(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/034092 A2

(51) International Patent Classification’: G11B (74) Agents: GLENN, Michael, A. et al.; Glenn Patent Group,
3475 Edison Way, Suite L, Menlo Park, CA 94025 (US).

(43) International Publication Date

14 April 2005 (14.04.2005)

(21) International Application Number:

PCT/US2004/032296 (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
29 September 2004 (29.09.2004) CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB,

GD, GE, GH, GM, HR, HU, ID, 1L, IN, IS, JP, KE, KG,

(25) Filing Language: English KP,KZ,LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,

MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT,

(26) Publication Language: English
TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(30) Priority Data:
60/507,185 29 September 2003 (29.09.2003) US (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): HAND-
HELD ENTERTAINMENT, INC. [US/US]; 90 New
Montgomery Street, 9th Floor, San Francisco, CA 94105
(Us).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HAMILTON, Eric;
15690 Gum Tree Lane, Los Gatos, CA 95032 (US). PAGE, Published:
Carl; 5214-F Diamond Helghts Blvd. #731’ San Fran- - without international search report and to be republished
cisco, CA 94131 (US). DOLGOBORODOV, Alexey; 9 upon receipt of that report
Zaporojskaya Str. Apt. 88, St.Petersburg 193012 (RU).
TIKHONOV, Anton; 51 Svetlanovsky Street, Apt. 1, St. For two-letter codes and other abbreviations, refer to the "Guid-
Petersburg, 194064 (RU). SEMENYUK, Vladimir; 22-1 ance Notes on Codes and Abbreviations" appearing at the begin-
Kamyshovaya Str. Apt.34, St.Petersburg 197372 (RU). ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR CODING INFORMATION

57034092 A2 | IV VY0 OO 0 A

& (57) Abstract: The invention provides a method and apparatus for coding information that is specially adapted for smaller presen-
& tation formats, such as in a hand held video player. The invention addresses, inter alia, reducing the complexity of video decoding,
implementation of an MP3 decoder using fixed point arithmetic, fast YcbCr to RGB conversion, encapsulation of a video stream
and an MP3 audio stream into an AVI file, storing menu navigation and DVD subpicture information on a memory card, synchro-
nization of audio and video streams, encryption of keys that are used for decryption of multimedia data, and very user interface (UI)
g adaptations for a hand held video player that implements the improved coding invention herein disclosed.

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

Method and Apparatus for Coding Information

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

The invention relates to information storage and presentation. More particularly,

the invention relates to a method and apparatus for coding information.

DESCRIPTION OF THE PRIOR ART

Video coding techniques are well known. For example, the Motion Picture
Experts Group (MPEG) has established various video coding standards, e.g.
MPE2 and MPEG4. MPEG4 is a robust standard that supports large
presentation formats and complex audio encoding, which traits are beneficial, for
example in a home theater environment. Such standards are widely accepted
because they provide faithful reproduction of source material for such critical
applications as home theater presentations, but they have shortcomings for
other applications. For example, such standards are not well suited for
inexpensive, hand held video players, where the presentation format and form
factor of the device do not require the fidelity of these standards, nor do they

justify the expense attendant with implementing such standards.

It would be advantageous to provide a method and apparatus for coding
information that is specifically adapted for smaller presentation formats, such as

in a hand held video player.

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

SUMMARY OF THE INVENTION

The invention provides a method and apparatus for coding information that is
specifically adapted for smaller presentation formats, such as in a hand held
video player. The invention addresses, inter alia, reducing the complexity of
video decoding, implementation of an MP3 decoder using fixed point arithmetic,
fast YcbCr to RGB conversion, encapsulation of a video stream and an MP3
audio stream into an AVI file, storing menu navigation and DVD subpicture
information on a memory card, synchronization of audio and video streams,
encryption of keys that are used for decryption of multimedia data, and very user
interface (Ul) adaptations for a hand held video player that implements the

improved coding invention herein disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a plan view of a handheld video player according to a presently

preferred embodiment of the invention;
Fig. 2 is a display illustration of device icons according to the invention;

Fig. 3 is a block schematic diagram of an HHE™ video encoder according to the

invention;

Fig. 4 is a flow diagram that illustrates content protection for prerecorded content

according to the invention; and

Fig. 5 is a flow diagram that illustrates for content protection for downloadable
content according to the invention.

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

DETAILED DESCRIPTION OF THE INVENTION

The invention herein is an apparatus and method for coding information that is
particularly well suited for, but not limited to, such devices as hand held video
players. The disclosure herein first discusses an exemplary player.

{

The Video Player

An exemplary handheld video player, the ZVUE!™ player sold by HandHeld
Entertainment of San Francisco, CA, in which the preferred embodiment of the
invention, referred to as HHE™ video encoding, may be practiced is first
discussed. Fig. 1 is a plan view of a handheld video player 10 according to a

presently preferred embodiment of the invention.

CONTROLS
The player has fifteen buttons:

DIM, BRIGHT 11,
POWER 12,
VOL-UP 13,
VOL-DOWN, 14
MENU 15,
PLAY/PAUSE 16,
FF 17,

REV 18,
NAV-LEFT 19,
NAV-RIGHT 20,
NAV-DOWN 21
NAV-UP 22,
NAV-OK 23, and
CARD 24.

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

The player also includes various ports, such as a USB port 25, an expansion port
26; and includes connections for line out 27, earphones 28, and power 29.

There are a number of player states. The player processes button push/release
events, and some other hardware events. The player response to an event
depends on its state.

THE BASICS

Menu navigation

The NAV-* keys control the selection of a menu item. On [NAV-OK] transition is
made to menu item selected. In general, [MENU] takes the user to the previous
menu. If the user is in a FAT file hierarchy it takes the user to the previous
directory. If the selected item is playable, such as an HHE Video or a directory
full of MP3 audio, then the [PLAY] button plays it from the start.

Volume and brightness control

Volume control range: -73..+6 dB

Volume control granularity: 1dB

Volume level display timeout: 5 seconds

Volume level display: horizontal bar at the bottom of the
screen

After Power Off/ Power On, the audio level is to previous the value unless it is

off, in which case it is set to low volume. The Brightness is set to brightest.

