Proliferator-Activated Receptor gamma Target Gene Encoding a Novel Angiopoietin-Related Protein Associated with Adipose Differentiation. Molecular and Endothelial Biology 2000, 20(14), 5343-5349.

1. 有效量的人天然序列血管生成素样 4 蛋白 (ANGPTL4) 在制备用于通过给药对细胞或前肝细胞的群体来刺激受试者中的肝细胞增殖的药物中的用途。

2. 权利要求 1 的用途，其中所述受试者是人。

3. 权利要求 1 的用途，其中 ANGPTL4 包括人 ANGPTL4 的氨基酸残基 23-406。

4. 权利要求 1 的用途，其中 ANGPTL4 包括人 ANGPTL4 的氨基酸残基 184-406。

5. 权利要求 1 的用途，其中给药步骤包括给药编码 ANGPTL4 的核酸序列。

6. 有效量的包含人天然序列 ANGPTL4 的组合物在制备通过给药前脂肪细胞的群体刺激受试者中的前脂肪细胞增殖的药物中的用途。

7. 权利要求 6 的用途，其中所述受试者是人。

8. 权利要求 6 的用途，其中所述组合物包含 ANGPTL4 和载体。

9. 权利要求 6 的用途，其中 ANGPTL4 包括人 ANGPTL4 的氨基酸残基 23-406。

10. 权利要求 9 的用途，ANGPTL4 包括人 ANGPTL4 的氨基酸残基 23-162。
利用血管生成素样 4 蛋白的组合物和方法

[0001] 相关申请
[0002] 本申请根据部分 119(e) 要求优先权以及 2004 年 6 月 20 日提交的美国临时申请 60/589,875 的权益，其说明书全文包含在此。

发明领域
[0003] 本发明涉及血管生成素样 4 蛋白 (ANGPTL4)。本发明涉及利用 ANGPTL4 及其激动剂和拮抗剂的组合物和方法，其用于疾病或病症的诊断和治疗。

背景技术

[0006] ANGPTL4 的体外和体内研究以及定性为治疗剂和 / 或治疗提供了有值得的鉴定和发现，所述治疗剂和 / 或治疗可用于预防、缓解或纠正与 ANGPTL4 活性和 / 或表达相关的疾病或功能不良。例如，组织培养研究和遗传改造的小鼠已被证实是与疾病相关的生物过程的功能性重要工具，所述疾病包括免疫学，癌症疾病，神经生物学，心血管生物学疾病，肥胖以及其他疾病。需要发现并理解 ANGPTL4 的许多生物学功能。本发明涉及这些内容以及其他需要，基于以下公开显而易见。

[0007] 发明详述
[0008] 本发明涉及血管生成素样 4 蛋白 (ANGPTL4)。本发明提供 ANGPTL4 或其亚序列或其激动剂或拮抗剂的用途，用于治疗以异常 ANGPTL4 表达或活性为特征和 / 或与 ANGPTL4
表达和 / 或活性有关的疾病或病症。

0009 提供通过 ANGPTL4 或其激动剂或拮抗剂调节肝细胞增殖的方法。一些实施方案中，所述方法包括诱导肝细胞增殖。例如，所述方法包括将有效量的 ANGPTL4 或 ANGPTL4 激动剂给药于肝细胞前体细胞 (pre-hepatoocyte) 由此诱导增殖。一方面，所述给药步骤包括给药编码 ANGPTL4 的核酸。可选或此外，可给药有效量的诱导 ANGPTL4 在肝细胞前体细胞中的产生的药剂来刺激增殖。ANGPTL4 或 ANGPTL4 激动剂可通过给药有效量的 ANGPTL4 或其激动剂来治疗肝的功能不良，疾病或损伤。一方面，ANGPTL4 通过编码 ANGPTL4 的核酸提供。本发明的一个实施方案中，ANGPTL4 激动剂是 α β 受体的激动剂。

0010 也提供了抑制肝细胞增殖的方法。一些实施方案中，该方法包括将有效量包含 ANGPTL4 拮抗剂的组合物给予肝细胞或前肝细胞的群体。一方面，ANGPTL4 拮抗剂是抑制 ANGPTL4 蛋白产生的药剂，例如，反义或核酶分子。一方面，ANGPTL4 拮抗剂是 α β 受体的拮抗剂。另一方面，ANGPTL4 拮抗剂是 α β 受体拮抗剂。一个实施方案中，ANGPTL4 拮抗剂是 ANGPTL4-SiRNA。ANGPTL4 拮抗剂可用于通过将有效量的 ANGPTL4 治疗剂给药于肝细胞的群体来治疗，例如，肝癌或不良肝肥大。

0011 也提供了抑制肝细胞的细胞粘附的方法。一些实施方案中，所述方法包括通过将有效量的包含 ANGPTL4 或 ANGPTL4 激动剂的组合物给药于肝细胞的群体来诱导肝细胞的细胞粘附。其他实施方案中，所述方法包括通过将有效量包含 ANGPTL4 拮抗剂的组合物给药于肝细胞的群体抑制肝细胞的细胞粘附，由此抑制肝细胞的细胞粘附。

0012 除了调节与脂质动态平衡有关的肝细胞的增殖和细胞粘附，ANGPTL4 调节血清甘油三酯和胆固醇水平，并刺激也与脂质动态平衡有关的前脂肪细胞增殖。本发明提供调节脂质动态平衡的多个方法。例如，本发明的方法包括通过将有效量包含 ANGPTL4 或 ANGPTL4 拮抗剂的组合物给药于脂肪细胞的群体来刺激前脂肪细胞的增殖，由此诱导前脂肪细胞的增殖。也提供了抑制前脂肪细胞增殖的方法。例如，所述方法包括将有效量包含 ANGPTL4 拮抗剂的组合物给药于脂肪细胞的群体。调节前脂肪细胞细胞迁移的方法也包括在内。例如，本发明的方法包括通过将有效量的 ANGPTL4 激动剂给药于脂肪细胞的群体来诱导细胞迁移。也提供了抑制前脂肪细胞细胞迁移的方法，包括例如将有效量 ANGPTL4 拮抗剂给药于脂肪细胞的群体，由此抑制细胞迁移。

0013 调节受试者中的甘油三酯或胆固醇的血清水平的方法也在本发明提供。例如，所述方法包括将有效量包含 ANGPTL4 或 ANGPTL4 激动剂或 ANGPTL4 拮抗剂的组合物给药受试者，由此调节受试者中的甘油三酯和 / 或胆固醇的血清水平。一个实施方案中，给予 ANGPTL4 或 ANGPTL4 激动剂，导致与对照相比甘油三酯和 / 或胆固醇在受试者的血清中累积。另一个实施方案中，将有效量的 ANGPTL4 抗体或抗 ANGPTL4 抗体给药于受试者，由此降低甘油三酯，游离脂肪酸和 / 或胆固醇中的至少一种在受试者血清中的水平。本发明的一些实施方案中，对照是来自治疗前的受试者或没有接受治疗或接受轻的 (reduced) 治疗的受试者等的血清。

0014 ANGPTL4 和 ANGPTL4 调节剂（其激动剂或拮抗剂）可用于通过将有效量的该分子给药受试者来治疗脂质动态平衡疾病。见本文定义部分的“脂质动态平衡疾病”。例如，包括将有效量包含 ANGPTL4 拮抗剂的组合物给药受试者来治疗高脂血症的方法。

0015 也提供了治疗受试者的肥胖症和 / 或降低总体重的方法。例如，这样的方法，包括
给予受试者有效量的 ANGPTL4 调节剂，由此治疗受试者的肥胖症和/或与没有治疗或利用对照治疗相比降低总体重。一个实施方案中，受试者的脂肪过多（肥胖）得以减轻。以此种方式，可治疗与肥胖症有关的疾病，例如心血管疾病，糖尿病等。

[0016] 本发明的一些实施方案中，细胞例如肝细胞，前脂肪细胞位于受试者中。通常，受试者是人。

[0019] ANGPTL4 转基因和敲除动物在此描述并提供了这些转基因动物的用途。本发明还提供源自非人转基因动物的分离的细胞，其基因组包含的编码 ANGPTL4 的基因被破坏。一些实施方案中，分离的细胞包括鼠细胞（例如胚胎干细胞）。

[0020] ANGPTL4 的突变基因破坏导致观察到的表型，其与各种疾病或功能不良相关，包
括：心血管，内皮或血管生成疾病，包括动脉粥样硬化；异常代谢疾病包括脂质动态平衡疾病；或免疫和炎性疾病。本发明的方法包括通过给药受试者有效量的 ANGPTLA 或 ANGPTLA 的激动剂或拮抗剂来治疗心血管，内皮或血管生成疾病，异常代谢疾病，免疫疾病，脂质动态平衡疾病；或与编码 ANGPTLA 的基因的破坏有关或与 ANGPTLA 活性有关的肿瘤疾病，由此有效治疗所述病症或疾病。

[0021] 鉴定与编码 ANGPTLA 的基因的破坏有关的表型的方法也在此提供。例如，所述方法包括（a）测定其基因组中编码 ANGPTLA 的基因被破坏的非人转基因动物的生理学特征；和（b）将测定的生理学特征与性别匹配的野生型动物的生理学特征相比较。将由该基因破坏导致的表型鉴定为区别于野生型动物的生理学特征的非人转基因动物生理学特征。非人转基因动物对于编码 ANGPTLA 的基因的破坏而言可为纯合或杂合的。

[0022] 鉴定与编码 ANGPTLA 的基因的破坏有关的表型的药剂的方法也在此提供。例如，所述方法包括（a）测定其基因组中编码 ANGPTLA 的基因被破坏的非人转基因动物的生理学特征；和（b）将测定的（a）的生理学特征与性别匹配的野生型动物的生理学特征相比较。非人转基因动物中 ANGPTLA 基因破坏导致的表型是区别于野生型动物生理学特征的非人转基因动物的生理学特征。将受试药剂给予（a）的非人转基因动物，并测定该受试药剂是否调节所鉴定的与基因破坏有关的表型。调节该表型的受试药剂是调节该表型的药剂。

[0023] 一些实施方案中，与 ANGPTLA 基因破坏有关的表型或与性别匹配的野生型同窝动物相比非人转基因动物显示的表型是以下的至少一种，但不限于此，例如心血管，内皮或血管生成疾病；免疫疾病；脂质动态平衡疾病；或异常代谢疾病。

