 716 E. 719 SIGN 723
710 - 7 BOOT CODE 717 721 SIGN. Z26

727 729

COMPONENT SIGN.

731 733

730 PUB. BOOT CODE

735 737 739

COMPONENT SIGN. CERT.

US 2005/0289067 A1

TE/NET TYCHO TE/NET SO TE}/\ET YHEST

Patent Application Publication Dec. 29, 2005 Sheet 8 of 12

008

908 CIEES

998 CJEES CJEHSV/H

?08 ÅEXISO

ÅEX|NES)

HSVH-ÅEX

| 98

/Z8 C1EES CJEHSVH £Z8 CIEREIS

€ 1,8 GJENES

Patent Application Publication Dec. 29, 2005 Sheet 9 of 12 US 2005/0289067 A1

900 Cy

STANDARD
901 DIGITAL

CERTIFICATE
906 FIELDS 907

905 PROPERTY1 ARGUMENTS1

905 PROPERTY1 ARGUMENTS2

to

1001 BASIC TRUST LEVEL ID

1003 EXTENDED TRUST LEVEL ID1

1003 EXTENDED TRUST LEVELD2

Patent Application Publication Dec. 29, 2005 Sheet 10 of 12 US 2005/0289067 A1

to
1101 USAGE COUNTER

1103 DERIVATION RIGHTS

1105 EXPIRATION COUNTER

1107 SUBLICENSE RIGHTS

22, t

190

192 194 182 ? 199 196 198

Boot Block of Code Other Data Public Key

22, 12

Patent Application Publication Dec. 29, 2005 Sheet 11 of 12 US 2005/0289067 A1

Subscriber Unit 124
1300

EXECUTE BAB OPCODE
TO SET SR AND

EXECUTE BOOT BLOCK

1306
OPERATION

COMPLETE AND
CORRECT?

Yes

SR = BOOT BLOCK
IDENTITY

STORE BLOCK IDENTITY
N BOOT LOG

LOAD NEXT BLOCK

CHECK VALIDITY

1304

1310

1312

1314

Patent Application Publication Dec. 29, 2005 Sheet 12 of 12 US 2005/0289067 A1

1400 1402

Authenticated Boot Block Public Key
Boot Key 2.01

Generator Seed Boot Block Digest
BOOt Block Version 1.1

OS NT 5.1
SP3

Matrox Driver v1.03, digest
Creative Driver 4.01, digest

US 2005/0289067 A1

SYSTEMAND METHOD FOR SECURE STORAGE
OF DATAUSING A KEY

RELATED APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 10/430,994, filed May 7, 2003, entitled
“System and method for Secure Storage data using a key”,
which is hereby incorporated by reference herein, and which
is a continuation of U.S. patent application Ser. No. 09/227,
568, filed Jan. 8, 1999, entitled “Key-Based Secure Stor
age'. U.S. patent application Ser. No. 09/227,568 is a
continuation-in-part of U.S. provisional patent application
Ser. No. 60/105,891 filed on Oct. 26, 1998, which is herein
incorporated by reference, and is related to co-pending and
co-filed U.S. patent application Ser. No. 09/266,207 titled
“System and Method for Authenticating an Operating Sys
tem to a Central Processing Unit, Providing the CPU/OS
with Secure Storage, and Authenticating the CPU/OS to a
Third Party', Ser. No. 09/227,611 titled “Loading and Iden
tifying a Digital Rights Management Operating System’,
Ser. No. 09/227,559 titled “Digital Rights Management”,
and Ser. No. 09/227,561 titled “Digital Rights Management
Operating System”.

FIELD OF THE INVENTION

0002 This invention relates generally to computer oper
ating Systems, and more particularly to Systems and methods
for Secure Storage of data using a key.

COPYRIGHT NOTICE/PERMISSION

0003) A portion of the disclosure of this patent document
contains material which is Subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever. The following notice applies to the Soft
ware and data as described below and in the drawings
hereto: CopyrightC) 1998, Microsoft Corporation, All Rights
Reserved.

BACKGROUND OF THE INVENTION

0004 More and more content is being delivered in digital
form, and more and more digital content is being delivered
online over private and public networks, Such as Intranets,
the Internet and cable TV networks. For a client, digital form
allows more Sophisticated content, while online delivery
improves timelineSS and convenience. For a publisher, digi
tal content also reduces delivery costs. Unfortunately, these
worthwhile attributes are often outweighed in the minds of
publishers by the corresponding disadvantage that online
information delivery makes it relatively easy to obtain
pristine digital content and to pirate the content at the
expense and harm of the publisher.
0005 Piracy of digital content, especially online digital
content, is not yet a great problem. Most premium content
that is available on the Web is of low value, and therefore
casual and organized pirates do not yet See an attractive
busineSS Stealing and reselling content. Increasingly, though,
higher-value content is becoming available. Books and
audio recordings are available now, and as bandwidths
increase, Video content will Start to appear. With the increase

Dec. 29, 2005

in value of online digital content, the attractiveness of
organized and casual theft increases.
0006 The unusual property of digital content is that the
publisher (or reseller) gives or Sells the content to a client,
but continues to restrict rights to use the content even after
the content is under the Sole physical control of the client.
For instance, a publisher will typically retain copyright to a
work So that the client cannot reproduce or publish the work
without permission. A publisher could also adjust pricing
according to whether the client is allowed to make a per
Sistent copy, or is just allowed to View the content online as
it is delivered. These Scenarios reveal a peculiar arrange
ment. The user that possesses the digital bits often does not
have full rights to their use; instead, the provider retains at
least Some of the rights.
0007 “Digital rights management” is therefore fast
becoming a central requirement if online commerce is to
continue its rapid growth. Content providers and the com
puter industry must quickly provide technologies and pro
tocols for ensuring that digital content is properly handled in
accordance with the rights granted by the publisher. If
measures are not taken, traditional content providers may be
put out of business by widespread theft, or, more likely, will
refuse altogether to deliver content online.
0008 Traditional security systems ill serve this problem.
There are highly Secure Schemes for encrypting data on
networks, authenticating users, revoking certificates, and
Storing data Securely. Unfortunately, none of these Systems
address the assurance of content Security after it has been
delivered to a client's machine. Traditional uses of Smart
cards offer little help. Smart cards merely provide authen
tication, Storage, and encryption capabilities. Ultimately,
useful content must be assembled within the host machine
for display, and again, at this point the bits are Subject to
theft. Cryptographic coprocessors provide higher-perfor
mance cryptographic operations, and are usually program
mable but again, fundamentally, any operating System or
Sufficiently privileged application, trusted or not, can use the
Services of the cryptographic processor.

0009. There appear to be three solutions to this problem.
One Solution is to do away with general-purpose computing
devices and use Special-purpose tamper-resistant boxes for
delivery, Storage, and display of Secure content. This is the
approach adopted by the cable industry and their Set-top
boxes, and looks set to be the model for DVD-Video
presentation. The Second Solution is to use Secret, propri
etary data formats and applications Software, or to use
tamper-resistant Software containers, in the hope that the
resulting complexity will Substantially impede piracy. The
third Solution is to modify the general-purpose computer to
Support a general model of client-Side content Security and
digital rights management.

0010 This invention is directed to a system and meth
odology that falls generally into the third category of Solu
tions.

0011. A fundamental building block for client-side con
tent Security is a Secure operating System. If a computer can
be booted only into an operating System that itself honors
content rights, and allows only compliant applications to
access rights-restricted data, then data integrity within the
machine can be assured. This stepping-Stone to a Secure

US 2005/0289067 A1

operating System is Sometimes called “Secure Boot.” If
Secure boot cannot be assured, then whatever rights man
agement System the Secure OS provides, the computer can
always be booted into an insecure operating System as a step
to compromise it.
0012 Secure boot of an operating system is usually a
multi-stage process. A Securely booted computer runs a
trusted program at Startup. The trusted program loads an
initial layer of the operating System and checks its integrity
(by using a code signature or by other means) before
allowing it to run. This layer will in turn load and check the
Succeeding layers. This proceeds all the way to loading
trusted (signed) device drivers, and finally the trusted appli
cation(s).
0013 An article by B. Lampson, M. Abadi, and M.
Burrows, entitled “Authentication in Distributed Systems:
Theory and Practice, ACM Transactions on Computer
Systems v10, 265, 1992, describes in general terms the
requirements for Securely booting an operating System. The
only hardware assist is a register that holds a machine Secret.
When boot begins this register becomes readable, and
there's a hardware operation to make this Secret unreadable.
Once its unreadable, it stays unreadable until the next boot.
The boot code mints a public-key pair and a certificate that
the operating System can use to authenticate itself to other
parties in order to establish trust. We note that in this
Scheme, a malicious user can easily Subvert Security by
replacing the boot code.
0.014 Clark and Hoffman's BITS system is designed to
Support Secure boot from a Smart card. P. C. Clark and L. J.
Hoffman, “BITS: A Smartcard Operating System,” Comm.
ACM. 37, 66, 1994. In their design, the Smart card holds the
boot sector, and PCs are designed to boot from the Smart
card. The Smart card continues to be involved in the boot
process (for example, the Smart card holds the Signatures or
keys of other parts of the OS).
0.015 Bennet Yee describes a scheme in which a secure
processor first gets control of the booting machine. B. Yee,
“Using Secure Coprocessors”, Ph.D. Thesis, Carnegie Mel
lon University, 1994. The secure processor can check code
integrity before loading other Systems. One of the nice
features of this Scheme is that there is a tamper-resistant
device that can later be queried for the details of the running
operating System.
0016. Another secure boot model, known as AEGIS, is
disclosed by W. Arbaugh, D. G. Farber, and J. M. Smith in
a paper entitled “A Secure and Reliable Bootstrap Architec
ture”, Univ. of Penn. Dept. of CIS Technical Report, IEEE
Symposium on Security and Privacy, page 65, 1997. This
AEGIS model requires a tamper-resistant BIOS that has
hard-wired into it the Signature of the following Stage. This
Scheme has the very considerable advantage that it works
well with current microprocessors and the current PC archi
tecture, but has three drawbacks. First, the set of trusted
operating Systems or trusted publishers must be wired into
the BIOS. Second, if the content is valuable enough (for
instance, e-cash or Hollywood Videos), users will find a way
of replacing the BIOS with one that permits an insecure
boot. Third, when obtaining data from a network server, the
client has no way of proving to the remote Server that it is
indeed running a trusted System.
0.017. On the more general subject of client-side rights
management, Several Systems exist or have been proposed to

Dec. 29, 2005

encapsulate data and rights in a tamper-resistant Software
package. An early example is IBM's Cryptolope. Another
existent commercial implementation of a rights management
system has been developed by Intertrust. In the audio
domain, AT&T Research have proposed their “A2b' audio
rights management System based on the PolicyMaker rights
management System.