Pressing the audio level control button in any player state results in current level
being displayed in the bottom of the screen. Subsequent pressures on volume
buttons change audio level by 1 dB. After volume control buttons are untouched
for two seconds, the volume level bar disappears.

10

15

20

25

WO 2005/034092 PCT/US2004/032296

Brightness control

DIM and BRIGHT move the player up and down through at least five brightness
settings.

No visual indicator is on screen except for actual screen brightness change. At
the dimmest setting, the display is Off. This is useful for conserving batteries
when only audio is desired. In this case, software should do less video work. At
Display Off, any brightness input is displayed.

Note: If display is off while audio is playing, the volume indicator appears on the
screen when the Volume rocker button is pressed for the sake of consistency,

and user convenience.

Menu or Navigation buttons that present a Ul turn the screen on. The screen

goes off again when in the normal playback mode.

VISUAL FEEDBACK

Graphic thermometer sliders are superimposed on moving video to give
feedback for volume and brightness. Compressed bitmaps are included for Ul
elements, icons, and menu screens. The format for icons include a transparent

color.
A simple animation language may also be provided. For example, this could be

an HHE format AVI, an Animated GIF (subject to IP check), or a FLASH

animation.

AUDIBLE FEEDBACK

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

There is a characteristic ZVUE! startup sound. Audible button feedback has two
styles. Click for commands executed. A thud sounds for buttons pressed out of

context.

PORTS

usB

The player responds to a connected USB port by displaying a USB connection
icon and is unresponsive to buttons aside from power, which can be used fo turn

it on or off.

SD Card

Upon insertion, called button [CARD] the player goes to the state “Media
Insertion” and starts playing.

STATES
Ooff
The initial state for the player is “OFF”, that is everything is down. The only way

to get from this state is by pressing the [POWER] button or by inserting a media
card [CARD].

ZVUE! Welcome Screen
After a momentary two-second display of the ZVUE! welcome graphic and
distinctive ZVUE! startup sound, the player retumns to the next expected

operation.

Powering ON

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

On "POWER pushed” event, the ZVUE! Welcome Screen is temporarily
displayed. If media is present, this is followed by the Media menu. Else, this is
followed by the Player Menu.

Media Insertion

The ZVUE! Welcome Screen is temporarily displayed. On “Card inserted” event,
the player checks the card type. The system goes to Firmware Update
Approval if it is an update card; it goes to Application Approval from the card if
there is an application; and it goes to Media Menu Temporary if it is a media

card.

Media Menu Temporary

The Media Menu is displayed, offering a chance to navigate to other options.
After a Timeout of six seconds, the media starts playing unless other media
menu controls were used. If buttons are pressed, the Timeout changes to “After
3 minutes, go OFF.”

Player menu

The user is asked to insert a card, or to choose an item from the menu. The

menu is:
.Screen savers (disabled)

Settings (includes text color and style and settings associated with mp3
and jpeg playback)

Resume (If the player was powered OFF or paused part way through the
same media that is still inserted, a resume option appears.)

Timeout: 60 seconds transition to OFF.

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

Media menu

Check the media type. In the case that a writable SD or MMC card is found to
contain both HHE media and other formats, go to state “Media Choice Menu’.

Timeout: 60 seconds transition to OFF.

Media menu is a short animation (may be empty), followed by a menu
background picture with menu items displayed. The first menu item is active. All
menu items point to video chapters. After a period of inactivity, the menu
animation restarts. The [menu] button from media menu starts Player Menu (see

above).

If the media contains more than one track, the first one is selected and this is
visually apparent. Pressing [Play] starts that media playing. The [REV] and [FF]
buttons change the selected feature. Navigation buttons allow moving around
the UL

PlayingHHE

When HHE AVI media cards are present, the play function is started. This is the
state in which the user spends the most time and to which the user is most
attentive.

POWER

Goes to "Off.” If the media is longer than five minutes, the position it was

playing at is stored.

MENU goes to the “MediaMenu”

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

PLAY goes to “PlayingHHE-Pause”

FF, Fast Forward feature of “PlayingHHE” state
REV, Skip back feature of “PlayingHHE” state
NAV-LEFT, Previous Video “Chapter”
NAV-RIGHT, Next Video “Chapter”

NAV-UP, Slow Motion feature enabled or disabled.

NAV-OK, Sound continues, but Playing menu on screen. Goes to state
“PlayingHHE-MENU”

The NAV-DOWN button enables the AB REPEAT feature, and can be called the
AB Repeat button during playback.

The following is the AB/REpeat state table. These states are sub-states of
PlayingHHE.

PLAYING
Shows the video normally. Moves to the next track when done.
Pressing A/B repeat moves it to state Playing-A at that position.

PLAYING-A
When the video auto-repeats, it restarts at point A instead of the start.

Pressing A/B repeat moves it to state Playing-AB at that position.

PLAYING-AB

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

When the video auto-repeats, it restarts at point A instead of the start and
go to point B instead of the end. It continues to repeat from point A to B
until the A-B Timeout is reached.

Pressing A/B repeat moves it to state Playing-Autorepeat.

TIMEOUT- The A-B repeat feature goes to PLAYING after 60 minutes of
playing.

PlayingHHE-Pause

This state is reached when the [PLAY] key is pressed when in state PlayingHHE.
The user is viewing a still frame from the video.

[PLAY] resumes from pause

[REV] goes to the beginning of the chapter, does not resume from the
pause.

[FF] audio off, video playback is 2X (approx.)
[MENU] goes to the “MediaMenu”

[NAV-LEFT], Previous Video Frame or Keyframe or chapter, depending
on implementation difficulty. Remain in state PlayingHHE-Pause.

[NAV-RIGHT], Next Video Frame and remain in state PlayingHHE-Pause.
[NAV-UP], Repeat or Slow Motion features enabled or disabled.
[NAV-OK], Puts Playing info on screen. Changes the display to show a

bar graph that indicates the time offset into the video track and the name
of the track. Remains in state PlayingHHE-Pause.

