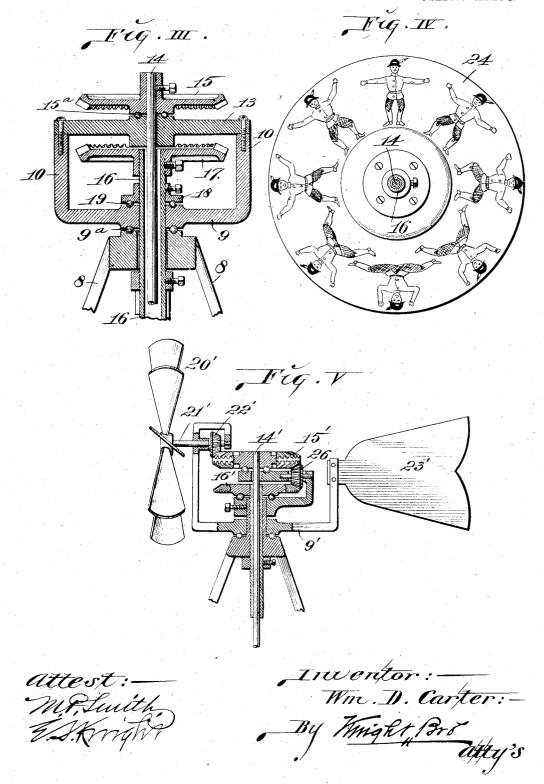

W. D. CARTER. KINETOSCOPE FOR ADVERTISING. APPLICATION FILED OCT. 27, 1903.



W. D. CARTER.

KINETOSCOPE FOR ADVERTISING.

APPLICATION FILED OCT, 27, 1903.

2 SHEETS-SHEET 2.

UNITED STATES PATENT OFFICE.

WILLIAM D. CARTER, OF QUINCY, ILLINOIS.

KINETOSCOPE FOR ADVERTISING.

No. 813,860.

Specification of Letters Patent.

Patented Feb. 27, 1906.

Application filed October 27, 1903. Serial No. 178, 797.

To all whom it may concern:

Be it known that I, WILLIAM D. CARTER, a citizen of the United States, residing in Quincy, in the county of Adams and State of Illinois, have invented certain new and useful Improvements in Kinetoscopes for Advertising, of which the following is a full, clear, and exact description, reference being had to the accompanying drawings, forming part of

10 this specification.

My invention relates to a kinetoscope designed to be mounted in a vehicle, such as a railway-car or a street-railway car, and to be operated through the power medium of a wind-wheel that receives its driving force as a result of pressure of air thereagainst ob-tained during the travel of the vehicle or to be mounted in any stationary place, such as on the ceiling or wall of a room, and to receive 20 its driving force in the latter instance by any suitable source, such as an electric motor or a coiled spring.

My invention consists in features of novelty hereinafter fully described, and pointed

25 out in the claim.

Figure I is a vertical section of my kinetoscope. Fig. II is a bottom view of the kinetoscope, partly broken away. Fig. III is an enlarged vertical section taken on line III III, 30 Fig. I. Fig. IV is a view of the picture-disk of the kinetoscope looking at the lower face thereof, with parts shown in horizontal section, taken on line IV IV, Fig. I. Fig. V is a view illustrating a modification of the kineto-35 scope driving-gear.

A designates the roof of a car or other vehicle. Beneath this roof within the vehicle is an annular rim B, from which is suspended a casing that constitutes the view portion of 40 my kinetoscope. The casing above referred to consists of the following parts:

1 designates a tapering ring that slopes inwardly and downwardly from the rim B and is swingingly connected to said rim by a hinge 2 and is engaged by a spring-catch 3 when the casing is in its elevated position.

4 is a sight-disk of sloping form and having its upper edge secured to the casing-ring 1, as, seen in Fig. I. The disk 4 is apertured cen-50 trally, and fitted to the disk within said aperture is a box 5, that is designed to receive an advertising-card 6 or other desirable advertising medium.

7 are pocket-rings secured to the upper cas-55 ing-ring 1, adapted to receive and retain an

advertising-sheet that may be readily slipped into position in the rear of said pocket-rings.

8 designates a journal-post mounted on the roof A immediately above the horizontal center of the kinetoscope-casing mounted 60 within the vehicle. 9 is a frame surmounting said post 8 for rotation on bearing-balls 9ª and consisting of side arms 10, a forward arm 11, and a rear arm 12. The side arms 10 are surmounted and connected by a cross- 65 head 13.

14 is a vertical shaft that passes loosely through the cross-head 13 and has fixed to its upper end a bevel gear-wheel 15, that rotates on bearing - balls 15a. This shaft extends 70 downwardly through the frame 9, post 8, and roof of the vehicle to the interior of the casing

in the vehicle.