0018. Therefore, there is a need in the art for a digital
rights management operating System that protects content
downloaded from a provider while operating on a general
purpose personal computer without the need of Specialized
or additional hardware.

SUMMARY OF THE INVENTION

0019 Systems and methods for secure storage of data
using a key are described herein.
0020. In accordance with one aspect, a data structure to
be encrypted is received in a device, the data Structure
including content along with a Statement of conditions under
which the content may be decrypted. The content is
encrypted using a key.

0021. In accordance with another aspect, a data structure
is decrypted using a key. A Statement of conditions under
which content in the data structure can be decrypted is
obtained, and testing is performed as to whether the condi
tions are Satisfied. The decrypted content is returned only if
the conditions are Satisfied.

0022. In accordance with another aspect, a data structure
to be encrypted in a device is obtained. The data structure
includes content along with a Statement of conditions under
which the content may be decrypted. A Seal operation is
invoked to have the data Structure encrypted using a Sym
metric key of a processor of the device.
0023. In accordance with another aspect, an unseal opera
tion is invoked in order to have a data block decrypted using
a key. In response to invoking the unseal operation, the
decrypted data block is received only if conditions under
which content in the data block can be decrypted are
Satisfied.

0024. In accordance with another aspect, the processor
may contain a fixed per-processor Symmetric key Ks which
can be used to encrypt a data structure containing content
along with a Statement of the conditions under which it may
be decrypted; key Ks is also used to decrypt the data
Structure, test the conditions, and either return the content or
fail. Key Ks is to be used only for this pair of operations,
which are referred to as "Seal” and “Unseal'.

BRIEF DESCRIPTION OF THE DRAWINGS

0025 FIG. 1A is a diagram of the hardware and operat
ing environment in conjunction with which exemplary
embodiments of the invention may be practiced;
0026 FIG. 1B is a diagram of a client computer for use
with exemplary embodiments of the invention;
0027 FIG. 2 is a diagram illustrating a system-level
Overview of an exemplary embodiment of the invention;
0028 FIG. 3 is a flowchart of a method to be performed
by a client when booting or loading System components
according to an exemplary embodiment of the invention;

US 2005/0289067 A1

0029 FIG. 4 is a diagram of a certificate revocation list
data Structure for use in an exemplary implementation of the
invention;

0030 FIG. 5 is a flowchart of a method to be performed
by a client to create a boot log according to an exemplary
embodiment of the invention;

0.031 FIG. 6 is a block diagram of an exemplary boot log
created using the method of FIG. 5;

0032 FIGS. 7A, 7B and 7C are block diagrams of boot
blocks for use in an exemplary embodiment of the invention;

0.033 FIG. 8 is a block diagram of key generation
functions according to an exemplary embodiment of the
invention;

0034 FIG. 9 is a diagram of a rights manager certificate
data Structure for use in an exemplary implementation of the
invention;

0.035 FIG. 10 is a diagram of a required properties
access control list data Structure for use in an exemplary
implementation of the invention; and

0.036 FIG. 11 is a diagram of a license data structure for
use in an exemplary implementation of the invention.

0037 FIG. 12 shows an example of a signed boot block
created by Signing a block of code.

0.038 FIG. 13 shows steps in a method for performing an
authenticated boot operation on an operating System.

0039 FIG. 14 shows an exemplary structure of a boot
log.

DETAILED DESCRIPTION OF THE
INVENTION

0040. In the following detailed description of exemplary
embodiments of the invention, reference is made to the
accompanying drawings, which form a part hereof, and in
which is shown by way of illustration Specific exemplary
embodiments in which the invention may be practiced.
These embodiments are described in Sufficient detail to
enable those skilled in the art to practice the invention, and
it is to be understood that other embodiments may be utilized
and that logical, mechanical, electrical and other changes
may be made without departing from the Spirit or Scope of
the present invention. The following detailed description is,
therefore, not to be taken in a limiting Sense, and the Scope
of the present invention is defined only by the appended
claims.

Hardware and Operating Environment

0041 FIG. 1A is a diagram of the hardware and operat
ing environment in conjunction with which embodiments of
the invention may be practiced. The description of FIG. 1A
is intended to provide a brief, general description of Suitable
computer hardware and a Suitable computing environment in
conjunction with which the invention may be implemented.
Although not required, the invention is described in the
general context of computer-executable instructions, Such as
program modules, being executed by a computer, Such as a
personal computer. Generally, program modules include

Dec. 29, 2005

routines, programs, objects, components, data structures,
etc. that perform particular tasks or implement particular
abstract data types.
0042 Moreover, those skilled in the art will appreciate
that the invention may be practiced with other computer
System configurations, including hand-held devices, multi
processor Systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main
frame computers, and the like. The invention may also be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote memory Storage devices.
0043. The exemplary hardware and operating environ
ment of FIG. 1A for implementing the invention includes a
general purpose computing device in the form of a computer
20, including a processing unit 21, a System memory 22, and
a System buS 23 that operatively couples various System
components, including the System memory 22, to the pro
cessing unit 21. There may be only one or there may be more
than one processing unit 21, Such that the processor of
computer 20 comprises a single central-processing unit
(CPU), or a plurality of processing units, commonly referred
to as a parallel processing environment. The computer 20
may be a conventional computer, a distributed computer, or
any other type of computer, the invention is not So limited.
0044) The system bus 23 may be any of several types of
bus structures including a memory bus or memory control
ler, a peripheral bus, and a local bus using any of a variety
of bus architectures. The System memory may also be
referred to as Simply the memory, and includes read only
memory (ROM) 24 and random access memory (RAM) 25.
Abasic input/output system (BIOS) 26, containing the basic
routines that help to transfer information between elements
within the computer 20, Such as during Start-up, is Stored in
ROM 24. The computer 20 further includes a hard disk drive
27 for reading from and writing to a hard disk, not shown,
a magnetic disk drive 28 for reading from or writing to a
removable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 Such
as a CD ROM or other optical media.
004.5 The hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are connected to the system bus 23 by
a hard disk drive interface 32, a magnetic disk drive inter
face 33, and an optical disk drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile Storage of computer-readable instruc
tions, data Structures, program modules and other data for
the computer 20. It should be appreciated by those skilled in
the art that any type of computer-readable media that can
Store data that is accessible by a computer, Such as magnetic
cassettes, flash memory cards, digital Video disks, Bernoulli
cartridges, random access memories (RAMs), read only
memories (ROMs), and the like, may be used in the exem
plary operating environment.
0046) A number of program modules may be stored on
the hard disk, magnetic disk 29, optical disk 31, ROM 24, or
RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37, and
program data 38. A user may enter commands and informa
tion into the personal computer 20 through input devices

US 2005/0289067 A1

such as a keyboard 40 and pointing device 42. Other input
devices (not shown) may include a microphone, joystick,
game pad, Satellite dish, Scanner, or the like. These and other
input devices are often connected to the processing unit 21
through a Serial port interface 46 that is coupled to the
System bus, but may be connected by other interfaces, Such
as a parallel port, game port, or a universal Serial bus (USB).
A monitor 47 or other type of display device is also
connected to the System buS 23 via an interface, Such as a
Video adapter 48. In addition to the monitor, computers
typically include other peripheral output devices (not
shown), Such as Speakers and printers.
0047 The computer 20 may operate in a networked
environment using logical connections to one or more
remote computers, Such as remote computer 49. These
logical connections are achieved by a communication device
coupled to or a part of the computer 20, the invention is not
limited to a particular type of communications device. The
remote computer 49 may be another computer, a Server, a
router, a network PC, a client, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the computer 20,
although only a memory Storage device 50 has been illus
trated in FIG. 1. The logical connections depicted in FIG.
1 include a local-area network (LAN) 51 and a wide-area
network (WAN) 52. Such networking environments are
commonplace in offices, enterprise-wide computer net
Works, intranets and the Internet.

0.048 When used in a LAN-networking environment, the
computer 20 is connected to the local network 51 through a
network interface or adapter 53, which is one type of
communications device. When used in a WAN-networking
environment, the computer 20 typically includes a modem
54, a type of communications device, or any other type of
communications device for establishing communications
over the wide area network 52, Such as the Internet. The
modem 54, which may be internal or external, is connected
to the system bus 23 via the serial port interface 46. In a
networked environment, program modules depicted relative
to the personal computer 20, or portions thereof, may be
Stored in the remote memory Storage device. It is appreciated
that the network connections shown are exemplary and other
means of and communications devices for establishing a
communications link between the computerS may be used.

