

US009660197B2

(12) United States Patent

Hwang et al.

(10) Patent No.: US 9,660,197 B2 (45) Date of Patent: May 23, 2017

(54) CONDENSED CYCLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE COMPRISING THE SAME

- (71) Applicant: **SAMSUNG DISPLAY CO., LTD.,** Yongin, Gyeonggi-Do (KR)
- (72) Inventors: Seok-Hwan Hwang, Yongin (KR);
 Hye-Jin Jung, Yongin (KR);
 Kwang-Hyun Kim, Yongin (KR);
 Young-Kook Kim, Yongin (KR);
 Jong-Woo Kim, Yongin (KR);
 Hyoung-Kun Kim, Yongin (KR)
- (73) Assignee: Samsung Display Co., Ltd., Yongin-si
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 260 days.
- (21) Appl. No.: 14/477,565
- (22) Filed: Sep. 4, 2014

(65) **Prior Publication Data**

US 2015/0263293 A1 Sep. 17, 2015

(30) Foreign Application Priority Data

Mar. 13, 2014 (KR) 10-2014-0029762

(51) Int. Cl.

#01L 51/00 (2006.01)

C07F 7/08 (2006.01)

C07D 405/12 (2006.01)

C07D 209/56 (2006.01)

H01L 51/50 (2006.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,053,255 B2 5/2006 Ikeda et al. 7,233,019 B2 6/2007 Ionkin et al.

2005/0156164	A1	7/2005	Sotoyama	
2008/0124455	A1	5/2008	Shin et al.	
2011/0193064	A1	8/2011	Funahashi	
2012/0097924	A1	4/2012	Kim et al.	
2012/0097925	A1*	4/2012	Kim	C07D 209/56

2013/0001524 A1 1/2013 Lim et al.

FOREIGN PATENT DOCUMENTS

257/40

JP	2006151979 A	*	6/2006
KR	10-2006-0006760		1/2006
KR	10-2010-0017692		2/2010
KR	10-2011-0006915		1/2011
KR	10-2012-0043622		5/2012

* cited by examiner

Primary Examiner — J. L. Yang

(74) Attorney, Agent, or Firm — Lewis Roca Rothgerber Christie LLP

(57) ABSTRACT

A condensed cyclic compound represented by Formula 1:

Formula 1 R_{11} R_{12} R_{13} R_{14} R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} R_{14} R_{15} R_{15}

Also disclosed is an organic light-emitting device including a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer and the condensed cyclic compound of Formula 1. An organic light-emitting device including the condensed cyclic compound of Formula 1 may have low driving voltage, high efficiency, a high luminance, and long lifetime.

20 Claims, 1 Drawing Sheet

<u>10</u>

190	
150	
110	

CONDENSED CYCLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE **COMPRISING THE SAME**

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to and the benefit of Korean Patent Application No. 10-2014-0029762, filed on Mar. 13, 2014, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.

BACKGROUND

1. Field

One or more aspects of embodiments of the present disclosure relate to a condensed cyclic compound and an organic light-emitting device including the same.

2. Description of the Related Art

Organic light-emitting devices (OLEDs) are self-emitting 20 devices that can provide multicolored images. Advantages of OLEDs include wide viewing angles, excellent contrast, quick response, high brightness, and excellent driving voltage characteristics.

An organic light-emitting device may have a structure in which a first electrode, a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially stacked on a substrate. Holes injected from the first electrode move to the emission layer via the hole transport region, while electrons injected from the second electrode move to the emission layer via the electron transport region. Holes and electrons recombine in the emission layer to generate excitons. When the excitons drop from an excited state to a ground state, light is emitted.

SUMMARY

Aspects of one or more embodiments of the present disclosure are directed toward a novel condensed cyclic compound and an organic light-emitting device including the same.

Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented

According to one or more embodiments of the present disclosure, there is provided a condensed cyclic compound represented by Formula 1:

35

$$R_{11}$$
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

2

In Formula 1,

 R_1 to R_7 , and R_{12} to R_{15} are each independently selected

a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phoshoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, and/or a C₁-C₆₀ alkoxy group,

a C₁-C₆₀ alkyl group and/or a C₁-C₆₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a 15 sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof,

a phenyl group and/or a naphthyl group,

a phenyl and/or a naphthyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phoshoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₁-C₆₀ alkoxy group, a phenyl group, and a naphthyl group, and

 $-Si(Q_1)(Q_2)(Q_3)$, wherein Q_1 to Q_3 are each independently selected from a C₁-C₆₀ alkyl group and/or a C₁-C₆₀ alkyl group substituted with at least one selected from a deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof;

at least one of R1 to R7 is selected from

a C₁-C₆₀ alkyl group,

a C₁-C₆₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or 40 a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof, and/or

 $-\mathrm{Si}(\mathrm{Q}_1)(\mathrm{Q}_2)(\mathrm{Q}_3);$

 L_1 is selected from a substituted or unsubstituted C_3 - C_{10} cycloalkylene group, a substituted or unsubstituted C2-C10 heterocycloalkylene group, a substituted or unsubstituted C₃-C₁₀ cycloalkenylene group, a substituted or unsubstituted C₂-C₁₀ heterocycloalkenylene group, a substituted or unsubstituted C_6 - C_{60} arylene group, a substituted or unsubstituted C2-C60 heteroarylene group, a substituted or unsub-Formula 1 50 stituted divalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group;

a1 is an integer selected from 0, 1, 2, and 3;

 R_{11} is selected from a substituted or unsubstituted C_1 - C_{60} 55 alkyl group, a substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C₂-C₁₀ cycloalkenyl group, a substituted or unsubstituted C2-C10 heterocycloalkenyl group, a substituted or unsubstituted 60 C_6 - C_{60} aryl group, a substituted or unsubstituted C_2 - C_{60} heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group; and

Ar₁ and Ar₂ are each independently selected from a substituted or unsubstituted C_3 - C_{10} cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a

substituted or unsubstituted C_3 - C_{10} cycloalkenyl group, a substituted or unsubstituted C_2 - C_{10} heterocycloalkenyl group, a substituted or unsubstituted C_6 - C_{60} aryl group, a substituted or unsubstituted C_2 - C_{60} heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.

wherein at least one substituent of the substituted C_3 - C_{10} cycloalkylene group, the substituted C_2 - C_{10} heterocy- $_{10}$ (Q_{37}) , cloalkylene group, the substituted C₃-C₁₀ cycloalkenylene group, the substituted C_2 - C_{10} heterocycloalkenylene group, the substituted C_6 - C_{60} arylene group, the substituted C_2 - C_{60} heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent nonaromatic condensed heteropolycyclic group, the substituted C_1 - C_{60} alkyl group, the substituted C_3 - C_{10} cycloalkyl group, the substituted C₂-C₁₀ heterocycloalkyl group, the substituted C₃-C₁₀ cycloalkenyl group, the substituted C₂-C₁₀ heterocycloalkenyl group, the substituted C_6 - C_{60} aryl group, 20 the substituted C₂-C₆₀ heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group is selected from

a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a 25 cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} alkoxy group,

a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an 35 amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} aryloxy group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, — $N(Q_{11})(Q_{12})$, — $Si(Q_{13})(Q_{14})$ 45 (Q_{15}) , and — $B(Q_{16})(Q_{17})$,

a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} arylthio group, a C_6 - C_{60} heteroaryl group, a 50 monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group,

a $\rm C_3$ - $\rm C_{10}$ cycloalkyl group, a $\rm C_2$ - $\rm C_{10}$ heterocycloalkyl group, a $\rm C_3$ - $\rm C_{10}$ cycloalkenyl group, a $\rm C_2$ - $\rm C_{10}$ heterocycloalkenyl group, a $\rm C_6$ - $\rm C_{60}$ aryl group, a $\rm C_6$ - $\rm C_{60}$ arylthio group, a $\rm C_6$ - $\rm C_{60}$ arylthio group, a $\rm C_6$ - $\rm C_{60}$ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from a 60 deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $\rm C_1$ - $\rm C_{60}$ alkenyl group, a $\rm C_2$ - $\rm C_{60}$ alkenyl group, a $\rm C_2$ - $\rm C_{60}$ alkynyl group, a $\rm C_1$ - $\rm C_{60}$ alkoxy group, a $\rm C_3$ - $\rm C_{10}$ cycloalkyl group, a $\rm C_2$ - $\rm C_{10}$ hetero-

4

cycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_2 - C_{60} heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, $-N(Q_{21})(Q_{22})$, $-Si(Q_{23})(Q_{24})(Q_{25})$, and $-B(Q_{26})(Q_{27})$, and

$$-N(Q_{31})(Q_{32})$$
, $-Si(Q_{33})(Q_{34})(Q_{35})$, and $-B(Q_{36})$

wherein Q_{11} to Q_{17} , Q_{21} to Q_{27} , and Q_{31} to Q_{37} are each independently a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, a C_1 - C_{60} alkoxy group, a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{60} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{60} heterocycloalkenyl group, a monovalent non-aromatic condensed polycyclic group, and/or a monovalent non-aromatic condensed heteropolycyclic group.

According to one or more embodiments of the present disclosure, an organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer and the above-described condensed cyclic compound of Formula 1.

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects will become apparent and more readily appreciated from the following description of embodiments, taken in conjunction with the accompanying drawings in which:

The drawing is a schematic view of a structure of an organic light-emitting device according to an embodiment of the present disclosure.

DETAILED DESCRIPTION

Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the FIGURES, to explain aspects of the present description. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Expressions such as "at least one selected from" when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Further, the use of "may" when describing embodiments of the present invention refers to "one or more embodiments of the present invention."

According to an embodiment of the present disclosure, there is provided a condensed cyclic compound represented by Formula 1:

Formula 1

$$R_{11}$$
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{15}

In Formula 1,

 $R_{\rm 1}$ to $R_{\rm 7},$ and $R_{\rm 12}$ to $R_{\rm 15}$ may be each independently $^{\rm 20}$ selected from

a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a eyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phoshoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, and/or a C₁-C₆₀ alkoxy group,

a C_1 - C_{60} alkyl group and/or a C_1 - C_{60} alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof,

a phenyl group and/or a naphthyl group,

a phenyl and/or a naphthyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a phoshoric acid group or a salt thereof, a phoshoric acid group or a salt thereof, a $C_1\text{-}C_{60}$ alkyl group, a $C_1\text{-}C_{60}$ alkoxy group, a phenyl group, and a naphthyl group, and/or

 $-\mathrm{Si}(Q_1)(Q_2)(Q_3)$, wherein Q_1 to Q_3 are each independently selected from a C_1 - C_{60} alkyl group and/or a C_1 - C_{60} alkyl group substituted with at least one selected from a deuterium, $-\mathrm{F}$, $-\mathrm{Cl}$, $-\mathrm{Br}$, $-\mathrm{I}$, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof; and

at least one of R₁ to R₇ may be selected from

a C₁-C₆₀ alkyl group,

a C₁-C₆₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof, and/or

—
$$Si(Q_1)(Q_2)(Q_3)$$
.

In some embodiments, R_1 to R_7 , and R_{12} to R_{15} may be each independently selected from

a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an 65 amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof,

6

a phoshoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, and/or a C_1 - C_{20} alkoxy group,

a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof, and/or

—Si(Q_1)(Q_2)(Q_3), wherein Q_1 to Q_3 are each independently selected from a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, as sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof; and

at least one of R_1 to R_7 may be selected from

a C_1 - C_{20} alkyl group,

a C_1 - C_{20} alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof, and/or

 $--Si(Q_1)(Q_2)(Q_3).$

In some other embodiments, any two of R_1 to R_7 may be each independently selected from

a C_1 - C_{60} alkyl group,

a C₁-C₆₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof, and/or

— $\mathrm{Si}(Q_1)(Q_2)(Q_3)$, wherein Q_1 to Q_3 are as defined above. In some embodiments, at least one of R_1 to R_5 may be selected from

a C1-C20 alkyl group,

a C_1 - C_{20} alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof, and/or

— $\operatorname{Si}(Q_1)(Q_2)(Q_3)$, wherein Q_1 to Q_3 are each independently selected from a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof. However, embodiments of the present disclosure are not limited thereto.

In Formula 1, L₁ may be selected from a substituted or unsubstituted C₃-C₁₀ cycloalkylene group, a substituted or unsubstituted C₂-C₁₀ heterocycloalkylene group, a substituted or unsubstituted C₃-C₁₀ cycloalkenylene group, a substituted or unsubstituted C₂-C₁₀ heterocycloalkenylene group, a substituted or unsubstituted C₆-C₆₀ arylene group, a substituted or unsubstituted C₁-C₆₀ heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group

In some embodiments, L₁ may be selected from

a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a 5 benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene 10 group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene 20 group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, 25 a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a 30 dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolyene group, an imidazopyridinylene group, and/or an imidazopyrimidinylene group; and/or

a phenylene group, a pentalenylene group, an indenylene 35 group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthra- 40 one of Formulae 3-1 to 3-32, but is not limited thereto: cenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene 45 group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrim- 50 idinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, 55 a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, 60 a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolyene group, an 65 imidazopyridinylene group, and/or an imidazopyrimidinylene group, each substituted with at least one selected

from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a pycenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.

In some other embodiments, L₁ may be represented by

Formula 3-1

*
$$(Z_1)_{d1}$$
Formula 3-2

*
$$(Z_1)_{d2}$$
*
$$(Z_2)_{d2}$$
*
Formula 3-4

Formula 3-26

-continued

-continued

20

Formula 3-28

12

Formula 3-27

In some other embodiments, L_1 may be represented by one of Formulae 4-1 to 4-23, but is not limited thereto:

$$(Z_1)_{d:}$$

$$(Z_1)_{d1}$$

* Normula 3-29
$$Z_{1)d6}$$

Formula 3-31
$$(Z_1)_{d1}$$

$$(Z_2)_{d2}$$

$$35$$

Formula 3-32
$$(Z_1)_{d1}$$
 $(Z_2)_{d2}$ $(Z_3)_{d2}$

In Formulae 3-1 to 3-32,

 Y_1 may be O, S, $C(Z_3)(Z_4)$, $N(Z_5)$, or $Si(Z_6)(Z_7)$;

 Z_1 to Z_7 may be each independently be selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl 50 group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a phenyl group, a naphthyl group, a dibenzofluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a chrysenyl group, an anthracenyl group, a pyrenyl group, a pyrimidinyl group, a pyridinyl group, a pyrimidinyl group, a pyridinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group;

d1 may be an integer selected from 1 to 4; d2 may be an integer selected from 1 to 3; d3 may be an integer selected from 1 to 6; d4 may be an integer selected from 1 to 8; d5 may be 1 or 2; d6 may be an integer selected from 1 to 5; 65 and

^{*} and *' may be binding sites with adjacent atoms.

Formula 4-12

Formula 4-13

Formula 4-14

Formula 4-15

Formula 4-17

25

30

-continued

Formula 4-19

Formula 4-20

Formula 4-21

Formula 4-22

-continued Formula 4-11

> 10 15

Formula 4-23

In Formulae 4-1 and 4-23, * and *' may be binding sites with adjacent atoms.