16 designates a tubular shaft surrounding the shaft 14 and bearing at its upper end a 75 bevel gear-wheel 17. This shaft is upheld by a collar 18, that is fixed thereto, and rods upon bearing-balls 19. The tubular shaft 16 extends downwardly to the interior of the casing in the vehicle, but is of shorter length 80 than the shaft 14 within it.

20 designates a wind-wheel that is carried by a shaft 21, journaled in the forward framearm 11 and in the cross-head 13. On the shaft 21 is a bevel-pinion 22, that is arranged in 85 mesh with the bevel gear-wheels 15 and 17.

23 is a vane mounted on the rear framearm 12 for service in maintaining the windwheel 20 with its forward side directly opposing the force of air encountered thereby during 90 the travel of the vehicle equipped with the kinetoscope.

24 designates a picture-disk bearing motion-pictures, such as illustrated in Fig. IV. This picture-disk is in the form of a frustum 95 of a cone and is constructed of a translucent material, so that the pictures borne on its surface are illuminated by lights placed at the rear thereof, such as the electric lamps 24a (See Fig. I.) It is secured to the lower end 100 of the tubular shaft 16 to have rotation imparted thereto corresponding to that of said shaft.

25 is an apertured disk in the form of a frustum of a cone and secured to the lower 105 end of the shaft 14 beneath the picture-disk 24. The disks 24 and 25 are by their locations so positioned as to be in view through the transparent sight-disk 4 beneath them in order that a person may by looking through 110 said sight-disk observe the disks 24 and 25 during rotary movement imparted thereto in the manner to be stated in connection with

the operation thereof.

The operation of my kinetoscope is as follows: During the travel of the vehicle in which the kinetoscope is mounted the windwheel 20 is constantly rotated as a result of the pressure of air thereagainst and the shaft 10 21 has rotation imparted to it to impel the pinion 22 thereon. The pinion 22 being positioned between the bevel gear-wheels 15 and 17 and in mesh therewith causes rotation of said bevel gear-wheels in opposite di-15 rections and corresponding motion is imparted to the shafts 14 and 16 to rotate the picture-disk 24 and apertured disk 25 in opposite directions. The result is that as the picture-disk is viewed through the sight-disk 20 4 and apertures in the disk 25 apparent motion is imparted to such pictures, thereby furnishing kinetoscopic effects which are illuminated and the clearness of which is enhanced by the light projected onto the trans-25 lucent picture-disk by the lamps 24ª.

In Fig. V, I have shown a modification of the driving-gear of my kinetoscope. modification the forward arm 11' of the windwheel and gearing-frame 9' is downturned at 30 its upper end to provide two journals for the wind-wheel shaft 21', which carries the windwheel 20' and is provided with a bevel-pinion 22'. On the upper end of the apertured diskshaft 14' is a double-bevel gear-wheel 15', the 35 upper face of which receives the mesh of the pinion 22', while its lower face has arranged in mesh therewith a bevel-pinion 26, that is geared to the tubular picture-disk shaft 16' to impart rotation thereto to correspond with to the rotation of the pinion 15' above it, but in the reverse direction. 23' is the vane carried by the frame 9' for service as in the main construction hereinbefore described. object of this modified mechanism is to pro-45 duce a governing effect upon the speed of the above-mentioned frustum-shaped disks 24

and 25. In order to increase the velocity of

the frusta, an increase in force must be sup plied through the concentric shafts 14 and 16; but there would therefore be a reacting force 50 exerted through the above concentric shafts and intermediate gearing to the gear 15', whose retarding effect would produce a horizontal rotation of the frame composed of the members 9' and 11', and therefore of the wind- 55 wheel 20' and the vane 23, through the agency of the pinion 22'. Thus the face of the windwheel would be turned away at an angle with its former position, thereby lessening the surface of exposure to the wind, and conse- 60 quently the power exerted and necessarily the velocity of the said frusta. When the above reacting effect exerted through the shafts by the disks is lessened, the vane 23' will bring the wind-wheel to its former posi- 65 tion or to a position of power proportionate to the velocity of the wind, and thereby regulate the velocity of the disks.

A kinetoscope constructed in accordance with my invention furnishes a most interest- 70 ing and pleasing object and one to which attention will be invariably attracted, and by providing for the exhibition of advertising matter in connection with the kinetoscope I render it a most valuable advertising medi- 75 um, due to the attraction furnished by the

kinetoscope.

I claim as my invention—

In a kinetoscope, the combination of a picture-disk in the form of the frustum of a cone, 80 a perforated disk arranged concentric and parallel to said picture-disk, means for rotating said disks in opposite directions, and a view-casing inclosing said disks and arranged concentric and parallel thereto, said casing 85 comprising an upper sloping portion adapted to carry advertising matter, a lower sloping sight portion, and a straight bottom portion adapted to carry advertising matter, substantially as set forth.

WILLIAM D. CARTER. in presence of

GEO. H. LUTGERDING, ARTHUR B. MAYHEW.