10

5

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

[INAV-DOWN] sets the AB REPEAT point in the video, and advances the
AB Repeat state exactly as it would in state PlayingHHE.

PlayingHHE-FF

Sound is off. Video is playing approximately twice normal speed.
[PLAY] audio on, normal speed
[REV] same as PLAY

[FF] Audio off, video at six times normal speed. Player does it by
skipping B and, if necessary, P frames. This can result in the loss of
continuity. Remains in state PlayingHHE-FF. If [FF] is pressed
again it toggles to twice FF.

Media Choice Menu

A jpg viewer is also provided for displaying digital photos. It is possible to
combine content HHE downloads with other MP3 and JPEG content. Only in that
case is this navigation state necessary. It is basically a FAT file system

navigator.

Displays a list of things on the card. Tiny icons are used in the left column to
describe several types of object. Icons are similar to the tiniest icons in windows
(see Fig. 2).

Folders
HHE Videos
Audio

Pictures

11

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

Text files

Displays options as available on the card.

Upon selected Video [NAV-OK] (takes user to the media menu for that content.)

Upon selected JPEG [NAV-OK] takes user to the Slide Show viewer starting with
that picture.

Upon selected Music [NAV-OK] starts music playing at that file. Navigates
folders of MP3 files- see the discussion of state “MP3 Player.”

Slide Show Menu

Software prepares two play lists. The Audio Playlist, and the Photo Playlist. If a
play list file is on the card it may use that to determine the order of audio and
video files. Otherwise, both play lists are in breadth-first recursive order through
the folders with the files sorted in the most natural order possible.

[play] takes user to state Slide Show Playing.

Slide Show Playing

The [REV.] [play] [FF] buttons affect the music playback.

The direction keys effect the photo selection.

[Right] and [Left] go to previous and next picture.

[MENU] brings up the “slideshow menu.”

[NAV-OK] brings up the “slide menu.”

12

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

Slide Menu

Displays the current slide. If possible it displays the whole slide, then zooms in
slightly.

The [REV] [PLAY] [FF] buttons affect the music playback.

Operation of the four direction keys affects the photo position, panning the photo
in the chosen direction until the edge is reached where it stops, making a thud

sound.

[menu] zooms out more. If totally zoomed out, it offers “Slide Show Playing”

options.
[INAV-OK] zooms in more. If totally zoomed in, it offers “Slide Menu Detail.”

Timeout: go to next slide in the sequence after adjustable time determined in

settings.

Slide Menu Detail

Offers the following choices by text or icon.

SlideShow Delay (amount of time before slide advance)
Rotate picture

Gamma Adjust

Special Effects

Crop here

Choose animation

Choose soundtrack

13

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

JPEG Viewer

When there are no MP3's the player behaves as above, except with no music.

MP3 Player

Menu structure shows one directory of the FAT file system. Only folders with

usable content are shown.

Overview of the HHe Codec Multimedia Format

The HHe Compression/Decompression (“Codec”) multimedia format is a format

for holding highly compressed digital video, audio, graphics, and navigation data.

A file which conforms to the HHe format normally carries the extension “.hhe.” It
is a complex file comprised of one or more different sub-files. The sub-file types
which are supported by the Hhe format are:

e config: the main configuration file for the media that specifies the media, the
main navigation script file name, the decoding engine to use (a custom
decoding engine can reside on the media, the default one resides in internal
memory).

e avi: multiplexed compressed video/audio streams.

e bmp: menu subpictures that are MS Windows sixteen-color compressed

bitmaps.

e nav: navigation scripts for video chapters which specify the order in which

chapters are played.

14

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

e mnu: menu files, that describe menu representation and functionality by

specifying subpictures for menu items, pointers to chapters, etc.

One or more of the sub-file types listed above may be present in a HHe file. The
only requirement is that there must some auditory or visual content present (an
avi or bmp sub-file).

The format of each sub-file depends on its function. For detailed specifications
of the file format, please refer to the discussion herein entitled “HHe file format

specification.”

HHe Compression Technology

The HHe format supports full-motion video and can display up to 24-bits of color
per pixel on a full-color screen. HHe compresses video content at variable bit
rates up to 100:1, and it decompresses the same content at real-time speeds
using minimal system resources on low-cost, low-power processors, such as the
Motorola Dragonball™ i.MXL (manufactured by Motorola, Inc. of Schaumburg,
IL), which is used in the ZVUE! video player.

The HHe video compression technology is a proprietary algorithm that was
developed specifically to produce superior compression performance yet
maintain reasonable complexity in decompression. The compression scheme
employs motion estimation followed by transform coding, as shown in the block
diagram of Figure 3. At a top level the HHe algorithm is similar to video
compression standards developed over the past decade, but the specific

techniques chosen ensure real-time decoder implementations on mobile devices.

The HHe format supports audio compression at various quality levels from low
bitrate mono through near CD quality stereo. The HHe format uses the popular
MP3 audio compression standard as the default audio format. The HHe format
also supports additional audio formats such as WMA and AAC.

15

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

Security Features of the HHe Format

The security and integrity of compressed content is extremely high with the HHe

format due to the encryption scheme and other features employed.

Multimedia encoded in the HHe format is protected from unauthorized copying
using a highly secure encryption scheme. The encryption algorithm, based on
the Blowfish algorithm, is a symmetric private key algorithm using 128-bit keys.
Blowfish is a symmetric block cipher that can be used as a drop-in replacement
for DES or IDEA. It takes a variable-length key, from 32 bits to 448 bits, making it
ideal for both domestic and exportable use. Blowfish was designed in 1993 by'
Bruce Schneier as a fast, free alternative to existing encryption algorithms. Since
then it has been analyzed considerably, and it is slowly gaining acceptance as a
strong encryption algorithm. Blowfish is unpatented and license-free, and is
available free for all uses. The original Blowfish paper was presented at the First
Fast Software Encryption workshop in Cambridge, UK (proceedings published by
Springer-Verlag, Lecture Notes in Computer Science #809, 1994) and the April
1994 issue of Dr. Dobb's Journal.