In Formula 1, a1, which indicates the number of L₁s, may be an integer selected from 0 to 3. For example, a1 may be 0 or 1. When all is 0, $-(L_1)_{a1}$ may represent a single bond. When a1 is 2 or greater, a1 number of L₁s may be identical to or different from each other.

In Formula 1, R_{11} may be selected from a substituted or unsubstituted C₁-C₆₀ alkyl group, a substituted or unsubsti-Formula 4-16 45 tuted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted C2-C10 heterocycloalkyl group, a substituted or unsubstituted C2-C10 cycloalkenyl group, a substituted or unsubstituted C_2 - C_{10} heterocycloalkenyl group, a substituted or unsubstituted C₆-C₆₀ aryl group, a substituted or unsubsti- $_{50}$ tuted C_1 - C_{60} heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and/ or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group; and

Ar₁ and Ar₂ may be each independently selected from a 55 substituted or unsubstituted C₃-C₁₀ cycloalkyl group, a substituted or unsubstituted C₂-C₁₀ heterocycloalkyl group, a substituted or unsubstituted C₃-C₁₀ cycloalkenyl group, a substituted or unsubstituted C₂-C₁₀ heterocycloalkenyl group, a substituted or unsubstituted C₆-C₆₀ aryl group, a Formula 4-18 $\,$ 60 $\,$ substituted or unsubstituted C_1 - C_{60} heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.

For example, in Formula 1, R_{11} may be selected from a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C₆-C₂₀ aryl group, a substituted or

unsubstituted C2-C20 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group; and Ar₁ and Ar₂ may be each independently selected from a substi- 5 tuted or unsubstituted C₅-C₂₀ aryl group, a substituted or unsubstituted C2-C20 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group. However, 10 embodiments of the present disclosure are not limited thereto

In some embodiments, R_{11} , Ar_1 and Ar_2 in Formula 1 may be each independently selected from

a phenyl group, a pentalenyl group, an indenyl group, a 15 naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenvl group, a fluoranthenvl group, a triphenvlenvl 20 group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl 25 group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofura- 35 nyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl 40 group, a thiadiazolyl group, an imidazopyridinyl group, and/or an imidazopyrimidinyl group, and/or

a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a 45 spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a pycenyl group, a perylenyl group, a pentaphenyl 50 group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isooxazolyl group, a pyridinyl 55 1 may be each independently selected from group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl 60 group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a 65 triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophe-

nyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and/or an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl, a cyclopentenyl, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a pycenyl group, a perylenyl group, a pentaphenyl group, a hexacenvl group, a pentacenvl group, a rubicenvl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and Si(Q₃₃)(Q₃₄)(Q₃₅),

wherein Q_{33} to Q_{35} may be each independently selected from a hydrogen, a deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino groups, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group.

In some other embodiments, R_{11} , Ar_1 , and Ar_2 in Formula

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and/or a dibenzocarbazolyl group, and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzo-

fluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a 5 triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and/or a dibenzocarbazolyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a 15 fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl 20 group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, and $-Si(Q_{33})(Q_{34})(Q_{35})$,

wherein Q_{33} to Q_{35} may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino groups, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a carbazolyl group, and/or a triazinyl group.

In some embodiments, R_{11} , Ar_1 , and Ar_2 in Formula 1 $_{40}$ may be each independently selected from groups represented by Formulae 5-1 to 5-14:

Formula 5-1
$$_{45}$$

Formula 5-2
$$_{50}$$
 $(Z_{31})_{e2}$

Formula 5-3

Formula 5-4

$$(Z_{31})_{e2}$$

$$* \underbrace{ (Z_{31})_{e3} }_{Y_{31}} (Z_{32})_{e4}$$

-continued

*
$$(Z_{31})_{e3}$$
 Formula 5-5

*
$$(Z_{31})_{e4}$$
 Formula 5-6

*
$$(Z_{31})_{e4}$$
 Formula 5-7

*
$$(Z_{31})_{e3}$$

* Formula 5-10
$$\underset{N}{\overset{(Z_{31})_{e3}}{\bigvee}}$$
 Formula 5-11

*
$$(Z_{31})_{\mathcal{E}_3}$$

Formula 5-13

*
$$(Z_{31})_{e5}$$

N N N N Formula 5-14

$$(Z_{31})_{e3}$$
 Y_{31}
 $(Z_{32})_{e4}$

In Formulae 5-1 to 5-14,

 Y_{31} may be O, S, $C(Z_{33})(Z_{34})$, or $N(Z_{35})$;

 Z_{31} to Z_{35} are each independently selected from

a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phoshoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, and/or a C₁-C₂₀ alkoxy group,

a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof,

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyridinyl group, a pyridinyl group, a quinolinyl group, a isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and/or a dibenzocarbazolyl group.

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzo- 20 fluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a 25 triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and/or a dibenzocarbazolyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a 30 hydrazine group, a hydrazone group, a carboxylic group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, and a naphthyl group, and/or

$--Si(Q_{33})(Q_{34})(Q_{35}),$

wherein Q_{33} to Q_{35} may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino groups, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrimidinyl group, a pyridinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group;

e1 may be an integer of 1 to 5; e2 may be an integer of 1 to 7; e3 may be an integer of 1 to 3; e4 may be an integer of 1 to 4; e5 may be 1 or 2; and * may be a binding site with an adjacent atom.

In some other embodiments, R_{11} , Ar_1 and Ar_2 in Formula 1 may be each independently selected from groups represented by Formulae 6-1 to 6-22. However, embodiments of the present disclosure are not limited thereto:

Formula 6-1

60

65

-continued

Formula 6-3

Formula 6-2

Formula 6-4

Formula 6-5

Formula 6-6

Formula 6-7

Formula 6-8

Formula 6-9

Formula 6-10

Formula 6-11

Formula 6-12

-continued

Formula 6-22

Formula 6-15

In Formulae 6-1 to 6-22, * may be a binding site with an adjacent atom.

In some embodiments, the condensed cyclic compound represented by Formula 1 may be represented by one of Formulae 1(1), 1(2), and 1(3):

Formula 6-16

Formula 6-17

Formula 6-18

Formula 6-19

65

Formula 6-20

$$\begin{array}{c} R_{11} \\ R_{12} \\ R_{13} \\ R_{14} \\ \end{array}$$

$$\begin{array}{c} R_{13} \\ R_{15} \\ \end{array}$$

$$\begin{array}{c} R_{13} \\ R_{15} \\ \end{array}$$

$$\begin{array}{c} Ar_1 \\ Ar_2 \\ \end{array}$$

Formula 1(1)

$$R_{12}$$
 R_{13}
 R_{14}
 R_{15}
 R_{7}

$$R_5$$

Formula 1(2)

-continued

Formula 1(3)
$$R_{11}$$

$$R_{12}$$

$$R_{13}$$

$$R_{14}$$

$$R_{15}$$

$$R_{7}$$

$$R_{7}$$

$$R_{7}$$

In Formulae 1(1), 1(2), and 1(3), R_{11} to R_{15} , L_1 , a1, Ar_1 and Ar_2 may be as defined therein.

For example, in Formulae 1(1), 1(2), and 1(3),

 $\rm R_{12}$ to $\rm R_{15}$ may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a $\rm ^{30}$ carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $\rm C_1\text{-}C_{20}$ alkyl group, and/or a $\rm C_1\text{-}C_{20}$ alkoxy group;

 L_1 may be selected from groups represented by Formulae $_{35}$ 3-1 to 3-32, and in some embodiments from groups represented by Formulae 4-1 to 4-23;

al may be 0 or 1;

 R_{11} , Ar_1 , and Ar_2 may be each independently selected from groups represented by Formulae 5-1 to 5-14, and in some embodiments from groups represented by Formulae 6-1 to 6-22. However, embodiments of the present disclosure are not limited thereto.

In Formulae 1(1), 1(2), and 1(3), R_1 and R_5 may be each 45 independently selected from

a C_1 - C_{60} alkyl group such as, for example, a C_1 - C_{20} alkyl group,

a C_1 - C_{60} alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and/or a phosphoric acid group or a salt thereof such as, for example, a C_1 - C_{20} alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and/or

—Si(Q_1)(Q_2)(Q_3), wherein Q_1 to Q_3 may be each independently selected from a C_1 - C_{60} alkyl group such as, for example, a C_1 - C_{20} alkyl group, and/or a C_1 - C_{60} alkyl group substituted with at least one selected from a deuterium, —F,

—Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof such as, for example, a C₁-C₂₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, and a phosphoric acid group or a salt thereof.

In some embodiments, R_1 and R_5 may be each indepen- 15 dently selected from

a methyl group, an ethyl group, a propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decanyl group, an isodecanyl group, a sec-decanyl group, and/or a tert-decanyl group, and/or

—Si(Q_1)(Q_2)(Q_3), wherein Q_1 to Q_3 may be each independently selected from a methyl group, an ethyl group, a propyl group, an n-butyl group, an isobutyl group, a secbutyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, an n-octyl group, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decanyl group, an isodecanyl group, a sec-decanyl group, and/or a tert-decanyl group.

In some embodiments, the condensed cyclic compound represented by Formula 1 may be one of Compounds 1 to 21.

-continued

-continued

-continued

-continued

-continued

-continued

 -continued

15

20

25

The condensed cyclic compound of Formula 1 includes a core as illustrated in the marked-up Formula 1 below, which any facilitate a high glass transition temperature. Accordingly, an organic light-emitting device including the condensed cyclic compound of Formula 1 may have enhanced heat resistance against a Joule heating generated between the organic layers or between the organic layer and the electrode of the organic light-emitting device under high-temperature environments, during storage and/or operation. Accordingly,

the organic light-emitting device including the condensed cyclic compound of Formula 1 may have improved lifetime (lifespan) characteristics.

Formula 1
$$R_{12}$$

$$R_{13}$$

$$R_{14}$$

$$R_{2}$$

$$R_{3}$$

$$R_{15}$$

$$R_{6}$$

$$R_{6}$$

In Formula 1, at least one of R_1 to R_7 may be selected from a C_1 - C_{60} alkyl group, a C_1 - C_{60} alkyl group substituted with at least one of a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and/or a phosphoric acid group or a salt thereof, and/or —Si(Q_1)(Q_2)(Q_3), wherein Q_1 to Q_3 may be as defined above.

When at least one of R₁ to R₇ in Formula 1 is a substituted or unsubstituted C₁-C₆₀ alkyl group as described above, the presence of the substituted or unsubstituted C₁-C₆₀ alkyl group may lead to intramolecular C—H or C—C σ-π conjugation to generate a new antibonding molecular orbital in a highest occupied molecular orbital (HOMO) region of the molecule. This may extend a π conjugated system, enhance oscillator strength at a transition from the HOMO region to a lowest unoccupied molecular orbital (LUMO) region, and consequently stabilize a singlet state (S1) energy of the condensed cyclic compound of Formula 1. As a result, fluorescence characteristics of the condensed cyclic compound represented by Formula 1 may be enhanced, which may contribute to improved emission characteristics of the condensed cyclic compound of Formula 1.

When at least one of R₁ to R₇ in Formula 1 is —Si(Q₁) (Q₂)(Q₃) group as described above, the presence of —Si (Q₁)(Q₂)(Q₃) group may lead to intramolecular Si—C σ*-π* conjugation to stabilize molecular π* orbital of LUMO. This may extend a π conjugated system, enhance oscillator strength at a transition from the HOMO region to the LUMO region, and consequently stabilize a singlet state (S1) energy of the condensed cyclic compound of Formula 1. As a result, fluorescence characteristics of the condensed cyclic compound represented by Formula 1 may be enhanced, which may contribute to improved emission characteristics of the condensed cyclic compound of Formula 1.

Accordingly, an organic light-emitting device including any of the condensed cyclic compounds represented by Formula 1 above may have low driving voltage, high luminance, high efficiency, and long lifetime.

The condensed cyclic compound of Formula 1 may be synthesized using (utilizing) any suitable organic synthesis method. Methods of synthesizing the condensed cyclic compounds of Formula 1 may be understood by those of ordinary skill in the art based on the examples described 5 below, but methods of synthesizing the condensed cyclic compounds of Formula 1 are not limited to these examples.

The condensed cyclic compound of Formula 1 may be in a layer between a pair of electrodes of an organic lightemitting device. For example, the condensed cyclic com- 10 pound of Formula 1 may be in the emission layer.

According to one embodiment of the present disclosure, an organic light-emitting device includes a first electrode, a second electrode opposite to the first electrode, and an organic layer between the first electrode and the second 15 electrode. The organic layer includes an emission layer and at least one of the condensed cyclic compounds of Formula 1 described above.

As used herein, "the organic layer including at least one condensed cyclic compound means "the organic layer 20 including one of the condensed cyclic compounds of Formula 1 above, or at least two different condensed cyclic compounds of Formula 1 above".

In some embodiments, the organic layer may include only Compound 1 above as the condensed cyclic compound, and 25 Compound 1 may be present in the emission layer of the organic light-emitting device. In some embodiments, the organic layer may include Compounds 1 and 2 as the condensed cyclic compounds, and Compounds 1 and 2 may be both present in the same layer (for example, in the 30 emission layer) or may be present in different layers (for example, in the emission layer and the electron transport layer, respectively).

The organic layer may include i) a hole transport region between the first electrode (e.g. an anode) and the emission 35 layer, the hole transport region including at least one selected from a hole injection layer, a hole transport layer, a buffer layer, and an electron blocking layer; and ii) an electron transport region between the emission layer and the region including at least one selected from a hole blocking layer, an electron transport layer, and an electron injection layer. The emission layer may include the condensed cyclic compound represented by Formula 1 above.

As used herein, the term "organic layer" refers to a single 45 layer and/or a plurality of layers between the first and second electrodes of the organic light-emitting device. A material in the "organic layer" is not limited to an organic material.

Hereinafter, a structure of an organic light-emitting device according to an embodiment of the present disclosure and a 50 method of manufacturing the same will now be described with reference to the drawing.

The drawing is a schematic sectional view of an organic light-emitting device 10 according to an embodiment of the present disclosure. Referring to the drawing, the organic 55 light-emitting device 10 includes a first electrode 110, an organic layer 150, and a second electrode 190.

A substrate may be positioned under the first electrode 110 or on the second electrode 190. The substrate may be a glass substrate or a transparent plastic substrate with good 60 mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water resistance.

In one embodiment, the first electrode 110 may be formed by depositing or sputtering a first electrode-forming material on the substrate, but the method for forming the first 65 electrode 110 is not limited thereto. When the first electrode 110 is an anode, a material having a high work function may

36

be used as the first electrode-forming material to facilitate hole injection. The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. Transparent and conductive materials such as ITO, IZO, SnO₂, and ZnO may be used to form the first electrode. When the first electrode 110 is a semi-transmissive electrode or a reflective electrode, the first electrode 110 may be formed of at least one material selected from magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), and magnesium-silver (Mg-Ag).

The first electrode 110 may have a single-layer structure or a multi-layer structure that includes a plurality of layers. For example, the first electrode 110 may have a threelayered structure of ITO/Ag/ITO, but is not limited thereto.

The organic layer 150 may be disposed on the first electrode 110. The organic layer 150 may include an emission layer (EML).

The organic layer 150 may further include a hole transport region between the first electrode and the EML, and an electron transport region between the EML and the second electrode.

