57071882 A1 | IV Y00 OO0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
4 August 2005 (04.08.2005)

(10) International Publication Number

WO 2005/071882 A1l

HO4L 9/32

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2004/024293

(22) International Filing Date: 27 July 2004 (27.07.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/691,999 23 October 2003 (23.10.2003) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): AGARWAL,
Sameet H. [IN/US]; 8127 149th Place, NE #B-309,
Redmond, WA 98052 (US). RAMAN, Balan Sethu
[US/US]; 16335 NE 50th Street, Redmond, WA 98052
(US). ANAND, Sanjay [IN/US]; 20902 SE 2nd Place,
Sammamish, WA 98074 (US). LEACH, Paul J. [US/US];
1134 Federal Avenue East, Seattle, WA 98102 (US).

WARD, Richard B. [US/US]; 8565 261st Avenue, NE,
Redmond, WA 98053 (US).

(74) Agents: AMIN, Himanshu S. et al.; Amin & Turocy, LLP,
1900 E. 9th Street, 24th Floor, National City Center, Cleve-

land, OH 44114 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,

[Continued on next page]

(54) Title: SYSTEM AND METHODS PROVIDING ENHANCED SECURITY MODEL

o 100
e LI
160 120 170
EXPLICIT L SECURITY INHERITED
PROPERTIES COMPONENT PROPERTIES

TREE(S)

X 130

150
SECURITY REGIONS -

& (57) Abstract: The present invention relates to a system and methodology to facilitate security for data items residing within (or
& associated with) a hierarchical database or storage structure. A database security system is provided having a hierarchical data
structure associated with one or more data items. The system includes a security component that applies a security policy to the
data items from a global location or region associated with a database. Various components and processes are employed to enable
explicit and/or inherited security properties to be received by and propagated to the data items depending on the type of data structure

e
=

encountered or processed

WO 2005/071882 A1 1IN} A0VYH0 0 0000 00

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Fortwo-letter codes and other abbreviations, refer to the "Guid-
GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— with international search report

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

however, security models have been applied to these systems to determine and
facilitate how entities (e.g., users or other components) are permitted access to objects
or items residing in the respective structures.

In many aspects, current security models limit the effectiveness of operating
systems to manage data both securely and efficiently. For example, one security
model implements security by associating an Access Control List (ACL) with every
file or directory in a hierarchy. An inheritance model then provides support for
specifying a default ACL for newly created items in a directory, but subsequently if
the ACL on a directory is changed, the files and folders contained in the hierarchy
under that directory are not automatically updated. Also, ACL’s specified at any
directory can be propagated using higher-level API’s, for example. Consequently,
every item can override security policy above it and specify an ACL at its level that
either explicitly blocks further inheritance from above, or merely re-inherits when a
newly created ACL propagates down the hierarchy. Unfortunately, at a volume level,
since there is no single place where these different security policies are tracked, (they
are generally tracked per-item), it is exceedingly difficult if not impossible to
determine a resultant security policy at that level.

As mentioned above, if a new ACL is specified at a directory, it can be
propagated down the hierarchy but this usually entails running operations on every
file and directory in that hierarchy. For significantly large volumes, this can take an
inordinate amount of time. It is noted that even single-instancing ACL’s do not
alleviate this issue since single-instancing occurs regardless of containment paths.
Thus, if two hierarchies happened to have the same ACL on its contained items, and if
policy on one of them changed, it would be incorrect to simply update the single-
instance table since that would change the policy on the other hierarchy as well.

Other problems with current security models involve the presence of hard
links between items that present semantic problems when considered in conjunction
with ACL inheritance. For example, when an Item is created under a Folderl, it
receives a default ACL1 from Folderl. Creation of a subsequent link to the Item from
a Folder2 does not change the security. However, if a new ACL3 on Folder2 is
applied to its hierarchy, it changes the ACL on the Item as well. Subsequently, if a
new ACL is applied on Folderl, it then inherits down to the Item. Consequently, who

or whatever happens to write last overwrites the existing inherited ACL’s. This type

1

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

of security arrangement is at least confusing and more often unpredictable which is

highly undesirable.

SUMMARY OF THE INVENTION

The following presents a simplified summary of the invention in order to
provide a basic understanding of some aspects of the invention. This summary is not
an extensive overview of the invention. It is not intended to identify key/critical
elements of the invention or to delineate the scope of the invention. Its sole purpose
is to present some concepts of the invention in a simplified form as a prelude to the
more detailed description that is presented later.

The present invention relates to systems and methods that provide a
predictable and globalized security model for hierarchically arranged data items.
Such hierarchies can include substantially any type of hierarchically arranged items
such as common tree structures or more elaborate data structures such as a Directed
Acyclic Graph (DAG), for example. In one aspect, a security component is provided
that enables security policies to be applied in more global manner such as from one or
more security regions that are mapped within a database. These poli‘cies can include
explicitly defined policies and/or more generalized policies that can be inherited from
various portions of a path or region associated with the type of data structure involved
(e.g., security policies applied in one manner for a tree structure and a subsequent
manner for a containment hierarchy). Since respective security policies are applied at
a regional or global level of a database as opposed to applying a separate security file
per data item within a hierarchical structure, the present invention significantly
increases database performance. Performance increases are achieved by mitigating
computing operations associated with conventional system security models that
create/manage a plurality of isolated security files that also continue to increase in
quantity as data items are added to the database.

In another aspect of the present invention, various components and processes
are provided to enable security policies to automatically be associated with database
items. These components define a security model that maps a security policy to a
respective item depending on the type of data structure employed. For example, in
one type of database, a containment hierarchy may include various holding

relationships between items appearing in the hierarchy. The holding relationship may

2

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

be employed to propagate a security policy for a respective item, wherein the policy
may include both an explicit portion (e.g., defined by a system administrator) and an
inherited portion received from the parent and/or other components associated with
the item. Thus, a rule can be modeled that enables an item to inherit a security policy
along the branches of a path from a root of the hierarchy to the respective item in
accordance with the hierarchical structure. Also, if a more traditional tree
arrangement is encountered, such as in the case if there is one path between a root
node of a tree to the respective data item, then alternative mapping of security policies
may be applied. By providing various approaches for mapping security policies
depending on the type of hierarchy encountered, the present invention provides a
robust security model that facilitates system performance and promotes stability by
mitigating uncertainty associated with conventional security techniques.