[0024] 鉴定与编码 ANGPTLA 的基因的破坏有关的生理学特征的药剂的方法也在此提供。一些实施方案中，所述方法包括（a）测定其基因组中编码 ANGPTLA 的基因被破坏的非人转基因动物显示的生理学特征；和（b）将测定的（a）的生理学特征与性别匹配的野生型动物的生理学特征相比较。非人转基因动物显示的分别于野生型动物所显示生理学特征的生理学特征鉴定为与 ANGPTLA 基因破坏相关的生理学特征。将受试药剂给予（a）的非人转基因动物，并测定与基因破坏有关的生理学特征是否得到调节。调节该生理学特征的受试药剂是调节该特征的药剂。

[0025] 一些实施方案中，与性别匹配的野生型同窝动物相比非人转基因动物显示的表型是以下的至少一种生理学特征，例如，平均血清胆固醇水平的调节，平均血清甘油三酯水平的调节，葡萄糖耐受试验的调节，葡萄糖动态平衡的调节，平均血清葡萄糖水平降低；平均血清胰岛素水平升高；平均血清胰岛素水平降低；平均血清 IgM 水平升高以及平均绝对白细胞计数增加；平均百分比体脂增加；体重和身高减少，组织总重量和非脂肪体重 (lean body mass) 减少；总脂肪重量减少；生长延迟伴随体重和身高减少，和 / 或总体脂，总组织重量的平均百分比减少。一个实施方案中，平均血清胆固醇水平的调节是平均血清胆固醇降低。一个实施方案中，平均血清甘油三酯水平的调节是平均血清甘油三酯水平降低。另一实施方案中，葡萄糖耐受试验的调节是葡萄糖耐受增强。

[0026] 提供了鉴定缓解以下疾病的药剂的方法：心血管，内皮或血管生成疾病；免疫疾病；肿瘤疾病；脂质代谢疾病；或与编码 ANGPTLA 的基因的破坏有关的异常代谢疾病。例如，所述方法包括（a）将受试药剂给予 ANGPTLA 基因中含有破坏的非人转基因动物；和（b）检测所述受试药剂是否缓解以下疾病：心血管，内皮或血管生成疾病；免疫疾病；肿瘤疾病；
脂质代谢疾病；或与非人转转基因动物中ANGPTL4基因的破坏有关的代谢疾病。

[0027] 本发明提供了评估能够影响与编码ANGPTL4基因的破坏有关的疾病的治疗剂的方法；例如，所述方法包括：(a) 测定其基因组中包含编码ANGPTL4基因的破坏的非人转基因动物的生理学特征；(b) 将测定的(a)的生理学特征与性别匹配的野生型动物的生理学特征相比较；(c) 将受试药剂给药(a)的非人转基因动物；和(d) 评价受试药剂对鉴定的与非人转基因动物中的基因破坏有关的疾病的影响。将区别人转基因动物生理学特征的非人转基因动物的生理学特征鉴定为由该非人转基因动物中的基因破坏导致的疾病。例如，所述疾病是心血管、内皮或血管生成疾病；免疫疾病；肿瘤疾病；脂质动态平衡疾病；或代谢疾病。

[0028] 鉴定调节ANGPTL4表达的药剂也在此提供。例如，所述方法包括：(a) 使受试药剂与表达ANGPTL4的宿主细胞接触；和(b) 测定所述受试药剂是否调节宿主细胞对ANGPTL4的表达。

[0029] 上述任何方法鉴定的药剂也包括在本发明中。一个实施方案中，所述药剂包含激动剂。另一实施方案中，所述药剂包括ANGPTL4的拮抗剂。治疗药剂以及包含所述治疗药剂的药物组合物也包括在本发明中。

[0030] 本发明的各种方法中，可将本发明的分子，例如ANGPTL4，ANGPTL4的激动剂或拮抗剂，药剂等通过系统性递送系统给予受试者。一方面，所述系统性递送系统包括细胞器制剂，其包含表达受试药剂的重组形式的哺乳动物细胞（例如，CHO细胞）。另一方面，所述系统性递送系统可包含缓释制剂，其包含纯化的药剂和聚合物基质。一些实施方案中，将所述分子与可药用载体一同给予受试者。可选，本发明的分子可通过组织-靶向的（例如脂肪细胞，肝等）基因递送载体给药，所述载体包含编码该分子的核酸。确定用于基因治疗的病毒或非病毒载体可用作本发明中的组织靶向的基因递送载体。

[0031] 附图简述

[0032] 图1显示人ANGPTL4的核酸序列（SEQ ID NO:1）。

[0033] 图2显示人ANGPTL4的氨基酸序列（SEQ ID NO:2），其源自图1所示的SEQ ID NO:1的编码序列。

[0034] 图3，图A显示纯化的重组鼠ANGPTL4（23-410），其在存在（10mM）或缺失二硫苏糖醇（DTT）的条件下在SDS聚丙烯酰胺凝胶电泳（SDS-PAGE）（4-20%）上分离。图3，图B显示野生型（泳道1）和变体hANGPTL4（泳道2），其在SDS凝胶上分离并通过western印迹检测，其中变体hANGPTL4具有取代R162G和R164E。

[0035] 图4图示了ANGPTL4诱导人肝细胞的细胞粘附。

[0036] 图5图示了ANGPTL4诱导肝细胞增殖。

[0037] 图6，图A和B图示了细胞外ANGPTL4诱导原代人前脂肪细胞内脏增殖（图A）以及前脂肪细胞皮下增殖（图B）。

[0038] 图7图示FACS分析显示ANGPTL4(23-406)和IgG-嵌合人ANGPTL4形式与皮下前代人肝脂肪细胞结合。

[0039] 图8，图A，B和C显示ANGPTL4诱导原代人皮下前脂肪细胞的细胞迁移。图A和B显示ANGPTL4诱导原代前脂肪细胞的过夜（图A）和7小时（图B）细胞迁移。图C图示了以下条件下ANGPTL4诱导原代前脂肪细胞7小时的迁移：(1) 没有添加血清，(2) 10%胎
牛血清（FCS），（3）PDGF-BB，和（4）mANGPTL4。

[0040] 图9，A、C、D和E显示ANGPTL4与整合素α₅β₃的结合。图A显示293-1953（α₅β₃）细胞株在底物上（μg/ml）显示浓度的mANGPTL4或玻连蛋白包被的板，其中利用BSA作为对照。图B显示抗-α₅β₃和抗-hANGPTL4抗体消除ANGPTL4细胞粘附活性，其中（1）是BSA，（2）是玻连蛋白，（c）是mANGPTL4。图C显示蛋白（mANGPTL4，hANGPTL4-N末端，或hANGPTL4-C末端）与α₅β₃包被的板的结合，其中利用说明的量。图D显示抗-hANGPTL4对蛋白（mANGPTL4，hANGPTL4-N末端，或hANGPTL4-C末端）与α₅β₃包被的板的结合的抑制，其中抗-down综合症关键区1蛋白（Dscr）抗体对照物，5G7或物质用作对照。图E显示ANGPTL4与α₅β₃的结合，其中（1）是包被在板上的hANGPTL4-C末端，（2）是包被在板上并与抗-hANGPTL4保温的hANGPTL4-C末端，（3）是包被在板上并与抗-Dscr保温的hANGPTL4-C末端，（4）是包被在板上的玻连蛋白，（5）是包被在板上的BSA，所示情况为添加α₅β₃之前的情况。

[0041] 图10显示经尾静脉注射ANGPTL4和ANGPTL4变体的小鼠的甘油三酯水平，其中包括（1）是Ad-GFP，（2）是Ad-Gd，（3）是ANGPTL4（1-406），（4）ANGPTL4（1-183），（5）是ANGPTL4（184-406），（6）是ANGPTL4变体R1162G和R164E，（7）是ANGPTL4（1-408），（8）是对照。

[0042] 详细描述

[0043] 定义

[0044] 具体描述本发明之前，应理解本发明不限于具体的组合物或生物系统，其当然可变化。也应理解本文术语仅仅是为了描述具体的实施方案，并不用作限制。本发明的说明书和权利要求中，单数形式“一”，“一种”，“该”包括复数含义，除非另外明确说明。因此，例如“一种分子”可包含包括两个或多个所述分子的组合。除非另有定义，所有科学和技术术语应理解为与它们所述技术领域所用的常见含义相同。为了本发明的目的，在下文描述了以下术语。

[0046] “天然序列”多肽包括含有与源自自然的多肽相同的氨基酸序列的多肽。所述天然序列多肽可分离自自然或可通过重组或合成手段产生。术语“天然序列”多肽具体包括该多肽的天然存在的或短或分于的形式（例如细胞外区序列），天然存在的变体形式（例如可选拼接的形式），以及天然存在的等位基因变体。

[0047] 多肽“变体”指与相应的天然序列多肽具有至少约 80％氨基酸序列同一性的生物活性多肽及其片段。所述变体包括例如，在所述多肽的 N 和 / 或 C 末端添加或缺失了一个或多个氨基酸残基的多肽。通常，变体与天然序列多肽或其片段具有至少约 80％氨基酸序列同一性，或至少约 90％氨基酸序列同一性，或至少约 95％或更高的氨基酸序列同一性。

[0048] 术语“ANGPTL4 变体”在本文中用于指上述变体和 / 或在天然 ANGPTL4 序列中包括一或多个氨基酸突变的 ANGPTL4。可选，所述一或多个氨基酸突变包括一或多个氨基酸取代。本发明所用的 ANGPTL4 及其变体可通过本领域已知的多种方法制备。ANGPTL4 的氨基酸序列变体可通过在 ANGPTL4DNA 中进行突变来制备。所述变体中包括，例如，在 ANGPTL4 的氨基酸序列中残基的缺失、插入或取代，例如保藏号为 ATCC209284 的核酸编码的人氨基酸序列，或如图 2 所示。可进行缺失、插入和取代的任何组合以获得具有所需活性的最终构建体。编码所述变体内的突变必能位于编码框内并优选不产生可产生二级 mRNA 结构的互补区。EP75,444A。

[0049] ANGPTL4 变体可选作通过在编码天然 ANGPTL4 的 DNA 中进行定点诱变或噬菌体展示技术来制备。由此产生编码所述变体的 DNA，并由此在重组细胞培养物中表达该 DNA。

[0050] 预先确定导入氨基酸序列变异的位点后，所述突变本身无需预先确定。例如，为优化突变在给定位置的突变，可在靶密码子或区域进行随机诱变和筛选参与的 ANGPTL4 变体以获得所需活性的优选组合。在序列中己知的 DNA 中的预先确定位点产生取代突变的技术是已知的，诸如例如定点诱变。本文所述的 ANGPTL4 变体的制备可通过噬菌体展示技术实现，诸如 PCTWO00/63380 公开中描述的那些。