In one embodiment, the hole transport region may include at least one selected from a hole injection layer (HIL), a hole transport layer (HTL), a buffer layer, and an electron blocking layer (EBL). In one embodiment, the electron transport layer may include at least one selected from a hole blocking layer (HBL), an electron transport layer (ETL), and an electron injection layer (EIL). However, embodiments of the present disclosure are not limited thereto.

The hole transport region may have a single-layered structure including a single material, a single-layered structure including a plurality of materials, or a multi-layered structure including a plurality of layers including different materials.

In some embodiments, the electron transport region may have a single-layered structure including a plurality of materials, or a multi-layered structure of HIL/HTL, HIL/ HTL/buffer layer, HIL/buffer layer, HTL/buffer layer, or second electrode (e.g. a cathode), the electron transport 40 HIL/HTL/EBL, where the layers forming a multi-layered structure of the electron transport region are sequentially stacked on the first electrode 110 in the order stated above. However, embodiments of the present disclosure are not limited thereto.

> When the hole transport region includes a HIL, the HIL may be formed on the first electrode 110 by using (utilizing) any of a variety of methods such as, for example, vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, inkjet printing, laser printing, laser induced thermal imaging (LITI), or the like.

> When the HIL is formed using vacuum deposition, the deposition conditions may vary depending on the material that is used to form the HIL and the structure of the HIL. In one embodiment, the deposition conditions may be as follows: a deposition temperature of about 100° C. to about 500° C., a degree of vacuum of about 10^{-8} to about 10^{-3} torr, and a deposition rate of about 0.01 to 100 Å/sec, but the deposition conditions are not limited thereto.

> When the HIL is formed using spin coating, the coating conditions may vary depending on the material that is used to form the HIL and the structure of the HIL. In one embodiment, the coating conditions may be as follows: a coating rate of about 2,000 rpm to about 5,000 5 pm and a heat treatment temperature of about 800° C. to about 200° C., but the coating conditions are not limited thereto.

> When the hole transport region includes a HTL, the HTL may be formed on the first electrode 110 or on the HIL by

using any of a variety of methods such as, for example, vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, inkjet printing, laser printing, laser induced thermal imaging (LITI), or the like. When the HTL is formed using vacuum deposition or spin coating, the conditions for deposition and coating may be similar to the above-described deposition and coating conditions for forming the HIL, and accordingly will not be described again.

In some embodiments, the hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4',4"-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzene sulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly (4-styrenesulfonate)(PEDOT/PSS), polyaniline/camphor sulfonic acid (Pani/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201 below, and/or a compound represented by Formula 202 below.

TDATA

methylated NPB

HMTPD

$$R_{201} - (L_{201})_{xa1} - N - (L_{203})_{xa2} - R_{202}$$
 Formula 201
$$(L_{203})_{xa3} - R_{203}$$

-continued

Formula 202

In Formulae 201 and 202,

 L_{201} to L_{205} may be each independently defined as L_1 in Formula 1 described above;

xa1 to xa4 are each independently selected from 0, 1, 2, and 3;

xa5 may be selected from 1, 2, 3, 4, and 5;

 R_{201} to R_{204} may be each independently selected from a substituted or unsubstituted $C_3\text{-}C_{10}$ cycloalkyl group, a substituted or unsubstituted $C_2\text{-}C_{10}$ heterocycloalkyl group, a substituted or unsubstituted $C_3\text{-}C_{10}$ cycloalkenyl group, a substituted or unsubstituted $C_2\text{-}C_{10}$ heterocycloalkenyl group, a substituted or unsubstituted $C_2\text{-}C_{10}$ heterocycloalkenyl group, a substituted or unsubstituted $C_6\text{-}C_{60}$ aryloxy group, a substituted or unsubstituted $C_6\text{-}C_{60}$ aryloxy group, a substituted or unsubstituted $C_6\text{-}C_{60}$ arylthio group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.

For example, in Formulae 201 and 202,

 L_{201} to L_{205} may be each independently

a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, a quinoxalinylene group, a quinozolinylene group, a quinoxalinylene group, a quinozolinylene group, and/or a triazinylene; and/or

a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene 40 group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and/or a triazinylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spirofluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carba-60 zolyl group, and a triazinyl group,

xa1 to xa4 may be each independently 0, 1, or 2; xa5 may be 1, 2, or 3;

 R_{201} to R_{204} may be each independently,

a phenyl group, a naphthyl group, a fluorenyl group, a 65 spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl

group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group; and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl $_{10}$ group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an 15 amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, an azulenyl group, a fluorenyl 20 group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a qui- 25 noxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group. However, embodiments of the present disclosure are not limited thereto.

The compound of Formula 201 may be represented by Formula 201A:

Formula 201A

In one embodiment, the compound of Formula 201 may be represented by Formula 201A-1, but the compound of Formula 201 is not limited thereto:

Formula 201A-1

$$R_{213}$$
 R_{214}
 R_{216}
 R_{213}
 R_{215}
 R_{216}
 R_{216}
 R_{216}
 R_{216}

In one embodiment, the compound of Formula 202 may 65 be represented by Formula 202A, but the compound of Formula 202 is not limited thereto:

Formula 202A

$$R_{215}$$
 R_{216}
 R_{202}
 R_{203}
 R_{204}

In Formulae 201A, 201A-1, and 202A,

 L_{201} to L_{203} , xa1 to xa3, xa5, and R_{202} to R_{204} may be defined as described in connection with Formula 201;

 R_{211} may be defined as R_{203} in Formula 201 described above;

 R_{213} to R_{216} may be each independently a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $C_1\text{-}C_{60}$ alkyl group, a $C_2\text{-}C_{60}$ alkenyl group, a $C_2\text{-}C_{60}$ alkynyl group, a $C_1\text{-}C_{60}$ alkoxy group, a $C_3\text{-}C_{10}$ cycloalkyl group, a $C_2\text{-}C_{10}$ heterocycloalkyl group, a $C_3\text{-}C_{10}$ cycloalkenyl group, a $C_2\text{-}C_{10}$ heterocycloalkenyl group, a $C_3\text{-}C_{10}$ cycloalkenyl group, a $C_6\text{-}C_{60}$ aryloxy group, a $C_6\text{-}C_{50}$ arylthio group, a $C_2\text{-}C_{60}$ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and/or a monovalent non-aromatic condensed heteropolycyclic group.

In some embodiments, in Formulae 201A, 201A-1, and 202A.

 L_{201} to L_{203} may be each independently

a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinoxalinylene group, a quinoxalinylene group, a dinoxalinylene group, a dinoxalinylene group, and/or a triazinylene group; and/or

a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and/or a triazinylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone 60 group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spirofluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group,

a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,

xa1 to xa3 may be each independently 0 or 1,

 R_{203} , R_{211} , and R_{212} may be each independently

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyridinyl group, a pyridinyl group, a pyridinyl group, a quinolinyl group, a quinoxalinyl group; and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzo- 15 fluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, 20 and/or a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group 25 or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,

 R_{213} and R_{214} may be each independently

a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkoxy group;

a C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine 40 group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl 45 group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzo-fluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl 55 group, a quinolinyl group, a quinoxalinyl group, and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzo-fluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyriazinyl group, a pyridinyl group, a quinolinyl group, a quinoxalinyl group, a quinoxalinyl group, a quinoxalinyl group, a quinoxalinyl group, a carbazolyl group, and/or a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl

44

group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrimidinyl group, a pyridinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,

R₂₁₅ and R₂₁₆ may be each independently

a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, and/or a C_1 - C_{20} alkoxy group;

a C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzo-fluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyridinyl group, a pyridinyl group, a quinozinyl group, a quinozolinyl group, a carbazolyl group, and a triazinyl group;

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyridinyl group, a pyridinyl group, a quinolinyl group, a quinoxalinyl group, a quinoxalinyl group, a quinazolinyl group, and/or a triazinyl group; and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, and

xa5 may be 1 or 2.

In Formulae 201A and 201A-1, R_{213} and R_{214} may be linked to each other to form a saturated or unsaturated ring.

The compound represented by Formula 201 and the compound represented by Formula 202 may be each one of compounds HT1 to HT20 illustrated below, but are not limited thereto.

HT5

-continued

-continued

HT7

НТ9

-continued

-continued

-continued

HT14

-continued

A thickness of the hole transport region may be from about 100 Å to about 10,000 Å, and in some embodiments, from about 100 Å to about 1,000 Å. When the hole transport region includes a HIL and a HTL, a thickness of the HIL may be from about 100 Å to about 10,000 Å, and in some embodiments, from about 100 Å to about 1,000 Å, and a thickness of the HTL may be from about 50 Å to about 2,000 Å, and in some embodiments, from about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the HIL, and the HTL are within these ranges, satisfactory hole transport characteristics may be obtained without a substantial increase in driving voltage.

The hole transport region may further include a chargegenerating material to improve conductivity, in addition to the materials described above. The charge-generating material may be homogeneously or inhomogeneously dispersed in the hole transport region.

The charge-generating material may be, for example, a p-dopant. The p-dopant may be one of quinone derivatives, metal oxides, and/or compounds with a cyano group, but is

not limited thereto. Non-limiting examples of the p-dopant include quinone derivatives such as tetracyanoquinonedimethane (TCNQ), 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane (F4-TCNQ), and the like; metal oxides such as tungsten oxide, molybdenum oxide, and the like; and 5 Compound HT-D1 below.

The hole transport region may further include at least one selected from a buffer layer and an EBL, in addition to the HIL and the HTL described above. The buffer layer may compensate for an optical resonance distance of light according to a wavelength of the light emitted from the EML, and thus may improve light-emission efficiency. A material in the buffer layer may be any material suitable for use in the hole transport region. The EBL may block 40 migration of electrons from the electron transport region into the EML.

The EML may be formed on the first electrode **110** or on the hole transport region by using any of a variety of methods such as, for example, vacuum deposition, spin 45 coating, casting, Langmuir-Blodgett (LB) deposition, inkjet printing, laser printing, laser induced thermal imaging (LITI), or the like. When the EML is formed using vacuum deposition or spin coating, the deposition and coating conditions for forming the EML may be similar to the abovedescribed deposition and coating conditions for forming the HIL, and accordingly will not be described again.

When the organic light-emitting device 10 is a full color organic light-emitting device, the EML may be patterned into a red emission layer, a green emission layer, and a blue 55 emission layer to correspond to individual subpixels, respectively. In some embodiments, the EML may emit white light and may have a structure in which a red emission layer, a green emission layer and a blue emission layer are stacked upon one another, or a structure including a mixture of a red 60 light-emitting material, a green light-emitting material, and a blue light-emitting material.

In one embodiment, the EML may include the condensed cyclic compound of Formula 1.

The EML may include a host and a dopant. In one 65 embodiment, the dopant may include the condensed cyclic compound of Formula 1.

The host may include at least one selected from TPBi, TBADN, ADN (also referred to as "AND" or "DNA"), CBP, CDBP, and TCP.

CDBP

In some embodiments, the host may include a compound represented by Formula 301.

 Ar_{301} -[(L_{301})_{xb1}- R_{301}]_{xb2}

Formula 301

In Formula 301,

Ar₃₀₁ may be

a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a 30 pentaphene, and/or an indenoanthracene; and/or

a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a 35 pentaphene, and/or an indenoanthracene, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, 40 a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, a C_1 - C_{60} alkoxy group, a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₂-C₁₀ heterocy- 45 cloalkenyl group, a C₆-C₆₀ aryl group, a C₆-C₆₀ aryloxy group, a C₆-C₆₀ arylthio group, a C₂-C₆₀ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and $-Si(Q_{301})(Q_{302})(Q_{303})$ (where Q_{301} to Q_{303} may 50 be each independently, a hydrogen, a C₁-C₆₀ alkyl group, a C_2 - C_{60} alkenyl group, a C_6 - C_{60} aryl group, and/or a C_2 - C_{60} heteroaryl group),

In one embodiment, L_{301} may be defined as L_{201} in Formula 201 described above,

R₃₀₁ may be

a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkoxy group;

a C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro 60 group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phosphoric acid group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl

group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group;

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group; or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzo-15 fluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinvl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,

xb1 may be selected from 0, 1, 2, and 3; xb2 may be selected from 1, 2, 3, and 4. In one embodiment, in Formula 301, L₃₀₁ may be

a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, and/or a chrysenylene group; and/or

a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, and/or a chrysenylene group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a Phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group, and

R₃₀₁ may be

a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkoxy group;

a C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phosphoric acid group or a salt thereof, a phosphoric acid group, a fluorenyl group, a spiro-fluorenyl group, a benzo-

fluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group;

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and/or a chrysenyl group;

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzo- 10 fluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and/or a chrysenyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, and a chrysenyl group. However, embodiments of the present disclosure are not limited thereto.

In one embodiment, the host may include a compound represented by Formula 301A:

Formula 301A 30

35

[(L₃₀₁)_{xb1}—R₃₀₁]_{xb2}

40

Substituents in Formula 301A may be as described above.

The compound of Formula 301 may include at least one of Compounds H1 to H42, but is not limited thereto:

65

-continued

-continued

-continued

H20
5
10

H24

-continued

-continued H36 H37 H38 H39

-continued

-continued

In some embodiments, the host may include at least one of Compounds H43 to H49, but is not limited thereto:

45 H41 50 55 60 65

-continued

68

-continued

H46

The dopant may include at least one of a fluorescent dopant and a phosphorescent dopant. When the dopant includes a fluorescent dopant, the fluorescent dopant may include the condensed cyclic compound of Formula 1.