0049. The hardware and operating environment in con
junction with which embodiments of the invention may be
practiced has been described. The computer in conjunction
with which embodiments of the invention may be practiced
may be a conventional computer, a distributed computer, or
any other type of computer, the invention is not So limited.
Such a computer typically includes one or more processing
units as its processor, and a computer-readable medium Such
as a memory. The computer may also include a communi
cations device Such as a network adapter or a modem, So that
it is able to communicatively couple to other computers.

0050. One exemplary embodiment of a suitable client
computer is described in the related application titled “SyS
tem and Method for Authenticating an Operating System to
a Central Processing Unit, Providing the CPU/OS with
Secure Storage, and Authenticating the CPU/OS to a Third
Party,’” and illustrated in FIG. 1B as subscriber unit 124. The
CPU 140 in the Subscriber unit 124 is able to authenticate the

Dec. 29, 2005

identity of the boot block and OS components that have been
loaded into the computer, and to provide quoting and Secure
Storage operations based on this identity as briefly described
next. Full descriptions of various embodiments for the
Subscriber unit 124 are provided in the related application.
0051 FIG. 1B shows general components in the Sub
Scriber unit 124. They include a central processing unit
(CPU) 140, nonvolatile memory 142 (e.g., ROM, disk drive,
CD ROM, etc.), volatile memory 144 (e.g., RAM), and a
network interface 146 (e.g., modem, network port, wireless
transceiver, etc.). The Subscriber unit 124 may also include
a sound system 148 and/or a display 150. These components
are interconnected via conventional busing architectures,
including parallel and Serial Schemes (not shown).
0.052 The CPU 140 has a processor 160 and also can
have a cryptographic accelerator 162. The CPU 140 is
capable of performing cryptographic functions, Such as
Signing, encrypting, decrypting, and authenticating, with or
without the accelerator 162 assisting in intensive mathemati
cal computations commonly involved in cryptographic func
tions.

0053) The CPU manufacturer equips the CPU 140 with a
pair of public and private keys 164 that is unique to the CPU.
For discussion purpose, the CPU's public key is referred to
as “K” and the corresponding private key is referred to
as “Kept". Other physical implementations may include
storing the key on an external device to which the main CPU
has privileged access (where the Stored Secrets are inacces
Sible to arbitrary application or operating Systems code). The
private key is never revealed and is used only for the Specific
purpose of Signing Stylized Statements, Such as when
responding to challenges from a content provider, as is
discussed below.

0054) The CPU manufacturer may further embed a sec
ond secret key K in the CPU 140 or other secure hardware.
The Second key is distinct from the first key pair, and is used
to generate a Secure Storage key, as is described below.
Alternatively, as described below, a Symmetric key Ks may
be used with “Seal” and “Unseal' operations to encrypt a
data Structure along with a Statement of the conditions under
which the data Structure may be decrypted.
0055. The manufacturer also issues a signed certificate
166 testifying that it produced the CPU according to a
known Specification. Generally, the certificate testifies that
the manufacturer created the key pair 164, placed the key
pair onto the CPU 140, and then destroyed its own knowl
edge of the private key “Kee". In this way, only the CPU
knows the CPU private key Kept"; the same key is not
issued to other CPUs and the manufacturer keeps no record
of it. The certificate can in principle be Stored on a Separate
physical device associated with the processor but still logi
cally belongs to the processor with the corresponding key.
0056. The manufacturer has a pair of public and private
signing keys, KMFR and KMrr'. The private key KMFR is
known only to the manufacturer, while the public key KM
is made available to the public. The manufacturer certificate
166 contains the manufacturer's public key KM, the
CPU's public key K, and the above testimony. The
manufacture Signs the certificate using its private Signing
key, KMER', as follows:

Mfr. Certificate=(KMFR, Certifies-for-Boot, Kop),
signed by KMFR'

US 2005/0289067 A1

0057 The predicate “certifies-for-boot' is a pledge by the
manufacturer that it created the CPU and the CPU key pair
according to a known specification. The pledge further States
that the CPU can correctly perform authenticated boot
procedures, as are described below in more detail. The
manufacturer certificate 66 is publicly accessible, yet it
cannot be forged without knowledge of the manufacturer's
private key KMFR'.
0058. The CPU 140 has an internal software identity
register (SIR) 168, which contains the identity of an authen
ticated operating System 180 or a predetermined false value
(e.g., Zero) if the CPU determines that the operating System
180 cannot be authenticated. The operating system (OS) 180
is stored in the memory 142 and executed on the CPU 140.
The operating system 180 has a block of code 182 that is
used to authenticate the operating System to the CPU during
the boot operation. The boot block 182 uniquely determines
the operating System, or class of operating Systems (e.g.
those signed by the same manufacturer). The boot block 182
can also be signed by the OS manufacturer.
0059 Another implementation in which a chain of cer
tificates leading back to a root certificate held by the
processor manufacturer is also acceptable.

0060. The CPU 140 has an internal software identity
register (SIR) 168, which is cleared at the beginning of every
boot. The CPU executes an opcode “Begin Authenticated
Boot’ or “BAB” to set an identity of a corresponding piece
of Software, Such as operating System 180, and stores this
identity in the SIR; the boot block of the operating system
(described below) is atomically executed as part of the BAB
instruction. If execution of the BAB opcode and the boot
block fails (e.g., if the execution was not atomic), the SIR
168 is set to a predetermined false value (e.g., Zero). This
proceSS is described below in more detail under the heading
“Authenticated Boot'.

0061 The CPU 140 also utilizes a second internal reg
ister (LOGR) 169, which holds contents produced as a result
of running a LOG operation. This operation, as well as the
register, is described below in more detail.
0062) The CPU 140 also maintains a “boot log"171 to
track Software modules and programs that are loaded. In one
implementation, the boot log 171 is a log in an append-only
memory of the CPU that is cleared at the beginning of every
boot. Since it consumes only about a few hundred bytes, the
boot log 171 can be comfortably included in the main CPU.
Alternatively, the CPU 140 can store the boot log 171 in
Volatile memory 144 in a cryptographic tamper-resistant
container.

0.063 A further implementation is by means of a software
module that allows each Section of the booting operating
System to write entries into the boot log that cannot be
removed by later components without leaving evidence of
tampering. Yet alternatively, the SIR can hold a crypto
graphic digest of a data Structure comprising the initial boot
block and the subsequent contents of the boot log. The
operation of appending to the boot log (call this operation
“Extend”) replaces the SIR with the hash of the concatena
tion of the SIR and the entry being appended to the boot log.
A Straightforward implementation of this operation may be
seen to modify the SIR, potentially disallowing future
“Unseal” operations that depend on the value of the SIR.

Dec. 29, 2005

Note, however, that the operating System, when booting, can
choose to add elements to the boot log without loading the
corresponding components, and So a more privileged com
bination of Software components can imperSonate a leSS
privileged one. This allows the controlled transfer of Secrets
acroSS privilege levels. In this approach, Software will keep
its own plaintext copy of the boot log entries, along with the
initial value of the SIR following boot, and this plaintext
copy is validated by knowledge of the current composite
SIR.

0064. As an optimization, regardless of the implementa
tion of the boot log, the OS may choose not to extend the
boot log with the identities of certain Software components,
if these components are judged to be as trustworthy as the
OS itself, or if they will execute only in a protected
environment from which they will be unable to subvert
operation.
0065 FIG. 12 shows an example of a signed boot block
190 created by signing the block of code 182. It contains the
Begin AuthenticatedBoot opcode 192, a length 194 specify
ing the number of byte in the block of code, the code 182,
a signature 196, and a public key 198 used to verify the
signature 196. The boot block will also contain as a constant
or set of constants, keys, or other information 199 that is
used to validate the Subsequent operating System compo
nents (for instance a public key or keys). In this implemen
tation, the CPU will set the SIR to the public key of the boot
block, but only if the boot block code signature is correct for
the stated boot block public key.
0066. In an alternative implementation, the SIR is set to
the cryptographic hash or digest of the code and constants
that make up the boot block. The signature 196 and public
key 198 are then not needed.
0067. A key observation of both of these implementations
is that no one can boot an untrusted operating System in
which the SIR is set to the value of a trusted operating
System.

0068. Once booted the operating system 180 and the
applications named in the license or ACL by the content
provider can set aside space 184 in memory or disk 142 to
hold the digital content from the content provider in a Secure
manner, without fear of other operating Systems or rogue
applications reading the data in the Space. The persistent
content is protected by encryption using a key that is
generated based in part upon a Seed Supplied by an authen
ticated and trusted OS, in part by a Secret key Stored in the
CPU, and in part by the software identity register (SIR).
(Alternatively, the persistent content is stored using the
“Seal” and “Unseal' operations, described below in more
detail, or using the processor's public key pair for encryp
tion.) The persistent content is stored with a license or ACL
naming the applications that can use the content and the
terms under which they can use it.
0069 Software programs 186 (the applications) are also
shown Stored in memory 142. These programs may be used
to render or otherwise play the content. Each program 186
has an associated key or digest 188 for unique identification.