Eight different keys have been generated using a particularly strong random
number generator, scrambled, and stored at various offsets within the ZVUE!
internal memory. Different keys are used to encrypt prerecorded content,

downloaded content, and code updates.
Content Protection for Prerecorded Content

Figure 4 illustrates the process for content protection of prerecorded content.
Prerecorded content is stored on SD or MMC memory cards 31. These memory
cards contain a unique card key 32 which is stored in a protected area of the
card. A player key 33, key 0, stored within the ZVUE! internal memory is

modified by the unique card key and data are encrypted with this new key prior

16

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

to being stored in the memory card. Data cannot be copied onto another
memory card and played back without knowledge of player key 0, the card key,
and the encryption algorithm employed.

Content Protection for Downloadable Content

Figure 5 illustrates content protection for downloadable content. Downloaded
content is encrypted with a separate player key, key 1, modified by a unique
Player ID. Therefore downloaded content can only be decrypted and played
back by one particular player. The client must upload the Player ID to the
content server 100 (34; Fig. 3) prior to purchasing 110 and downloading content
120. After downloading the data are copied onto an SD or MMC memory card
130. Data cannot be copied onto another memory card and played back on a
different player without knowledge of player key 1, the new player ID, and the
encryption algorithm employed.

Timeout of Prerecorded or Downloaded Content

The player has a real-time clock which can be set through the user interface. The
real-time clock can be used to reject content which has a limited lifetime. For
example, promotional content can be downloaded for free and played back for a
limited time period; when it has expired the promotional content no longer can be
played unless the user purchases it.

HHE Audio/Video Synchronization

HHE Audio/Video (AV) synchronization is implemented as follows:

e Each decompressed video frame is assigned a unique id (0,1,2,3,...).

e« FEach audio packet (containing 1152 audio samples) is also assigned a
unique id (0,1,2,3...).

17

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

e The AV sync code monitors the ids of the latest rendered video frame and
audio packet.

e Every time a video interrupt occurs, these ids are recalculated into real time

stamps.

e The AV sync code compares these time stamps and determine whether next
video frame must be repeated (shown twice) or dropped (skipped).

e The audio stream is never adjusted. That means only video frames can be

skipped or repeated to fit current audio position.

Specifically the procedure which takes place at each video interrupt is:

video_time_ stamp = just rendered video frame id /
video_frames per second (Value of

video_frames_per second comes from AVI header)

audio_time_stamp = latest audio id /
audio_packets per second (Value of

audio packets per second is normally 44100/1152 =
38.28125 (samples_per sec/samples per packet))

difference = audio_time_stamp - video time stamp
if (difference > +one_ frame duration time)
skip next video frame

else if (difference < —one_ frame duration time)

repeat current video frame

18

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

ZVUE! file formats

The file format for storing ZVUE! media comes from the way the navigation
system, the grabhics system, and the decoding engines are designed. It is
assumed that media containing video/audio streams is organized in chapters,
associated with navigation scripts and can optionally carry a custom decoding
engine.

The media should be FAT16-formatted, and the content organized in files. All

data are stored in the root folder, other folders are ignored if present.
Files on the media are:

- “config” main configuration file for the media that specifies the media
type (currently only two types are supported: ZVUE!-VIDEO and
FIRMWARE), the main navigation script file name, the decoding engine to
use (a custom one can go on the media, the default one resides in a
flash)

- “*.nav” navigation scripts for video chapters

- “* avi” video/audio streams

- ““.mnu” menu files, that describe menu representation and functionality

by specifying subpictures for menu items, pointers to chapters, etc.

- “*bmp” menu subpictures that are MS Windows 16-color compressed

bitmaps. Colors {0,0,0} and {255,255,255} are reserved for transparent.
File types that are not supported but can be added later:

“* mp3” audio only streams

19

WO 2005/034092

PCT/US2004/032296

“*.jpg”,”*.jpeg” jpeg images (for browsing digital photos from SD card, or

to use as menu background etc.).

5 Configuration file

This is a plain text ASCII file in either Windows (CR/LF) or UNIX (CR) format:

- A semicolon *; starts line comment

10

- Commands are : <key> = <value>. Spaces are allowed. If value contains

spaces, it is enclosed in double quiets (*”)

- Empty lines are ignored

15

Some keys may not be defined. The default semantics are applied in this case

(see Table 1 below).

Table 1. Default Key Semantics

Key

Value

Defaults

application

Filename of the executable

to use as a decoder

Use internal decoder

from the flash

start Filename of main menu|Runs first *.nav file
navigation script (the | found on the media
navigation script that is run
first)
type Media content type ZVUE!-VIDEO
encryption_key Encrypted checksum to |-
verify the firmware
version Firmware version 0

20

20

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

Type=ZVUE!_VIDEO

Notifies the boot loader that this card stores video content. If Application tag is
present, the boot loader loads it to memory and runs there. If not, the boot

loader loads application from the flash.

Type=MP3

Notifies the boot loader that this card stores mp3 tracks. If Application tag is
present, the boot loader loads it to memory and runs there. If not, the boot
loader loads application from the flash. The application runs as a standard MP3

player.

Type=PHOTO

Notifies the boot loader that this card stores JPEG images. If Application tag is
present, the boot loader loads it to memory and runs there. If not, the boot

loader loads application from the flash. The application runs in slide-show mode.

Type=FIRMWARE

Notifies the boot loader that this card stores new media driver. The loader
checks zveu.axf file from the card with encrypted checksum encryption_key and
then burns it to the flash. It also checks the version against current and notifies

user if it is older.

AVl file

The video player uses standard Windows AVI format for streaming the videos.
The file should contain one video stream, coded with HHE video encoder
(FOURCC=HHEO), and/or one audio stream, coded with any MP3 driver
(wFormatTag=0x0055). When using B-frames, they should be put into separate
AVI chunks. Typically, it requires some post processing because the VFW

21

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

drivers usually are not capable of producing it. The audio bitstream format
complies with ISO CD 11172-3 document.