The phosphorescent dopant may include an organometallic complex represented by Formula 401:

25

Formula 401

H49

 X_{402} X_{402} X_{403} X_{404} X_{404} X_{403} X_{404} X_{403} X_{404} X_{403} X_{404} X_{403} X_{402}

40

35 H47

In Formula 401,

M may be selected from iridium (Ir), platinum (Pt), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm);

45 X_{401} to X_{404} may be each independently a nitrogen or a carbon;

rings A₄₀₁ and A₄₀₂ may be each independently selected from a substituted or unsubstituted benzene, a substituted or unsubstituted naphthalene, a substituted or unsubstituted 50 fluorene, a substituted or unsubstituted spiro-fluorene, a substituted or unsubstituted indene, a substituted or unsubstituted pyrrole, a substituted or unsubstituted thiophene, a substituted or unsubstituted furan, a substituted or unsubstituted imidazole, a substituted or unsubstituted pyrazole, a H48 55 substituted or unsubstituted thiazole, a substituted or unsubstituted isothiazole, a substituted or unsubstituted oxazole, a substituted or unsubstituted isoxazole, a substituted or unsubstituted pyridine, a substituted or unsubstituted pyrazine, a substituted or unsubstituted pyrimidine, a substituted 60 or unsubstituted pyridazine, a substituted or unsubstituted quinoline, a substituted or unsubstituted isoquinoline, a substituted or unsubstituted benzoquinoline, a substituted or unsubstituted quinoxaline, a substituted or unsubstituted quinazoline, a substituted or unsubstituted carbazole, a sub-65 stituted or unsubstituted benzoimidazole, a substituted or unsubstituted benzofuran, a substituted or unsubstituted

benzothiophene, a substituted or unsubstituted isobenzoth-

iophene, a substituted or unsubstituted benzoxazole, a substituted or unsubstituted isobenzoxazole, a substituted or unsubstituted triazole, a substituted or unsubstituted oxadiazole, a substituted or unsubstituted triazine, a substituted or unsubstituted a dibenzofuran, and/or a substituted or unsubstituted a dibenzothiophene;

at least one substituent of the substituted benzene, the substituted naphthalene, the substituted fluorene, the substituted spiro-fluorene, the substituted indene, the substituted pyrrole, the substituted thiophene, the substituted furan, the substituted imidazole, the substituted pyrazole, the substituted thiazole, the substituted isothiazole, the substituted oxazole, the substituted isoxazole, the substituted pyridine, the substituted pyrazine, the substituted pyrimidine, the 15 substituted pyridazine, the substituted quinoline, the substituted isoquinoline, the substituted benzoquinoline, the substituted quinoxaline, the substituted quinazoline, the substituted carbazole, the substituted benzoimidazole, the substituted benzofuran, the substituted benzothiophene, the substituted isobenzothiophene, the substituted benzoxazole, the substituted isobenzoxazole, the substituted triazole, the substituted oxadiazole, the substituted triazine, the substituted dibenzofuran, and/or the substituted dibenzothiophene 25 may be selected from

a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt $_{30}$ thereof, a phosphoric acid group or a salt thereof, a $_{10}$ -C $_{60}$ alkyl group, a $_{10}$ -C $_{60}$ alkynyl group, a $_{10}$ -C $_{60}$ alkoxy group;

a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} alkoxy group, each substituted 35 with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid 40 group or a salt thereof, a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_3 -

a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} arylthio group, a C_6 - C_{60} heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group,

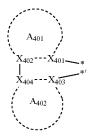
a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_2 - C_{60} heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a

70

phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkenyl group, a C_1 - C_{60} alkoxy group, a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_2 - C_{60} heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, $-N(Q_{411})(Q_{412})$, $-Si(Q_{413})(Q_{414})(Q_{415})$, and $-B(Q_{416})(Q_{417})$, and

$$\begin{array}{lll} & -N(Q_{421})(Q_{422}), & & -Si(Q_{423})(Q_{424})(Q_{425}), & & \text{and} \\ & -B(Q_{426}) \; (Q_{427}); & & \end{array}$$

 L_{401} may be an organic ligand;


xc1 may be 1, 2, or 3;

xc2 may be 0, 1, 2, or 3. Descriptions for Q_{401} to Q_{407} , Q_{411} to Q_{417} and Q_{421} to Q_{427} are the same as the descriptions for Q_1 .

In one embodiment, in Formula 401, L₄₀₁ may be a monovalent, divalent, or trivalent organic ligand. For example, L₄₀₁ may be selected from a halogen ligand (for example, Cl or F), a diketone ligand (for example, acety-lacetonate, 1,3-diphenyl-1,3-propanedionate, 2,2,6,6-te-tramethyl-3,5-heptanedionate, or hexafluoroacetonate), a carboxylic acid ligand (for example, picolinate, dimethyl-3-pyrazolecarboxylate, or benzoate), a carbon monoxide ligand, an isonitrile ligand, a cyano ligand, and/or a phosphorous ligand (for example, phosphine or phosphite). However, embodiments of the present disclosure are not limited thereto.

When $A_{\rm 401}$ in Formula 401 has at least two substituent groups, the at least two substituent groups of $A_{\rm 401}$ may be linked (i.e. fused) to each other to form a saturated or unsaturated ring.

When A_{402} in Formula 401 has at least two substituent groups, the at least two substituent groups of A_{402} 2 may be linked (i.e. fused) to each other to form a saturated or unsaturated ring.

When xc1 in Formula 401 is 2 or greater, a plurality of ligands may be identical to or different from each other, and A_{401} and A_{402} of one ligand may be linked to A_{401} and A_{402} of an adjacent ligand, respectively, directly (e.g. via a single bond) or via a linking group (for example, a C_1 - C_5 alkylene group, —N(R')—(where R' is a C_1 - C_{10} alkyl group or a C_6 - C_{20} aryl group), or C(=O)—).

In one embodiment, the fluorescent dopant may include at least one of DPVBi, DPAVBi, TBPe, DCM, DCJTB, Coumarin 6, and C545T, in addition to the condensed cyclic compound of Formula 1.

DPVBi

DPAVBi

NC CN

S

S

N

Et N

Coumarin 6

DCJTB

C545T

An amount of the dopant in the EML may be from about 0.01 parts to about 15 parts by weight based on 100 parts by weight of the host, but the amount of the dopant is not limited to this range.

The thickness of the EML may be from about 100 Å to about 1,000 Å, and in some embodiments, about 200 Å to about 600 Å. When the thickness of the EML is within these ranges, the EML may have good light emitting ability without a substantial increase in driving voltage.

The electron transport region may be positioned on the EMI

The electron transport region may include at least one of a HBL, an ETL, and an EIL. However, embodiments of the present disclosure are not limited thereto.

In some embodiments, the electron transport region may 35 have a structure including an ETL/EIL, or a HBL/ETL/EIL, and the layers forming a structure of the electron transport region may be sequentially stacked on the EML in the order stated above. However, embodiments of the present disclosure are not limited thereto.

In some embodiments, the organic layer 150 of the organic light-emitting device 10 may include the electron transport region between the EML and the second electrode 190, and the condensed cyclic compound of Formula 1 may $_{45}$ be in the electron transport region.

The electron transport region may include a HBL. When the EML includes a phosphorescent dopant, the HBL may prevent diffusion of triplet excitons or holes into the ETL from the EML.

When the electron transport region includes a HBL, the HBL may be formed on the EML by using any of a variety of methods such as, for example, vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, inkjet 55 printing, laser printing, laser induced thermal imaging (LITI), or the like. When the HBL is formed using vacuum deposition or spin coating, the deposition and coating conditions for forming the HBL may be similar to the abovedescribed deposition and coating conditions for forming the HIL, and accordingly will not be described again.

In one embodiment, the HBL may include at least one of bathocuproine (BCP) below and bathophenanthroline 65 (Bphen) below. However, embodiments of the present disclosure are not limited thereto.

Bphen

A thickness of the HBL may be from about 20 Å to about 1,000 Å, and in some embodiments, from about 30 Å to about 300 Å. When the thickness of the HBL is within these ranges, the HBL may have improved hole blocking ability without a substantial increase in driving voltage.

The electron transport region may include an ETL. The ETL may be formed on the EML or the HBL by using any of a variety of methods such as, for example, vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, inkjet printing, laser printing, laser induced thermal imaging (LITI), or the like. When the ETL is formed using vacuum deposition or spin coating, the deposition and coating conditions for forming the ETL may be similar to the above-described deposition and coating conditions for forming the HIL, and accordingly will not be described again.

In embodiments where the organic layer 150 of the organic light-emitting device includes an electron transport region between the EML and the second electrode 190, the electron transport region may include at least one of an ETL and an EIL.

The ETL may further include at least one of $\mathrm{Alq_3}$, Balq , TAZ , and NTAZ below, in addition to BCP and Bphen described above.

In some embodiments, the ETL may include at least one compound selected from the compounds represented by 50 Formula 601 and the compounds represented by Formula 602:

 $\mathrm{Ar}_{601}\text{-}[(\mathrm{L}_{601})_{xe1}\text{-}\mathrm{E}_{601}]_{xe2}$

NTAZ

Formula 601

In Formula 601,

Ar₆₀₁ may be selected from

naphthalene, heptalene, fluorene, spiro-fluorene, benzo-fluorene, dibenzofluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, picene, perylene, pentaphene, and/or 60 indenoanthracene,

naphthalene, heptalene, fluorene, spiro-fluorene, benzo-fluorene, dibenzo-fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, naphthacene, picene, perylene, pentaphene, and/or 65 indenoanthracene, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group,

a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₂-C₆₀ alkenyl group, a C₂-C₆₀ alkynyl group, a C_1 - C_{60} alkoxy group, a C_3 - C_{10} cycloalkyl group, a C_3 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_3 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C₆-C₆₀ aryloxy group, a C₆-C₆₀ arylthio group, a C₂-C₆₀ 10 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and $-\text{Si}(Q_{301})(Q_{302})(Q_{303})$, wherein Q_{301} to Q_{303} may be each independently selected from a hydrogen, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl 15 group, a C_6 - C_{60} aryl group, and/or a C_2 - C_{60} heteroaryl group;

 L_{601} may be defined as L_{201} described above;

E₆₀₁ may be selected from

a pyrrolyl group, a thiophenyl group, a furanyl group, an 20 imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an 25 isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and/or an imidazopyrimidinyl group, and

a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, 40 a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a 45 quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and/or an imidazopyrimidinyl group, each substituted 55 with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group,

an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovarenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophe- 20 nyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;

xe1 may be selected from 0, 1, 2, and 3; and xe2 may be selected from 1, 2, 3, and 4.

Formula 602

25

$$X_{611} X_{613} X_{613} X_{616} (L_{616})_{xe616} R_{615}$$

$$X_{612} (L_{615})_{xe615} R_{615}$$
35

In Formula 602,

 $\begin{array}{c} X_{611} \text{ may be N or C-}(L_{611})_{xe611}\text{-R}_{611}, \, X_{612} \text{ may be N or C-}(L_{612})_{xe612}\text{-R}_{612}, \, X_{613} \text{ may be N or C-}(L_{613})_{xe613}\text{-R}_{613}, \\ \text{and at least one of } X_{611} \text{ to } X_{613} \text{ may be N}, \end{array}$

 $L_{\rm 611}$ to $L_{\rm 616}$ may be each independently defined as $L_{\rm 201}$ described above,

 R_{611} to R_{616} may be each independently

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzo- 45 fluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyridinyl group, a pyridinyl group, a quinolinyl group, a quinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, 50 and/or a triazinyl group; and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl 55 group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group, each substituted with at least one selected from a deuterium, -F, -Cl, -Br, -I, a hydroxyl 60 group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl 65 group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a

phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, and

xe611 to xe616 may be each independently selected from, 0, 1, 2, and 3.

The compound represented by Formula 601 and the compound represented by Formula 602 may be selected from Compounds ET1 to ET15 illustrated below, but are not limited thereto.

ET1

-continued

-continued

20

25

40

45

-continued

ЕТ9 10

-continued

ET12

ET13

ET-D2

-continued

A thickness of the ETL may be from about 100 Å to about 1,000 Å, and in some embodiments, from about 150 Å to about 500 Å. When the thickness of the ETL is within these ranges, the ETL may have satisfactory electron transporting ability without a substantial increase in driving voltage.

In some embodiments the ETL may further include a metal-containing material, in addition to the above-described materials.

The metal-containing material may include a lithium (Li) complex. Non-limiting examples of the Li complex are compound ET-D1 below (lithium quinolate (LiQ)) and compound ET-D2 below.

ET-D1

-continued

In one embodiment, the electron transport region may include an EIL that may facilitate injection of electrons from the second electrode 190.

The EIL may be formed on the ETL by using any of a variety of methods such as, for example, vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, inkjet printing, laser printing, laser induced thermal imaging (LITI), or the like. When the EIL is formed using vacuum deposition or spin coating, the deposition and coating conditions for forming the EIL may be similar to the above-described deposition and coating conditions for forming the HIL, and accordingly will not be described again.

The EIL may include at least one selected from LiF, NaCl, CsF, Li₂O, BaO, and/or LiQ.

A thickness of the EIL may be from about 1 Å to about 30 100 Å, and in some embodiments, from about 3 Å to about 90 Å. When the thickness of the EIL is within these ranges, the EIL may have satisfactory electron injection ability without a substantial increase in driving voltage.

The second electrode 190 may be positioned on the organic layer 150, as described above. The second electrode 190 may be an electron injecting electrode (i.e. a cathode). A material for forming the second electrode 190 may be a metal, an alloy, an electrically conductive compound, which all have a low-work function, or a mixture thereof. Non-limiting examples of materials for forming the second electrode 190 are lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al— Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag). In some embodiments, a material for forming the second electrode 190 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode.

Although the organic light-emitting device of the drawing is described above, embodiments of the present disclosure are not limited thereto.

As used herein, a C_1 - C_{60} alkyl group refers to a linear or branched aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms in the main chain. Non-limiting examples of the C_1 - C_{60} alkyl group are a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. A C_1 - C_{60} alkylene group refers to a divalent group having the same structure as the C_1 - C_{60} alkyl.

As used herein, a C_1 - C_{60} alkoxy group refers to a monovalent group represented by OA_{101} (where A_{101} is the C_1 - C_{60} alkyl group as described above). Non-limiting examples of the C_1 - C_{60} alkoxy group are a methoxy group, an ethoxy group, and an isopropyloxy group.

As used herein, a C₂-C₆₀ alkenyl group refers to a hydro-65 carbon group including at least one carbon double bond at one or more positions along a carbon chain of the C₂-C₆₀ alkyl group. For example, the C₂-C₆₀ alkenyl group may

include a terminal alkene and/or an internal alkene. Non-limiting examples of the $\rm C_2\text{-}C_{60}$ alkenyl group are an ethenyl group, a propenyl group, and a butenyl group. A $\rm C_2\text{-}C_{60}$ alkylene group refers to a divalent group having the same structure as the $\rm C_2\text{-}C_{60}$ alkenyl group.

As used herein, a C_2 - C_{60} alkynyl group refers to a hydrocarbon group including at least one carbon triple bond at one or more positions along a carbon chain of the C_2 - C_{60} alkyl group. For example, the C_2 - C_{60} alkynyl group may include a terminal alkyne and/or an internal alkyne. Non- 10 limiting examples of the C_2 - C_{60} alkynyl group are an ethynyl group and a propynyl group. A C_2 - C_{60} alkynylene group used herein refers to a divalent group having the same structure as the C_2 - C_{60} alkynyl group.

As used herein, a C_3 - C_{10} cycloalkyl group refers to a 15 monovalent, monocyclic hydrocarbon group having 3 to 10 carbon atoms as ring-forming atoms. Non-limiting examples of the C_3 - C_{10} cycloalkyl group are a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. A C_3 - C_{10} cycloalkylene group 20 refers to a divalent group having the same structure as the C_3 - C_{10} cycloalkyl group.

As used herein, a C_2 - C_{10} heterocycloalkyl group refers to a monovalent monocyclic group having 2 to 10 carbon atoms and at least one hetero atom selected from N, O, P, and 25 S as ring-forming atoms. Non-limiting examples of the C_2 - C_{10} heterocycloalkyl group are a tetrahydrofuranyl group and a tetrahydrothiophenyl group. A C_2 - C_{10} heterocycloalkylene group refers to a divalent group having the same structure as the C_2 - C_{10} heterocycloalkyl group.

As used herein, a C_3 - C_{10} cycloalkenyl group refers to a monovalent monocyclic group having 3 to 10 carbon atoms as ring-forming atoms and including at least one carbon-carbon double bond in the ring, but not having aromacity. Non-limiting examples of the C_3 - C_{10} cycloalkenyl group are 35 a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. A C_3 - C_{10} cycloalkenylene group refers to a divalent group having the same structure as the C_3 - C_{10} cycloalkenyl group.