To the accomplishment of the foregoing and related ends, certain illustrative
aspects of the invention are described herein in connection with the following
description and the annexed drawings. These aspects are indicative of various ways
in which the invention may be practiced, all of which are intended to be covered by
the present invention. Other advantages and novel features of the invention may
become apparent from the following detailed description of the invention when

considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic block diagram of a database security system and model in
accordance with an aspect of the present invention.

Fig. 2 is a diagram of an access control list and ordering component in
accordance with an aspect of the present invention.

Fig. 3 is a diagram illustrating security policy distribution in accordance with
an aspect of the present invention.

Fig. 4 is a diagram illustrating an example access mask in accordance with an
aspect of the present invention.

Fig. 5 is a diagram illustrating an example data structure for similarly
protected security regions in accordance with an aspect of the present invention.

Fig. 6 is a diagram illustrating security region creation in accordance with an

aspect of the present invention.

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

Fig. 7 is a flow diagram illustrating a security process in accordance with an
aspect of the present invention.

Fig. 8 is a schematic block diagram illustrating a suitable operating
environment in accordance with an aspect of the present invention.

Fig. 9 is a schematic block diagram of a sample-computing environment with

which the present invention can interact.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a system and methodology to facilitate
security for data items residing within (or associated with) a hierarchical database or
storage structure (e.g., hierarchical tree branching to various nodes). In one aspect, a
database security system is provided having a hierarchical data structure associated
with one or more data items. The system includes a security component that applies a
security policy to the data items from a global location or region associated with a
database. Various components and processes are employed to enable explicit and/or
inherited security properties to be received by and pfopagated to the data items
depending on the type of data structure encountered or processed. By associating
security policies and/or properties at a global, volume, or regional level of the
database - in contrast to the item level, database processing operations are mitigated
over conventional systems that generally link individual security files with respective
data items residing in the database.

2% L€

As used in this application, the terms “component,” “tree,” “model,” “system,”
and the like are intended to refer to a computer-related entity, either hardware, a
combination of hardware and software, software, or software in execution. For
example, a component may be, but is not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of execution, a program,
and/or a computer. By way of illustration, both an application running on a server
and the server can be a component. One or more components may reside within a
process and/or thread of execution and a component may be localized on one
computer and/or distributed between two or more computers.

Referring initially to Fig. 1, a database security system and model 100 is

illustrated in accordance with an aspect of the present invention. The system 100

includes a database 110 having a security component 120 (or components) that are

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

administered from a global or regionalized location within the database (can also be
administered from remote locations outside the database). The database 120 includes
one or more hierarchical structures 130 and 140. Such hierarchies can include
substantially any type of hierarchically arranged data items (illustrated as elliptical
nodes) such as common tree structures at 130 or more elaborate data structures such
as a containment hierarchy 140 that is generally modeled as a Directed Acyclic Graph
(DAG). Although the tree 130 and containment hierarchy 140 (also referred to as
DAG) are illustrated, it is to be appreciated that the security model of the present
invention can be applied to substantially any type of hierarchical data structure. As
will be described in more detail below, various processes and components are
employed to administer security policies from the security component 120 to the
respective hierarchies 130 and 140.

In one aspect of the present invention, the security component 120 enables
security policies to be applied in more global manner such as from one or more
security regions 150 that are mapped within/from the database 110. These policies
can include explicitly defined policies or properties at 160 and/or more generalized
policies or properties at 170 that can be inherited from various portions of a path or
region associated with the type of data structure involved. For example, security
policies can be applied in one manner for the tree structure 130 and a subsequent
manner for the DAG 140, if desired.

As noted above, various components and processes are provided to enable
security policies to automatically be associated with database items. These
components define a security model that maps a security policy from the security
component 120 to a respective item in the hierarchies 130 and 140 depending on the
type of data structure employed. For example, in one type of structure, a containment
hierarchy may include various holding relationships between items appearing in the
hierarchy. The holding relationship may be employed to propagate a security policy
for a respective item, wherein the policy may include an explicit portion 160 (e.g.,
defined by a system administrator) and/or an inherited portion 170 received from the
parent and/or other components associated with the item. Thus, rules can be provided
that enable an item to inherit a security policy along the branches of a path from a root
of the hierarchy to the respective item in accordance with the hierarchical structure.

Also, if a more traditional tree arrangement is encountered, such as in the case if there

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

is one path between a root node of a tree to the respective data item, then alternative
mapping of security policies may be applied.

It is noted that database 110 and/or hierarchies 130/140 can be modeled as an
item store (e.g., memory region in the database). The granularity at which security
policy can be specified and enforced is generally at the level of various operations on
an item in a given store. In general, the security component 120 (or model) specifies
a set of principals that can be granted or denied access to perforrh these operations on
an item through, for example, Access Control Lists (ACL’s). Respective ACL’s are
typically an ordered collection of Access Control Entries (ACE’s) which are
described in more detail below. '

The security policy for an item can be described by discretionary access
control policy and the system access control policy, for example, wherein these
policies can be modeled as a set of ACL’s. A first set (Discretionary ACL -
DACL’s) describes discretionary access granted to various principals by a owner of
the item while a second set of ACL’s is referred to as SACL’s (System Access
Control Lists) which specify how system auditing is achieved when an object is
manipulated. In addition to these lists, items in an item store are generally associated
with a security identifier (SID) that corresponds to the owner of the item (Owner
SID).