Authenticated Boot

0070 Traditional approaches to secure boot attempt to
Secure the BIOS or other loader, and have the BIOS check

US 2005/0289067 A1

later components before allowing them to execute. In con
trast to this traditional approach, the authenticated boot
proceSS allows any Software at any point in the boot
Sequence to initiate an authenticated boot.
0071 FIG. 13 shows steps in a method for performing an
authenticated boot operation on the operating System 180.
These steps are performed by the CPU 140 and OS 180
resident in the subscriber unit 124. At step 1300, the CPU
executes the Begin AuthenticatedBoot opcode 192 in the
signed boot block 190 to set an identity for the operating
system 180. The identity can be a digest of the boot block's
opcodes and data, or the public key 198 corresponding to a
Signature on the boot block of the operating System.
0072 The BeginAuthenticated Boot opcode 192 and the
boot block 190 execute as one atomic operation, with the
implication that if they execute completely and correctly, the
resulting operating System can be trusted. Measures are
taken to ensure that the CPU is not interrupted and that the
boot code that has just been validated cannot be modified.
This can involve locking the memory bus and Switching off
interrupts. It could also involve having the CPU watch for
interrupts or for writes by other bus agents and invalidate the
authenticated boot sequence if they occur. The BAB opcode
192 can be executed at any time, with one exemplary time
being at the start of the OS loader, right after the OS-selector
executes. An alternative implementation is to provide both a
BeginAuthenticatedBoot (BAB) and an End Authenticated
Boot (EAB) instruction. The BAB instruction computes the
Secure hash of the boot block and the EAB instruction sets
the SIR if the execution of the boot block was not interrupted
or potentially modified by memory writes from another
processor or another bus master.
0.073 Execution of the BeginAuthenticatedBoot opcode
192 sets the internal Software identity register 168 to either
(1) the OS's identity (i.e., boot block digest or OS public key
198) if the operation is successful, or (2) zero if some event
or circumstance has potentially Subverted operation. ASSum
ing the operation is Successful (i.e., the “yes” branch from
step 1302), the SIR 168 is now a unique number or other
value that represents the identity of the operating system 180
(step 1304). Any two processors running the same operating
system will produce the same SIR. If the BAB opcode
operation is unsuccessful (i.e., the “no” branch from Step
1302), the SIR is set to zero (step 1306).
0.074. It is noted that different operating systems may be
serially booted on the subscriber unit 124. Executing the
BAB opcode 192 for different signed OS boot blocks results
in different SIR values. However, it is possible for multiple
boot blocks to result in the same SIR, when desired.

0075). At step 1310, the CPU 140 fills the first entry on the
boot log 171 with the public key (or digest) of the boot block
182. From now on, any running code can append data to the
boot log 171, and it is generally used by code in the boot
chain to identify code versions as they are loaded and
executed. AS noted earlier, appending data to the boot log
can be simulated by modifying the SIR via the “Extend”
operation.

0076) The boot block 182 is free to load the next set of
blocks in the boot-chain (step 1312). At step 1314, the boot
block 182 checks the validity of the modules (by signature
or other means) and loads them So that they can be executed.

Dec. 29, 2005

An identity for each module is appended to the boot log 171.
The OS will also retain additional information on compo
nents that it loads (e.g., version numbers, device driver IDs,
etc.). Loading and executing the code may result in loading
more code, validating it, and executing it, etc. This process
continues through to the loading of device drivers. When the
boot Sequence is complete, the OS is operational and the
Software identity register and the boot log Store non-modi
fiable data captured during the boot Sequence. We can
recommence loading new device drivers at any point, pos
sibly causing the operating System to become less privi
leged, with the possible termination of access to protected
COntent.

0077. The CPU can generate a signed certificate contain
ing the boot log data to attest to the particular operating
System (including drivers) that is running. It could also
generate a signed Statement containing just the SIR. FIG. 14
shows an exemplary Structure of a boot log 171. It contains
a Seed field 1400 and a block ID field 1402. The block ID
field 1402 holds identities of the blocks of code that are
loaded and verified on the Subscriber unit. The block ID field
1402 can hold text or binary data.
0078. The SIR or the seed field 1400 holds an authenti
cated boot key generator seed. The CPU uses the seed in
field 1400 to generate keys unique to the OS and processor.
Since the first entry of the boot log 171 can only be
generated by the execution of a particular boot block or the
holder of the boot block private key, the keys can only be
re-generated by the same OS, or another OS from the same
publisher under control of the publisher. OS-specific key
generation provides a building block for Secure persistent
Storage of data and the continued enforcement of digital
usage rights even if the computer is physically compro
mised, or the computer is booted into another operating
System. Use of OS-specific Storage keys for Secure Storage
is described below in more detail.

0079 Alternatively, the processor may use the “Seal” and
"UnSeal” instructions to Store persistent protected content,
or when possible may encrypt it with the processor's public
key and decrypt it with the “Unseal' instruction, which is
called “Reveal” when used with public keys. These opera
tions are described below in more detail under the heading
“Secure Storage'.

System Level Overview
0080 A system level overview of the operation of an
exemplary embodiment of the invention is described by
reference to FIG. 2. A subscriber computer 200, such as
client computer 20 in FIG. 1, is connected to a content
provider server computer 220, such as remote computer 49,
through a wide-area network, such as WAN 52. Processes
performed by the components of the Subscriber computer
200 and the content provider 200 are illustrated by arrows in
FIG. 2. Many of these processes incorporate either public/
private key pairs, digital Signatures, digital certificates, and/
or encryption algorithms, or a combination of these Standard
cryptographic functions. Such functions are assumed to be
provided by the CPU of the subscriber computer in the
descriptions that follow, but can be provided by other
well-known cryptographic mechanisms as will be immedi
ately understood by one skilled in the art.
0081. The content may be essentially any type of content
that can be expressed as digital data, including video, Still

US 2005/0289067 A1

pictures, audio, graphical images, and textual data or execut
able content (computer programs). Examples of possible
content include feature-length movies, TV shows, games,
Software programs, news, Stock information, weather
reports, art, photographs, and So on.

0082 To prevent their content from being stolen or
misused, content providers will download content only to
known Software, and therefore only to Subscriber computers
that can prove that their operating Systems will enforce the
limitations the provider places on the content. Such a digital
rights management operating System (DRMOS) must load
and execute only OS components that are authenticated as
respecting digital rights (“trusted’), and must allow access
to the downloaded content by only similarly trusted appli
cations.

0.083. The first requirement is met in the exemplary
embodiment of the invention by having all trusted operating
System-level components digitally signed by their develop
erS or a trusted third-party, with the Signature acting as a
guarantee that the components respect digital rights. The
Signature is validated before the component is loaded. The
resulting DRMOS is assigned a unique trusted identity, as
explained in detail below, which is recorded in an internal
register in the CPU, such as SIR 168 in FIG. 1B. FIG. 2
illustrates a DRMOS 205, with its identity 206, after it has
been loaded into the CPU201 of a subscriber computer 200
through Such a loading process 1.

0084. The second requirement has two aspects. First,
trusted applications must be identified in Some fashion, and,
second, the DRMOS must prevent non-trusted applications
from gaining access to the content when it is Stored, either
permanently or temporarily, on the Subscriber computer.

0085. In the exemplary embodiment shown in FIG. 2, a
trusted application 209 has agreed to operate in accordance
with the limitations placed on content by a provider. The
trusted application 209 is identified through a “rights man
ager” certificate 210. In one embodiment, the rights manager
certificate 210 extends a Standard digital certificate, which
includes Such items as date of publication and name of the
application, by adding a list of Services, or properties,
provided by the application, i.e., content type handled,
version of the application, whether it Saves content to disk,
etc. For purposes of the exemplary embodiment shown in
FIG. 2, the certificate 210 also identifies the trusted appli
cation; alternate mechanisms for identifying a trusted appli
cation are described later in the methods Section.

0086) The DRMOS 205 provides key-secured storage for
permanently Stored content to prevent unauthorized acceSS
to the content. For temporarily stored content, the DRMOS
205 prevents an untrusted proceSS from reading the memory
holding the content. These and other Safeguards are also
described in detail below. The permanent and temporary
storage within Subscriber computer 200 are collectively
represented by device 203, which is illustrated in FIG. 2 as
a disk drive. Such illustration is not intended to limit the
range of devices that can Serve as Secured Storage for a
DRMOS.

0.087 Turning now to the reminder of the processes
depicted in FIG. 2, application 209 requests 2 the download
of content 221 from provider 220. The DRMOS 205 sends
a message 3 to the provider 220 requesting the content 221.

Dec. 29, 2005

The content provider 220 transmits a challenge message 4 to
the DRMOS 205 asking for the identity of the CPU 201, the
DRMOS 205, and the application 209. The DRMOS 2.05
transmits a response message 5 containing a certificate 202
for the CPU 201, its own identity 206, and the rights
manager certificate 210 for the application 209.

0088. The challenge-response process follows the com
mon protocol for Such interchanges, the difference being
only in the data exchanged between the Subscriber computer
and the content provider. In one exemplary embodiment of
a Suitable challenge-response process described in the
related application titled “System and Method for Authen
ticating an Operating System to a Central Processing Unit,
Providing the CPU/OS with Secure Storage, and Authenti
cating the CPU/OS to a Third Party,’” the certificate 202
contains the challenge message 3, the identity of the
DRMOS 206, the public key of the CPU 201, and data
representing all Software components that are currently
loaded and executing on the subscriber computer 200. The
certificate 202 is signed using the private key of the CPU
201. The content provider 220 examines the CPU certificate
202, the DRMOS identity 206, and the properties specified
in the rights manager certificate 210 to determine whether it
should establish a trust relationship with the DRMOS 205 on
the subscriber computer 200.