As used herein, a $\rm C_2$ - $\rm C_{10}$ heterocycloalkenyl group used 40 herein refers to a monovalent monocyclic group having 2 to 10 carbon atoms and at least one hetero atom selected from N, O, P, and S as ring-forming atoms, and at least one double bond in the ring. Non-limiting examples of the $\rm C_2$ - $\rm C_{10}$ heterocycloalkenyl group are a 2,3-hydrofuranyl group and 45 a 2,3-hydrothiophenyl group. A $\rm C_2$ - $\rm C_{10}$ heterocycloalkenylene group used herein refers to a divalent group having the same structure as the $\rm C_2$ - $\rm C_{10}$ heterocycloalkenyl group.

As used herein, a C_6 - C_{60} aryl group refers to a monovalent, carbocyclic aromatic group having 6 to 60 carbon 50 atoms as ring-forming atoms, and a C_6 - C_{60} arylene group refers to a divalent, carbocyclic aromatic group having 6 to 60 carbon atoms as ring-forming atoms. Non-limiting examples of the C_6 - C_{60} aryl group are a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl 55 group, a pyrenyl group, and a chrysenyl group. When the C_6 - C_{60} aryl group and/or the C_6 - C_{60} arylene group include at least two rings, the rings may be fused to each other.

As used herein, a C_1 - C_{60} heteroaryl group refers to a monovalent, carbocyclic aromatic group having 2 to 60 60 carbon atoms and at least one hetero atom selected from N, O, P, and S as a ring-forming atoms. A C_1 - C_{60} heteroarylene group refers to a divalent group having the same structure as the C_1 - C_{60} heteroaryl group. Non-limiting examples of the C_1 - C_{60} heteroaryl group are a pyridinyl group, a pyrimidinyl 65 group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and/or an isoquinolinyl group.

86

When the $\rm C_1$ - $\rm C_{60}$ heteroaryl and/or the $\rm C_1$ - $\rm C_{60}$ heteroarylene include at least two rings, the rings may be fused to each other

As used herein, a C_6 - C_{60} aryloxy group refers to a group represented by $-OA_{102}$ (where A_{102} is the C_6 - C_{60} aryl group as described above), and a C_6 - C_{60} arylthio group refers to a group represented by $-SA_{103}$ (where A_{103} is the C_6 - C_{60} aryl group as described above).

As used herein, a monovalent non-aromatic condensed polycyclic group refers to a monovalent group having at least two rings condensed to each other, in which only carbon atoms (for example, 8 to 60 carbon atoms) are exclusively included as ring-forming atoms, and the entire molecule does not have aromacity. A non-limiting example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group. A divalent non-aromatic condensed polycyclic group refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.

As used herein, a monovalent non-aromatic condensed heteropolycyclic group refers to a monovalent group having at least two rings condensed to each other, in which carbon atoms (for example, 2 to 60 carbon atoms) and at least one hetero atom selected from N, O, P, and S are as ring-forming atoms, and the entire molecule does not have aromacity. A non-limiting example of the monovalent non-aromatic condensed heteropolycyclic group is a carbazolyl group. A divalent non-aromatic condensed heteropolycyclic group refers to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.

As used herein, at least one substituent of the substituted C_3 - C_{10} cycloalkylene group, the substituted C_2 - C_{10} heterocycloalkylene group, the substituted C₃-C₁₀ cycloalkenylene group, the substituted $\mathrm{C}_2\text{-}\mathrm{C}_{10}$ heterocycloalkenylene group, the substituted C_6 - C_{60} arylene group, the substituted C_1 - C_{60} heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent nonaromatic condensed heteropolycyclic group, the substituted C_1 - C_{60} alkyl group, the substituted C_2 - C_{60} alkenyl group, the substituted C_2 - C_{60} alkynyl group, the substituted C_1 - C_{60} alkoxy group, the substituted C₃-C₁₀ cycloalkyl group, the substituted C2-C10 heterocycloalkyl group, the substituted C₃-C₁₀ cycloalkenyl group, the substituted C₂-C₁₀ heterocycloalkenyl group, the substituted C₆-C₆₀ aryl group, the substituted C_6 - C_{60} aryloxy group, the substituted C_6 - C_{60} arylthio group, the substituted C₁-C₆₀ heteroaryl group, the substituted monovalent non-aromatic condensed polycyclic group, and/or the substituted monovalent non-aromatic condensed heteropolycyclic group, may be selected from

a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a $\rm C_1\text{-}C_{60}$ alkyl group, a $\rm C_2\text{-}C_{60}$ alkynyl group, and a $\rm C_1\text{-}C_{60}$ alkoxy group,

a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and C_1 - C_{60} alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a

 $C_6\text{-}C_{60}$ aryloxyl group, a $C_6\text{-}C_{60}$ arylthio group, a $C_2\text{-}C_{60}$ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q_{11})(Q_{12}), —Si(Q_{13})(Q_{14}) (Q_{15}), and —B(Q_{16})(Q_{17}), C_3\text{-}C_{10} cycloalkyl group, a $C_2\text{-}C_{10}$ heterocycloalkyl group, a $C_3\text{-}C_{10}$ cycloalkenyl group, a $C_2\text{-}C_{10}$ heterocycloalkenyl group, a $C_6\text{-}C_{60}$ aryl group, a $C_6\text{-}C_{60}$ aryloxy group, a $C_6\text{-}C_{60}$ aryloxy group, a $C_6\text{-}C_{60}$ aryloxy group, a $C_6\text{-}C_{60}$ aryloxy group, a condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group,

a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a $\rm C_3$ - $\rm C_{10}$ cycloalkenyl group, a $\rm C_2$ - $\rm C_{10}$ heterocycloalkenyl group, a $\rm C_6$ - $\rm C_{60}$ aryl group, a $\rm C_6$ - $\rm C_{60}$ aryloxy group, a C₆-C₆₀ arylthio group, a C₂-C₆₀ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one of a deuterium, —F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro 20 group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, a C_1 - C_{60} alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₂-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₂-C₁₀ heterocycloalkenyl group, a C₆-C₆₀ aryl group, a C₆-C₆₀ aryloxy group, a C₆-C₆₀ arylthio group, a C₂-C₆₀ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, $-N(Q_{21})(Q_{22})$, $-Si(Q_{23})(Q_{24})(Q_{25})$, and $-B(Q_{26})$ (Q27), and

 $-N(Q_{31})(Q_{32})$, $-Si(Q_{33})(Q_{34})(Q_{35})$, and $-B(Q_{36})_{35}$ (Q_{37}) ,

wherein Q₁₁ to Q₁₇, Q₂₁ to Q₂₇, and Q₃₁ to Q₃₇ may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₂-C₆₀ alkenyl group, a C₂-C₆₀ alkynyl group, a C₁-C₆₀ alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₂-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkyl group, a C₂-C₆₀ heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and/or a monovalent non-aromatic condensed heteropolycyclic group.

In one embodiment, at least one substituent of the substituted C₃-C₁₀ cycloalkylene group, the substituted C₂-C₁₀ heterocycloalkylene group, the substituted C₃-C₁₀ cycloalkenylene group, the substituted C2-C10 heterocycloalkenylene group, the substituted C₆-C₆₀ heteroarylene group, 55 the substituted C_1 - C_{60} heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic condensed heteropolycyclic group, the substituted C₁-C₆₀ alkyl group, the substituted C_2 - C_{60} alkenyl group, the substituted C_2 - C_{60} alkynyl group, 60 the substituted C_1 - C_{60} alkoxy group, the substituted C_3 - C_{10} cycloalkyl group, the substituted C_2 - C_{10} heterocycloalkyl group, the substituted C₃-C₁₀ cycloalkenyl group, the substituted C2-C10 heterocycloalkenyl group, the substituted C_6 - C_{60} aryl group, the substituted C_6 - C_{60} aryloxy group, the substituted C₆-C₆₀ arylthio group, the substituted C₁-C₆₀ heteroaryl group, the substituted monovalent non-aromatic

88

condensed polycyclic group, and/or the substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from

a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} alkoxy group,

a $\rm C_1\text{-}C_{60}$ alkyl group, a $\rm C_2\text{-}C_{60}$ alkenyl group, a $\rm C_2\text{-}C_{60}$ alkynyl group, and/or a C1-C60 alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, -Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenvl group, a phenvl group, a pentalenvl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovarenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, $-N(Q_{11})(Q_{12})$, -Si $(Q_{13})(Q_{14})(Q_{15})$, and $-B(Q_{16})(Q_{17})$,

a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovarenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a

naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, a oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyridinyl group, an imidazopyrimidinyl group,

a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an 15 indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl 20 group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovarenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl 25 group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a 30 naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl 35 group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and 40 an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic 45 acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₂-C₆₀ alkenyl group, a C₂-C₆₀ alkynyl group, a C₁-C₆₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a 50 pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl 55 group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovarenyl group, a pyrrolyl group, a 60 thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a 65 purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridi-

nyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, $-N(Q_{21})(Q_{22})$, $-Si(Q_{23})(Q_{24})$ (Q_{25}) , and $-B(Q_{26})(Q_{27})$, and

 $-N(Q_{31})(Q_{32}), -Si(Q_{33})(Q_{34})(Q_{35}), \text{ and } -B(Q_{36})(Q_{37}),$

wherein Q_{11} to Q_{17} , Q_{21} to Q_{27} , and Q_{31} to Q_{37} may be each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C₂-C₆₀ alkynyl group, a C₁-C₆₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovarenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and/or an imidazopyrimidinyl group.

The acronym "Ph" used herein refers to phenyl, the acronym "Me" used herein refers to methyl, the acronym "Et" used herein refers to ethyl, and the acronym "ter-Bu" or "Bu" used herein refers to tert-butyl.

Condensed cyclic compounds, and organic light-emitting devices including the same, of embodiments of the present disclosure will now be described with reference to the following examples. However, these examples are only for illustrative purposes and are not intended to limit the scope of the one or more embodiments of the present disclosure. In the following synthesis examples, the expression that "B' instead of 'A' was used" means that 'B' and 'A' were used in equivalent amounts.

Synthesis Example 1

Synthesis of Compound 13

Br

$$CH_{3}I$$
 $RBuLi$
 THF
 Br_{2}
 Br_{2}
 Br_{3}
 Br_{2}
 Br_{4}
 Br_{2}
 Br_{2}
 Br_{3}
 Br_{4}
 Br_{2}
 Br_{4}
 Br_{2}
 Br_{3}
 Br_{4}
 Br_{4}
 Br_{5}
 Br_{5}
 Br_{7}
 Br_{7}
 Br_{7}

I-5

92 -continued CuI 10 18-Crown-6 I-6 15 20 I-8 Pd(PPh₃)₄ 25 K₂CO₃ I-7 30 35 40 45 50 13

Synthesis of Intermediate I-1

3.6 g (10.0 mmol) of 1,6-dibromopyrene was dissolved in 100 mL of tetrahydrofuran (THF) 100 mL, and 60 mmol of a 2.6M n-BuLi solution in THF was dropwise added thereto at 0° C. in a nitrogen atmosphere, and the resulting solution was stirred while maintaining the temperature constant for about 6 hours. Then, 5.53 g (60.0 mmol) of iodomethane was dropwise added thereto. The temperature of the resulting reaction solution was raised to room temperature, and the solution was stirred for about 3 hours. 100 mL of water was added to the reaction solution, which was then extracted three times with 50 mL of ethylether. An organic layer was collected and was dried using magnesium sulfate to evapo-

rate the solvent. The residue was separated and purified by silica gel column chromatography, followed by recrystallization with ethanol to obtain 1.73 g of Intermediate I-1 (Yield: 85%). This compound was identified using high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR).

Synthesis of Intermediate I-2

3.45 g (15.0 mmol) of Intermediate I-1 was dissolved in 100 mL of dichloromethane to obtain a solution, and 1.75 mL (15.0 mmol) of bromine (Br₂) was slowly dropwise added to the solution at about 0° C. The resulting reaction solution was stirred at room temperature for about 12 hours, and 60 mL water and 30 mL of a 20% aqueous thiosodium sulfate solution were added to the reaction solution, which was then extracted three times with 80 mL of dichloromethane. An organic layer was collected and dried using magnesium sulfate to evaporate the solvent. The residue was separated and purified by silica gel column chromatography, followed by recrystallization with a dichloromethane/hexane solution to obtain 2.92 g of Intermediate I-2 (Yield: 63%). This compound was identified using high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR).

Synthesis of Intermediate I-3

3.09 g (10.0 mmol) of Intermediate I-2, 2.54 g (10.0 mmol) of bis(pinacolato)diborone, 0.36 g (0.5 mmol) of ³⁰ [1,1'-bis(diphenylphosphino)ferrocene]dichloro palladium (II)] (PdCl₂(dppf)₂), and 2.94 g (30.0 mmol) of KOAc were dissolved in 40 mL of dimethylsulfoxide (DMSO), and then stirred at about 80° C. for about 6 hours. The resulting reaction solution was cooled down to room temperature, and ³⁵ then extracted three times with 50 mL of water and 50 mL of diethylether. An organic layer was collected and dried using magnesium sulfate to evaporate the solvent. The residue was separated and purified using silica gel column chromatography to obtain 2.53 g of Intermediate I-3 (Yield: ⁴⁰ 71%). This compound was identified using high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR).

Synthesis of Intermediate I-4

7.13 g (20.0 mmol) of Intermediate I-3, 4.04 g (20.0 mmol) of 2-bromonitrobenzene, 1.15 g (1.0 mmol) of tetrakis(triphenylphosphine)palladium (Pd(PPh₃)₄), and 8.29 g (60.0 mmol) of K₂CO₃ were dissolved in 60 mL of a mixed solution of THF and H₂O (2:1 by volume), and then stirred at about 70° C. for about 5 hours. The resulting reaction solution was cooled down to room temperature, and 40 mL of water was added thereto, followed by extraction three times with 50 mL of diethylether. An organic layer was collected and dried using magnesium sulfate to evaporate the solvent. The residue was separated and purified using silica gel column chromatography to obtain 4.78 g of Intermediate I-4 (Yield: 68%). This compound was identified using high-resolution mass spectrometry (HR-MS) and 60 nuclear magnetic resonance (NMR).

Synthesis of Intermediate I-5

5.27 g (15.0 mmol) of Intermediate I-4 was dissolved in 65 100 mL of dichloromethane to obtain a solution, and 1.75 mL (15.0 mmol) of bromine (Br₂) was slowly dropwise

94

added to the solution at about 0° C. The resulting reaction solution was stirred at room temperature for about 12 hours, and 60 mL water and 30 mL of a 20% aqueous thiosodium sulfate solution were added to the reaction solution, which was then extracted three times with 80 mL of dichloromethane. An organic layer was collected and dried using magnesium sulfate to evaporate the solvent. The residue was separated and purified by silica gel column chromatography, followed by recrystallization with a dichloromethane/hexane solution to obtain 4.84 g of Intermediate I-5 (Yield: 75%). This compound was identified using high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR).