One aspect for organizing items in an item store is that of the containment
hierarchy such as illustrated at 140. Generally, the containment hierarchy is realized
via holding relationships between items. For example, holding relationship between
two items A and B expressed as “A contains B” enables item A to influence the
lifetime of the item B. Typically, an item in an item store cannot exist until there is a
holding relationship from another item to it. One exception to this rule is the root of
the containment hierarchy. As noted above, the holding relationship in addition to
controlling the lifetime of the item provides a component for propagating the security
policy for an item.

The security policy specified for respective items generally include two (or
more) portions — a portion that is explicitly specified for that item and a portion that is
inherited from the parent of the item in the item store. The explicitly defined security
policy for an item may also include two (or more) portions — a portion that governs

access to the item under consideration and a portion that influences the security policy

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

inherited by its descendants in the containment hierarchy or other hierarchical
structure. The security policy inherited by a descendant is a generally function of the
explicitly defined policy and the inherited policy.
Referring now to Fig. 2, an access control list 200 and ordering component
210 are illustrated in accordance with an aspect of the present invention. As noted
above, security policies are generally propagated through holding relationships in a
containment hierarchy. Since the security policy is propagated through holding
relationships and can also be overridden at an item, the following describes how the
effective’ security policy for an item is determined. For example, an item in a
containment hierarchy inherits an ACL along the paths from the root of the item store
to the item. Within the inherited ACL for a given path, the ordering of the various
Access Control Entries (ACE’s) in the ACL 200 generally determines the final
security policy that is enforced. The following notation describes the ordering of
ACE’s in an ACL via the ordering component 210.
The ordering of the ACE’s in an ACL that is inherited by an item can be
determined by the following rules:
Rule 1
For inherited ACL’s (L) on item (I)
For items 11, 12
For ACE’s Al and A2inL,
I1 is an ancestor of 12 and
12 is an ancestor of I3 and
Al is an ACE inherited from I1 and
A2 is an ACE inherited from 12
Implies
A2 precedes Al inL
The above rule stratifies the ACE’s inherited from the various items in a path
to the item I from the root of the containment hierarchy. The ACE’s inherited from a
closer container take precedence over the entries inherited from a distant container.
Intuitively, this allows an administrator the ability to override ACE’s inherited from
farther up in the containment hierarchy.
The following rule orders the ACE’s that deny access to an item ahead of the

ACE’s that grant access to an item.

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

Rule 2

For inherited ACL’s (L) on item ()

For items 11

For ACE’s Al and A2in L,
11 is an ancestor of 12 and
Al is an ACCESS DENIED ACE inherited from I1 and
A2 is an ACCESS_GRANTED_ACE inherited from I1

Implies

Al precedes A2in L

Turning to Fig. 3, a system 300 illustrates security policy distribution in
accordance with an aspect of the present invention. The system 300 deploys one or
more security policies 310 to a tree structure 320 and/or a DAG 330. In the case of a
containment hierarchy being a tree 320 there is one path from the root of the tree to
the item and the item thus has one inherited ACL at 340. Under these circumstances,
the ACL inherited by an item matches the ACL inherited by a file (item) in existing
security models in terms of the relative ordering of the ACE’s within them. However,
when the containment hierarchy is a Directed Acyclic Graph (DAG) 330, multiple
holding relationships are permitted to items. Under these conditions there are
multiple paths to an item from the root of the containment hierarchy. Since an item
inherits an ACL along the paths the items are associated with, a collection of ACL’s
as opposed to a single one are employed at 350.

It is noted that the above-described model is different from the file system
model where exactly one ACL is associated with a file or folder. Thus, for the legacy
interfaces, the system 300 can return an ACL associated with the particular path over
which the item was accessed. However, for item-store models, a set of ACL’s
associated with the item can be returned.

There are typically two aspects that are to be elaborated when the containment
hierarchy is a DAG 330 as opposed to a tree 320. In one aspect, the model provides a
description how the effective security policy for an item is computed when it inherits
more than one ACL from its parents and how items are organized and represented

affect the administration of the security model for an item store.

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

The following algorithm evaluates access rights for a given ‘principal toa
given item. Before proceeding with the algorithm, the following notation describes
ACL’s associated with an item.

Inherited ACLs(ItemlId) — a set of ACL’s inherited by an item whose item
identity is an Itemld from it’s parents in the store.

Explicit ACL(Itemld) - an ACL explicitly defined for the item whose identity

is ItemId.

STATUS

ACLAccessCheck(
PSID pOwnerSid,
PDACL pDacl, |
DWORD DesiredAccess,
HANDLE ClientToken,
PPRIVILEGE SET pPrivilegeSet,
DWORD *pGrantedAccess)

The above routine returns STATUS SUCCESS if the desired access was not
explicitly denied and pGrantedAccess determines which of the rights desired by the
user were granted by the specified ACL. If the desired access was explicitly denied
the routine returns STATUS ACCESS_DENIED.

STATUS

ItemAccessCheck(
OS_ITEMID Item]Id,
DWORD DesiredAccess,
HANDLE ClientToken,

PPRIVILEGE_SET pPrivilegeSet)

STATUS Status;

PDACL pExplicitACL = NULL,;
PDACL pInherited ACLs = NULL;
DWORD NumberOfInheritedACLs = 0;

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

pExplicitACL = GetExplicitACLForltem(ItemId);

Getlnherited ACLsForltem(ItemlId,&pInherited ACLs,&NumberOfInherited AC

Ls)

Status = ACLAccessCheck(
pOwnerSid,
pExplicitACL,
DesiredAccess,
ClientToken, ’
pPrivilegeSet,
&GrantedAccess); .

if (Status != STATUS_SUCCESS)

return Status;

if (Desired Access == Granted Access)

return STATUS_SUCCESS;
for (
1i=0;

(i < NumberOfinherited ACLs && Status == STATUS_SUCCESS) ;
i) {
GrantedAccessForACL = 0;

Status = ACLAccessCheck(
pOwnerSid,
pExplicitACL,
DesiredAccess,
ClientToken,
pPrivilegeSet,
&GrantedAccessForACL);