[0051] 选出所述克隆以后，可去除突变的蛋白区域并置于适宜载体中以产生蛋白，通常可采用可用于转化适宜宿主的表达载体类型。

[0052] 氨基酸序列中残基通常约 1-30 个残基，优选 1-10 个残基，优选 1-5 或更少个残基，通常是连续的。

[0053] 氨基酸序列缺失通常约 1-30 个残基，优选 1-10 个残基，优选 1-5 或更少个残基，通常是连续的。

[0054] 其他 ANGPTL4 变体是天然 ANGPTL4 中的至少一个氨基酸序列被去除并在其位置插入不同的残基的那些。本发明的一个实施方案中，ANGPTL4 变体包括 ANGPTL4 的 162 和 / 或 164 的取代或 mANGPTL4 的 169 的取代。所述取代可根据表 1 中所示的那些进行。ANGPTL4 变体也可包括本文描述的非天然氨基酸。

[0056] (1) 非极性：Ala(A), Val(V), Leu(L), Ile(I), Pro(P), Phe(F), Trp(W), Met(M)
（2）不带电的极性：Gly (G)，Ser (S)，Thr (T)，Cys (C)，Tyr (Y)，Asn (N)，Gln (Q)

（3）酸性：Asp (D)，Glu (E)

（4）碱性：Lys (K)，Arg (R)，His (H)

可选，天然存在的残基可根据共有的侧链特性分成几组：

（1）硫水型：正亮氨酸，Met，Ala，Val，Leu，Ile；

（2）中性亲水型：Cys，Ser，Thr；

（3）酸性：Asp，Glu；

（4）碱性：Asn，Gln，His，Lys，Arg；

（5）影响链方向的残基：Gly，Pro；和

（6）芳香基：Trp，Tyr，Phe。

表 1

<table>
<thead>
<tr>
<th>原始残基</th>
<th>举例性取代</th>
<th>优选取代</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala (A)</td>
<td>Val，Leu，Ile</td>
<td>Val</td>
</tr>
<tr>
<td>Arg (R)</td>
<td>Lys，Gln，Asn</td>
<td>Lys</td>
</tr>
<tr>
<td>Asn (N)</td>
<td>Glu，His，Asp，Lys，Arg</td>
<td>Gln</td>
</tr>
<tr>
<td>Asp (D)</td>
<td>Glu，Asn</td>
<td>Glu</td>
</tr>
<tr>
<td>Cys (C)</td>
<td>Ser，Ala</td>
<td>Ser</td>
</tr>
<tr>
<td>Gln (Q)</td>
<td>Asn，Glu</td>
<td>Asn</td>
</tr>
<tr>
<td>Gly (E)</td>
<td>Asp，Gln</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly (G)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>His (H)</td>
<td>Asn，Gln，Lys，Arg</td>
<td>Arg</td>
</tr>
<tr>
<td>Ile (I)</td>
<td>Leu，Val，Met，Ala，Phe；正亮氨酸</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu (L)</td>
<td>正亮氨酸，Ile，Val，Met，Ala，Phe</td>
<td>Ile</td>
</tr>
<tr>
<td>Lys (K)</td>
<td>Arg，Gln，Asn</td>
<td>Arg</td>
</tr>
<tr>
<td>Met (M)</td>
<td>Leu，Phe；Ile</td>
<td>Leu</td>
</tr>
<tr>
<td>Phe (F)</td>
<td>Trp，Leu，Val，Ile，Ala，Tyr</td>
<td>Tyr</td>
</tr>
<tr>
<td>Pro (P)</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Ser (S)</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr (T)</td>
<td>Val，Ser</td>
<td>Ser</td>
</tr>
<tr>
<td>Trp (W)</td>
<td>Tyr，Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td>Tyr (Y)</td>
<td>Trp，Phe；Thr，Ser</td>
<td>Phe</td>
</tr>
<tr>
<td>Val (V)</td>
<td>Ile，Leu，Met，Phe；正亮氨酸</td>
<td>Leu</td>
</tr>
</tbody>
</table>

“天然存在的氨基酸残基”（即遗传密码编码的氨基酸残基）可选自下组：丙氨酸 (Ala)；精氨酸 (Arg)；天冬酰胺 (Asn)；天冬氨酸 (Asp)；半胱氨酸 (Cys)；谷氨酰胺 (Gln)；谷氨酸 (Glu)；甘氨酸 (Gly)；组氨酸 (His)；苏氨酸 (Ile)；亮氨酸 (Leu)；赖氨酸 (Lys)；蛋氨酸 (Met)；苯丙氨酸 (Phe)；脯氨酸 (Pro)；丝氨酸 (Ser)；苏氨酸 (Thr)；色氨酸 (Trp)；酪氨酸 (Tyr)；和缬氨酸 (Val)。“非天然存在的氨基酸残基”除了上面列出的天然存在的

本文的“氨基酸序列相同性百分数（%）”定义为对位排列该序列且按需要导入间隔以达到最大序列相同性百分数后与Angptl3序列中氨基酸残基相同的候选序列氨基酸残基的百分数，且任何保守取代都不作为该序列相同性的一部分。以测定氨基酸序列相同性百分数为目的的序列对比可按本领域技术内或各种方法完成，例如：使用公众可得到的计算机软件，例如BLAST，BLAST−2，ALIGN，ALIGN−2或Megalign（DNASTAR）软件。本领域的技术人员可确定用于测量序列对比的合适参数，包括在所比较的序列全长上达到最大对位排列所需的任何算法。然而，为达到本文目的，氨基酸序列相同性百分数可使用序列比较计算机程序ALIGN−2按本文所述获得。其中图4A−Q提供了ALIGN−2程序的全部源代码。ALIGN−2程序的比较计算程序由Genentech, Inc.创作且图4A−Q所示的源代码在美国版权局，华盛顿区，20559以用户文件存档，以美国版权号TXU510087登记。ALIGN−2程序通过Genentech, Inc.，South San Francisco，California可公开得到或者可从图4A−Q提供的源代码编译。编译ALIGN−2程序应基于UNIX操作系统平台，优选数字UNIX V4.0D。所有序列比较参数由ALIGN−2程序设定且不改变。

为达到本文目的，给定氨基酸序列 A 与 B，或者对给定氨基酸序列 B 的氨基酸序列相同性%（任选可表述为具有或者包含与 B，或者对给定氨基酸序列 B 的某一氨基酸序列相同性%的给定氨基酸序列 A）计算如下：

$\text{100} \times \frac{X}{Y}$

其中 X 是通过序列对比程序 ALIGN−2 在 A 和 B 经该程序进行序列对比中评分相同性匹配的氨基酸残基数，且其中 Y 是 B 中氨基酸残基的总数。可预料到如果氨基酸序列 A 的长度与氨基酸序列 B 的长度不相等时，A 与 B 的氨基酸序列相同性%不等于 B 与 A 的氨基酸序列相同性%。

分离的”多肽是指从其天然环境成分中鉴定和分离和/或回收的多肽。其天然环境的污染成分是可能干扰该多肽的诊断或治疗用途的物质，且可能包括酶，激素，和其他蛋白型或非蛋白型成分。在一些的实施方案中，该多肽可纯化成（1）按劳里（Lowry）方法测定的多肽重量超过 95%，且某些优选重量超过 99%。（2）其纯化程度足以通过使用转杯式测序仪获得至少 15 个残基的 N-末端或内接氨基酸序列，或（3）在还原型或非还原型条件下进行 SDS-PAGE 并使用考马斯蓝或者，优选银染测定具有同质性。该分离的多肽包括在重组细胞内的位点多肽，因为该多肽天然环境中的至少一种成份不存在。然而，一般而言，分离的多肽由至少一个纯化步骤制备。

术语“ANGPTLA调节物”指可活化ANGPTLA或者其表达的分子例如激动剂或者可抑制ANGPTLA的活性或者其表达的分子例如拮抗剂（或抑制剂）。ANGPTLA激动剂包括抗体和活性片段。ANGPTLA拮抗剂指能中和、阻断、抑制、消除，降低或干扰ANGPTLA活性（例如细胞增殖或生长、迁移、粘附或代谢变化）分子。调节或其表达包括其与ANGPTLA受体例如，a7α，b8 的结合的分子。ANGPTL4拮抗剂包括例如抗ANGPTL4抗体和其抗原结合片段，受体分子以及特异性结合ANGPTL4由此隔绝其与一多个受体的结合的衍生物，抗-ANGPTL4受体抗体和ANGPTL4受体拮抗剂如受体的小分子抑制物。其他ANGPTL4拮抗剂也包括ANGPTL4的拮抗剂变体，反义分子（例如ANGPTL4−siRNA），RNA适体，以及针对ANGPTL4或其受体的核酸。一些实施方案中，拮抗剂ANGPTL4抗体是通过与ANGPTL4的特异性亚序列或区域结合而抑制或降低ANGPTL4活性的抗体，所述亚序列或区域例如 N 末端，螺旋区，C 末端。

【0076】ANGPTLA 的调节物是调节 ANGPTLA 活性的分子，例如激动剂和拮抗剂。术语“激动剂”指 ANGPTLA 的肽和非肽类物质，以及特异性结合上述 ANGPTLA 分子的抗体，条件是它们能给天然 ANGPTLA 受体（例如，αβγδ 等）发出信号。术语“激动剂”是在 ANGPTLA 受体（例如，αβγδ）的生物作用的背景中定义的。一些实施案例中，激动剂具有天然 ANGPTLA 的生物活性，如上所定义的那样，诸如促进细胞增殖，迁移和 / 或粘附，和 / 或脂质动态平衡的调节。

【0077】术语“拮抗剂”用于指能抑制 ANGPTLA 生物活性的分子，而不考虑它们是否能结合 ANGPTLA 或其受体，例如，αβγδ 等。能结合 ANGPTLA 或其受体的拮抗剂包括抗-ANGPTLA 和抗-αβγδ 抗体。抑制 ANGPTLA 表达的拮抗剂包括内，例如，ANGPTLA-SiRNA。拮抗剂 ANGPTLA 可通过抑制 ANGPTLA 的活性，例如粘附、迁移、增殖和 / 或调节 ANGPTLA 的脂质动态平衡活性来评估。即 αβγδ 等受体活性而言，αβγδ 等受体的调节物可通过本领域抑制的方法确定。例如，可使用 J.W.Smith et al. in J.Biol.Chem.265: 12267-12271 (1990) 所用的方法。

【0078】术语“抗-ANGPTLA 抗体”是指具有足够亲和力和特异性结合 ANGPTLA 的抗体。本发明的一些实施方案中，本发明的抗-ANGPTLA 抗体可用作靶向干预与 ANGPTLA 活性相关的疾病和病症的治疗剂。通常，抗-ANGPTLA 抗体不结合其他 ANGPTLA 同系物，例如，ANGPTL3。