Synthesis of Intermediate I-6

4.30~g~(10.0~mmol) of Intermediate I-5 and 5.77 g (22 mmol) of triphenylphosphine (PPh3) were dissolved in 30 mL of 1,2-dichlorobenzene, and then stirred at about 170° C. for about 12 hours. The resulting reaction solution was cooled down to room temperature, and the solvent was removed therefrom in a vacuum, followed by extraction three times with 50 mL of water and 50 mL of dichloromethane. An organic layer was collected and dried using magnesium sulfate to evaporate the solvent. The residue was separated and purified using silica gel column chromatography to obtain 2.67 g of Intermediate I-6 (Yield: 67%). This compound was identified using high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR).

Synthesis of Intermediate I-7

3.98~g~(10.0~mmol) of Intermediate I-6, 3.06~g~(15.0~mmol) of iodobenzene, 0.19~g~(1.0~mmol) of CuI, 0.05~g~(0.2~mmol) of 18-Crown-6, and 4.15~g~(30.0~mmol) of $K_2{\rm CO}_3$ were dissolved in 30 mL of 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) and stirred at about 170° C. for about 12 hours. The resulting reaction solution was cooled down to room temperature, and then extracted three times with 50 mL of water and 50 mL of dichloromethane. An organic layer was collected and dried using magnesium sulfate to evaporate the solvent. The residue was separated and purified using silica gel column chromatography to obtain 3.84 g of Intermediate I-7 (Yield: 81%). This compound was identified using high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR).

Synthesis of Intermediate I-8

3.24 g (10.0 mmol) of 4-bromotriphenylamine, 2.54 g (10.0 mmol) of bis(pinacolato)diborone, 0.36 g (0.5 mmol) of PdCl₂(dppf)₂, and 2.94 g (30.0 mmol) of KOAc were dissolved in 40 mL of DMSO, and stirred at about 80° C. for about 6 hours. The resulting reaction solution was cooled down to room temperature, and then extracted three times with 50 mL of water and 50 mL of diethylether. An organic layer was collected and dried using magnesium sulfate to evaporate the solvent. The residue was separated and purified using silica gel column chromatography to obtain 2.57 g of Intermediate I-8 (Yield: 89%). This compound was identified using high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR).

Synthesis of Compound 13

2.37 g (5.0 mmol) of Intermediate I-7, 1.86 g (5.0 mmol) of Intermediate I-8, 0.29 g (0.25 mmol) of tetrakis(triph-

45

60

95

enylphosphine)palladium (Pd(PPh₃)₄), and 2.07 g (15.0 mmol) of K₂CO₃ were dissolved in 30 mL of a mixed solution of THF and H₂O (2:1 by volume), and then stirred at about 70° C. for about 5 hours. The resulting reaction solution was cooled down to room temperature, and then extracted three times with 50 mL of water and 50 mL of diethylether. An organic layer was collected and dried using magnesium sulfate to evaporate the solvent. The residue was separated and purified using silica gel column chromatography to obtain 2.11 g of Compound 13 (Yield: 66%). This compound was identified using high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR).

C₄₈H₃₄N₂ calc.: 638.27. found [M+1] 639.26.

Synthesis Example 2

Synthesis of Compound 7

1.90 g (4.0 mmol) of Intermediate I-7, 1.34 g (4.0 mmol) $_{20}$ of Intermediate I-9 (illustrated below), 37 mg (0.04 mmol) of Pd₂(dba)₃, 8 mg (0.04 mmol) of PtBu₃, and 0.58 g (6.0 mmol) of KOtBu were dissolved in 30 mL of toluene, and then stirred at about 85° C. for about 5 hours. The resulting reaction solution was cooled down to room temperature, and 25 then extracted three times with 50 mL of water and 50 mL of diethylether. An organic layer was collected and dried using magnesium sulfate to evaporate the solvent. The residue was separated and purified using silica gel column chromatography to obtain 2.07 g of Compound 7 (Yield: 30 71%).

Synthesis Example 3

Synthesis of Compound 9

Compound 9 was synthesized as in Synthesis Example 2, except that C(CH₃)₃Cl, instead of iodomethane, was used to synthesize Intermediate I-1, and Intermediate I-10 (illustrated below) was used, instead of Intermediate I-9 used to 40 synthesize Compound 7.

Synthesis Example 4

Synthesis of Compound 12

Compound 12 was synthesized as in Synthesis Example 2, except that Intermediate I-11 (illustrated below) was used instead of Intermediate I-9.

Synthesis Example 5

Synthesis of Compound 21

Compound 21 was synthesized as in Synthesis Example 55 1, except that trimethylsilylchloride, instead of iodomethane, was used to synthesize Intermediate I-1, and Intermediate I-12 (illustrated below) was used, instead of Intermediate I-8 used to synthesize Compound 7.

Synthesis Example 6

Synthesis of Compound 1

Compound 1 was synthesized as in Synthesis Example 2, 65 except that diphenylamine, instead of Intermediate I-9, was used.

96

Synthesis Example 7

Synthesis of Compound 2

Compound 2 was synthesized as in Synthesis Example 2, except that bis(4-tert-butylphenyl)amine), instead of Intermediate I-9, was used.

Synthesis Example 8

Synthesis of Compound 3

Compound 3 was synthesized as in Synthesis Example 2, except that bis(4-(trimethylsilyl)phenyl)amine, instead of Intermediate I-9, was used.

Synthesis Example 9

Synthesis of Compound 4

Compound 4 was synthesized as in Synthesis Example 2, except that Intermediate I-13 (illustrated below), instead of Intermediate I-9, was used.

Synthesis Example 10

Synthesis of Compound 5

Compound 5 was synthesized as in Synthesis Example 9, except that C(CH₃)₃Cl, instead of iodomethane, was used to synthesize Intermediate I-1.

Synthesis Example 11

Synthesis of Compound 6

Compound 11 was synthesized as in Synthesis Example 2, except that

C(CH₃)₃Cl, instead of iodomethane, was used to synthesize Intermediate I-1, and Intermediate I-14 (illustrated below) was used, instead of Intermediate I-9 used to synthesize Compound 7.

Synthesis Example 12

Synthesis of Compound 8

Compound 8 was synthesized as in Synthesis Example 2, ⁵⁰ except that Intermediate I-10, instead of Intermediate I-9, was used.

Synthesis Example 13

Synthesis of Compound 10

Compound 10 was synthesized as in Synthesis Example 2, except that Intermediate I-15 (illustrated below), instead of Intermediate I-9, was used.

Synthesis Example 14

Synthesis of Compound 11

Compound 11 was synthesized as in Synthesis Example 2, except that Intermediate I-16 (illustrated below), instead of Intermediate I-9, was used.

20

30

40

50

60

Synthesis Example 15

Synthesis of Compound 14

Compound 14 was synthesized as in Synthesis Example 1, except that C(CH₃)₃Cl, instead of iodomethane, was used to synthesize Intermediate I-1.

Synthesis Example 16

Synthesis of Compound 15

Compound 15 was synthesized as in Synthesis Example 1, except that Intermediate I-17 (illustrated below) was used, instead of Intermediate I-8 used to synthesize Compound 13.

Synthesis Example 17

Synthesis of Compound 16

Compound 16 was synthesized as in Synthesis Example ²⁵ 1, except that Intermediate I-18 (illustrated below), instead of Intermediate I-8, was used.

Synthesis Example 18

Synthesis of Compound 17

Compound 17 was synthesized as in Synthesis Example $_{35}$ 1, except that $C(CH_3)_3Cl$, instead of iodomethane, was used to synthesize Intermediate I-1, and Intermediate I-19 (illustrated below) was used, instead of Intermediate I-8 used to synthesize Compound 13.

Synthesis Example 19

Synthesis of Compound 18

Compound 18 was synthesized as in Synthesis Example 1, except that Intermediate I-20 (illustrated below), instead of Intermediate I-8, was used.

Synthesis Example 20

Synthesis of Compound 19

Compound 19 was synthesized as in Synthesis Example 1, except that Intermediate I-12, instead of Intermediate I-8, was used.

Synthesis Example 21

Synthesis of Compound 20

Compound 20 was synthesized as in Synthesis Example 65 1, except that Intermediate I-21 (illustrated below), instead of Intermediate I-8, was used.

Intermediate I-11

-continued

-continued

Intermediate I-14

Com-

Intermediate I-21

-continued

102

TABLE 1-continued

MS/FAB

	5
F N B O	10
	15

The results of analyses of Compounds 1 to 21 of Synthesis $\,^{20}$ Examples 1 to 21 by 1 H NMR and mass spectroscopy/fast atom bombardment (MS/FAB) are shown in Table 1.

TABLE 1

	TABLE 1			
Com-	-	MS/FAB		
pound	¹ H NMR (CDCl ₃ , 400 MHz)	found	calc.	
1	$\begin{split} \sigma &= 8.41 \text{ (d, 1H), } 8.34 \text{ (d, 1H),} \\ 8.24-8.22 \text{ (m, 1H), } 8.15 \text{ (d, 1H), } 8.04-8.01 \\ \text{ (m, 1H), } 7.52-7.48 \text{ (m, 2H), } 7.45-7.42 \text{ (m, 2H),} \\ 7.38-7.27 \text{ (m, 4H), } 7.12-7.03 \text{ (m, } \\ \text{5H), } 6.65 \text{ (t, 2H), } 6.20-6.18 \text{ (m, 4H),} \\ 2.78 \text{ (s, 3H), } 2.57 \text{ (s, 3H)} \end{split}$	563.25	562.24	
2	σ = 8.42 (d, 1H), 8.34 (d, 1H), 8.26-8.24 (m, 1H), 8.16 (d, 1H), 8.04-8.02 (m, 1H), 7.53-7.48 (m, 2H), 7.46-7.43 (m, 2H), 7.36-7.22 (m, 8H), 7.09-7.07 (m, 1H), 6.48-6.46 (m, 4H), 2.78 (s, 3H), 2.57 (s, 3H), 1.50 (s, 18H)	675.36	674.37	
3	σ = 8.41 (d, 1H), 8.33 (d, 1H), 8.25-8.23 (m, 1H), 8.17-8.16 (m, 1H), 8.04-8.02 (m, 1H), 7.52-7.48 (m, 2H), 7.45-7.26 (m, 10H), 7.08-7.07 (m, 1H), 6.56-6.54 (m, 4H), 2.78 (s, 3H), 2.57 (s, 3H), 0.24 (s, 18H)	707.31	706.32	
4	$\sigma = 8.42 \; (d, 1H), 8.32 \; (d, 1H), 8.25 \cdot 8.15 \\ (m, 3H), 7.82 \; (d, 1H), 7.70 \cdot 7.64 \; (m, 2H), \\ 7.52 \cdot 7.25 \; (m, 1H), 7.06 \cdot 7.02 \; (m, 2H), \\ 6.97 \cdot 6.92 \; (m, 2H), 6.63 \cdot 6.60 \; (m, 1H), 6.24 \; (d, 2H), 2.78 \; (s, 3H), 2.57 \; (s, 3H)$	653.26	652.25	
5	111), 0.24 (d, 1H), 8.46 (d, 1H), 8.36-8.31 (m, 3H), 7.82 (d, 1H), 7.71-7.65 (m, 2H), 7.61-7.53 (m, 2H), 7.50-7.28 (m, 8H), 7.09-7.01 (m, 3H), 6.95-6.91 (m, 2H), 6.64-6.61 (m, 1H), 6.23 (d, 2H), 1.55 (s, 9H), 1.48 (s, 9H)	737.34	736.35	
6	$\begin{split} \sigma &= 8.48 \ (\rm{d},\ 1H),\ 8.46 \ (\rm{d},\ 1H),\ 8.37\text{-}8.32 \\ (m,\ 3H),\ 7.83\text{-}7.82 \ (m,\ 1H), \\ 7.71\text{-}7.64 \ (m,\ 2H),\ 7.59\text{-}7.53 \ (m,\ 2H),\ 7.50\text{-}7.29 \\ (m,\ 10H),\ 7.21\text{-}7.20 \ (m,\ 1H),\ 6.95\text{-}6.91 \ (m,\ 2H), \\ 6.53\text{-}6.51 \ (m,\ 2H),\ 1.56 \ (s,\ 9H),\ 1.49 \\ (s,\ 9H),\ 0.25 \ (s,\ 9H) \end{split}$	809.37	808.38	
7	σ = 8.42 (d, 1H), 8.32 (d, 1H), 8.26-8.24 (m, 1H), 8.16 (d, 1H), 7.98-7.96 (m, 1H), 7.82 (d, 1H), 7.72-7.64 (m, 2H), 7.61-7.25 (m, 15H), 7.14-7.12 (m, 1H), 7.09-6.94 (m, 4H), 6.91-6.87 (m, 1H), 6.75-6.74 (m, 1H), 2.77 (s, 3H), 2.56 (s, 3H)	729.27	728.28	
8	(m, 1H), 8.11 (d, 1H), 8.25-8.24 (m, 1H), 8.11 (d, 1H), 7.96 (d, 1H), 7.69-7.55 (m, 6H), 7.53-7.48 (m, 5H), 7.46-7.25 (m, 8H), 7.11-7.02 (m, 3H), 6.67	733.30	732.29	
	(s, 1H), 6.60 (t, 1H), 6.08 (d, 2H), 2.78 (s, 3H), 2.57 (s, 3H)			