10

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

if (Status == STATUS SUCCESS) {
GrantedAccess |= GrantedAccessForACL;

R

If ((Status == STATUS_SUCCESS) &&
(GrantedAccess != DesiredAccess)) {
Status = STATUS_ACCESS_DENIED;

[

return Status;

It is noted that the sphere of influence of the security policy defined at an item
covers the descendants of the item in the containment hierarchy defined on the item
store. For items where an explicit policy is defined, then the effect is similar to
defining a policy that is inherited by its descendants in the containment hierarchy.
The effective ACL’s inherited by the descendants can be obtained by taking the
ACL’s inherited by the item and adding the inheritable ACE’s in the explicit ACL to
the beginning of the ACL (unless a flag is set specifying that propagated ACE’s are
not to be inherited). This is referred to as the set of inheritable ACL’s associated with
the item.

In the absence of explicit specification of security in the containment
hierarchy rooted at a folder item, the security specification of the folder generally
applies to all the descendants of that item in the containment hierarchy. Thus, every
item for which an explicit security policy specification is provided defines a region of
similarly protected items and the effective ACL’s for all the items in the region is the
set of inheritable ACL’s for that item. This would completely define the regions in
the case of a containment hierarchy that is a tree. If each region were to be associated
with a number, then it would be sufficient to merely include the region to which an

item belongs along with the item.

11

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

For containment hierarchies that are DAG’s, the points in the containment
hierarchy at which the effective security policy changes is generally determined by
two types of items:

Items for which an explicit ACL has been specified. Typically these are the
points in the containment hierarchy where an administrator has explicitly specified an
ACL; and

Items that have more than one parent and the parents have different security
policies associated with them. Typically these are the items that are the confluence
points of security policy specified for a volume of items and indicate the beginning of
a new security policy.

With the above definition, the items in the item store fall generally into one of
two categories — those that are the root of a similarly protected security region and
those that are not. The items that do not define security regions generally belong to
one security region. As in the case of trees, the effective security for an item can be
specified by specifying the region to which an item belongs. This leads to a
straightforward model for administering the security of an item store based upon the
various similarly protected regions in the store.

The following discussion relating to Figs. 4-6 is related to more detailed
descriptions of security policies and/or security implementations that may be
employed in accordance with the present invention. For example, although detailed
bit mappings may be described, it is to be appreciated that the present invention is not
limited to the particular implementations so described (e.g., other bit mappings and/or
implementations possible).

In general, a security descriptor includes security information associated with
a securable object. A security descriptor includes a SECURITY DESCRIPTOR
structure and its associated security information. The security descriptor can include
the following security information:

SID’s for the owner and primary group of an object.

A DACL that specifies the access rights allowed or denied to particular users
or groups.

An SACL that specifies the types of access attempts that generate audit

records for the object.

12

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

A set of control bits that qualify the meaning of a security descriptor or its
individual members.

Applications should not directly manipulate the contents of a security
descriptor. Application Programming Interface (API) functions can be provided for
setting and retrieving the security information in an object's security descriptor. In
addition, there are functions for creating and initializing a security descriptor for a
new object.

A discretionary access control list (DACL) identifies trustees that are allowed
or denied access to a securable object. When a process attempts to access a securable
object, the system checks the ACEs in the object's DACL to determine whether to
grant access to it. If the object does not have a DACL, the system can grant full
access. If the object's DACL has no ACEs, the system denies attempts to access the
object because the DACL does not allow access rights. The system checks the ACEs
in sequence until it finds one or more ACEs that allow the requested access rights, or
until the requested access rights are denied.

A system access control list (SACL) enables administrators to log attempts to
access a secured object. The ACE specifies the types of access attempts by a
specified trustee that cause the system to generate a record in a security event log. An
ACE in a SACL can generate audit records when an access attempt fails, when it
succeeds, or both. Also, an SACL can raise an alarm when an unauthorized user
attempts to gain access to an object. Generally, ACEs contain the following access
control information:

A security identifier (SID) that identifies the trustee to which the ACE applies.

An access mask that specifies the access rights controlled by the ACE.

A flag that indicates the type of ACE.

A set of bit flags that determine whether child containers or objects can inherit

the ACE from the primary object to which the ACL is attached.

The following table lists possible ACE types supported by securable objects.

Type Description

' Access-denied : Used in a DACL to deny access rights to a trustee.

13

10

15

20

WO 2005/071882 PCT/US2004/024293

.ACE

Access—allowed :

Used in a DACL to allow access rights to a trustee.
ACE

1 System-audit ~ Used in a SACL to generate an audit record when the trustee

ACE attempts to exercise the specified access rights.

In one aspect, securable objects can arrange their access rights via the access
mask format (other formats possible) illustrated in a mask 400 in Fig. 4. In this
format, the low-order 16 bits are for object-specific access rights, the next 7 bits are
for standard access rights, which apply to most types of objects, and the 4 high-order
bits are employed to specify generic access rights that object types can map to a set of
standard and object-specific rights. An (AS bit) ACCESS_SYSTEM_SECURITY bit
corresponds to the right to access the object’s SACL.

Generic rights are specified in the 4 high-order bits within the mask 400.
Generally, each type of securable object maps these bits to a set of its standard and
object-specific access rights. For example, one type of file object can map the
GENERIC_READ bit to the READ _CONTROL and SYNCHRONIZE standard
access rights and to the FILE_READ DATA, FILE READ EA, and
FILE READ_ATTRIBUTES object-specific access rights.

Other types of objects map the GENERIC_READ bit (GR) to the set of access
rights suitable for that type of object. Generic access rights can be utilized to specify
the type of access desired when opening a handle to an object, for examplq. This is
typically simpler than specifying all the corresponding standard and specific rights.

The following table depicts possible constants defined for generic access rights.