0089. In an alternate exemplary embodiment, the chal
lenge-response protocol runs over a Secure connection Such
as SSL (Secure Socket Layer) or TLS (Transport Level
Security), which relies on a Session key to encrypt the data
transferred between the Subscriber computer 200 and the
content provider 220. This stops an attacker (Such as the
legitimate owner of the machine) from rebooting the PC into
a different operating system after the DRMOS has authen
ticated itself, or using a different computer on the network
for Snooping on the data destined for the DRMOS.
0090. If the trust relationship is established, the provider
downloads 6 the content 221, an acceSS predicate 222, and
a “license'223 to the DRMOS 2.05 on the Subscriber com
puter 200. The access predicate 222 specifies the properties
that an application must have in order to process the content
221, Such as read-only or minimum/maximum video reso
lution. The access predicate 222 may also specify specific
applications or families of applications allowed to proceSS
the content 221. The license 223 places restrictions on the
use of the content 221 by an approved application, Such as
the number of times the content can be accessed or what
derivative use can be made of the content. A media Server of
the content provider may be configured to download the
entire content as a file, or to Stream the content continuously
over the network. As an example, the content provider may
implement a Server computer System comprising one or
clustered Server computers that handle requests from Sub
Scribers, manage the digital files locally, and facilitate deliv
ery of requested digital files over a network to the Subscriber
200.

0091) When the DRMOS 205 receives the content 221,
the acceSS predicate 222 and the license 223, it determines
whether the content should be permanently Stored in a
key-Secured Storage. If So, it requests an application Storage
key from the CPU 201. In the present example, the appli
cation Storage key is Specific to the application 209 that
requested the content 221. The content 221 and the license

US 2005/0289067 A1

223 are encrypted using the application Storage key and the
access predicate 222 is attached to the encrypted informa
tion. If the content 221 is to be stored only temporarily, the
DRMOS 205 places various safeguards around the memory
area holding the content So that the content cannot be
accessed by an untrusted application. The generation of
application Storage keys and the memory Safeguards are
described in detail below.

0092. Each time application 209 wants to access the
Stored content 221, it passes its rights manager certificate
210 and the appropriate application Storage key (action 8) to
the DRMOS 2.05. The DRMOS 205 validates the key and
compares the rights manager certificate 210 against the
access predicate 222. ASSuming the Storage key is authen
ticated and the rights manager certificate 210 Satisfies the
access predicate 222, the content 221 and the license 223 are
decrypted. The DRMOS determines if the application's use
of the content is permitted under the license 223 and allows
access 9 if it is.

0093. The system level overview of the operation of an
exemplary embodiment of the invention has been described
in this Section of the detailed description. A Series of
processes and data structures on a Subscriber computer
control the loading of a digital rights management operating
system, identify the DRMOS and trusted applications to a
content provider, and Secure content downloaded by the
provider to the subscriber computer. While the invention is
not limited to any particular hardware and Software, for Sake
of clarity only a minimal hardware and software configura
tion necessary to process multimedia has been assumed for
the Subscriber computer.

Methods of Exemplary Embodiments of the
Invention

0094. In the previous section, a system level overview of
the operation of exemplary embodiments of the invention
was described. In this Section, the particular methods per
formed by a Subscriber computer, or client, of Such exem
plary embodiments are described by reference to a Series of
flowcharts and operational diagrams. The methods to be
performed by the client constitute computer programs made
up of computer-executable instructions. Describing the
methods by reference to flowcharts and operational dia
grams enables one skilled in the art to develop Such pro
grams including Such instructions to carry out the methods
on Suitable computerized clients (e.g., on the processor of a
client executing the instructions from computer-readable
media). Data structures necessary to perform the methods
are also described in this section. The methods of the content
provider Server computer are described to complete the
understanding of the methods performed by the client.
0.095 Although many of the methods are interrelated,
they have been divided into four groups to facilitate under
Standing. The boot/load proceSS and various mechanisms for
creating identities for different versions of a digital right
management operating system (DRMOS) are first described.
The functions that must be provided by the DRMOS to
ensure the enforcement of the content providers’ rights are
described next. The third group consists of methods directed
toward providing permanent Storage of the content on the
Subscriber computer once downloaded, and protecting that
content from unauthorized acceSS. Finally, the identification
of trusted applications and the rights management functions
are described.

Dec. 29, 2005

0096 Booting/Loading and Identifying the DRMOS
0097. Referring first to FIG. 3, a flowchart of a method
to be performed by a Subscriber computer according to an
exemplary embodiment of the invention is shown. This
method is inclusive of the acts required to be taken by the
computer to boot a DRMOS or to load additional compo
nents after the boot process is complete. Exemplary embodi
ments of boot block data structures are described below in
conjunction with FIGS. 7A-C.
0098 Shortly after a computer is turned on or is reset, a
small program called a boot loader is executed by the CPU
(block 301). The boot loader loads a boot block for a
particular operating System. Code in the boot block then
loads various drivers and other Software components nec
essary for the operating System to function on the computer.
The totality of the boot block and the loaded components
make up the identity of the operating System.

0099 For a DRMOS, that identity can be trusted only if
the boot block and the loaded components are trusted. In the
embodiments described herein, all components are signed
by a trusted Source and provided with a rights manager
certificate. An exemplary embodiment of the rights manager
certificate is described below in conjunction with FIG. 9.
0100. The operating system checks the signature of a
component before loading it (block 303). If the signature is
valid (block 305), the component has not been compromised
by Someone attempting to circumvent the boot process and
the proceSS proceeds to check the level of trust assigned to
the component (block 307). If the signature is not valid (or
is there is no signature) but the component must be loaded
(block 309), the operating system will not assume the
identity of a DRMOS upon completion of the boot process
as explained further below.
0101 A plug-and-play operating System provides an
environment in which devices and their Supporting Software
components can added to the computer during normal
operation rather than requiring all components be loaded
during the boot process. If the device requires the loading of
an untrusted component after the boot process completes, a
plug-and-play DRMOS must then “renounce” its trusted
identity and terminate any executing trusted applications
(block 323) before loading the component. The determina
tion that an untrusted component must be loaded can be
based on a System configuration parameter or on instructions
from the user of the computer.
0102 Assuming the signature is valid (block 305) and the
component is trusted (block 309), it is loaded (block 311).
The trustworthiness of a component can be decided using
various criteria. In one embodiment, only components pro
Vided by the operating System developer are trusted. At the
other end of the Scale, in another embodiment, all compo
nents are assumed trustworthy by the DRMOS, leaving the
final decision to the content provider as described in more
detail below. Still a third alternate embodiment provides that
components signed by any of a Select number of entities can
be considered as equivalent to components provided by the
DRMOS developer. In this embodiment, the identity of the
resulting operating System is considered equivalent to the
“pure” DRMOS provided by the DRMOS developer. The
content provider decides whether it trusts the equivalent
operating System.

US 2005/0289067 A1

0103). Furthermore, not all versions of a component may
be trusted. Because the rights manager certificate contains
the version number of the component, it can be used to
verify the trust level of a particular version. One embodi
ment of the loading proceSS checks a component certifica
tion revocation list (CRL) to determine whether a compo
nent signature has been revoked. The CRL can be provided
by the content provider or the DRMOS developer. An
exemplary embodiment of a CRL is illustrated in FIG. 4.
Each entry 401 contains the name of the component 403, the
version 405, and the signer 407 whose signature is revoked.
The particular CRL used becomes part of the operating
System identity using a Standard hashing function described
further below.

0104. Alternatively, if the rights manager certificates on
the components are short-lived and must be renewed peri
odically, then a version that is found to be untrustworthy will
not have its certificate renewed. This alternate embodiment
requires a Secure time Source to be available on the Sub
Scriber computer So the user cannot simply turn back the
System clock on the Subscriber computer. A monotonic
counter in the CPU can Serve as this Secure time Source Since
it only counts up and cannot be reset “back in time.” For
example, a monotonic counter that is periodically incre
mented while the CPU is active, and that cannot be reset, can
be used in conjunction with a Secure time Service, Such as a
Secure Internet time Service, to provide a lower bound on the
current time in a trusted manner. Such exemplary use of a
monotonic counter is described in detail below as part of the
functions of the DRMOS.

0105. Once all components are loaded, the operating
system assumes its identity (block315). In one embodiment,
a one-way hashing function provided by the CPU is used to
create a cryptographic “digest of all the loaded compo
nents. The digest becomes the identity for the operating
System and is recorded in an internal register in the CPU.
Alternate methodologies of assigning an identity to the
loaded components are equally applicable as long as a
non-trusted configuration cannot have the same identity as a
DRMOS. Signing the operating system identity with a
private key particular to the type of CPU serves to identify
both the operating System and the processor on which it is
executing.
0106 If all computers were identically configured, a
Single, Signed operating System identity would Suffice to
authenticate a particular operating System executing on a
particular type of CPU. However, computers contain a
myriad different hardware components, and the correspond
ing Supporting Software components are frequently updated
to add enhancements and fix problems, resulting in a virtu
ally unlimited number of operating System identities. There
fore, the content provider would have to maintain a registry
of each subscriber's DRMOS identity or delegate that func
tion to a trusted third party.
0107 The problems attendant on having a vast number of
DRMOS identities can be alleviated in at least three ways.
First, an identity is generated or assigned for the basic
configuration of each operating System. Such a basic con
figuration includes only components Supplied by the oper
ating System vendor. The identity is generated (or assigned)
and Stored when the basic components have been loaded.
Different versions of the basic operating System will gener
ate (or be assigned) different identities.