5	pound	i ¹ H NMR (CDCl ₃ , 400 MHz)	found	calc.
	9	σ = 8.53 (d, 1H), 8.42 (d, 1H), 8.33-8.27 (m, 2H), 8.16 (d, 1H), 7.69-7.28 (m, 19H), 7.11-7.02 (m, 4H), 6.62-6.58	817.38	816.39
10	10	(m, 1H), 6.11-6.09 (m, 2H), 1.55 (s, 9H), 1.48 (s, 9H) σ = 8.42 (d, 1H), 8.32 (d, 1H), 8.26-8.24	789.35	788.36
15		(m, 1H), 8.13-8.11 (m, 1H), 7.97 (d, 1H), 7.69-7.61 (m, 4H), 7.59-7.55 (m, 2H), 7.53-7.48 (m, 5H), 7.45-7.25 (m, 8H), 7.14-7.08 (m, 3H), 6.88-6.87 (m, 1H), 6.40-6.38	703.55	700.50
	11	(m, 2H), 2.78 (s, 3H), 2.57 (s, 3H), 1.50 (s, 9H) σ = 8.41 (d, 1H), 8.32 (d, 1H), 8.27-8.25 (m, 1H), 8.16 (d, 1H), 8.01 (d, 1H), 7.76 (d, 1H), 7.57 7.48 (m, 2H), 7.45 7.26 (m, 2H)	679.31	678.30
20	12	7.52-7.48 (m, 2H), 7.45-7.26 (m, 8H), 7.11-7.03 (m, 5H), 6.70 (d, 1H), 6.65-6.61 (m, 1H), 6.40-6.39 (m, 1H), 6.17 (d, 2H), 2.77 (s, 3H), 2.56 (s, 3H), 1.61 (s, 6H) σ = 8.42 (d, 1H), 8.36-8.33 (m, 2H), 8.26-8.24	823.31	822.30
25	12	(m, 1H), 8.02 (d, 1H), 7.83-7.80 (m, 2H), 7.69-7.64 (m, 7H), 7.54-7.24 (m, 16H), 7.01-6.99 (m, 1H), 6.90-6.86 (m, 1H), 6.70 (s, 1H), 2.78 (s, 3H), 2.57 (s, 3H)	023.31	022.30
30	13	σ = 8.45 (d, 1H), 8.38-8.36 (m, 1H), 8.29-8.17 (m, 3H), 7.60 (s, 1H), 7.52-7.25 (m, 10H), 7.08-7.04 (m, 4H), 6.89-6.86 (m, 2H), 6.65 (t, 2H),	639.26	638.27
35	14	6.16-6.13 (m, 4H), 2.78 (s, 3H), 2.72 (s, 3H) σ = 8.46 (d, 1H), 8.38-8.31 (m, 3H), 8.17 (d, 1H), 7.81 (s, 1H), 7.57-7.54 (m, 2H), 7.48-7.28 (m, 8H), 7.08-7.04 (m, 4H), 6.90-6.88 (m, 2H), 6.66-6.63 (m, 2H), 6.16-6.13	723.36	722.37
40	15	$\begin{split} &(m,4H),1.55(s,9H),1.51(s,9H)\\ &\sigma=8.45(d,1H),8.38(d,1H),8.28\text{-}8.20\\ &(m,3H),7.61\text{-}7.60(m,1H),7.52\text{-}7.28\\ &(m,14H),6.88\text{-}6.86(m,2H),6.59(d,4H),2.77 \end{split}$	783.34	782.35
	16	(s, 3H), 2.71 (s, 3H), 0.25 (s, 18H) σ = 8.46 (d, 1H), 8.39 (d, 1H), 8.29-8.20 (m, 3H), 7.61-7.55 (m, 3H), 7.53-7.40 (m, 7H), 7.38-7.27 (m, 8H), 7.21-7.15	787.33	786.34
45	17	(m, 2H), 7.00-6.96 (m, 1H), 6.87-6.82 (m, 3H), 6.49-6.47 (m, 2H), 2.78 (s, 3H), 2.72 (s, 3H), 0.24 (s, 9H) σ = 8.45 (d, 1H), 8.38-8.30 (m, 3H), 8.18	889.40	888.41
50	1,	(d, 1H), 7.83-7.81 (m, 2H), 7.70-7.27 (m, 19H), 7.15-7.13 (m, 1H), 7.06-6.88 (m, 5H), 6.30-6.28 (m, 2H), 1.55 (s, 9H), 1.51 (s, 9H)	003710	000,11
55	18	σ = 8.45 (d, 1H), 8.36 (d, 1H), 8.28-8.17 (m, 3H), 7.82 (d, 1H), 7.70-7.56 (m, 9H), 7.54-7.23 (m, 18H), 7.01-6.99 (m, 1H), 6.93-6.89 (m, 1H), 6.35-6.33 (m,	899.35	898.34
60	19	2H), 2.78 (s, 3H), 2.72 (s, 3H) $\sigma = 8.44 \text{ (d, 1H)}, 8.35 \text{ (d, 1H)}, 8.29\text{-}8.17 \\ \text{ (m, 3H)}, 7.69\text{-}7.60 \text{ (m, 5H)}, 7.54\text{-}7.25 \\ \text{ (m, 17H)}, 7.13\text{-}7.03 \text{ (m,} \\$	809.32	808.33
60	20	3H), 6.91-6.89 (m, 2H), 6.62 (t, 1H), 6.16-6.14 (m, 2H), 2.79 (s, 3H), 2.73 (s, 3H) σ = 8.45 (d, 1H), 8.36 (d, 1H), 8.29-8.18 (m, 3H), 7.69-7.55 (m, 11H),	885.37	884.36
65		7.54-7.27 (m, 16H), 7.20-7.15 (m, 2H), 7.07-6.98 (m, 2H), 6.93-6.85 (m, 3H), 2.78 (s, 3H), 2.72 (s, 3H)		

35

50

55

Com- MS/FAB			
pound ¹ H NMR (CDCl ₃ , 400 MHz)	found	calc.	5
21 \(\sigma = 8.58 \) (d, 1H), 8.47 (d, 1H), 8.37-8.31 (m, 3H), 8.18 (s, 1H), 7.69-7.60 (m, 5H), 7.55-7.32 (m, 16H), 7.13-7.03 (m, 3H), 6.63-6.60 (m, 1H), 6.26-6.19 (m, 4H), 0.61 (s, 9H), 0.45 (s, 9H)	925.36	924.37	J

EXAMPLE 1

A corning 15 Ω/cm^2 (1200 Å) ITO glass substrate was cut 15 to a size of 50 mm×50 mm×0.7 mm and then sonicated in isopropyl alcohol and pure water each for five minutes, and then cleaned by irradiation of ultraviolet rays for 30 minutes and exposure to ozone. The resulting ITO glass substrate was mounted into a vacuum deposition device.

After 2-TNATA was vacuum-deposited on the ITO anode of the ITO glass substrate to form an HIL having a thickness of 600 Å, NPB was deposited on the HIL to form a HTL having a thickness of about 300 Å, and then ADN (host) and Compound 13 (dopant) were co-deposited in a weight ratio of 98:2 on the HTL to form an EML having a thickness of about 300 Å.

Then, $\mathrm{Alq_3}$ was deposited on the EML to form an ETL having a thickness of about 300 Å, and then LiF was deposited on the ETL to form an EIL having a thickness of about 10 Å. Then, Al was deposited on the EIL to form a cathode having a thickness of about 3000 Å, thereby completing the manufacture of an organic light-emitting device.

EXAMPLE 2

An organic light-emitting device was manufactured as in Example 1, except that Compound 7 instead of Compound 13 was used as a dopant to form the EML.

EXAMPLE 3

An organic light-emitting device was manufactured as in 45 Example 1, except that Compound 9 instead of Compound 13 was used as a dopant to form the EML.

EXAMPLE 4

An organic light-emitting device was manufactured as in Example 1, except that Compound 12 instead of Compound 13 was used as a dopant to form the EML.

EXAMPLE 5

An organic light-emitting device was manufactured as in Example 1, except that Compound 21, instead of Compound 13, was used as a dopant to form the EML.

Comparative Example 1

An organic light-emitting device was manufactured as in 65 Example 1, except that Compound A instead of Compound 13 was used as a dopant to form the EML.

104

Comparative Example 2

An organic light-emitting device was manufactured as in Example 1, except that Compound B, instead of Compound 13, was used as a dopant to form the EML.

Compound B

Comparative Example 3

An organic light-emitting device was manufactured as in Example 1, except that Compound C, instead of Compound 13, was used as a dopant to form the EML.

Compound C

Comparative Example 4

An organic light-emitting device was manufactured as in Example 1, except that Compound D, instead of Compound 13, was used as a dopant to form the EML.

Compound D

25

30

35

An organic light-emitting device was manufactured as in Example 1, except that Compound E, instead of Compound 13, was used as a dopant to form the EML.

Compound E

Evaluation Example 1

Driving voltages, current densities, luminances, efficiencies, and half-lifetimes of the organic light-emitting devices of Examples 1 to 5 and Comparative Examples 1 to 5 were evaluated using a Keithley Source-Measure Unit (SMU 236) and a PR650 (Spectrascan) Colorimeter. (available from Photo Research, Inc.). The results are shown in Table 2 below. A half-lifetime was measured as the time taken until a measured initial luminance (assumed as 100%) is reduced to 50%.)

TABLE 2

Example	Dopant in EML	Driving voltage (V)	Current density (mA/cm ²)	Luminance (cd/m²)	Efficiency (cd/A)	Emission color	Half- lifetime (hr @100 m A/cm ²)
Example 1	Compound 13	6.10	50	3160	6.32	Blue	322
Example 2	Compound 7	5.98	50	3565	7.13	Blue	345
Example 3	Compound 9	6.03	50	3505	7.01	Blue	338
Example 4	Compound 12	5.93	50	3670	7.34	Blue	351
Example 5	Compound 21	6.12	50	3205	6.41	Blue	316
Comparative Example 1	Compound A	7.01	50	2695	5.39	Blue	258
Comparative Example 2	Compound B	6.57	50	2830	5.66	Blue	263
Comparative Example 3	Compound C	6.65	50	2875	5.75	Blue	280

TABLE 2-continued

Example	Dopant in EML	Driving voltage (V)	Current density (mA/cm ²)	Luminance (cd/m²)	Efficiency (cd/A)	Emission color	Half- lifetime (hr @100 m A/cm ²)
Comparative Example 4	Compound D	7.46	50	1095	2.19	Blue	96
Comparative Example 5	Compound E	7.61	50	990	1.98	Blue	87

Referring to Table 2, the organic light-emitting devices of Examples 1 to 5 were found to have improved driving voltages, improved luminances, improved efficiencies, and improved half-lifetimes, compared to those of the organic light-emitting devices of Comparative Examples 1 to 5.

According to one or more embodiments of the present disclosure, an organic light-emitting device including the condensed cyclic compound of Formula 1 may have low driving voltage, high efficiency, a high luminance, and long lifetime.

It should be understood that the exemplary embodiments described therein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments.

While one or more embodiments of the present disclosure have been described with reference to the FIGURES, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the following claims and equivalents thereof.

What is claimed is:

1. A condensed cyclic compound represented by Formula 1:

Formula 1
$$R_{12}$$

$$R_{13}$$

$$R_{14}$$

$$R_{15}$$

wherein

 R_1 to R_7 , and R_{12} to R_{15} are each independently selected 60 from

a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a 65 salt thereof, a phoshoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, and/or a C₁-C₆₀ alkoxy group,

a C₁-C₆₀ alkyl group and a C₁-C₆₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof,

a phenyl group and/or a naphthyl group,

a phenyl and/or a naphthyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phoshoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₁-C₆₀ alkoxy group, a phenyl group, and a naphthyl group, and/or

—Si(Q₁)(Q₂)(Q₃), wherein Q₁ to Q₃ are each independently selected from a C₁-C₆₀ alkyl group, and/or a C₁-C₆₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof;

at least one of R₁ to R₇ is selected from

a C1-C60 alkyl group,

35

40

a C₁-C₆₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof, and/or

 $--Si(Q_1)(Q_2)(Q_3);$

L₁ is selected from a substituted or unsubstituted C₃-C₆₀ cycloalkylene group, a substituted or unsubstituted C₂-C₁₀ heterocycloalkylene group, a substituted or unsubstituted C₃-C₁₀ cycloalkenylene group, a substituted or unsubstituted C₂-C₁₀ heterocycloalkenylene group, a substituted or unsubstituted C₆-C₆₀ arylene group, a substituted or unsubstituted C₁-C₆₀ heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group;

a1 is selected from 0, 1, 2, and 3;

 R_{11} is selected from a substituted or unsubstituted $C_1\text{-}C_{60}$ alkyl group, a substituted or unsubstituted $C_3\text{-}C_{10}$ cycloalkyl group, a substituted or unsubstituted $C_2\text{-}C_{10}$ heterocycloalkyl group, a substituted or unsubstituted $C_2\text{-}C_{10}$ cycloalkenyl group, a substituted or unsubstituted $C_2\text{-}C_{10}$ heterocycloalkenyl group, a substituted or unsubstituted $C_2\text{-}C_{10}$ heterocycloalkenyl group, a substituted or unsubstituted $C_6\text{-}C_{60}$ aryl group, a substituted or unsubstituted or unsubstituted $C_6\text{-}C_{60}$ aryl group, a substituted or unsubstituted or unsubstituted

stituted C_1 - C_{60} heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group; and

Ar₁ and Ar₂ are each independently selected from a substituted or unsubstituted C_3 - C_{10} cycloalkyl group, a substituted or unsubstituted C_2 - C_{10} heterocycloalkyl group, a substituted or unsubstituted C_3 - C_{10} cycloalkenyl group, a substituted or unsubstituted C_2 - C_{10} heterocycloalkenyl group, a substituted or unsubstituted C_6 - C_{60} aryl group, a substituted or unsubstituted C_1 - C_{60} heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group,

wherein at least one substituent of the substituted C_3 - C_{10} cycloalkylene group, the substituted C2-C10 heterocycloalkylene group, the substituted C₃-C₁₀ cycloalkenylene group, the substituted C_2 - C_{10} heterocycloalk- 20enylene group, the substituted C₆-C₆₀ arylene group, the substituted C_1 - C_{60} heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic condensed heteropolycyclic group, the substituted C₁-C₆₀ alkyl 25 group, the substituted C₃-C₁₀ cycloalkyl group, the substituted C2-C10 heterocycloalkyl group, the substituted C₃-C₁₀ cycloalkenyl group, the substituted C₂-C₁₀ heterocycloalkenyl group, the substituted C₆-C₆₀ aryl group, the substituted C₂-C₆₀ heteroaryl group, the 30 substituted monovalent non-aromatic condensed polycyclic group, and/or the substituted monovalent nonaromatic condensed heteropolycyclic group is selected

a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a 35 cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₂-C₆₀ alkenyl group, 40 a C₂-C₃₀ alkynyl group, and a C₃-C₃₀ alkoxy group

a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} alkoxy group, a C_2 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, and a C_1 - C_{60} alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, 45 a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_2 - C_{60} heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, — $N(Q_{11})(Q_{12})$, —Si $(Q_{13})(Q_{14})(Q_{15})$, and — $B(Q_{16})(Q_{17})$,

a C_3 - C_{10} cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C_6 - C_{60} aryloxy group, a C_6 - C_{60} arylthio group, a C_2 - C_{60} heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group,

a C₃-C₁₀ cycloalkyl group, a C₂-C₁₀ heterocycloalkyl 65 group, a C₃-C₁₀ cycloalkenyl group, a C₂-C₁₀ heterocycloalkenyl group, a C₆-C₆₀ aryl group, a C₆-C₆₀

110

aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C_2 - C_{10} heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C_6 - C_{60} aryl group, a C₆-C₆₀ aryloxy group, a C₅-C₆₀ arylthio group, a C₂-C₈₀ heteroaryl group, a monovalent nonaromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, $-N(Q_{21})(Q_{22})$, $-Si(Q_{23})(Q_{24})(Q_{25})$, and $-B(Q_{25})$ (Q_{27}) , and

 $-N(Q_{31})(Q_{32}), -Si(Q_{33})(Q_{34})(Q_{35}), \text{ and } -B(Q_{36})$ $(Q_{37}),$

wherein Q₁₁ to Q₁₇, Q₂₁ to Q₂₇, and Q₃, to Q₃₇ are each independently a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₆₀ alkyl group, a C₂-C₆₀ alkenyl group, a C₂-C₆₀ alkynyl group, a C₁-C₆₀ alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₂-C₁₀ heterocycloalkyl group, a C₃-C₁₀ cycloalkenyl group, a C₂-C₆₀ heterocycloalkenyl group, a C₆-C₆₀ aryl group, a C₂-C₆₀ heterocycloalkenyl group, a monovalent non-aromatic condensed polycyclic group, and/or a monovalent non-aromatic condensed heteropolycyclic group.