 Constant Generic meaning

| GENERIC_ALL Read, write, and execute access
' GENERIC_EXECUTE ' Execute access j

GENERIé_READ : 7: Read acceéé

GENERIC_WRITE) Wn'te access S

14 ,

10

15

20

 READ_CONTROL

WO 2005/071882 PCT/US2004/024293

Generally, each type of securable object has a set of access rights that
correspond to operations specific to that type of object. In addition to these object-
specific access rights, there is a set of standard access rights that correspond to
operations common to most types of securable objects. The following table depicts

possible constants defined for standard access rights.

. Constant Meaning

-DELETE . The right to delete the object.

' The right to read the information in the object's security

 descriptor, not including the information in the SACL.

The right to use the object for synchronization. This enables a

'SYNCHRONIZE | thread to wait until the object is in the signaled state. Some

{ object types do not support this access right.

: WRITE_DAC | The right to fnodif& the DACL in t‘her objecf's vsrercurify‘ »v('iescripfor.

WRITE_OWNER The right to change the owner in the object's secﬁrity descriptor.

Fig. 5 illustrates an example data structure 500 for similarly protected security
regions in accordance with an aspect of the present invention. Items that define
similarly protected regions have an entry associated with them in the security table as
illustrated at 500. The security table is defined as follows:

Item Identity — This is the Item Identity of the root of a similarly protected
security region.

Item Ordpath — This is the ordpath associated with the root of the similarly
protected security region.

Explicit Item ACL — This is the explicit ACL defined for the root of the
similarly protected security region. In some cases this can be NULL, (e.g., when a
new security region is defined because the item has multiple parents belonging to
different regions).

Path ACLs — This is the set of ACL’s inherited by the item.

15

10

15

200

25

30

WO 2005/071882 PCT/US2004/024293

Region ACLs — This is the set of ACL’s defined for the similarly protected
security region associated with the item. This differs from the Inherited ACL’s
column when the explicit column has a non-NULL value.

The computation of effective security for an item in a given store leverages the
table 500. In order to determine the security policy associated with an item, the
security region associated with the item is analyzed and the ACL’s associated with
that region are retrieved. As the security policy associated with item is changed (e.g.,
by directly adding explicit ACL’s or indirectly by adding holding links that results in
the formation of new security regions) the security table 500 should be kept up to date
to facilitate that the above algorithm for determining the effective security of an item
is valid. Possible algorithms to maintain the security table are as follows:

Creating a new item in a container —

When an item is newly created in a container it inherits the ACL’s associated
with the container. Since the newly created item has one parent it belongs to the
security region as its parent. Thus, there is typically no need to create a new entry in
the security table.

Adding an explicit ACL to an item -

When an ACL is added to an item it defines a new security region for its
descendants in the containment hierarchy that belong to the same security region as
the given item itself. For the items that belong to other security regions but are
descendants of the given item in the containment hierarchy, the security region
remains unchanged but the effective ACL associated with the region is changed to
reflect the addition of the new ACL. The introduction of this new security region can
trigger further region definitions for those items which have multiple holding links
with ancestors that straddle the old security region and the newly defined security
region. For such items, a new security region can be defined and the procedure
repeated.

Fig. 6 depicts a new similarly protected security region being created out of an
existing security region by introducing a new explicit ACL. This is indicated by the
node marked 2 at reference numeral 600. However, the introduction of this new
region results in an additional region 3 being created at reference numeral 610 due to
an item having multiple holding links. The following sequence of updates to the

security tables reflect the factoring of similarly protected security regions.

16

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

Adding a holding link to an item -

When a holding link is added to an item it typically gives rise to one of three
possibilities. If the target of the holding link, i.e., the item under consideration is the
root of a security region, the effective ACL associated with the region is changed and
no further modifications to the security table is generally required. If the security
region of the source of the new holding link is identical to the security region of the
existing parents of the item, then typically no changes are required. However, if the
item now has parents that belong to different security regions, then a new security
region is formed with the given item as the root of the security region. This change is
propagated to the items in the containment hierarchy by modifying the security region
associated with the item. The items that belong to the same security region as the
item under consideration and are its descendants in the containment hierarchy should
be changed. When the change is made, the items that have multiple holding links
should be examined to determine if further changes are required. Further changes
may be required if any of the items have parents of different security regions.

Deleting a holding link from an item -

When a holding link is deleted from an item it is possible to collapse a security
region with its parent region if certain conditions are satisfied. More precisely this
can be accomplished under the following conditions —

If the removal of the holding link results in an item that has only one parent
and no explicit ACL is specified for that item.

If the removal of the holding link results in an item whose parents are all in the
same security region and no explicit ACL is defined for that item. Under these
circumstances the security region can be marked to be the same as the parent. This
marking should be applied to all the items whose security region corresponds to the
region being collapsed.

Deleting an explicit ACL from an item -

When an explicit ACL is deleted from an item it is possible to collapse the
security region rooted at that item with that of its parents. More precisely, this can be
achieved if the removal of the explicit ACL results in an item whose parents in the
containment hierarchy belong to the same security region. Under these circumstances
the security region can be marked to be the same as the parent and the change applied

to the items whose security region corresponds to the region being collapsed.

17

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

Modifying an ACL associated with an item —

In this case, no new additions to the security table are generally required. The
effective ACL associated with the region is updated and the new ACL change is
propagated to the security regions that are affected by it.

Fig. 7 is a flow diagram illustrating a security process 700 in accordance with
an aspect of the present invention. While, for purposes of simplicity of explanation,
the methodology is shown and described as a series of acts, it is to be understood and
appreciated that the present invention is not limited by the order of acts, as some acts
may, in accordance with the present invention, occur in different orders and/or
concurrently with other acts from that shown and described herein. For example,
those skilled in the art will understand and appreciate that a methodology could
alternatively be represented as a series of interrelated states or events, such as in a
state diagram. Moreover, not all illustrated acts may be required to implement a
methodology in accordance with the present invention.