Navigation script file

Navigation scripts specify the semantics of player buttons for the specific
chapter, the AVI stream and subpictures to use and the actions to perform. The
navigation script is a test file, with navigation commands represented on

separate lines. Commands are case-sensitive.

Commands are : <key> = <value>. Spaces are allowed. If value contains spaces,

it should be enclosed in double quiets (*”)
Command set:

stream = <avi-file>

Specifies an AVI file associated with this script

next = <scriptname>

Specifies a chapter that runs after this one is ended.

previous = <scriptname>
. Specifies a chapter to start on REW.

A semicolon at first position starts line comment.
If it is the first chapter in a chain, previous should not be present.

If it is the last chapter in a chain, next should not be present.

Menu file

Menu file is a text file that specifies the menu appearance and functionality.
Commands should start at the beginning of each line, command arguments

22

10

15

20

25

WO 2005/034092 PCT/US2004/032296

follow on the same line, any number of white space characters (**, \t') can be
used as a separator. Menu contains a background image (stored in AVI), a
number of. static bitmaps over the background and a number of menu items
associated with video chapters. Command arguments are either filenames or
numbers, filenames should be put in double quotes. All arguments are
obligatory.

A semicolon at first position starts line comment.

Command set:

parent menu active _item
Specifies parent menu (menu) and number of item (active_item) that

should be active when we come to this menu from current menu

background avi-file
Specifies an AVI (usually of one frame) that contains menu background,
The AVI file is played on the screen, and the last frame of that AVI is

used as a background for menu.

static bitmap x y transparency

Specifies a static bitmap displayed over the background image. x, y
specify the bitmap offset from the top left corer; fransparency is a
number from O to 255 that specifies the transparency (0 means

transparent, 255 means solid).

item bitmap_0 x y transparency bitmap 1 x y transparency navig_script

menu active_item

Specifies menu item. bitmap_0 is displayed for a selected item, bitmap_1
is displayed for deselected ones, x, y and transparency following a

23

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

bitmap name specify its position and transparency. navig_script specifies
the script to start when this menu item is executed, if “’ this means a
submenu should be run, specified in menu argument. menu sets new
menu for the script to run, or a submenu to run, if script name is not
specified. If it is *”, current menu is used. acfive_item specifies number of

active item in a new menu or submenu.
HHE AVI Files

The AVI file is a container for any number of data streams of any kind. The
main parts of AVI file are:

1. The main AVI header. It always contains a stamp ("RIFF") and overall file
size (for streaming). It also describes general info on the file, such as a
number of streams stored in it, streams data sizes, whether the file contains
an index, offset at which data streams begin, etc.

2. An optional index can be present in the AVI file. It contains an entry for each
data chunk (see below) describing its type and position in the file. The index
is located at the very end of the file, after the data streams.

3. Each data stream format is described by its own stream header. Video
stream header is actually BITMAPINFOHEADER structure (width, height, bits
per pixel, compression type (HHEO or HHE1)). Audio stream header is
actually WAVEFORMATEX structure (audio format (MPS}, number of
channels, samples per second).

4. After all the headers, data streams begin. Data are organized in chunks.
Each chunk belongs to a stream and contains a header and actual data. The
header contains the stream number this chunk belohgs to (usually 01 - video,
00 - audio), stream type code ("dc" - compressed video, "wb" - compressed

audio), and chunk’s size in bytes.

24

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

Therefore, the overall layout of data is as follows:

0lwb<chunkl size> <- header
....chunk 1 data... <- data
00dc<chunk2 size>
....chunk?2 data...
0lwb<chunk3 size>
....chunk3 data...
00dc<chunk4 size>
....chunk4 data

etc..

MPEG4 complexity reduction solutions

To reduce the complexity of MPEG4 decoding the following four solutions have

been introduced:

¢ Disabling of intra prediction of AC coefficients

Intra prediction of AC coefficients is not made. The flag that indicates the

need for AC prediction has been eliminated from the bitstream.

e Disabling of motion compensation rounding control

Rounding control is disabled. Constant additions are used during
averaging: 0 for averaging of two values and 1 for averaging of four

values. The rounding bit has been eliminated from the bitstream.

e Combination of VLC decoding and dequantization in one step

25

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

Dequantization of the coefficient is made right after decoding of its
variable length code. Speed-up is possible due to exclusion of zero

coefficients from dequantization process.

o Simplification of inverse discrete cosine transformation with the use

of significance map

Significance map is used to store the positions of last nonzero coefficients
in each row/column of discrete cosine transformation block. Significance
map is filled during VLC decoding. Knowing the number of last nonzero
coefficient in row/column it is possible to simplify the inverse discrete
cosine transformation for this particular row/column. Two different
versions of inverse discrete cosine transformation are provided: one - for
rows/columns of 8 coefficients and one for rows/columns of 3 coefficients.
Note, that when all coefficients in row/column are zero coefficients,

inverse transformation should not be made at all.

Description of fast "YUV to RGB555" conversion

To speed-up the color conversion routine, a conversion table is used. The table

index is calculated as a function of three colors in YUV format:

Index = ((U >> (8-BITS U)) << (BITS_Y+BITS V)) + ((V
>> (8-BITS V)) << (BITS V)) + (Y >> (8-
BITS Y))

where Y, U, and V are 8-bit color components in YUV format; and BITS_Y,
BITS_U, BITS_V are the numbers of significant bits for each color: Y, U, and V.

26

10

15

20

25

WO 2005/034092 PCT/US2004/032296

The number of indexes is (1 << (BITS_Y+BITS_U+BITS_V)). The conversion
table cell represents color in RGB555 format that corresponds to color in YUV
format. The size of the cell is two bytes (high-order bit is unused). Therefore, the
size of the table is the number of indexes * 2, that is:

(1 << (BITS_Y+BITS U+ BITS V + 1)).