【0079】这里的术语“抗体”是指其最广泛的意义，尤其包含完整的单克隆抗体，多克隆抗体，由至少两个完整抗体形成的多特异性抗体（例如双特异性抗体），以及能显示所需生物学活性的任何抗体片段。

【0080】除非另有说明，术语“多价抗体”在本说明书中指包含三个和多个抗原结合位点的抗体。多价抗体通常经改造具有三个或多个抗原结合位点并通常不是天然序列 IgM 或 IgA 抗体。

6444–6448 (1993))] (xi) “线性抗体”，其包括一对串联的 Fd 片段 (VH-CH1-VH-CH1)，它们
与互补链双链在一起形成了一对抗原结合区 (Zapata et al. Protein Eng. 8 (10):
1057–1062 (1995) ; 美国专利 5, 641, 870)。

[0082] 本文中术语“单克隆抗体”指从实质上均一的抗体群获得的抗体，即包含该群体的
单个抗体除了可能自身发生的很少量突变以外都相同。单克隆抗体均以高度特异性直接
针对单个抗原位点。此外，与通常包括针对不同决定簇（表位）的不同抗体的传统（多克
隆）抗体制备相比，每种单克隆抗体直接针对抗原上的单个决定簇。单克隆抗体除了具有
特异性，其优势还在于，它们是通过杂交瘤培养而合成的，无其它免疫球蛋白的污染。修饰
语“单克隆的”指抗体获自实质上均一的抗体群的特征，不应理解为需要由任何具体方法产
生抗体。例如根据本发明使用的单克隆抗体可以用由 Kohler 等，自 1956 年 256:495 (1975) 首
次描述的杂交瘤方法来制备，或用重组 DNA 法（如美国专利 4,816,567）来制备。“单克隆
抗体”还可以用 Clackson 等，自 352:624–628 (1991) 和 Marks 等，分子生物学杂志，

[0083] 本文中单克隆抗体具体包括“嵌合”抗体（免疫球蛋白），其中所述嵌合抗体中
重链和 / 或轻链的一部分等同于或同源于来自特定物种的抗体或属于特定抗体类或亚
类的抗体的相应序列，链的其余部分等同于或同源于来自其它物种的抗体或属于另一抗
体类或亚类的抗体的相应序列，只要它们展示所需生物学活性（见美国专利 4,816,567；
Morrison 等，美国国家科学院学报，81:6851–6855 (1984)）。本文的目标嵌合抗体包括
“灵长源化（primatized）”抗体，其包含源于非人灵长类可变区的抗原结合序列（如 Old
World Monkey，如猕猴，狒狒 (rhesus) 或恒河猴 (cynomolagus monkey)）和人的恒定区序列
（美国专利 5, 693, 780）。

[0084] “人源化”形式的人 (V, Mouse) 抗体是包含源于非人免疫球蛋白的最小序列的嵌合
抗体。在多数情况下，人源化抗体是下述人免疫球蛋白（受者 (recipient) 抗体），其中受
者的高变区残基被非人物种如小鼠、大鼠、兔或非人灵长类（供者 (donor) 抗体）的具有所
需特异性、亲和力和容量（capacity）的高变区的残基取代。在一些例子中，人免疫球蛋白
框架区 (FR) 残基被相应的非人残基取代。而且人源化抗体可包含未在受体抗体或供体抗
体中发现的残基。这些修饰旨在进一步改进抗体的功能。一般情况下，人源化抗体基本上
包含至少一个、通常两个完整可变区，其中所有或基本上所有高变环对应于非人免疫球蛋
白的那些，所有或基本上所有 FR 是人的免疫球蛋白序列中的那些。人源化抗体任选包含
免疫球蛋白、通常为人免疫球蛋白的恒定区 (Fc) 的至少一部分。详见 Jones 等，自然
Biol. 2:593–596 (1992)。

[0085] “人抗体”是一种这样的抗体，其氨基酸序列对应于由人产生的和 / 或已使用如
本文所公开的用于制备人抗体的任何方法制备的抗体的氨基酸序列。此人抗体的定义具
体地排除了含有非人抗原 - 结合残基的人源化的抗体。可使用本技术领域已知的各种
方法产生人抗体。在一个实施方案中，人抗体自噬菌体文库，其中该噬菌体文库表达人
抗体 (Vaughan 等，Nature Biotechnology, 14:309–314 (1996) ; Sheets 等, PNAS(USA),

术语“可变的”是指不同抗体的可变区特定序列差异很大，且这些部分在每种抗体与其特定抗原的结合和特异性中有用。然而在抗体整个可变区中可变性的分布并不均匀。它集中在轻链和重链可变区的三个被称为高变区的片段中。可变区的更高度保守部分称为框架区（FR）。天然轻链和重链的可变区分别包含四个 FR。它们大多采用β片层构象，通常认为三个高变区相连，这些高变区形成环状，有时形成β片层结构的一部分。每条链的高变区通过 FR 紧密连接，并与其他链的高变区共同形成抗体的抗原结合位点（见 Kabat 等，具有免疫学意义的蛋白的序列，第 5 版，Public Health Service, National Institutes of Health, Bethesda, MD. (1991)）。恒定区不直接参与抗体抗原的结合，但显示多种效应功能，如使抗体参与抗体依赖性细胞介导的细胞毒作用(ADCC)。

本文中术语“高变区”是指抗体中负责抗原结合的氨基酸残基。高变区含有“互补决定区”或“CDR”的氨基酸残基（例如轻链可变区的残基 24-34 (L1), 50-65 (L2) 和 89-97 (L3), 重链可变区的残基 31-35 (H1), 50-65 (H2) 和 95-102 (H3); Kabat 等，具有免疫学意义的蛋白的序列，第 5 版，Public Health Service, National Institutes of Health, Bethesda, MD. (1991)），和/或“高变区”（例如轻链可变区的残基 26-32 (L1), 50-52 (L2) 和 91-96 (L3), 重链可变区的残基 26-32 (H1), 53-55 (H2) 和 96-101 (H3); Chothia 和 Lesk, 分子生物学杂志 196: 901-917 (1987)）。框架区”或“FR”残基是除本文所定义的高变区恒定区以外的可变区残基。

根据其重链恒定区的氨基酸序列，可将免疫球蛋白分为不同的类型。有 5 种主要的免疫球蛋白类型：IgA，IgD，IgE，IgG 和 IgM。其中的一些可进一步分成亚类（同种型），例如，IgG1，IgG2，IgG3，IgG4，IgA1 和 IgA2。相应于免疫球蛋白不同类型的重链恒定区分别称为 α，δ，ε，γ 和 μ。不同类型的免疫球蛋白的亚基结构和三维构型是熟知的。

来自任一脊椎动物物种的抗体（免疫球蛋白）的“轻链”根据其恒定区的氨基酸序列，可称为 κ (6) 和 λ (8) 这两个明显不同的类型之一。

术语“Fc 区”用于定义可通过用木瓜蛋白酶消化完整抗体产生的免疫球蛋白重链 C 末端区。Fc 区可为天然序列 Fc 区或变体 Fc 区。尽管免疫球蛋白重链的 Fc 区的范围可变，人 IgG 重链 Fc 区通常定义为从大约位置 Cys22 或大约位置 Pro2306 的氨基酸残基到 Fc 区的羧基末端。免疫球蛋白的 Fc 区通常包括两个恒定结构域，CH2 结构域和 CH3 结构域，并可选包括 CH4 结构域。“Fc 区链”在本文意指 Fc 区的两个多肽链之一。
人 IgG Fc 区的“CH2 结构域”（也称为“Cg2”结构域）通常从大约位置 231 的氨基酸残基延伸到大约位置 340 的氨基酸残基。CH2 结构域的独特之处在于其与其他结构域并不紧密配对。两个 N 连接的分支碳水化合物链位于完整天然 IgG 分子的两个 CH2 结构域之间。推测该碳水化合物提供结构域 - 结构域之间配对的取代基并有助于稳定 CH2 结构域。Burton, Molec. Immunol. 22: 161-206 (1985)。CH2 结构域在本文可为天然序列 CH2 结构域或变体 CH2 结构域。

“C13 结构域”包括 Fc 区中 C 末端残基到 CH2 结构域的片段（即从 IgG 大约位置 341 的氨基酸残基到大约位置 447 的氨基酸残基）。本文的 CH3 结构域天然序列 CH3 结构域或变体 CH3 结构域（例如在一条链中具有导入的“突起 (ploproberance)”以及位于另一条链中的相应的导入的”空腔“的 CH3，见美国专利 5, 821, 333，包含在此作为参考）。所述变体 CH3 结构域可用于本文所述制备多特异性（例如双特异性）抗体。

“铰链区”通常被定义为人 IgG1 中从 Glu216 到 Pro230 的区域 (Burton, Molec. Immunol. 22: 161-206 (1985))。其它 IgG 同种型的铰链区可与 IgG1 的序列对比排列，即对齐在相同位置形成重链之链间二硫键的第一个和最后一个半胱氨酸残基。本发明的铰链区可为天然序列铰链区或变体铰链区。变体铰链区的两个多肽链通常保持每个多肽链至少一个半胱氨酸残基，使得变体铰链区的两条多肽链可形成这两条链间的二硫键。本发明优选的铰链区是天然序列人铰链区，例如天然序列人 IgG1 铰链区。

“功能 Fc 区”具有天然序列 Fc 区的至少一种“效应功能”。示例性“效应功能”包括 C1q 结合；补体依赖性细胞毒 (CDC)；Fc 受体结合；抗体 - 依赖性细胞介导的细胞毒 (ADCC)；吞噬作用；细胞表面受体的下调（例如 B 细胞受体 ;BCR）等。所述效应功能通常需要 Fc 区以便与结合结构域（例如抗体可变结构域）结合并可利用本领域已知用于评估所述抗体效应功能的各种实验来评估。

“天然序列 Fc 区”包括与天然 Fc 区的氨基酸序列相同的氨基酸序列。

“变体 Fc 区”通常被定义为至少一种氨基酸修饰而与天然序列 Fc 区不同的氨基酸序列。优选，变体 Fc 区与天然序列 Fc 区或亲本多肽的 Fc 区相比在天然序列 Fc 区或亲本多肽的 Fc 区中具有至少一个氨基酸取代，例如从约 1-10 个氨基酸取代，优选约 1-5 个氨基酸取代。本文的变体 Fc 区通常与天然序列 Fc 区和 / 或与亲本多肽的 Fc 区具有例如至少约 80% 的序列同一性，或至少约 90% 的序列同一性，或至少约 95% 或更高的序列同一性。