Dec. 29, 2005

0108. Once the basic configuration of a DRMOS is
loaded and its trusted identity is Stored, Subsequent compo
nents required to Support the particular hardware configu
ration must be verified and loaded as explained in conjunc
tion with FIG. 3. Such additional software components can
also include updates to the basic components provided by
vendors other than the operating System developer. Each
additional loaded component has an individual identity
(Such as a cryptographic digest) generated/assigned and
Stored. All the identities are uploaded to the content provider
when the DRMOS identity is requested. Because the basic
DRMOS and additional components always have the same
identities when executing on a specific type of processor, the
content provider has only to maintain a list of the identities
for the combinations of the basic DRMOS and additional
components that the provider trusts. Each identity uploaded
is then checked against the list.

0109. In a second alternate embodiment, the operating
System maintains a “boot log, containing the identity of the
basic DRMOS and the identities of the additional OS
components that have been loaded. The identity is a cryp
tographic digest of the code for the component, or a well
known name, or any other String that is uniquely associated
with the component. The CPU also maintains a composite
identity register that holds a one-way cryptographic function
of the boot log. Whenever a component is loaded, its identity
is appended to the boot log and folded into the composite
identity register, Such as by Setting this register to a Secure
hash of its old value appended with the new component's
identity. Whenever the CPU certifies the current value of its
composite identity register, it also verifies that the operating
System's boot log has not been tampered with. Because the
log is indelible, the loaded component cannot erase the
record that shows it was loaded.

0110. An alternate exemplary embodiment of the boot log
holds the entire boot log in the CPU. The DRMOS uses an
instruction provided by the CPU that appends the identity of
each loaded component to the log. The CPU then signs the
boot log to attest to its validity and delivers the signed boot
log to the content provider as the identity for the DRMOS.

0111. In another alternate embodiment, DRMOS uses a
chain of public and private key pairs newly generated by the
CPU to create an indelible boot log. The method is shown in
FIG. 5 and an exemplary embodiment of the completed boot
log is illustrated in FIG. 6. The boot loader generates or
obtains a first key pair (Ko, Ko') and records the first key
pair in memory (block 501). The first public key is also
saved to secure storage in the CPU. The boot loader loads
the boot block into memory and records the identity of the
boot block in the boot log (block 503). Before turning
control over to the boot block code, the bootloader obtains
a second key pair (K1, Kl') (block 505), writes the second
public key (K) to the boot log (block 507), and then signs
the boot log with the first private key (Ko") (block 509).
The boot loader deletes the first private key (Ko") from its
memory (block 511) and relinquishes control to the boot
block.

0112 The boot block code loads additional components
into memory, records the identities of those components to
the boot log (block 515), obtains a third key pair (K2, K-')
(block 505), appends the boot log with the third public key
(K) (block 507), and signs its portion of the boot log with

US 2005/0289067 A1

the second private key K (block 509). The boot block
erases the second private key (K) (block 511) from
memory and turns control of the boot proceSS over to the first
loaded component. Each loaded component that will load
additional components obtains a new key pair (K. K.')
and uses the private key of the previous key pair (K) to
Sign its portion of the boot log. The boot process continues
in this iterative manner through until all components are
loaded or, in the case of a plug-and-and play DRMOS, a
content provider challenge is received (block 513).
0113. When a non-plug-and-play DRMOS resumes con
trol after the final component is loaded, it places a “sentinel”
on the boot log (block 519) to indicate that the log is
complete and to prevent a loaded component from deleting
entire lines of the log. The characteristics of the Sentinel are
that is a known, unique value that is signed using the last
private key (K). In the present embodiment, the sentinel
is a signed Zero entry. The DRMOS deletes the last private
key and all public keys from memory after creating the
Sentinel.

0114. Because a plug-and-play DRMOS cannot arbi
trarily declare that all components are loaded at the end of
the boot process, the DRMOS cannot add a sentinel to the
end of the bootlog at that time. Instead, the DRMOS attests
to its most recent public key K as well as its first public key
Ko to certify the contents of the boot log when challenged.
0115 Using a chain of key pairs 606, 607, as shown in
FIG. 6, guarantees the boot log reflects the loaded compo
nents. Each public key in a log Section is used to authenticate
the Signature on the next Section. The first public key
remains in memory to authenticate the Signature on the boot
block section of the log. While each set of components is
free to load more components, a component cannot change
the recording of its identity in a previous portion of the log
because doing So would cause the validity check on the
corresponding Signature to fail. Similarly, a Section in the
middle of the log cannot be deleted because that would break
the chain of keys. Deleting multiple Sections of the log
through to the end also breaks the chain. In this case,
attempting to insert a new Sentinel in an effort to make the
log appear unaltered will fail because the private key nec
essary to add the Sentinel is not longer available. Finally, the
entire boot log cannot be replaced Since the Signature on the
boot block section of the log would not be validated by the
first public key.
0116 Turning now to the boot block, one exemplary
embodiment Suitable for use with a digital rights manage
ment operating system is shown in FIG. 7A. The boot code
701 is signed (signature 703) by the developer of the
DRMOS using its private key. The corresponding public key
705 of the developer is attached to the boot block 700. In an
alternate embodiment, the public key 705 is not attached to
the boot block 700, but instead is persistently stored in an
internal register in the CPU. The public key 705 is used to
validate the signature 703.
0117) If the DRMOS developer's private key used to sign
the boot block is compromised, the key pair must be
changed and thus all boot blockS must be reissued to
subscriber computers. FIG. 7B illustrates an alternate
embodiment of a boot block that ameliorates this problem.
Boot block 710 comprises a basic boot section 711 and an
intermediate boot section 713. The basic boot section 711

Dec. 29, 2005

contains boot code 715 that validates and loads the inter
mediate boot section 713 and components not provided by
the DRMOS developer. The intermediate boot section 713
contains boot code 717 that validates and loads components
from the DRMOS developer. The intermediate boot section
713 is signed with a special boot block private key. The basic
boot code 715 uses a corresponding boot block public key
719 stored in the basic boot section 711 to validate the
intermediate boot section 713. Components 727 from the
DRMOS developer are signed 729 with the developer's
standard private key and the intermediate boot section 713
uses the DRMOS developer's standard public key 721 to
validate those components.
0118) If the standard private key used to sign components
is compromised, the developer creates a new Standard key
pair and provides a replacement intermediate boot block 713
containing the new Standard public key. Replacement com
ponents signed with the new Standard private key are also
issued. Because the Special boot block private key is used for
few, if any, other purposes than Signing boot blocks, it is leSS
likely to be compromised and replacement of the basic boot
section 711 will rarely be necessary.
0119). In FIG. 7C, an alternate embodiment of the single
section boot block 730 also uses a special boot block key
pair. The boot block 730 contains the special boot block, or
master, public key 733. The master private key is used to
certify ephemeral keys that are valid for a short period of
time. Certificates signed 737 by the master private key attest
to the validity of the ephemeral keys. A component is signed
with one of the ephemeral private keys and the correspond
ing certificate 739 is attached. The boot block determines
that the certificate on the component is valid using the
master public key. When the ephemeral key expires, the
DRMOS developer issues replacement components. As with
the two-section boot block shown in FIG. 7B, the master
private key is only used to sign the certificates for the
ephemeral keys So it is less likely to be compromised.
Because the ephemeral keys are valid for only a short
duration, public release of a private ephemeral key has
limited impact.
0120) Functions of a DRMOS
0121 AS described above, components may be valid only
until a specified date and time, and content may also be
licensed only until a certain date and time. The monotonic
counter described earlier can also used to ensure that the
computer's clock cannot be set backwards to allow the
replacement of a trusted component by an earlier, now
untrusted version. The DRMOS connects on a regular basis
to a trusted time Server and presents the value of its
monotonic counter, whereupon the trusted time Server
returns a certificate binding that value to the current time. If
the monotonic counter is updated periodically, Such as every
hour that the DRMOS is running, then the monotonic
counter in conjunction with the most recent time certificate
can Serve as a useful approximation to a trusted clock.
0.122 A DRMOS must also protect the content once it is
loaded into the client computer's memory by a trusted
application. In particular, the DRMOS must prohibit the use
of certain types of programs and refrain from performing
certain common operating System procedures when content
is in memory.
0123. An example of one kind of procedure that must be
prohibited is loading a kernel debugger because it would

US 2005/0289067 A1

allow the user to make a copy of the content loaded in
memory. If the user of the Subscriber computer attempts to
load a kernel debugger into memory, the DRMOS can either
1) refuse to load the debugger, or 2) renounce its trusted
identity and terminate the trusted application that was
accessing the content before loading the debugger. In the
latter case, the memory must also be purged of the content
before the debugger is loaded. The choice of action can be
pre-determined or chosen by the user when the user attempts
to load the kernel debugger. One of skill in the art will
immediately identify other types of programs that will need
to be treated in the same manner as a kernel debugger.
0.124 Virtual memory operating Systems maintain a page

file that holds Sections of program code and data that are not
currently active. Under normal circumstances, the contents
of the page file are accessible by the user of the computer,
either by running a privileged program or by booting another
operating System that allows inspection of the disk. There
fore, a DRMOS must either protect content stored on the
page file or must not page content and Similar protected
information at all.

0.125 Protecting content on the page file can be accom
plished in at least three ways. First, the DRMOS can prohibit
all "raw access to page file device when a trusted applica
tion is running. Second, Second, the DRMOS can terminate
all trusted applications and erase the page file before allow
ing such access. Third, the DRMOS can encrypt the content
and similar protected information before writing it to the
page file.