2. The condensed cyclic compound of claim 1, wherein R_1 to R_7 , and R_{12} to R_{15} are each independently selected from

- a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phoshoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, and/or a C₁-C₂₀ alkoxy group,
- a C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium,

 —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof, and/or
- —Si(Q₁)(Q₂)(Q₃), wherein Q₁ to Q₃ are each independently selected from a C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof; and

15

at least one of R₁ to R₇ is selected from

a C1-C20 alkyl group,

a C₁-C₂₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof, and/or

 $--Si(Q_1)(Q_2)(Q_3).$

3. The condensed cyclic compound of claim 1, wherein two of R_1 to R_7 are each independently selected from

a C₁-C₆₀ alkyl group,

a C₁-C₆₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, and a phoshoric acid group or a salt thereof, and/or

 $--Si(Q_1)(Q_2)(Q_3).$

4. The condensed cyclic compound of claim **1**, wherein at 25 least one of R_1 to R_5 is selected from

a C1-C20 alkyl group,

a C₁-C₂₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phoshoric acid group or a salt thereof, and/or

— $\mathrm{Si}(Q_1)(Q_2)(Q_3)$; wherein Q_1 to Q_3 are each independently selected from a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a 40 hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof.

5. The condensed cyclic compound of claim **1**, wherein the condensed cyclic compound of Formula 1 is a compound represented by one of Formulae 1(1), 1(2), and 1(3):

Formula 1(1) R_{11} R_{12} R_{13} R_{14} R_{15} R_{7} R_{7} R_{15} R_{7} R_{15} R_{15}

-continued

Formula 1(2)
$$R_{11}$$

$$R_{12}$$

$$R_{13}$$

$$R_{14}$$

$$R_{15}$$

$$R_{7}$$

$$R_{7}$$

Formula 1(3)
$$R_{11}$$

$$R_{12}$$

$$R_{13}$$

$$R_{14}$$

$$R_{15}$$

$$R_{7}$$

$$R_{7}$$

$$R_{15}$$

$$R_{7}$$

wherein

 R_{11} to R_{15} , L_1 , a1, Ar_1 , and Ar_2 are as defined in claim 1;

 R_1 and R_5 are each independently selected from

a C1-C20 alkyl group,

a C₁-C₂₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, and a phoshoric acid group or a salt thereof and/or

—Si(Q₁)(Q₂)(Q₃), wherein Q₁ to Q₃ are each independently selected from a C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkyl group substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof.

6. The condensed cyclic compound of claim **5**, wherein R_1 and R_5 are each independently selected from

a methyl group, an ethyl group, a propyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a n-pentyl group, an isopentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an isoheptyl group, a sec-heptyl group, a tert-heptyl group, a n-octyl, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decanyl

group, an isodecanyl group, a sec-decanyl group, and/or a tert-decanyl group, and/or

—Si(Q₁)(Q₂)(Q₃), wherein Q₁ to Q₃ are each independently selected from a methyl group, an ethyl group, a propyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a n-pentyl group, an isopentyl group, a tert-pentyl group, an n-hexyl group, an isohexyl group, a sec-hexyl group, a tert-hexyl group, an n-heptyl group, an isoheptyl group a sechetyl group, a tert-heptyl group, a n-octyl, an isooctyl group, a sec-octyl group, a tert-octyl group, an n-nonyl group, an isononyl group, a sec-nonyl group, a tert-nonyl group, an n-decanyl group, an isodecanyl group, a sec-decanyl group, and/or a tert-decanyl group.

7. The condensed cyclic compound of claim 1, wherein L_{1} 15 is selected from

a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluo- 20 renylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthace- 25 nylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an 30 imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, 35 an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cin- 40 nolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene 45 group, a benzoxazolylene group, an isobenzoxazolvlene group, a triazolvlene group, a tetrazolvlene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarba- 50 zolylene group, a thiadiazolyene group, an imidazopyridinylene group, and/or an imidazopyrimidinylene group; and/or

a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a 55 heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an

114

imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolvlene group, an indazolvlene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolyene group, an imidazopyridinylene group, and/or an imidazopyrimidinylene group, each substituted with at least one selected from a deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, an a C₁-C₂₀ alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenvl group, a benzofluorenvl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenvl group, a fluoranthenvl group, a triphenvlenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a pycenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzolmidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothlophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.

8. The condensed cyclic compound of claim 1, wherein L_1 is represented by one of Formulae 3-1 to 3-32:

-continued

Formula 3-31

Formula 3-32

-continued

$$(Z_1)_{d5}$$

*
$$(Z_1)_{d2}$$

$$(Z_2)_{d3}$$

$$^* \underbrace{\hspace{1cm}}^{S}_{(Z_1)_{d5}}$$

$$(Z_1)_{d1}$$

Formula 3-22

$$(Z_1)_{d1}$$
 $(Z_2)_{d2}$

Formula 3-26

Formula 3-27

Formula 3-28

Formula 3-23

25

30

35

10

 Y_1 is O, S, $C(Z_3)(Z_4)$, $N(Z_5)$, or $Si(Z_6)(Z_7)$;

 Z_1 to Z_7 are each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C2 alkyl group, a C1-C2 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group;

d1 is an integer selected from 1 to 4;

d2 is an integer selected from 1 to 3;

d3 is an integer selected from 1 to 6;

d4 is an integer selected from 1 to 8;

d5 is 1 or 2;

d6 is an integer selected from 1 to 5; and

* and *' are binding sites with adjacent atoms.

9. The condensed cyclic compound of claim **1**, wherein L_1 is represented by one of Formulae 4-1 to 4-23:

55

65

15

40

45

50

Formula 4-12

Formula 4-5

Formula 4-6

-continued

-continued

-continued

Formula 4-22

wherein * and *' are binding sites with adjacent atoms.

10. The condensed cyclic compound of claim 1, wherein a1 is 0 or 1.

11. The condensed cyclic compound of claim 1, wherein R₁₁, Ar₁, and Ar₂ are each independently selected from

a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl 20 group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a 25 picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an 30 isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzo- 35 quinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a ben- 40 zofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl 45 group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and/or an imidazopyrimidinyl group, and/or

a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, 50 an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl 55 group, a chrysenyl group, a naphthacenyl group, a pycenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imida- 60 zolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, 65 a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridi122

nyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dlbenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and/or an imidazopyrimidinyl group, each substituted with at least one selected from a deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a cyclopentenyl group, a cyclohexyl group, a cycloheptyl, a cyclopentenyl, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a pycenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and $\tilde{Si}(Q_{33})(Q_{34})(Q_{35})$, wherein Q_{33} to Q_{35} are each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino groups, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spirofluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group.

124
-continued

12. The condensed cyclic compound of claim 1, wherein R_{11} , Ar_1 , and Ar_2 are each independently selected from

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyridinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and/or a dibenzocarbazolyl group, and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a diben- 15 zofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazoli- 20 nyl group, a carbazolyl group, a triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and/or a dibenzocarbazolyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a 25 cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, 30 a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl 35 group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, and 40 $-Si(Q_{33})(Q_{34})(Q_{35}),$

wherein Q₃₃ I(Q₃₄)(Q₃₅), wherein Q₃₅ ato Q₃₅ are each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino groups, a hydrazine, a hydrazone, a 45 carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a Phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group.

13. The condensed cyclic compound of claim 1, wherein R_{11} , Ar_1 , and Ar_2 are each independently selected from the groups represented by Formulae 5-1 to 5-14:

(Z₃₁)_{e1} Formula 5-1

$$(Z_{31})_{e2}$$

Formula 5-3

Formula 5-2

$$(Z_{31})_{e2}$$

Formula 5-4

$$* \underbrace{ (Z_{31})_{e3}}_{(Z_{32})_{e4}}$$

Formula 5-5

$$\begin{array}{c} * \\ (Z_{31})_{e3} \\ Y_{31} \\ (Z_{32})_{e4} \end{array}$$

Formula 5-6

Formula 5-7

$$(Z_{31})_{e4}$$

Formula 5-8

$$(Z_{31})_{e4}$$

Formula 5-9

Formula 5-10

$$\bigvee_{N} N_{2} (Z_{31})_{e3}$$

Formula 5-11

$$N$$
 $(Z_{31})_{e3}$
 N

Formula 5-12

$$(Z_{31})_{e3}$$

60

65

Formula 5-13

-continued

Formula 5-14

$$(Z_{31})_{e3}$$
 Y_{31}
 $(Z_{32})_{e4}$

wherein

 Y_{31} is O, S, $C(Z_{33})(Z_{34})$, or $N(Z_{35})$;

 Z_{31} to Z_{35} are each independently selected from

a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an 15 amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phoshoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, and/or a C_1 - C_{20} alkoxy group,

a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkoxy group, each 20 substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, and 25 a phoshoric acid group or a salt thereof,

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a 30 pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a ben-35 zocarbazolyl group, and/or a dibenzocarbazolyl group,

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a 40 pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a benzofuranyl group, a dibenzothiophenyl group, a ben-45 zocarbazolyl group, and/or a dibenzocarbazolyl group, each substituted with at least one selected from a deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a car- 50 boxylic group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, and a naphthyl group, and/or

 $-Si(Q_{33})(Q_{34})(Q_{35}),$

wherein Q_{33} to Q_{35} are each independently selected from a hydrogen, a deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino groups, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid 60 group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthra- 65 cenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl

126

group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group;

e1 is an integer of 1 to 5; e2 is an integer of 1 to 7; e3 is an integer of 1 to 3; e4 is an integer of 1 to 4; e5 is 1 or 2; and * is a binding site with an adjacent atom.

14. The condensed cyclic compound of claim 1, wherein R₁₁, Ar₁, and Ar₂ are each independently selected from the 10 groups represented by Formulae 6-1 to 6-22:

Formula 6-6

-continued

-continued

Formula 6-19

1

Formula 6 12

40

60

65

Formula 6-18

*
Si(CH₃)₃

20

25

45

-continued

5 N

-continued

-continued

5 10 F

-continued

-continued

134 -continued

N N Si

-continued

-continued

-continued

16. An organic light-emitting device comprising: a first electrode; a second electrode; and an organic layer between 55 the first electrode and the second electrode, the organic layer comprising an emission layer and the condensed cyclic compound of claim **1**.

17. The organic light-emitting device of claim 16, wherein the first electrode is an anode, the second electrode is a cathode, and the organic layer comprises i) a hole transport region between the first electrode and the emission layer, the hole transport region comprising at least one of a hole injection layer, a hole transport layer, a buffer layer, and an 65 electron blocking layer, and ii) an electron transport region between the emission layer and the second electrode, elec-

tron transport region comprising at least one of a hole blocking layer, an electron transport layer, and an electron injection layer.

18. The organic light-emitting device of claim 17, wherein the emission layer comprises the at least one of the condensed cyclic compounds.

19. The organic light-emitting device of claim 18, wherein the emission layer further comprises a compound represented by Formula 301:

 Ar_{301} -[$(L_{301})_{xb1}$ - R_{301}]_{xb2} Formula 301

wherein Ar₃₀₁ is selected from

a naphthalene, a heptalene, a fluorenene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and/or an indenoanthracene, and/or

a naphthalene, a heptalene, a fluorenene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and/or an indenoanthracene, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C_2 - C_{60} alkynyl group, a C_1 - C_{60} alkoxy group, a C₃-C₁₀ cycloalkyl group, a C₂-C₁₀ heterocycloalkyl group, a C_3 - C_{10} cycloalkenyl group, a C_2 - C_{10} heterocycloalkenyl group, a C₆-C₆₀ aryl group, a C₆-C₆₀ aryloxy group, a C_6 - C_{60} arylthio group, a C_2 - C_{60} heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and $-Si(Q_{301})(Q_{302})$ $(Q_{303}), \ wherein \ Q_{301}$ to Q_{303} are each independently selected from a hydrogen, C_1 - C_{60} alkyl group, a C_2 - C_{60} alkenyl group, a C₆-C₆₀ aryl group, and a C₂-C₆₀ heteroaryl group;

 L_{301} is selected from a substituted or unsubstituted C_3 - C_{10} cycloalkylene group, a substituted or unsubstituted C_2 - C_{10} heterocycloalkylene group, a substituted or unsubstituted C_3 - C_{10} cycloalkenylene group, a substituted or unsubstituted C_3 - C_{10} heterocycloalkenylene group, a substituted or unsubstituted C_6 - C_{60} arylene group, a substituted or unsubstituted C_2 - C_{60} heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and/or a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group;

R₃₀₁ is selected from

a C_1 - C_{20} alkyl group and/or a C_1 - C_{20} alkoxy group,

a C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrimidinyl group, a pyrimidinyl group, a pyrimidinyl group, a pyrimidinyl

group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyriazinyl group, a pyrimidinyl group, a pyridzinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group, and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazoli- 20 nyl group, a carbazolyl group, and/or a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a car- 25 boxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a diben-30 zofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazoli- 35 nyl group, a carbazolyl group, and a triazinyl group;

xb1 is selected from 0, 1, 2, and 3; and

xb2 is selected from 1, 2, 3, and 4.

20. The organic light-emitting device of claim 18, wherein the hole transport region comprises at least one of a compound represented by Formula 201A and a compound represented by Formula 202A:

Formula 201A 45

$$R_{215}$$
 R_{216}
 R_{216}
 R_{202}
 R_{203}
 R_{204}
 R_{204}
 R_{205}
 R_{206}
 R_{206}

wherein, in Formulae 201A and 202A,

 $\rm L_{201}$ to $\rm L_{203}$ are each independently selected from a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene

140

group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyridinylene group, a pyridazinylene group, a quinolinylene group, a quinolinylene group, a quinozolinylene group, a quinozolinylene group, a carbazolylene group, and/or a triazinylene group; and/or

a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and/or a triazinylene group, each substituted with at least one selected from a deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl

xa1 to xa3 are each independently 0 or 1; R_{202} - R_{204} , R_{211} , and R_{212} are each independently selected from

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyridinyl group, a pyridinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group, and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C_1 - C_{20} alkyl group, a C_1 - C_{20} alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an

isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; R_{213} and R_{214} are each independently selected from a $C_1\hbox{-} C_{20}$ alkyl group and/or a $C_1\hbox{-} C_{20}$ alkoxy group,

a C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,

a phenyl group, a naphthyl group, a fluorenyl group, a ²⁰ spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an ²⁵ isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group, and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a diben-30 zofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazoli- 35 nyl group, a carbazolyl group, and/or a triazinyl group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a car- 40 boxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a diben-45 zofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazoli- 50 nyl group, a carbazolyl group, and a triazinyl group;

R₂₁₅ and R₂₁₆ are each independently selected from a hydrogen, a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an

142

amidino group, a hydrazine, a hydrazone, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phoshoric acid group or a salt thereof, a $\rm C_1\text{-}C_{20}$ alkyl group, and/or a $\rm C_1\text{-}C_{20}$ alkoxy group, a $\rm C_1\text{-}C_{20}$ alkyl group and/or a $\rm C_1\text{-}C_{20}$ alkoxy group, each

C₁-C₂₀ alkyl group and/or a C₁-C₂₀ alkoxy group, each substituted with at least one selected from a deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyridinyl group, a pyridinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyriazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group, and/or

a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and/or a triazinyl group, each substituted with at least one selected from a deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C₁-C₂₀ alkyl group, a C₁-C₂₀ alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and

xa5 is 1 or 2.

* * * * *