“人效应细胞”是表达一种或多种 FcR 并执行效应物的功能的白细胞。优选所述细胞表达至少 FcγR III 并执行 ADCC 效应物的功能。例如可介导 ADCC 的人白细胞包括
人外周血单个核细胞（PBMC），自然杀伤（NK）细胞，单核细胞，细胞毒T细胞和中性粒细胞；其中优选PBMC和NK细胞。效应细胞可分离自其天然来源，例如如本文所述分离自血液和PBMC。

[0100] “补体依赖性细胞毒作用”或“CDC”是指在补体存在时分子裂解标靶的能力。补体活化途径由补体系统第一个成分C1q结合至一个与同源抗原形成化合物的分子（如抗体）来启动。为评价补体活化，可如Gazzano-Santoro等,免疫学方法杂志202:163(1996)所述进行CDC试验。

[0101] 本文使用的术语“免疫粘附素”是指结合了异源蛋白质（“粘附素”）的结合特异性与免疫球蛋白恒定区的效应器功能的抗原样分子。

[0102] 在结构上，免疫粘附素包含氨基酸序列与免疫球蛋白恒定区序列的融合，该氨基酸序列具有除抗体的抗原识别和结合位点以外的所需结合特异性（即，“异源性的”）。免疫粘附素的结合位点一般是指至少含有受体或配体的结合位点的氨基酸序列。免疫粘附素的免疫球蛋白恒定区序列可从诸如IgG-1, IgG-2, IgG-3,或IgG-4亚型，IgA（包括IgA-1和IgA-2），IgE，IgD或IgM等任何免疫球蛋白获得。

[0103] 本发明的“活性的”或“活性”用于指这样的ANGPTL4形式，其保持天然或天然存在的ANGPTL4的生物和/或免疫活性，其中“生物”活性指除了诱导针对天然或天然存在的ANGPTL4具有的抗原位表的抗体的产生能力以外，天然或天然存在的ANGPTL4的生物功能（抑制性或刺激性），“免疫”活性指诱导针对天然或天然存在的ANGPTL4具有的抗原位表的抗体的产生能力。

抗体的“功能性抗原结合位点”是指抗原与抗原结合的亲和力，不必要和该抗原结合位点所来源的亲本抗原一样强，但是结合抗原的能力必须能够利用已知用于评估抗体与抗原的结合的多种方法之一进行测定。此外，本发明的多价抗体的每个抗原结合位点的抗原结合亲和力无需在量上相同。对于本发明的多体抗体，功能性抗原结合位点的数量可通过超速离心分析来评估。根据该分析方法，抗原与多体抗体可以不同比例组合，并且可推定不同的功能性抗原结合位点数量来计算复合体的平均分子量。将这些理论数值与获得的实际实验数值相比较以评估功能性结合位点的数量。

具有规定抗体的“生物学特征”的抗体是具有这样的一或多种抗体生物学特征之一的抗体，所述特征使得其与结合于相同抗原的抗体相区分。为了筛选结合目的抗体所结合的抗原上的表位的抗体，可进行常规的交叉阻断试验如 Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988) 中所述。

“多肽链”是指每个结构域通过肽链（与共价作用或二硫键不同）与其他结构域相连的多肽。

本发明中“柔性接头”指包含通过肽链相连并由此提供的两个或多个氨基酸残基的肽，这为所连接的两个肽（诸如两个Fd区）提供了更多的旋转自由度。所述旋转自由度允许该柔性接头连接的两个或多抗原结合位点更有效地连接抗原。适宜的柔性接头肽序列包括 gly-ser, gly-ser-gly-ser, ala-ser 和 gly-gly-gly-ser。

术语“刺激细胞增殖”包括在体外或体内相对于未经处理的细胞或处理程度较低的细胞而言提高细胞生长和/或增殖程度的步骤。细胞培养物中细胞增殖的提高可通过在暴露于目的分子前后计算细胞数量来检测。增殖的程度可通过满底程度的显微镜检来定量。细胞增殖也可利用本领域已知的测定法例如胸腺嘧啶掺入测定法以及商业上可获得的测定法定量。术语“抑制细胞增殖”包括在体外或体内相对于未经处理的细胞或处理程度
较低的细胞而言降低细胞生长和 / 或增殖程度的步骤。其可通过上述方法定量。

[0111] “联用” — 或多种其他治疗剂给药包括按时（同时发生的）和 / 或以任何顺序序贯给药。

[0112] 用于治疗的“接受者”指任何动物。通常所述动物是哺乳动物。用于治疗的“哺乳
动物”指任何分类为哺乳动物的动物，包括人、家养动物和农场饲养动物，以及动物的动物
类、运动用动物或宠物，诸如狗、马、猫、牛、羊、猪等。通常，所述哺乳动物是人。

[0113] 术语“缓解”或“减轻”用于本文指降低、减轻或消除病情、疾病、病症或表现，包括
异常情况或症状。

[0114] “疾病”是任何将从利用本发明的分子进行的治疗受益的疾病。这包括慢性性和急性
疾病或病症，包括使得受者或易患对象疾病的病理情形。

[0115] “治疗有效量”是指能有效治疗受者中的疾病或病症的药物的量。

[0116] “治疗”是指治疗方法和预防措施。需要治疗者包括已患疾病者，以及需要对疾
病进行预防者。

[0117] “肥大”在本发明中意指与肿瘤形成无关的、独立于自然生长的器官或结构的体积
增加。器官或组织的肥大是由于个体细胞的体积增加（真性肥大）和 / 或构成组织的细胞
数量增加（增生）。例如，脂肪细胞的肥大性生长是脂质聚积刺激的脂肪细胞体积增大。脂
肪细胞的增生是脂肪组织中脂肪细胞数量增加。

[0118] 术语“心血管和内皮疾病”、“心血管和内皮功能障碍”和“心血管、内皮或血管生
成疾病”可互换使用，指疾病，通常是系统性的，其刺激血管生成和 / 或内皮血管化。这
包括影响血管的疾病，以及血管本身的疾病，诸如动脉、毛细血管、静脉和 / 或淋巴的疾
病。所述疾病包括但不限于例如动脉疾病诸如动脉粥样硬化，糖尿病，高血压，炎症血管病
(inflammatory vasculitides)，雷诺氏病和雷诺现象，动脉瘤以及动脉再狭窄；静脉和淋巴
疾病诸如血栓性静脉炎，淋巴管炎和淋巴水肿；癌症诸如血管肿瘤，例如血管瘤（毛细血管
性和海绵状的），血管球瘤，毛细管扩张，杆状血管瘤，血管内皮瘤，血管肉瘤，血管外皮
细胞瘤，卡波西肉瘤，淋巴管瘤和淋巴管肉瘤，肿瘤血管生成；以及其他血管疾病诸如外周
血管疾病，外伤诸如创伤、烧伤以及其他损伤的组织，植入物固定，疤痕形成，缺血再灌注损
伤，类风湿性关节炎，脑血管疾病，肾脏疾病诸如急性肾衰；发作综合征，冠状动脉疾病，高
胆固醇血症，高甘油三酯血症，和 / 或骨质疏松症。也包括心绞痛，心肌梗塞诸如急性心肌
梗塞，心脏肥大，以及心衰诸如充血性心衰（CHF）。与血脂异常相关的心血管疾病也包括例
如但不限于：高血压，动脉粥样硬化，心衰，发作综合征（stroke），各种冠状动脉疾病，肥胖
症，糖尿病等。

[0119] 术语“脂质动态平衡疾病”包括这样的病症，疾病或情况，其与脂质代谢的异常调
节有关，由其导致和 / 或相关联。脂质动态平衡疾病可由以下情况造成或与其相关：异常脂
解，异常脂质吸收，异常脂质合成和 / 或分泌，异常细胞内脂质释放和 / 或转化，异常细胞内
甘油三酯释放和 / 或转化，异常细胞内脂质和 / 或甘油三酯固和，和 / 或细胞内或来自细胞
的异常分泌的脂质和 / 或甘油三酯固，例如肝细胞。脂质动态平衡疾病包括但不限于：动
脉粥样硬化，肥胖症，与肥胖症有关的疾病，糖尿病，胰岛素抗性，高脂血症，低脂血症，血脂
异常，高胆固醇血症，低胆固醇血症，甘油三酯储存疾病，心血管疾病，冠状动脉疾病，高血压，
发作综合征，超重，厌食，恶病质，高脂蛋白血症，低脂蛋白血症，Niemann Pick病，高甘
油三酯血症，低甘油三酯血症，胰腺炎，弥漫性特发性骨肥大（DISH），致动脉粥样硬化性脂蛋白表型（ALP），偏瘦，肝疾病，脂肪肝，脂肪性肝炎，多囊卵巢综合征，癌等。术语"脂质代谢疾病"指胆固醇和甘油三酯的异常临床水平。术语"高脂血症"指血清脂质高于正常血清脂质水平的疾病。血清脂质包括胆固醇（酯和游离的），脂蛋白，甘油三酯，游离脂肪酸和其他固醇。一方面，这些脂质的水平升高是动脉粥样硬化的指征。

[0120] 术语"肥胖症"指哺乳动物的体重指数（BMI），其通过体重（kg）/身高^2（m^2）计算，为至少25.9。通常，体重正常的BMI为19.9到低于25.9。本发明的肥胖症可由于任何原因，无论是基因或环境的。可导致肥胖症或为肥胖症原因的疾病的实例包括，例如，但不限于，暴食和贪食症，多囊卵巢综合征，喘息管瘤，Prader-Willi综合征，Frohlich's综合征，I型糖尿病，GH-缺乏性受试者，正常变异性身材体型（normal variant short stature），Turner's综合征以及其他显示降低的代谢活性或静息能量消耗作为总无脂肪体重的百分比降低的病理性情况，例如患有急性淋巴细胞性白血病的儿童。"肥胖症决定性特征"包括脂肪细胞和组织，诸如脂肪垫，总体重，肌肉甘油三酯水平，肝和脂肪和禁食以及非禁食leptin水平，血中的游离脂肪酸和甘油三酯。

[0121] 术语"与肥胖症相关的疾病"指作为肥胖症结果或者被肥胖症加重的疾病，诸如但不限于皮肤疾病诸如感染，静脉曲张，黑棘皮病和湿疹，运动不耐受，糖尿病，胰岛素抵抗，高血压，高胆固醇血症，胆石病，骨关节炎，矫形损伤，血栓性血栓性疾病，癌（例如，乳腺癌，结肠癌，前列腺癌等），和冠状动脉（或血管）疾病，具体是与受试者中的高甘油三酯和游离脂肪酸相关的心血管疾病。