The number of significant bits for Y color component must be greater than
number of significant bits for U and V components, because Y color component
contains more useful information for human visual perception. Currently the
following significant numbers are used:

BITS Y = 7
BITS U = 5
BITS V = 5

The color conversion table is organized in the manner that can help to avoid
cache misses during conversion of image in YUV 4:2:0 format. In YUV 4:2:0
format for each chrominance pixel there are four luminance pixels. A fact that
index depends on Y component less than on U and V components makes data

cache misses infrequent.

There can be other types of data chunks rather than video and audio. Fo\r
example, if video color format is eight bits per pixel or less, then a special palette
chunk can present. Note that two video chunks never go one by one. There is
always one audio chunk between them (even of zero size). Each video chunk
contains one compressed video frame exactly (see below on this, regarding b-
frames). Each audio chunk contains either two or three audio packets (each

packet is 1152 samples, when decompressed).

27

10

15

20

25

30

WO 2005/034092

B-frames

PCT/US2004/032296

When compressing with b-frames, the invention breaks the rule that each video

frame is stored in its own chunk. It stores several video frames in one chunk. The

currently preferred embodiment of the invention inserts large amounts of empty

(zero length) video chunks in the stream to isolate audio chunks. So the overall

layout of data streams is as follows:

<audio

chunk>

<big video chunk, containing 4 frames I-P-B-B>

<audio
<empty
<audio
<empty
<audio

<empty

chunk>
video chunk>
chunk>
video chunk>
chunk>

video chunk>

This actually wastes a lot of space because even an empty chunk contains a

header and is contained in the index. This is a limitation of Video for Windows

drivers. It is possible to eliminate this by applying a post-processing utility to an

AV file that isolates each video frame in its own chunk and drops all the empty

chunks.

Fast fixed-point implementation of MPEG-1 Layer 3 decoding algorithm

General remarks on operations with fractional values for fixed point arithmetic

To represent data in fixed point operations, we use the following transformation:

u = Fix(Ugy) = (int) (g * (2>>nBitsFraction}+0.3),

(1.1)

28

WO 2005/034092 PCT/US2004/032296

where nBitsFraction is the number of bits for fractional part, value 0.5 is used

for rounding.

The following values of nBitsFraction are used:

- 24 for signal samples (representation 32.24),

- 24 or 15 for constant coefficients (representation 32.24 or 32.15).

Let

Yot = Xfloat * Ciloatr

where xg., Cr: are some variables (cg. is usually a constant).

Then, in the case of 32.24 data representation,

x = (int) (Xga * (2 >> 24) + 0.5),

Q
I

(int) (Cgew * (2 >> 24) + 0.5),

y = (x*c) >> 24.

Because we use 32-bit integer operations, it is necessary to avoid overflow in

calculation of product x*c.

For this purpose, we represent data as a sum of high and low parts:

u = ulLow + (uHigh << 12),

where

uHigh = u >> 12,

29

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

uLow = u — (uHigh << 12) = u &
0x00000FFF

Thus, we have
y = (x*c)>>24 = ((xLow+ (xHigh<<1l2Z)) * (cLow+ (cHigh<<12))>>24
This expression can be rewritten as

y =
xHigh*cHigh+ ((xLoW*cHithr cLow*xHigh)>>12) + ((xLow* cLow) >>24)

To speed up the multiplication, we can remove small parts from this sum. In our
implementation, we distinguish three different levels of precision, any of them
can be chosen at compile time. The simplifications used for multiply operation in

each mode are as follows:

For high precision

y = xHigh*cHigh+((xLow*cHigh+cLow*xHigh)>>12)
(1.2)

For medium and low precision:

y = xHigh*cHigh + ((xLow*cHigh) >> 12)
(1.3)

For 32.12 representation of constant coefficients,

c = (int) (cpa* (1<<12)+0.5).

30

10

15

20

25

WO 2005/034092

The simplified multiplication on constant coefficients in 32.24 representation can

be implemented as

v = ((x>>6)*c)>>6,
(1.4)

in assumption that

l Ciicat] < 1

1.0 < | ¢ | < 2.0,

the multiplication is performed as

((x>>6) *c)>>5
(1.5)

<
i

where
c = (int) (cpa *(1<<12)+0.5),
In a similar way, if
1.0 < | e | < (1 << q),
it is possible to use approximate multiplication in a form

y = ((x >> 6)*c) >> (6-q)
(1.6)

Then

c = (int) (cpu™ (1<<(12-q))+0.5),

|

Computational speedup of Inverse Modified Discrete Cosine Transform (IMDCT)

PCT/US2004/032296

31

10

15

20

25

WO 2005/034092 PCT/US2004/032296

To speed-up IMDCT calculation, the simplified multiplication by fransform

coefficients is used.

Case IDMCT on 36 and 12 points

The transform coefficients, with absolute values smaller than 1, are represented
in 32.15 format. For multiplication by this coefficients, formula (1.4) is used. For
coefficients with absolute values greater than 1, formula (1.6) is used.

Case IDMCT on 64 points (synthesis function)

All transform coefficients have absolute value smaller than 1, and represented in

32.15 format. For this case, formula (1.4) is used.

Note: In high precision mode, the more precise formula (1.2) is used for all
IDMCT functions.

Computational speedup for final windowing operation.

" To generate one output sound sample in 16 bit PCM format, it is necessary to

calculate convolution of samples from delay line with window coefficients. For

float data representation, the convolution loop appears as

for (sum=0,3=0; j<16; J++)

sum +=
WindowTable [1i+32*j]*1line[(pos+j*64+i+ (J&1)*32)&10237;

(3.1)

32

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

where WindowTable[512] is array of window coefficients, pos is a current
position in the delay line, i is a number of output samples in block of 32
samples.
The speed up is achieved by calculation of output samples in following ways:
Scaled transposed window table is used:

WindowTableST [n] = Fix(WindowTable[i+32%*§])>>q;
where Fix () corresponds (1.1) with nBitsFraction = 24, n = i+32%7,
for each i=0..31 index j=0. .15, which provides consecutive access to array

elements. Because factors of a window with indexes =7, 8 can have absolute

value greater than 1, the value q is obey to the rule:
if j=7 or j=8, g = 9, else g = 8
Optimization of a convolution loop
The convolution loop is a sequence of operators of the form
sum +=line[(r+g)&1023])* (*Pn_WindowTableST++))>>m;
where
Pn_WindowTableST is a pointer to the scaled transposed window table,
r = pos + i,and

g = %64+ (jsl) *32.