0126. Often, a DRMOS must allow the user to perform
certain Standard functions but prohibit other, related func
tions. The DRMOS can assign the user permissions based on
the granularity of the normally permitted function. For
example, the DRMOS can allow the user to delete an entire
content file but not a portion of it. Another example is that
the DRMOS can allow the user to terminate all the threads
of execution for a trusted application but not just a single
thread.

0127 Finally, a DRMOS must protect the trusted appli
cation itself from tampering. The DRMOS must not allow
other processes to attach to the process executing the trusted
application. When the trusted application is loaded into
memory, the DRMOS must prevent any other process from
reading from, or writing to, the Sections of memory allocated
to the trusted application without the explicit permission or
cooperation of the trusted application
0128. Key-based Secure Storage
0129. In order to protect content permanently stored on
the Subscriber computer, the DRMOS must provide a secure
Storage Space. In essence, the DRMOS must Securely Store
private keys or Session keys for use with encrypted content,
or provide Some other mechanism for keeping these keys
secret from other OSS or system level software. These keys
can be used for the Secure Storage and retrieval of protected
information. In the exemplary embodiments described in
this Section, the information to be stored in a protected
format is encrypted using one of a set of keys that may be
generated by a function 800 provided by the CPU. The
Storage key generation proceSS is tightly coupled to the
DRMOS so that the same key cannot be generated by the
CPU for an unrelated operating System, or by any Software

Dec. 29, 2005

on another computer. Three types of Storage keys are envi
Sioned as illustrated in FIG. 8: an OS storage key 801, an
application Storage key 811, and a user Storage key 821.
Each key is specific to the entity that requests it.
0.130 Beginning with the OS storage key 801, the
DRMOS passes a “seed'803 as an operand of a key
generation instruction (“GenerateKey”) 805 to the CPU and
receives an OS storage key based on the seed 803 and the
identity of the DRMOS. The CPU will always return the
same OS storage key 801 when the same seed 803 is
provided by the same DRMOS but will return a different OS
storage key if the same seed 803 is provided by an unrelated
operating System. Because an unrelated operating System
cannot get the same key 801, it cannot read any data
encrypted by the DRMOS.
0131). In an alternate embodiment, only a single operating
system storage key is used by the DRMOS as described
below. Therefore, in this embodiment only the identity of the
DRMOS is factored into the key generation function 800
and the seed 803 is not necessary.
0132) An application storage key 811 is generated when
an application calls an operating System instruction ("Gen
erate ApplKey”) 815 using a seed 813. The DRMOS passes
the Seed 813 through an application-Specific one-way hash
function 817 to produce a hashed seed 819. The hashed seed
819 is then passed to the CPU through the Generate Key
instruction described above. The resulting application Stor
age key 811 is returned to the application for use. Because
the GenerateKey function uses the operating System's iden
tity, the same application executing under an unrelated
operating System cannot get the Same key, and therefore
cannot access the encrypted data, even if it requests the key
using the same Seed 813. Similarly, an unrelated application
using the Same Seed 813 gets a different key because the
DRMOS passes the seed 813 through a different hash
algorithm for each application.
0133. In an alternate embodiment, the operating system
Stores decryption keys for applications using its own iden
tity; the applications call the operating System to retrieve
application keys. This also provides a way for an application
to allow other applications access to its key and therefore to
the content encrypted by the key. Instead of creating a Secret
using a Seed 813, the application passes in the acceSS
predicate for the content. The acceSS predicate designates
values that must be present in the rights manager certificate
for an application wishing access to the content. An exem
plary embodiment for an access predicate is shown in FIG.
9 and described in detail in the following section. The
DRMOS supplies the seed 813 that is required to generate
the application specific key and passes the Seed 813 through
a generic one-way hash. The DRMOS encrypts the seed 813
and the acceSS predicate using an OS Storage key and
asSociates the encrypted acceSS predicate with the encrypted
Seed. When any application requests access to a key pro
tected by an access predicate, the DRMOS compares the
criteria in the access predicate against the rights manager
certificate of the requesting application. An application that
meets the criteria is given access to the Seed 813 and
therefore to the application Storage key. Because the Seed
813 is encrypted using an OS Storage key, an application that
is running under an unrelated operating System will be
unable to gain access to the encrypted data because the
unrelated operating System cannot decrypt the Seed 813.

US 2005/0289067 A1

0134) Finally, a particular user can request a key that is
based on a user identity assigned by the DRMOS or another
facility that guarantees a unique identity for each user. The
user supplies a seed 823 in a “GenerateUserKey” call 825.
The operating System passes the Seed 823 through a one-way
hash 828, and then passes the resulting first hashed seed 827
through a keyed hash routine 829 to generate a Second
hashed seed 833. The operating system factors the user
identity 831 into the keyed hash routine 829 so that the
second hashed seed 833 is unique to the user. The second
hashed seed 833 is passed to the CPU, which returns the user
Storage key 821. AS described above, only the same user will
be able to acceSS data encrypted with the Storage key 821
when the DRMOS that generated the key is executing.
Analogously, the keyed hash routine 829 guarantees that the
user Storage key will not duplicate either an OS Storage key
or an application Storage key based on the same Seed. Such
a facility is used when downloaded content can be accessed
only by a particular user. Moreover, if downloaded content
is to be accessed only by a particular user and by a particular
application, the Secret to be Stored may be divided into parts,
with one part protected by an application-specific key and
the other part protected by a user-specific key.

0135). Once the data is encrypted using the Storage keys,
there must be a way to recover the keys when the DRMOS
identity changes (as when the operating System is upgraded
to an incompatible version or an unrelated operating System
is installed) or the computer hardware fails. In the exemplary
embodiments described here, the keys are stored off-site in
a “key vault” provided by a trusted third party. In one
embodiment, the DRMOS contains the IP addresses of the
key vault providers and the user decides which to use. In
another embodiment, the content provider designates a
specific key vault and the DRMOS enforces the designation.
In either embodiment, when the user requests the restoration
of the Storage keys, the key vault provider must perform a
certain amount of validation before performing the down
load. The validation process can include Such actions as
recording the identity of the original operating System (or
computer) in a revocation list, checking the frequency of the
requests, and requiring a credit card number before down
loading the Storage keys.

0.136 Rights Management
0.137 Most operating systems do not directly process
media content, Such as Video or audio. That function is
usually available through special application programs.
Therefore, a content provider must not only trust the oper
ating System but must also trust the application that will
process the content. Content also can be accompanied by a
predicate Stating which applications are to be trusted to
access that content, and this Statement can include a list of
generic properties that implicitly define a set of applications.
Further associating a rights manager certificate with the
application provides identification of the application and
certification of its properties. This allows the content pro
vider to determine if the application fulfills the requirements
of the content provider before downloading content, and
also allows the operating System to restrict future access to
only the appropriate applications.

0.138. One exemplary embodiment of a right manager
certification is shown in FIG. 9. A list of application
properties 903 is appended to the digital certificate fields

Dec. 29, 2005

1001 standard in some digital certificate format such as
X.509. The certificate names the application. Each entry 905
in the list 903 defines a property 906 of the application,
along with optional arguments 907. For example, one prop
erty might be that the application cannot be used to copy
content. Another example of a property is one that specifies
that the application can be used to copy content, but only in
analog form at 480P resolution. Yet another example of a
property is one that Specifies that the application can be used
to copy content, but only if explicitly allowed by an accom
panying license. Additional examples include the right to
Store an encrypted copy of the content and to restrict Such
Storage to only certain, acceptable peripheral devices. The
property 906 can also be used to specify acceptable helper
applications, Such as third-party multimedia processing
Stacks or other libraries, to be used in conjunction with the
application named in the certificate. The certificate is signed
by an operating System vendor, content provider, or third
party, certifying the properties of the application.
0.139. Because the content provider must trust the
DRMOS and application to protect the content from misuse
once downloaded, the content provider attaches an access
predicate to the content. This acceSS predicate can also
include a license to the content. The basic functions of both
the access predicate and the license, which were described
in the System overview, are explained in detail next.
0140. In one embodiment, the access predicate takes the
form of a required properties access control list (ACL) as
shown in FIG. 10. The required properties ACL 1000
contains a basic trust level field 1001, which specifies the
minimum rights management functions that must be pro
Vided by any application wishing to process the content.
These minimum functions can established by a trade asso
ciation, such as the MPAA (Motion Picture Association of
America), or by the DRMOS vendor. A unique identifier is
used to reference a list of the minimum functions. The
minimum functions list can include CPU, DRMOS, and
application specific requirements.
0.141. The required properties ACL 1000 can also contain
one or more extended trust level fields 1003. The extended
trust level fields 1003 contains identifiers that specify addi
tional rights management function that must be provided by
the Subscriber computer. For example, a required properties
ACL can require that only a certain version of a particular
application be allowed access to the content. The required
properties ACL 1000 is compared against the certificates for
the CPU, the DRMOS, and the application starting at the
hardware level, i.e., CPU, DRMOS, application name, ver
Sion, and Specific properties for the application. One of Skill
in the art will readily recognize that the required properties
ACL 1000 can require that all properties must be present, or
at least one of the properties, or Some specified Subset.
0142. The content license (FIG. 11) imposes additional
restrictions on what kind of processing can be performed on
the content once an application has access to the content. AS
described briefly above, the license data structure 1100 can
limit the number of times the content can be accessed (usage
counter 1101), determine what use can be made of the
content (derivation rights 1103), such as extracting still shots
from a video, or building an endleSS loop recording from an
audio file, or an time-based expiration counter 1105.
0143. The license can also specify whether or not a
trusted application is permitted to validate other client

US 2005/0289067 A1

computers and share the content with them (Sublicense
rights 1107), in effect having the Subscriber computer act as
a secondary content provider. The Sublicense rights 1107 can
impose more restrictive rights on re-distributed content than
those Specified in a license for content downloaded directly
from the original content provider. For example, the license
1100 on a song purchased directly from the music publisher
can permit a Song to be freely re-played while the Sublicense
rights 1107 require a limit on the number of times the same
Song can be re-played when re-distributed. To enforce the
Sublicense rights 1107, in one embodiment, the trusted
application modifies the original license 1100 to specify the
additional restrictions and downloads the modified license
with the re-distributed content. In an alternate embodiment,
the original content provider downloads a Sublicense along
with the content and that Sublicense is re-distributed by the
trusted application when it re-distributes the content. The
Sublicense is structurally identical to the license data Struc
ture 1100 although the content of the fields differs.
0144. Additional licensing restrictions will be readily
apparent to one skilled in the art and are contemplated as
within the scope of the invention.
0145 The license 1100 is stored with the content on
Secured Storage. In one embodiment, the required properties
ACL 1000 is also stored with the license 1100 and the
content. In an alternate embodiment, the ACL 1000 is
Secured Separately and controls access to the Storage key for
the content as described above.