[0122] 肥胖症是发病率最高的体重疾病，估计影响西方国家中年人群的30％-50％。其他体重疾病，诸如神经性厌食症和神经性贪食症，总共影响西方国家女性人群的大约0.2％，也对健康造成严重威胁。此外，所述疾病诸如厌食症和恶病质（消耗性疾病）也是其他疾病诸如癌症，囊性纤维化以及AIDS的主要特征。

[0123] 术语"消耗性"疾病（例如消耗综合征，恶病质，葡萄糖减少症）指不良和/或不健康的体重降低或体细胞重量降低导致的疾病。在老年人和AIDS以及癌症患者中，消耗性疾病可导致体重的不良减少，包括脂肪和非脂肪部分。消耗性疾病可导致食物的不适当摄入和/或与疾病和/或老年化进程相关的代谢改变。癌症患者和AIDS患者，以及接受全面手术或患有慢性感染，免疫疾病，甲状腺机能亢进，肠外克隆氏病，精神疾病，慢性心衰或其他严重的外伤的患者，经常患有消耗性疾病，有时也称其为恶病质，代谢性疾病，还有时称为进食疾病。恶病质的特征还有代谢亢进以及分解代谢过度。尽管患病质和消耗性疾病通常可交换使用意指消耗性情形，至少有一项研究将恶病质与消耗性疾病区分开来：恶病质是非脂肪重量具体是细胞重量的丢失（Mayer，1999，J.Nutr.129（IS Suppl.）：256S-259S）。葡萄糖减少症是另一种可影响老年个体的所述疾病，通常特征在于肌肉重量减少。末期的上述消耗性疾病可见于患有恶病质或葡萄糖减少症的患者。

[0124] 糖尿病是影响动物中碳水化合物，脂肪和蛋白质代谢的慢性疾病。糖尿病是成年人的失明，肾衰和下肢肢肢的第一位原因，并且是心血管疾病和发作综合征的主要风险因素。

[0125] I型糖尿病（或胰岛素依赖型糖尿病（"IDDM"）或青少年糖尿病）占所有糖尿病的大约10％。该疾病的特征在于胰腺beta细胞的胰岛素分泌功能的渐进性丧失。该特
征也是病源在于胰腺的特发性或“继发性”糖尿病的特征。I型糖尿病与以下临床表征或症状有关，例如持续升高的血浆葡萄糖浓度或高血糖；多尿；多饮和/或多食；慢性血管并发症如视网膜病变，肾病和神经病；以及大血管并发症如高脂血症和高血压，其导致失明，终末期肾病，肢体和心肌梗塞。

[0126] II型糖尿病（非胰岛素依赖型糖尿病或NIDDM）与葡萄糖代谢失调以及胰岛素敏感性受损相关的代谢疾病。II型糖尿病通常出现在成年期，并且与机体不能利用或产生足够的胰岛素相关。除了在胰岛组织中观察到的胰岛素抵抗，患者II型糖尿病的患者具有相对的胰岛素缺乏，即对于给定的血浆葡萄糖浓度患者具有低于预期的胰岛素水平。II型糖尿病的特征在于以下临床表征或症状，例如持续升高的血浆葡萄糖浓度或高甘油三酯血症；多尿；多饮和/或多食；慢性血管并发症诸如视网膜病变，肾病和神经病；以及大血管并发症诸如高脂血症和高血压，其导致失明，终末期肾病，肢体和心肌梗塞。

[0127] X综合征，也称为胰岛素抵抗综合征（IRS），代谢综合征或代谢综合征X，见于大约2%的诊断性冠状动脉导管插入术。该疾病通常会使人残疾，其表现出发展成II型糖尿病和心血管疾病的症状或危险因子，包括，例如葡萄糖耐量受损（IGT），空腹血糖受损（IFG），高胰岛素血症，胰岛素抵抗，血脂异常（例如高甘油三酯，低HDL），高血压和肥胖症。

[0128] 免疫疾病包括但不限于，例如系统性红斑狼疮，类风湿性关节炎，青少年慢性关节炎，脊柱关节病，系统性硬化病（硬皮病），特发性炎症肌病（肌炎，多肌炎），干燥综合征，系统性血管炎，结节病，自身免疫性溶血性贫血（免疫性全血细胞减少症，阵发性夜间血红蛋白尿），自身免疫性血小板减少症（特发性血小板减少性紫癜，免疫介导的血小板减少症），甲状腺炎（Grave’s病，桥本甲状腺炎），青少年淋巴细胞性甲状腺炎，萎缩性甲状腺炎，糖尿病，免疫介导的肾病（肾小球性肾炎，小管间质性肾炎），中枢和周围神经系统的脱髓鞘疾病诸如多发性硬化，特发性脱髓鞘性多神经病或Guillain-Barré综合征，以及慢性炎性脱髓鞘性多神经病，肝胆管疾病诸如感染性肝炎（肝炎A，B，C，D，E以及其它非亲肝的病毒），自身免疫性慢性活期肝炎，原发性胆汁性肝硬化，肉芽肿性肝炎，和硬化性胆管炎，炎性疾病（溃疡性结肠炎，克隆氏病），谷蛋白敏感性肠病，和Whipple’s病；自身免疫性或免疫介导的皮肤疾病，包括大疱性皮肤病，多形性红斑和接触性皮炎，银屑病；变应性疾病诸如哮喘，过敏性鼻炎，特应性皮炎，食物超敏性和风疹；肺的免疫性疾病诸如嗜酸粒细胞浸润性肺炎，特发性肺纤维化和过敏性肺炎，和/或移植相关的疾病包括移植植物排斥和移植物抗宿主疾病。其他疾病可存在，诸如发育不良病（developmental disease）（例如，胚胎致死），神经疾病（例如，在开放场所活动测验（open field activity testing）中焦虑样反应降低，在笼状活动测验（home cage activity testing）中的异常生理节律等），眼部异常（例如视网膜异常），和/或骨代谢异常或疾病（例如关节炎，骨质疏松症，和/或骨格硬化症）。

[0129] 本文术语“标记”指可检测的化合物或组合物，其直接或间接偶联于多肽。该标记本身可为可检测的（例如放射同位素标记或荧光标记），或如果是酶标记，可催化可检测底物化合物或组合物的化学变化。

[0130] “分离的”核酸分子，是从在多肽核酸的天然来源其通常结合的至少一种污染性核酸分子鉴定并分离出的核酸分子。分离的核酸分子并非其天然形式或在其天然环境中。分离的核酸分子因此与其存在与天然细胞中的形式不同。然而，分离的核酸分子包括包含的
通常表达这样的多肽的细胞中，其中例如所述核酸分子在染色体中的位置与天然细胞中的情况不同。

术语“控制序列”指在具体宿主生物体中表达可操作连接的编码序列所需的 DNA 序列。适于原核生物的控制序列，例如包括启动子，可选操纵序列，以及核糖体结合位点。已知真核细胞利用启动子，多腺苷化信号以及增强子。

当核酸与另一核酸序列发生功能上的关系时，该核酸即为“可操作地连接于”另一核酸。例如，如果 DNA 表达为参与多肽分泌的前蛋白，则编码前序列或分泌型前导序列（例如，信号序列或信号肽）的 DNA 与编码多肽的 DNA 可操作性地连接；如果启动子或增强子影响序列的转录，则启动子或增强子可操作地连接于编码序列，如果核糖体结合位点的位置有利于翻译，则该核糖体结合位点可操作地连接于编码序列。一般而言，“可操作地连接于”是指被邻接的 DNA 序列是连续的，并且在例如分泌型前导序列的情况下为邻接的并且处于阅读相。连接（linking）通过在方便的限制性位点进行接合（ligation）来完成。若这样的位置点不存在，可按照常规实施方法使用合成的寡核苷酸接头（adapter）或连接体。

术语“细胞”、“细胞系”和“细胞培养物”可互换使用，并且所有所述名称包括子代。因此，术语“转化体”和“转化的细胞”包括原代受试细胞以及来自其的培养物，而考虑传代数。还应理解所有子代的 DNA 含量可不精确地一致，这是由于有意或无意突变造成的。对最初转化的细胞进行筛选得到的具有相同功能或生物活性的突变体子代包括在本发明内。不同名称含义不同时，可从上下文明确。

术语“基因”指（a）含有编码 ANGPTLA 的 DNA 序列的基因，例如，ATCC 保藏号 209284，或见图 1；（b）任何编码 ANGPTLA 氨基酸序列的 DNA 序列（见例如，图 2），和/或；（c）任何与本发明公开的编码序列的互补序列杂交的 DNA 序列。一些实施方案中，该术语包括编码以及非编码区，优选包括正常基因表达所需的所有序列。

术语“基因靶向（gene targeting）”指以下情形出现的同源重组类型：当基因组 DNA 片段被引入哺乳动物细胞并且该片段定位并与内源同源序列同源重组时。通过同源重组进行的基因靶向采用重组 DNA 技术来用特定设计的外源 DNA 取代特异性基因组序列。

术语“同源重组”指两个 DNA 分子或染色单体在同源核苷酸序列位点的 DNA 片段的交换。

术语“靶基因”（可选称作“靶基因序列”或“靶 DNA 序列”）指任何将通过同源重组修饰的核酸分子，多核苷酸或基因。靶序列包括完整基因，外显子或内含子，调节序列或基因间的任何区域。靶基因可包括个体的基因组 DNA 中具体基因或基因座的一部分。

ANGPTLA 基因的“破坏”出现于基因组 DNA 的片段定位并与内源同源序列重组的情况，其中所述破坏是天然序列或其一部分的缺失，或天然基因中的突变，或其中所述突变是天然基因的功能失效。可选，序列破坏可利用基因捕获载体（即非人转基因动物，其含有并表达随机插入的转基因；参见例如 2002–8–20 公开的美国专利 6, 436, 707）通过非特异性插入失活来产生。这些序列破坏或修饰可包括 DNA 序列的插入，错义，移码，缺失或取代或置换，或其任意组合。插入包括整个基因的插入，其可为动物，植物，真菌，昆虫，原核或病毒来源的。破坏，例如可通过部分或完全抑制正常基因产物的产生或提高正常基因产物的活性来改变该正常基因产物。一个实施方案中，所述破坏是消除（null）破坏，其中没有 ANGPTLA
基因的有意义的表达。

【0139】术语"天然表达"指ANGPT4基因编码的全长多肽的表达，其为在野生型小鼠中
存在的表达水平。因此，其中内源ANGPT4基因的"无天然表达"的破坏指部分或完全减少
单个细胞、所选细胞或哺乳动物的所有细胞的内源ANGPT4基因编码的至少部分多肽的表
达。