To provide true multiplication result, we usem = 6 for j=7,8, else m =
7.

33

10

15

20

WO 2005/034092 PCT/US2004/032296

Reduced window table for low precision mode

In (3.1), some of the items with number §=0,1,2 and j=12,13, 14,15 are
eliminated from calculation due to their small impact to the result (because of
small window coefficients).

For high precision
Sixteen groups of window table items for each index i are normalized and have
an exponent value, which is constant value inside group. Then, the convolution
loop is organized in sequence of the operators of the form

S[J] = line[(r+g)&1023])* (*Pn_WindowTableST++))>>7;
The final summation is made with shifts, which depend on values of exponents.
Although the invention is described herein with reference to the preferred
embodiment, one skilled in the art will readily appreciate that other applications
may be substituted for those set forth herein without departing from the spirit and

scope of the present invention. Accordingly, the invention should only be limited
by the Claims included below.

34

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

CLAIMS

1. A real-time video decoder for use with a mobile device, comprising:

means for receiving a system stream, said system stream comprising:

a system layer containing timing and other information needed to
demultiplex audio and video streams and to synchronize audio and video
during playback; and

a compression layer comprising said audio and video streams;

a system decoder for extracting timing information from a system stream
and sending said timing information to a other system components, said system
decoder also demultiplexing said video and audio streams from said system
stream and then sending each of said video and audio streams to a
corresponding decoder;

a video decoder for decompressing said video stream; and

an audio decoder for decompressing said audio stream.

2. The decoder of Claim 1, wherein the MP3 audio compression standard is

used as a default audio format.

3. The decoder of Claim 1, further comprising:
an encryption facility comprising an encryption algorithm based on the
Blowfish algorithm.

4. In a decoding technique, an audio/video (AV) synchronization method,
comprising the steps of:

assigning each decompressed video frame in a video stream a unique id
(0,1,2,3,...);

assigning each audio packet in an audio stream a unique id (0,1,2,3...);

using an AV sync code to monitor the ids of a latest rendered video frame
and audio packet;

35

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

recalculating said ids into real time stamps very time a video interrupt occurs;
and

using said AV sync code to compare said time stamps and determine
whether a next video frame must be repeated or dropped;

wherein said audio stream is never adjusted; and

wherein video frames are either skipped or repeated to fit a current audio
position.

5. A method for reducing the complexity of MPEG4 decoding, comprising the
steps of:

disabling intra prediction of AC coefficients, wherein a flag that indicates
the need for AC prediction is eliminated from a MPEG4 bitstream;

disabling motion compensation rounding control, wherein a rounding bit is
eliminated from said MPEG4 bitstream;

combining VLC decoding and dequantization into one siep, wherein
dequantization of a coefficient is made immediately after decoding its variable
length code, and wherein zero coefficients are exclude from dequantization; and

simplifying inverse discrete cosine transformation with a significance map,
wherein said significance map stores positions of last nonzero coefficients in
each row/column of a discrete cosine transformation block, wherein said
significance map is filled during VLC decoding.

6. The method of Claim 5, wherein two different versions of inverse discrete
cosine transformation are provided: one for rows/columns of eight coefficients
and one for rows/columns of three coefficients, wherein if all coefficients in
row/column are zero coefficients, inverse transformation is not performed.

7. A method for reducing the complexity of MPEG4 decoding, comprising the
step of:

disabling intra prediction of AC coefficients, wherein a flag that indicates the
need for AC prediction is eliminated from a MPEG4 bitstream.

36

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

)
¥

8. A method for reducing the complexity of MPEG4 decoding, comprising the
step of:

disabling motion compensation rounding control, wherein a rounding bit is
eliminated from said MPEG4 bitstream.

9. A method for reducing the complexity of MPEG4 decoding, comprising the
step of:

combining VLC decoding and dequantization into one step, wherein
dequantization of a coefficient is made immediately after decoding its variable
length code, and wherein zero coefficients are exclude from dequantization.

10. A method for reducing the complexity of MPEG4 decoding, comprising the
step of:

simplifying inverse discrete cosine transformation with a significance map,
wherein said significance map stores positions of last nonzero coefficients in
each row/column of a discrete cosine transformation block, wherein said
significance map is filled during VLC decoding.

11. The method of Claim 10, wherein two different versions of inverse discrete
cosine transformation are provided: one for rows/columns of eight coefficients
and one for rows/columns of three coefficients, wherein if all coefficients in

row/column are zero coefficients, inverse transformation is not performed.

12. A method for fast "YUV to RGB555" conversion, comprising the steps of:
providing a conversion table; and _
calculating a table index as a function of three colors in YUV format;
wherein a conversion table cell represents a color in RGB555 format that

corresponds to a color in YUV format.

13. The method of Claim 12, wherein YUV format is represented as:

37

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

Index = ((U >> (8-BITS U)) << (BITS Y+BITS V)) + ((V
>> (8~BITS_V)) << (BITS V)) + (Y >> (8-
BITS Y))

where Y, U, and V are 8-bit color components in YUV format; and BITS_Y,
BITS_U, BITS_V are the numbers of significant bits for each color: Y, U, and V.

14. The method of Claim 13, wherein the number of indexes is (1 <<
(BITS_Y+BITS_U+BITS_V)), wherein the size of a cell is two bytes (high-order
bit is unused), and wherein the size of said table is the number of indexes * 2,
that is:

(1 << (BITS_Y+BITS U+ BITS V + 1)).

15. The method of Claim 14, wherein the number of significant bits for the Y
color component must be greater than number of significant bits for the U and V
components.

16. The method of Claim 15, wherein said color conversion table is organized to

avoid cache misses during conversion of image in YUV 4:2:0 format.