Proceeding to 710 of Fig. 7, one or more security policies are defined for
hierarchical structures. As noted above, this can include common tree structures and
other structures such as containment hierarchies. Also, hybrid structures are possible
having some aspects of tree arrangements and some aspects relating to containment
hierarchies. Security policies can be provided in such devices as Access Control Lists
having one or more Access Control Entries that describe the respective policy therein.
At 720, explicit and/or inherited mapping rules are defined for the security policies.
Such rules can include override functions in the case of explicit mappings, whereas
other rules provide for how policies will be mapped in a more complex arrangement
such as a containment hierarchy whereby multiple holding relationships are possible.
At 730, ordering for respective rules and policies are determined. For example,
Access Control Entries can be arranged within the Access Control List depending on
the type of structure and/or hierarchical relationship encountered. At 740, one or
more security regions are defined for a given hierarchical structure. At 750, one or
more security policies are applied to selected regions defined at 740.

With reference to Fig.8, an exemplary environment 810 for implementing

various aspects of the invention includes a computer 812. The computer 812 includes

18

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

a processing unit 814, a system memory 816, and a system bus 818. The system bus
818 couples system components including, but not limited to, the system memory 816
to the processing unit 814. The processing unit 814 can be any of various available
processors. Dual microprocessors and other multiprocessor architectures also can be
employed as the processing unit 814.

The system bus 818 can be any of several types of bus structure(s) including
the memory bus or memory controller, a peripheral bus or external bus, and/or a local
bus using any variety of available bus architectures including, but not limited to, 16-
bit bus, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA),
Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB),
Peripheral Component Interconnect (PCI), Universal Serial Bus (USB), Advanced
Graphics Port (AGP), Personal Computer Memory Card International Association bus
(PCMCIA), and Small Computer Systems Interface (SCSI).

The system memory 816 includes volatile memory 820 and nonvolatile
memory 822. The basic input/output system (BIOS), containing the basic routines to
transfer information between elements within the computer 812, such as during start-
up, is stored in nonvolatile memory 822. By way of illustration, and not limitation,
nonvolatile memory 822 can include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), electrically erasable ROM
(EEPROM), or flash memory. Volatile memory 820 includes random access memory
(RAM), which acts as external cache memory. By way of illustration and not
limitation, RAM is available in many forms such as synchronous RAM (SRAM),
dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM
(DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and
direct Rambus RAM (DRRAM).

Computer 812 also includes removable/non-removable, volatile/non-volatile
computer storage media. Fig. 8 illustrates, for example a disk storage 824. Disk
storage 824 includes, but is not limited to, devices like a magnetic disk drive, floppy
disk drive, tape drive, Jaz drive, Zip drive, LS-100 drive, flash memory card, or
memory stick. In addition, disk storage 824 can include storage media separately or
in combination with other storage media including, but not limited to, an optical disk
drive such as a compact disk ROM device (CD-ROM), CD recordable drive (CD-R
Drive), CD rewritable drive (CD-RW Drive) or a digital versatile disk ROM drive

19

WO 2005/071882 PCT/US2004/024293

(DVD-ROM). To facilitate connection of the disk storage devices 824 to the system
bus 818, a removable or non-removable interface is typically used such as interface
826.

It is to be appreciated that Fig 8 describes software that acts as an intermediary
between users and the basic computer resources described in suitable operating
environment 810. Such software includes an operating system 828. Operating system

828, which can be stored on disk storage 824, acts to control and allocate resources of

10

15

20

25

30

the computer system 812. System applications 830 take advantage of the
management of resources by operating system 828 through program modules 832 and
program data 834 stored either in system memory 816 or on disk storage 824. Itis to
be appreciated that the present invention can be implemented with various operating
systems or combinations of operating systems.

A user enters commands or information into the computer 812 through input
device(s) 836. Input devices 836 include, but are not limited to, a pointing device
such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game
pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web
camera, and the like. These and other input devices connect to the processing unit
814 through the system bus 818 via interface port(s) 838. Interface port(s) 838
include, for example, a serial port, a parallel port, a game port, and a universal serial
bus (USB). Output device(s) 840 use some of the same type of ports as input
device(s) 836. Thus, for example, a USB port may be used to provide input to
computer 812, and to output information from computer 812 to an output device 840.
Output adapter 842 is provided to illustrate that there are some output devices 840 like
monitors, speakers, and printers, among other output devices 840, that require special
adapters. The output adapters 842 include, by way of illustration and not limitation,
video and sound cards that provide a means of connection between the output device
840 and the system bus 818. It should be noted that other devices and/or systems of
devices provide both input and output capabilities such as remote computer(s) 844.

Computer 812 can operate in a networked environment using logical
connections to one or more remote computers, such as remote computer(s) 844. The
remote computer(s) 844 can be a personal computer, a server, a router, a network PC,
a workstation, a microprocessor based appliance, a peer device or other common

network node and the like, and typically includes many or all of the elements

20

10

15

20

25

30

WO 2005/071882 PCT/US2004/024293

described relative to computer 812. For purposes of brevity, only a memory storége
device 846 is illustrated with remote computer(s) 844. Remote computer(s) 844 is
logically connected to computer 812 through a network interface 848 and then
physically connected via communication connection 850. Network interface 848
encompasses communication networks such as local-area networks (LAN) and wide-
area networks (WAN). LAN technologies include Fiber Distributed Data Interface
(FDDI), Copper Distributed Data Interface (CDDI), Ethernet/IEEE 1102.3, Token
Ring/IEEE 1102.5 and the like. WAN technologies include, but are not limited to,
point-to-point links, circuit switching networks like Integrated Services Di gital
Networks (ISDN) and variations thereon, packet switching networks, and Digital
Subscriber Lines (DSL).

Communication connection(s) 850 refers to the hardware/software employed
to connect the network interface 848 to the bus 818. While communication connection
850 is shown for illustrative clarity inside computer 812, it can also be external to
computer 812. The hardware/software necessary for connection to the network
interface 848 includes, for exemplary purposes only, internal and external
technologies such as, modems including regular telephone grade modems, cable
modems and DSL modems, ISDN adapters, and Ethernet cards.