【0140】术语"敲除"指ANGPT4基因的破坏，其中该破坏导致天然基因的功能失活；天
然基因或其部分的缺失；或天然基因中的突变。

【0141】术语"敲入(knock-in)"指用编码ANGPT4编码基因或其变体的人cDNA取代小
鼠同系物（或其他小鼠基因）（即该破坏导致天然人基因对天然小鼠基因的取代）。

【0142】术语"构建体"指将转入靶组织、细胞系或动物的人工合成的DNA片段。通常，
所述构建体将包括目的基因或核酸序列，标记基因和适宜的控制序列。如本发明提供的，
靶向型ANGPT4构建体包括与ANGPT4基因的至少一部分同源的DNA序列并能在宿主的
ANGPT4基因中产生破坏。

【0143】术语"转基因细胞"指其基因组中含有的ANGPT4基因已经通过基因靶向方法
被完全或部分破坏、修饰、改变或取代的细胞。

【0144】术语"转基因动物"指其基因组中含有的具体基因已经通过本发明描述的方法
或本领域已知的方法被破坏或修饰或突变的动物。一些实施方案中，所述非人转基因动物
是哺乳动物。一个实施方案中，所述哺乳动物是啮齿类动物诸如大鼠或小鼠。此外，"转基因
动物"可为杂合动物（即一条缺陷的等位基因和一条野生型等位基因）或纯合动物（即
两条缺陷的等位基因）。胚胎被认为落入动物的定义范围内。提供动物包括提供子宫内的
胚胎或胎儿，无论是通过交配或其他方式，也无论该胚胎是否将被娩出。

【0145】本文术语"选择标记"和"位置选择标记"指编码仅仅能使得携带该基因的细胞在
具体条件下存活和/或生长的产物的基因。例如，表达导入的新霉素抗性（Neo'）基因的植
物和动物细胞对化合物G418抵抗。不携带Neo'基因标记的细胞被G418杀死。其他阳性
选择标记是本领域技术人员所知的，或在其知识范围内。

【0146】术语"调节"在本文指减少、抑制、降低、缓解、增加或增强ANGPT4基因功能、表
达、活性或可与ANGPT4基因相关表型。

【0147】术语"异常"指任何与ANGPT4有关的疾病、病症、情形或表型，包括病理性情形
和行为观察。

【0148】ANGPT4

【0149】本发明是试图进一步说明ANGPT4的生物功能以及其在疾病状态中作用的结
果。ANGPT4表达主要见于胎盘，脂肪，肝和肾组织。本发明还提供ANGPT4以及ANGPT4
调节物在肝细胞，脂肪细胞和脂质动态平衡领域中的应用。本发明还描述其ANGPT4基因
中包含破坏的转基因或敲除小鼠，以及其应用。

【0150】血管生成素α4蛋白(ANGPT4)是分泌蛋白并且是血管生成素家族的成员。其
还已知为肝纤维蛋白原/血管生成素-相关蛋白(HFARP)(Kim et al., Biochem. J. 346:
275;28488-28493 (2000))；血管生成素-相关蛋白（ARP-4）；NL2（见美国专利6,348,350；
6,372,491; 和 6,455,496); 以及 Ang6。

【0154】ANGPTL4 的用途以及 ANGPTL4 的调节物

【0156】本发明提供了 ANGPTL4 或其激动剂或拮抗剂的用途, 用于调节多种细胞活动和过程, 例如肝细胞增殖和/或细胞粘附, 以及前脂肪细胞增殖和/或前脂肪细胞迁移。ANGPTL4 参与调节甘油三酯和胆固醇的血清水平。此外, ANGPTL4 也可为炎性反应的负性调节物。ANGPTL4 调节物可用于治疗与这些活性相关的疾病或病症。

【0157】肝

【0158】ANGPTL4 刺激肝细胞的增殖以及肝细胞的粘附。肝是胆固醇动态平衡的主要器官。也见本发明的“脂质动态平衡”部分。肝合成并分泌极低密度脂蛋白 (VLDL)。在循环中,
VLDL 的代谢缺陷导致低密度脂蛋白（LDL），其为血液中的主要胆固醇携带脂蛋白。

【0159】肝脏的主要作用是消化和机体其他部分之间的平衡。肝脏的主要功能涉及对大量诸如碳水化合物、脂肪、氨基酸、生物和微量元素的有效的吸收、存储、代谢以及将其分配到血液和胆汁中。肝脏的另一功能是通过阶段1（氧化/还原）和阶段11（偶联）机制对异型生物质污染物、药物及内源性代谢物的解毒作用。

【0161】除了早期发育过程中的正常生长，肝组织还具有在成年阶段再生的独特能力。肝组织损伤后的肝再生是响应于各种形式的肝损伤的恢复过程的基本组成部分，所论肝损伤诸如肝中毒、病毒感染、血管损伤和部分肝切除。部分肝切除之后，例如肝的体积通常在大约6天之内恢复到其原来的大小。肝生长和再生涉及肝细胞和非实质细胞诸如窦状隙内皮细胞的增殖。通常，肝细胞首先增殖，之后约24小时肝的其它细胞进入DNA合成阶段。Michalopoulos and DeFrances Science 276 :60-65(1997)。

【0165】由于其对于生命的重要作用，肝功能不良和疾病通常使人衰弱并威胁生命。多种急性或慢性病理疾病与肝的结构和/或功能异常相关。这些包括但不限于，肝衰竭、肝炎（急性、慢性和酒精性），肝硬化，毒性肝损伤，药物性肝损伤，肝性脑病，肝昏迷或肝坏死。可通过促进肝细胞的细胞生长来治疗肝疾病。本发明的化合物和方法可修复肝损伤。不受
理论限制，据信这可直接和间接通过刺激肝细胞生长和分裂来实现。根据一个实施方案，本发明提供通过给药有效量的本发明的ANGPTL4或ANGPTL5激活剂来治疗受试者中的病理性肝疾病的方法。

[0166] 术语“病理性肝疾病”可与“肝疾病”或“肝病症”互换使用，意指任何结构性和/或功能性肝异常。病理性肝疾病的非限制性实例包括肝衰竭、肝炎（急性、慢性或持续性）、肝硬变、中毒性肝损伤、药物性肝损伤、肝性脑病、肝昏迷或肝坏死。

[0167] 本发明提供保护对导致肝损伤的疾病或因素敏感的受试者中的肝免疫损伤。术语“肝损伤”在本发明以最广泛的意义使用，指任何直接或间接由内部或外部因素或它们的组合导致的结构或功能性肝损伤。肝损伤可通过多种因素诱导，所述因素包括但不限于暴露于肝毒性化合物，放射暴露，机械性肝损伤，遗传倾向，病毒感染，自身免疫疾病，诸如自身免疫性慢性肝炎，结果导致体内蛋白质升高，诸如肌动蛋白和TGF-β。肝毒性化合物诱导的肝损伤包括直接细胞毒性，包括药物超敏反应，胆汁郁积，以及血管内皮损伤。

[0168] 许多化学和生物药剂，无论是治疗性的还是纯有害的，可诱导肝损伤并由此是肝毒性的。肝毒性化合物也可以是慢性肝疾病包括脂肪肝，肝炎，肝硬化，以及肝脏的血管和肿瘤形成损伤重要原因。（Sinclair et al., Textbook of Internal Medicine, 569-575 (1992) (editor, Kelley; Publisher, J.B. Lippincott Co.)）。本发明提供了保护受试者的肝免受暴露于肝毒性药剂导致的损伤的方法，包括给药受试者ANGPTL4和其激活剂，其中所述ANGPTL4或ANGPTL5激活剂可有效保护肝免受损。一方面，ANGPTL4或ANGPTL5激活剂在将所述受试者暴露于肝毒性药剂之前或同时给药，所述肝毒性药剂是治疗剂诸如用于治疗癌症的化疗剂或放射剂。由此，所述方法通过允许受试者耐受更高剂量的治疗剂提高治疗的效力。另一方面，ANGPTL4或ANGPTL5激活剂的给药在受试者暴露于肝毒性药剂之后但在受试者中出现任何可检测的肝损伤之前。所述方法可用于治疗由于受试者意外暴露于肝毒性药剂导致的肝损伤。

[0169] 肝毒性药剂可通过对肝的细胞毒性直接诱导肝损伤，或通过以下方式诱导毒性代谢物的生成（这一种类包括类似药物过敏症的超敏反应），胆汁郁积，胆管堵塞导致的胆汁流动停滞；以及血管损伤，诸如静脉闭塞性疾病（veno occlusive disease）（VOD）中的，其中血管内皮的损伤导致肝静脉血栓形成。个体对肝毒性药剂诱导的肝损伤的易感性受遗传因素，年龄，性别，营养状况，对其他药物的暴露情况以及系统性疾病的重影响。（Sinclair et al., Textbook of Internal Medicine, supra）。

[0170] 许多肝毒性化合物出人意料地在小部分受试者中产生肝损伤。一些患者中，肝损伤被称为超敏反应并且像药物反应一样，其中患者患有发热，出疹以及红细胞增多症，并且在用药物单独治疗或在接触它们时出现症状的复发。其他情况下，受伤的机制未知并且可代表敏感患者中的异常代谢，其允许肝毒性代谢物的产生或积累。

[0171] 那些通过直接化学攻击诱导细胞毒性的药物包以下这些：麻醉剂，诸如安氟醚，氯乙烯醚，氟烷和甲氧氟烷；Neuropsychotropics，诸如可卡因，酸酐，吗啡和三环抗抑郁药物；抗痉挛药物，诸如苯妥英和丙戊酸；止痛药，诸如，对乙酰氨基酚，氯唑沙宗，曲列林，双氯芬酸，布洛芬， aggravated acid / 酶，托美汀，和氯苯前药；激素，诸如，乙酰苯磺酰环己胺，氨磺丁脲，格列吡嗪，氢芥环己胺，丙硫氧嘧啶，他莫昔芬，己烯雌酚；抗微
生物药物，诸如，抗菌素B，氯林可霉素，头孢唑林，甲氧苄啶，氨苄青霉素，
对氨基苯甲酸，乙内酰胺，二氢青霉素，头孢噻肟，头孢氨苄，氯霉素，
利福平，磺胺类，四环素，和叠氮胸苷，心血管药物，诸如，胺碘酮，
Dilitiazem.a- 甲基多巴，美西律，Hydralazine，烟酸，罂粟碱，哌克昔林，普鲁卡因胺，奎纳定，
和 Tocainamide；以及免疫抑制剂和抗肿瘤药物，诸如，天冬酰胺酶，顺铂，环磷酰胺，氮
烯咪胺，阿霉素，氟尿嘧啶，甲氨喋呤，亚硝基脲，他莫昔芬，硫鸟嘌呤，和长春
新碱；以及其他药物，诸如，诸如，双硫仑，碘离子，酚丁，维生素 A和对氨基苯甲酸。