17. A method for compressing b-frames, comprising the steps of:

storing several video frames in one chunk; and
inserting large amounts of empty (zero length) video chunks into an AV stream to
isolate audio chunks.

18. The method of Claim 17, further comprising the step of:
applying a post-processing utility to an AVI file that isolates each video

frame in its own chunk and drops all empty chunks.

19. A method for fast fixed-point implementation of an MPEG-1 Layer 3 decoding
algorithm, comprising the steps of:

38

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

representing data as a sum of high and low parts:
y =
xHigh*cHigh+ ((xLow*cHigh+cLow*xHigh)>>12)+ ((xLow* cLow) >>24);

and
removing small parts from said sum.

20. The method of Claim 19, comprising a high precision summing step as

follows:

y = xHigh*cHigh+ ((xLow*cHigh+cLow*xHigh)>>12) .

21. The method of Claim 19, comprising a medium and low precision step as

follows:

vy = xHigh*cHigh + ((xLow*cHigh) >> 12).

22. The method of Claim 19, comprising a simplified multiplication on constant

coefficients in 32.24 representation implemented as:

Vv = ((x>>6)*c)>>6,

in assumption that

l Ciioat l < 1;

wherein if
1.0 < | Cpo | < 2.0,

said multiplication is performed as

39

10

15

20

25

WO 2005/034092 PCT/US2004/032296

v = ((x>>6)*c)>>5
where

c = (int) (Cpax *(1<<12)+0.5),
wherein if

1.0 < | e | < (D << @),

using multiplication in a form:

v = ((x > 6)*c) >> (6-Qq)
where

¢ = (int) (cgw* (1<< (12-qg))+0.5).

23. A method for computational speedup of an Inverse Modified Discrete Cosine
Transform (IMDCT) calculation, comprising the step of:

using a simplified muiltiplication by transform coefficients.
24. The method of Claim 23, wherein for an IDMCT calculation on 36 and 12

points, transform coefficients with absolute values smaller than 1 are

represented in 32.15 format, multiplication is by the coefficient:

v = ((x>>6)*c)>>6,

and, wherein for coefficients with absolute values greater than 1 muitiplication is
by the coefficient:

v = ((x >> 6)*c) > (6-q).

40

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

25. The method of Claim 23, wherein for an IDMCT calculation on 64 points
(synthesis function), where all transform coefficients have absolute value smaller

than 1, and are represented in 32.15 format, multiplication is by the coefficient:

y = ((x>>6)*c)>>6.

26. The method of Claim 23, wherein for an IDMCT calculation in high precision
mode, multiplication is by the coefficient:

y = xHigh*cHigh + ((xLow*cHigh) >> 12).

27. A method for computational speedup for a final windowing operation in an
AV decoder, comprising the steps of:
calculating convolution of output samples by any of the following methods:
using a scaled transposed window table;
optimizing a convolution loop;

reducing a window table.

28. A multimedia file format for a compression/decompression facility, said file
format holding highly compressed digital video, audio, graphics, and navigation
data, said file format comprising:

a main configuration file for multimedia file storage media that specifies the
media, a main navigation script file name, and a decoding engine to use;

multiplexed compressed video/audio streams;

menu subpictures comprising compressed bitmaps;

navigation scripts for video chapters which specify an order in which chapters
are played; and

menu files that describe menu representation and functionality by specifying
subpictures for menu items, pointers to chapters, and the like.

41

10

15

20

25

30

WO 2005/034092 PCT/US2004/032296

29. The file format of Claim 28, wherein multimedia encoded in said multimedia
file format is protected from unauthorized copying using a highly secure

encryption scheme based on the Blowfish algorithm.

30. The file format of Claim 29, wherein a plurality of different keys are
generated using a strong random number generator, wherein said keys are
scrambled, and wherein said keys stored at various offsets within a system

internal memory.

31. The file format of Claim 30, wherein different keys are used to encrypt
prerecorded content, downloaded content, and code updates.

32. A multimedia encryption method for a portable device, comprising the steps
of:

storing prerecorded content on an SD or MMC memory card which
contains a unique card key which is stored in a protected area of said card,;

storing a player key within a portable device internal memory, wherein
said player key is modified by said unique card key to produce a new key; and

encrypting said content with said new key prior to storing said content in
said memory card;

wherein multimedia encoded in said multimedia file format on said
memory card is protected from unauthorized copying using a highly secure
encryption algorithm; and

wherein content cannot be copied onto another memory card and played
back without knowledge of said player key, said card key, and said encryption
algorithm.

33. A multimedia encryption method for a portable device, comprising the steps
of:

encrypting downloaded content with a separate player key, wherein said
player key is modified by a unique player ID;

uploading said player ID to a content server prior to downloading content;

42

WO 2005/034092 PCT/US2004/032296

after downloading, copying said content onto an SD or MMC memory
card;

wherein multimedia encoded in said multimedia file format on said
memory card is protected from unauthorized copying using a highly secure
encryption algorithm; and

wherein said content cannot be copied onto another memory card and
played back on a different portable device without knowledge of said player key,

a new player ID, and said encryption algorithm.

43

WO 2005/034092 PCT/US2004/032296

i v
Wfﬁ Wév R

.m.F.*
i I
A) H/tzl
4 *:" 2
o Y
— .
V7. T VN

Figure 1

WO 2005/034092 PCT/US2004/032296
2/5

B8] nathans-tip §
OFtesh_Air_Theme.mp3 1,185 K8
Y dway.ipg 1KB
Z | Bhost_Gameplay2002.avi 13,830KB
#] audio-highway.ipg 28KB

fiq. A

WO 2005/034092 PCT/US2004/032296

3/5
ol
PC - SDCard / Handheld Player

Figure 3

WO 2005/034092 PCT/US2004/032296
4/5

0 _+ Upload Player ID to Content Server
|U ~

v

. Purchase content

v

Y. 1 Content is encrypted and downloaded

v

\B"/ Copy downloaded file to SD or MMC card

Figure 4

WO 2005/034092

5/5

o decompressed
video
HHE
system
stream
. }—>decompressed
: audio

Figure 5

PCT/US2004/032296

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