Fig. 9 is a schematic block diagram of a sample-computing environment 900
with which the present invention can interact. The system 900 includes one or more
client(s) 910. The client(s) 910 can be hardware and/or software (e.g., threads,
processes, computing devices). The system 900 also includes one or more server(s)
930. The server(s) 930 can also be hardware and/or software (e.g., threads, processes,
computing devices). The servers 930 can house threads to perform transformations
by employing the present invention, for example. One possible communication
between a client 910 and a server 930 may be in the form of a data packet adapted to
be transmitted between two or more computer processes. The system 900 includes a
communication framework 950 that can be employed to facilitate communications
between the client(s) 910 and the server(s) 930. The client(s) 910 are operably
connected to one or more client data store(s) 960 that can be employed to store
information local to the client(s) 910. Similarly, the server(s) 930 are operably
connected to one or more server data store(s) 940 that can be employed to store

information local to the servers 930.

21

10

WO 2005/071882 PCT/US2004/024293

What has been described above includes examples of the present invention. It
is, of course, not possible to describe every conceivable combination of components
or methodologies for purposes of describing the present invention, but one of ordinary
skill in the art may recognize that many further combinations and permutations of the
present invention are possible. Accordingly, the present invention is intended to
embrace all such alterations, modifications and variations that fall within the spirit
and scope of the appended claims. Furthermore, to the extent that the term “includes”
is used in either the detailed description or the claims, such term is intended to be
inclusive in a manner similar to the term “comprising” as “comprising” is interpreted

when employed as a transitional word in a claim.

22

WO 2005/071882 PCT/US2004/024293

CLAIMS

What is claimed is:

1. A data storage security system, comprising:

at least one hierarchical data structure associated with one or more data
items; and

a security component that applies at least one security policy to the data

items from a global location associated with a data store.

2. The system of claim 1, the hierarchical data structure is at least one of a tree

structure and a containment hierarchy.

3. The system of claim 2, the containment hierarchy is modeled as a Directed
Acyclic Graph (DAG).
4. The system of claim 1, the security policy is mapped to one or more security

regions that are associated with the database.

5. The system of claim 4, the security policy is at least one of mapped from

within the database and mapped from outside the data store.

6. The system of claim 1, the security policy is at least one of explicitly mapped

to an item and inherited by an item.

7. The system of claim 1, the security component includes an Access Control

List having one or more Access Control Entries.

8. The system of claim 7, the Access Control List can be associated with a

holding relationship of a containment hierarchy.

23

WO 2005/071882 PCT/US2004/024293

9. The system of claim 8, further comprising a plurality of Access Control Lists

to facilitate security for the containment hierarchy.

10. The system of claim 1, the security component specifies a set of principals that

are granted or denied access to perform operations on an item.

11. The system of claim 1, the security component includes at least one of

discretionary access control list, a system access control list, and a security identifier.

12. The system of claim 1, further comprising an ordering component that
arranges one or more Access Control Entries (ACE) in an Access Control List (ACL)

to determine a security policy that is enforced for an item.
13. The system of claim 12, further comprising the following ordering algorithm:

For inherited ACL’s (L) on item (I)
For items I1, 12
For ACE’s Al and A2inL,
I1 is an ancestor of 12 and
12 is an ancestor of I3 and
A1l is an ACE inherited from I1 and
A2 is an ACE inherited from I2
Implies
A2 precedes Al in L,

wherein L and I are integers.

14. The system of claim 12, further comprising the following ordering algorithm:
For inherited ACL’s (L) on item (I)

For items 11

For ACE’s Aland A2in L,

24

WO 2005/071882 PCT/US2004/024293

I1 is an ancestor of I2 and

Al is an ACCESS_DENIED ACE inherited from I1 and

A2 is an ACCESS_GRANTED_ ACE inherited from I1
Implies

Al precedes A2in L,

wherein L and I are integers.

15. The system of claim 12, further comprising a component that evaluates access

rights for a given principal to a given item.

16. The system of claim 1, the security component further comprises an effective
access control list that is obtained by processing lists inherited by an item and adding

inheritable access control entries in an explicit access control list.

17. The system of claim 1, the security component further comprises an access
mask specifying at least one of object-specific access rights, standard access rights,

and generic access rights.

18. The system of claim 1, further comprising a security table for similarly

protected security regions.

19. The system of claim 18, the security table includes at least one of the
following fields an Item Identity, an Item Ordpath, an Explicit Item, a Path ACL, and
aRegion ACL.

20. The system of claim 1, further comprising a component to at least one of
create a new item in a container, add an explicit ACL to an item, add a holding link to
an item, delete a holding link from an item, delete an explicit ACL from an item and

modify an ACL associated with an item.

21. A computer readable medium having computer readable instructions stored

thereon for implementing the security component of claim 1.

25

WO 2005/071882 PCT/US2004/024293

22. A method to facilitate data item security, comprising:
defining at least one security policy for a hierarchical data structure;
defining at least one security region for the hierarchical data structure; and
applying the security policy to the hierarchical data structure from the security

region.

23. The method of claim 22, further comprising automatically supporting at least

one explicit and inherited security policy.

24. The method of claim 22, further comprising automatically ordering security

policies.

25. The method of claim 22, further comprising processing security policies for at

least one of a tree structure and a containment hierarchy.

26. The method of claim 22, further comprising mapping a security policy to a

security region from a remote location from a database.

27. The method of claim 22, the security policy is associated with an Access

Control List having one or more Access Control Entries.

28. The method of claim 27, further comprising automatically arranging one or
more Access Control Entries in the Access Control List to determine a security policy

that is enforced for an item.

29. A system to facilitate database security processing, comprising:
means for defining a security policy;
means for determining a security region for the security policy; and
means for applying the security policy to at least one of a tree structure and a

containment hierarchy in accordance with the security region.