0146). In the embodiments described above, the DRMOS
is responsible for checking the required properties ACL and
for enforcing the licensing restrictions. By providing the
validation functions in the DRMOS, the functions are cen
tralized and can be utilized by any process. In an alternate
embodiment, the validation functions concerning the appli
cation are coded directly into the trusted applications pro
grams. A similar effect is achieved in yet another alternate
embodiment that places the application validation functions
in a library that is incorporated into the trusted applications.
0147 One of skill in the art will immediately perceive
that certain rights are more easily enforced at the DRMOS
level, Such as the right for a certain application to access a
key or other content, or the ability to open a file a limited
number of times, while other types of rights are best
enforced by the application itself. Since the DRMOS
enforces the restriction that only explicitly Stated applica
tions can acceSS restricted content, the application can be
trusted to enforce the additional restrictions. Alternate
embodiments in which the enforcement of certain rights is
allocated to the DRMOS and the enforcement of others to
the application is therefore contemplated as within the Scope
of the invention.

0148 AS described above in conjunction with FIG. 2, the
content provider 220 delivers content to the subscriber
computer 200 after trust is established by transmitting the
appropriate certificates/identities for the CPU, the DRMOS,
and the application to the provider. The content can be
explicitly encrypted by the content provider for this combi
nation of CPU, DRMOS, and application, as described
above, or, if the content is sent over a Secured link (with, for
example, Secure Socket Layer Services), the content pro
vider can encrypt the content using the Session key for the
Secure link. In the latter embodiment, the DRMOS writes the

Dec. 29, 2005

encrypted content to permanent Storage and uses one of the
Storage keys generated by the CPU to Securely Store the
Session key for later use. Alternately, the content provider
can choose not to encrypt the content if it is transmitted to
the application in a Secure fashion, in which case the
application performs the encryption if it stores a persistent
copy of the content.
014.9 The particular methods performed by a subscriber
computer of an exemplary embodiment of the invention
have been described. The methods performed by the Sub
scriber computer have been shown by reference to flow
charts, operational diagrams, and data Structures. Methods
performed by the content provider have also been described.

Secure Storage

0150. As an alternative to the GenerateKey operation,
two new operations referred to as “Seal” and “Unseal” may
be introduced, which provide the ability to seal secrets only
for Subsequent use on the same machine.

0151. The “Seal” instruction takes as inputs an arbitrary
block of data, the current OS identity (the SIR), and a target
OS identity (a specified SIR value that must be current at the
point of future decryption). The processor encrypts this data
Structure using a Symmetric key, Ks.

0152 The data block can now only be decrypted via an
"UnSeal” operation on the Same processor, using the same
Symmetric key. This symmetric key is only used by the
“Seal” and “Unseal' operations, and will only decrypt the
Secret if the target OS identity is equal to the current value
of the SIR. If this check Succeeds, the processor decrypts and
returns the Secret, otherwise it returns an error.

0153. In this way, a processor can store encrypted infor
mation that can be decrypted only by the same processor
running a Specified operating System.

0154 As a special case, the operating System can choose
to Seal information for a different operating System whose
identity it knows and trusts. An example of this occurs when
the operating System is about to be upgraded and has a
signed certificate from the operating System vendor con
firming the identity of the new operating System. In this case
the operating System will Seal its Secrets for the new oper
ating System that is about to run.

O155 Alternatively, another approach is to employ
encryption with the processor's public key and decryption
using the "Reveal” operation, as described earlier. Instead of
using Ks for encryption and decryption, the processor's
public key pair is used. This allows the “Seal” operation to
be performed in Software, even on another processor.

Exemplary Chipset Implementation

0156 The fundamental requirements of atomicity and
privileged access to keys for the microcode that implements
authenticated boot can be met in a variety of alternative
implementations. In one implementation, components in the
chipset may examine the bus to infer operation and permit
or deny access to keys depending on the code executing.
Components on the chipset can also examine the bus for
unauthorized agents writing to protected code, or reading
unauthorized Secrets.

US 2005/0289067 A1

O157 An agent on the bus can also check for unautho
rized interrupts during the execution of the authenticated
operations or execution of the boot block.

0158 Similarly, there is no fundamental requirement for
the microcode that implements the authenticated boot opera
tions to by physically resident on the microprocessor chip.
It could also be stored in ROM, EPROM, or protected flash
memory in a physically Separate device on the bus.

BIOS Implementation

0159. The authenticated boot technique can be imple
mented by existing CPU operating modes using code in the
computer's BIOS code. The System Management Mode
(SMM), supported by Intel microprocessors, provides for a
region of memory that is inaccessible to normal operating
System operation, but can provide Subroutines that operating
Systems or applications can use. Such SMM protected
memory could be used for the Storage of keys and the code
that manages those keys.

CONCLUSION

0160 A digital rights management system has been
described whereby certain cryptographic Secrets are reliably
asSociated with a particular digital rights management oper
ating System or family of operating Systems running on a
particular general-purpose computer. The operating System
uses these Secrets to authenticate itself to a third party, to
receive encrypted content or information, to Store this con
tent or information Securely, and to retrieve it later. No
unrelated operating System or other Software running on the
Same computer can obtain these Secrets and perform these
actions, nor can any operating System or other Software
running on any other computer. By using these crypto
graphic Secrets, the digital rights management operating
System can recursively provide derived cryptographic
Secrets for the same uses by applications running on the
Same operating System on the Same computer.

0.161 Although specific embodiments have been illus
trated and described herein, it will be appreciated by those
of ordinary skill in the art that any arrangement which is
calculated to achieve the same purpose may be Substituted
for the Specific embodiments shown. This application is
intended to cover any adaptations or variations of the present
invention.

0162 For example, those of ordinary skill in the art will
appreciate that various combination of the exemplary
embodiments are applicable to Solve the digital rights man
agement problem depending on the exact computing envi
ronment. Furthermore, those of ordinary skill in the art will
recognize that the invention can be practiced on a large Scale
although illustrated herein with only a single Subscriber and
content provider.

0163 The terminology used in this application with
respect to is meant to include all hardware and Software
configuration and all networked environments. Therefore, it
is manifestly intended that this invention be limited only by
the following claims and equivalents thereof.

Dec. 29, 2005

We claim:
1. A method comprising:
receiving a data Structure to be encrypted, wherein the

data Structure includes content along with a Statement
of conditions under which the content may be
decrypted, wherein the Statement of conditions com
prises an operating System identity that an operating
System executing on the device must have in order for
the content to be decrypted; and

encrypting the content using a key.
2. A method as recited in claim 1, wherein the key

comprises a Symmetric key.
3. A method as recited in claim 1, wherein the key

comprises a Symmetric key of a processor of the device.
4. A method as recited in claim 1, wherein the operating

System identity is maintained in a Software identity register
(SIR).

5. A method as recited in claim 1, wherein the operating
System identity is identified in a signed certificate from an
operating System vendor.

6. A method as recited in claim 1, wherein the operating
System identity is for an operating System that is different
than an operating System executing when the content to be
encrypted is received.

7. A method as recited in claim 1, wherein encrypting the
content comprises encrypting the data structure.

8. A System comprising:
means for obtaining a block of data to be encrypted, a

current operating System identity, and a target operating
System identity; and

means for invoking a Seal operation to have the block of
data encrypted by a processor of the System using a
Symmetric key of the processor.

9. A System as recited in claim 8, further comprising
means for invoking the Seal operation So that only an
operating System having the target operating System identity
can decrypt the encrypted block of data.

10. A System comprising:
means for invoking an unseal operation in order to have

a data block decrypted using a key; and
means for receiving, in response to invoking the unseal

operation, the decrypted data block only if conditions
under which content in the data block can be decrypted
are Satisfied.

11. A System as recited in claim 10, wherein the key
comprises a Symmetric key.

12. A System as recited in claim 10, wherein the key
comprises a Symmetric key of a processor of the device.

13. A system as recited in claim 10, wherein the condi
tions comprise an operating System identity that an operating
System invoking the unseal operation must have in order for
the content to be decrypted.

14. A System as recited in claim 13, wherein the operating
System identity of the operating System invoking the unseal
operation is different than an operating System identity of an
operating System that previously had the data block
encrypted.

15. A System as recited in claim 10, further comprising
means for receiving, in response to invoking the unseal
operation, an error indication if the conditions are not
Satisfied.