26

WO 2005/071882 PCT/US2004/024293

30. A computer readable medium having a data structure stored thereon,
comprising:

a first data field related to a security region associated with a hierarchical data
structure;

a second data field that relates to a security policy; and

a third data field that links the security policy to the security region.

31. The computer readable medium of claim 30, further comprising a field for an
access mask specifying at least one of object-specific access rights, standard access

rights, and generic access rights.

32. The computer readable medium of claim 30, further comprising a security

field for similarly protected security regions.

33. The computer readable medium of claim 32, the security table field includes at
least one of an Item Identity, an Item Ordpath, an Explicit Item, a Path ACL, and a
Region ACL.

27

~

PCT/US2004/024293

WO 2005/071882

1...I|.I|'l|l.llilllliulllll||.|I|'-|||llllll'lI||||||.|||n||ullllllllllllllllnulllll|

omvl\

................................... (slova
ovl — 4/
S31LYTdOYd LNTNOJINOD S31L43doYd
QALIYTHNI ALIMND3S 11011dX3
0Ll ozl oo —
lllllllllllll o TTTTTTTTTTTTTTTTITTTTILOTO

1/9

PCT/US2004/024293

WO 2005/071882

¢ Ol

1LN3INOJINOD
ONIH3Add0

cle\\

00¢

N 30V

¢ 40V

1 30V

/

1SI1710¥.LNOD
$S300V

2/9

PCT/US2004/024293

WO 2005/071882

¢ oOld

S0V FANdILTNN

05¢€ /

S310110d
ALIFINO3S

EE-HE

0z¢ -

0Le /

3/9

PCT/US2004/024293

WO 2005/071882

¥ "Old

10VS
ssa00e 0] ybIy < gV
TV ousuen S e
amnoexg oueusn < 39
S oUeueD S MO
peoy oueuen =~ M9
S Via{M|d
By sseooy ol0adg-103l sjybry sso00y piepue ONIaSD
S1ybrd 7 OUI108dS-1031q0 JUDIH Y piepuels v p <! ololsals
o|ljc|¢ glo|1218|6|0|L}|C|¢ g9 816|011
4NN MY vivlvlvllzlelzlelelzlelzlizlzlels

4/9

PCT/US2004/024293

WO 2005/071882

G Ol

SOV uoifey

SOV Yied

10V way uoldxg

UyedpiQ way|

Ausp| way

00s — "

5/9

WO 2005/071882 PCT/US2004/024293

FIG. 6

600

610

6/9

WO 2005/071882

DEFINE SECURITY
POLICIES FOR
HIERARCHICAL
STRUCTURES

\ 4

PCT/US2004/024293

L — 710

DEFINE EXPLICIT
AND INHERITED
MAPPING RULES
FOR SECURITY
POLICIES

DETERMINE RULES
ORDERING

_— 730

Y

DEFINE ONE OR
MORE SECURITY
REGIONS FOR
SECURITY
POLICIES

_— 740

\ 4

APPLY SECURITY
POLICY TO
SELECTED

REGIONS

_— 750

7/9

FIG. 7

WO 2005/071882

PCT/US2004/024293

_— 828
|
| Operating Syst
| perating System /— 810
|
| iy 830
|| Applications |
m . 832
: Modules
: ___________ K'— 834
[
| i.Data | - 812
2 o <
i Processing 842
3 :
E Unit § r
o : Output e ,| Output
BRI Adapter(s) 1 Device(s)
816 C
838 840
S~
Interface [> Input
Volatile
820 Pori(s) Device(s)
Non Volatile
822 N_ g8 - 836
3 850
Interface A / Network
= 82 Communication :l*_l—} Interface
Connection(s) .
N 848
-» Disk v
Storage Remote
Computer(s)
824 >
Memory
844 — Storage

FIG. 8

8/9

WO 2005/071882

910

/ 900

CLIENT(S)

CLIENT
DATA
STORE(S)

COMMUNICATION
FRAMEWORK

FIG. 9

9/9

SERVER

STORE(S)

950

PCT/US2004/024293

930
_]

SERVER(S)

DATA

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US04/24293

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) HO4L 9/32
USCL 713/193,201

According to International Patent Classification (IPC) or to both national classification and IPC

B..

FIELDS SEARCHED

©.S. : 713/193,201 713/200;707/1-10,100,200

Misnimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X,E US 6,772,350 B1 (Belani et al.) 03 August 2004, see entire document. 1-4,6-8,10-11,21-
- 22,25-27 & 29-32
Y.E e
5,9,12-19,20,23-24,28
& 33
Y US 6,466,932 B1 (Dennis et al.) 15 October 2002, see entire document. 9,20
Y.P US 2003/0217033 Al (Sandler et al.) 20 November 2003, sce entire.document. 18-19, 33

Further documents are listed in the continuation of Box C.

See patent family annex.

L]

up®

wgn

w

“gn

upn

Special categories of cited documents:

document defining the general state of the art which is not considered to be
of particular relevance

earlier application or patent published on or after the international filing date
document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

document referring to an oral disclosure, use, exhibition or other means

document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“Xn document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

26 April 2005 (26.04.2005)

Date of mailing of the international search report

05 MAY 2005

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US
Commissioner for Patents

P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Authorized officer
BRIAN JOHNSON 7
Telephone No. (571) 272-35

. 24 PR
£3 .ﬁ’.« o g,
k F T T o e
AENSA M DR S o WL e Y

%

Form PCT/ISA/210 (second sheet) (January 2004)

International application No.

INTERNATIONAL SEARCH REPORT PCT/US04/24293

Continuation of B. FIELDS SEARCHED Item 3:
USPAT; US-PGPUB; USOCR;EPO; DERWENT;IBM_TDB
data, file,storage, hierarch,tree, graph, security, polity, rule,explicit, inherit,access, mask, holding link,control, list, entry

Form PCT/ISA/210 (extra sheet) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