[0172] 那些在肝中产生过敏反应的肝毒性化合物包括以下物质：苯妥英，对氨基水杨
酸，氯丙嗪，磺胺类，依托红霉素（Erythromycin estolate），异烟肼，氟烷，甲基多巴，和丙
戊酸。肝毒性化合物包括胆汁郁积，胆汁流动停滞，可有多种形式。中心小叶型胆汁郁积
（Centrilobular cholestasis）伴有胆管炎性改变（portal inflammatory changes）。据报
道一些药物可导致胆管改变，所述药物诸如红霉素，而纯小管（canalicular）型胆汁郁积
是其他药物诸如促蛋白合成性类固醇的特征。慢性胆汁郁积与药物诸如甲睾酮和雌二醇有
关。

[0173] 诱导胆汁郁积性疾病的那些肝毒性化合物包括：避孕用类固醇，雄性类固醇，促合
成的类固醇，乙酰水杨酸，硫唑嘌呤，地西洋，鹅脱氧胆酸（Chenodeoxycholic acid），甲氨
二氮草（Chlordiazepoxide），依托红霉素，氯丙嗪，氯雷他定，氯雷他定，丙咪嗪，
6- 羟基丙嗪，甲氨喋呤，甲基多巴，甲基二硫（Methylenedianine），甲睾酮，
睾酮，雌二醇，雌二醇，雌二醇，雌二醇，雌二醇，雌二醇，雌二醇，雌二醇，
Trimethoprim sulfa mestaxazole，硫化铜，和百草枯（Paraquat）。

[0174] 一些药物，尽管本来是致胆汁郁积性的，也可产生毒性，由此它们导致的肝损
伤是混合的。导致混合型肝损伤的药物包括例如以下药物：氯丙嗪，苯基丁氨酸，氰化
甲氨二氮草（Chlordiazepoxide），安定，别嘌呤醇，苯巴比妥，苯巴比妥，丙基硫尿嘧啶，氯霉素，
Trimethoprim sulfa mestaxazole，氯吡酮，吡二丙胺，硫唑嘌呤，西米替丁和雷尼替丁。

[0175] 肝的血管损伤包括肝静脉血栓形成，肝小静脉或静脉闭塞疾病（VOD），和肝炎性紫
癜，可由药物诱导。此外，损伤包括窦状窦扩张，窦状窦周纤维化以及肝门脉硬化可出现。
中间区和周边窦状窦扩张作为口服避孕治疗的并发症首先报道。肝炎性紫癜包括大的充
血空腔，这是红细胞漏出内皮屏障的结果，然后是窦状窦周纤维化。这已经在服用口服避
孕药，促合成类固醇，硫唑嘌呤和达那唑的患者中描述。肝中心静脉的损伤和阻塞也已知与吡
咯联胺生物碱（Pyrrolizidine alkaloid）诸如 bush teas 的摄入有关。最初的损伤是中
心硬化伴有小静脉径的渐进性减小。当药物被停用时所有这些损伤可以仅仅是部分可逆的
并且可能发展成硬化。

[0176] 多种类型的良性和恶性肿瘤可以是肝毒性化合物给药的结果。肿瘤是限制于怀孕
期妇女的损伤，与避孕性类固醇的使用相关并且其风险随使用的持续时间而增加。肝细胞
癌也可见于服用雄性激素来治疗再生障碍性贫血或垂体机能减退的患者中。

[0177] 已知导致肝损伤的肝毒性化合物包括以下物质：避孕用类固醇，吡咯联胺生物碱，
乌拉坦，硫唑嘌呤，6- 硫基嘌呤，6- 硫鸟嘌呤，丝裂霉素，BCNU，长春新碱，阿霉素，静脉内维
生素 E，促合成性雄性激素，硫唑嘌呤， erase 甲氧基酶，硫酸雌酮，他莫昔芬，无机砷，二氧化
铅，维生素 A，甲氨喋呤，盐酸去氧麻黄碱，维生素 A，皮质类固醇，二氧化铅，和镉治疗。

[0178] 其他因素导致的肝损伤通常也形式相似。肝损伤（无论是化合物，放射疗法，
遗传倾向、机械损伤和任何所述因素以及其他因素的组合导致的）可通过多种方法检出。在临床上已经使用生化检测作为肝毒性的标准指标多年。大多数生化检测通常分为两类：测定特异性肝标记物，例如凝血酶原凝结时间，和/或肝血流，或分析血清标记的检测，用于检测硬化、胆汁郁积、进行性纤维化以及肝细胞癌的检测（Cornelius, C. in Hepatotoxicology, Wecks et al. eds., pgs. 181-185 (1991)）。所述检测的重要性在于它们的简单性以及它们是非入侵性的事实。在评估肝脏损伤中使用血清酶的基本原理在于这些酶，通常包含在细胞内，当肝细胞受损时进入全身循环。

【0179】 升高的血清酶活性提示硬化和/或胆汁郁积。血清胆红素水平升高提示肝内或肝外胆汁郁积。但是，使用血清酶水平作为诊断肝损伤的单个指标有一定局限性。血清酶水平的升高可以是药剂的系统性作用使得细胞通透性改变导致其从细胞泄漏而不是化学物质导致的特定肝损伤的结果。肝的组织病理学检查是鉴定和定量肝损伤的性质和程度的下一个合理步骤。

【0180】 血清酶作为肝损伤的标记可基于对肝损伤的特异性和敏感性分成四组（Kodavanti et al., Toxicologic Pathology 20(4):556-69 (1992); Kodavanti et al., Archives of Toxicology 63(5):367-75 (1989)。

【0181】 群 I: 这些酶的升高指示选择性较高的肝胆汁郁积，例如碱性磷酸酶（AP），5’-核苷酸酶（5’-ND），和a-谷氨酰转肽酶（G-GT）以及亮氨酸氨基肽酶（LAP）。群 II: 这些酶的升高指示实质的损伤，例如天冬氨酸转氨酶（AST），丙氨酸转氨酶（ALT），果糖 -1, 6-二磷酸醛缩酶（ALD），乳酸脱氢酶（LDH），异柠檬酸脱氢酶（ICDH），鸟氨酸氨基甲酰转移酶（OCT），以及山梨醇脱氢酶（SDH）精氨酸酶和鸟嘌呤酶。群 III: 这些酶的升高代表其他组织的损伤例如，肌酸磷酸激酶（CPK）。群 IV: 这些酶在肝损伤中受到抑制，例如，胆碱酯酶（ChE）。

【0182】 其他血清标记包括，原骨胶原 III 型肽水平（PIIP）用来评价肝纤维生成是否活跃，肝性肾病中血清水平；硬化和肝细胞癌水平中水平；由于肝内皮细胞损伤导致的透明质酸盐水平；a-1- 胎蛋白（AFP）水平用于检测肝细胞癌；癌胚抗原（CEA）水平用于检测肝癌转移；抗多种细胞成分例如线粒体，细胞核以及特异性肝细胞膜蛋白抗体的升高，以及蛋白诸如白蛋白，球蛋白，氨基酸，胆固醇以及其他脂质的检测。此外，获得与体活检的多种矿物质以及酶的生化分析可用于研究先天性、获得性和试验诱导性肝疾病中的特异性生化缺陷。

【0183】 可检测肝脏功能来评估肝损伤。肝功能检测包括：群 I 评估有机离子的肝清除，诸如胆红素，凝血酶（ICG），碘糖酵（BSP）和胆酸；群 II 通过检测半乳糖和 ICG 清除率评估肝血流；和群 III，通过利用氨基比林呼吸测定法和咖啡因清除率测定法评估肝微粒体功能。例如，可测定血清胆红素水平来证实黄疸的存在和严重性以及测定高胆红素血症的程度，如在实质性肝疾病中所见的。氨基转移酶（转氨酶）升高表明急性肝细胞损伤的严重性，而碱性磷酸酶升高见于胆汁郁积和肝浸润（Isselbacher, K. and Podolsky, D. in Harrison's Principles of Internal Medicine, 12th edition, Wilson et al. eds., 2:1301-1308 (1991))。进行血清酶分析的方法是本领域已知的，并例如在 Kodavanti et al. supra 中描述。

【0184】 由于大面积肝损伤可导致白蛋白、凝血酶原、纤维蛋白原以及其他只由肝细胞合成的蛋白质在血中的水平降低，这些蛋白质水平可作为肝损伤的指示物来测定。与

【0185】 许多患者中，需要计算机体层摄影术 (CT)，超声，闪烁扫描或肝活检来测定肝疾病的性质 (Isselbacher, K, and Friedman, L and Needleman, L in Harrison’s Principles of Internal Medicine, 12th edition, Wilson et al. eds., 2:1303-1307 (1991))。

【0186】 本发明提供提高受试者中治疗效果的方法，所述方法包括在治疗之前或同时以能有效保护受到肝毒性化合物损伤的受试者的肝的方式给予所述受试者 ANGPTLA 或 ANGPTLA 搏动剂，由此增加受试者对治疗的耐受性。例如，在化疗过程中所用的化疗剂对肝细胞具有毒性效应，由此限制该化疗剂给予患者所需的剂量和 / 或持续时间。通过将肝暴露于包含 ANGPTLA 或 ANGPTLA 拮抗剂的组合物，所述毒性效应可被预防或减轻。由此，化疗剂的剂量可减少，由此提高癌症治疗的效力。

[0190] 脂质动态平衡

[0192] 此外，ANGPTL4 抑制脂蛋白酯酶 (LPL) 活性。见例如，E01403367. 脂蛋白酯酶 (LPL) 是分泌的糖蛋白，通过水解乳糜微滴和极低密度脂蛋白 (VLDL) 中的甘油三酯来介导脂蛋白的代谢产生游离脂肪酸和磷脂。

[0193] 如本发明所述，ANGPTL4 推除小鼠的胆固醇和血清甘油三酯水平与它们性别匹配的野生型同窝动物相比降低。见本文“转基因敲除动物”部分以及实施例 4。此外，ANGPTL4 的静脉内注射增加小鼠中循环血浆脂质水平以及极低密度脂蛋白的水平。见例如，Yoshida et al., Journal of Lipid Research, 43; 1770-1772 (2002)，见图 10。

[0194] 调节受试者中甘油三酯和胆固醇血清水平的方法在本发明提供。例如，所述方法包括给药受试者有效量包含 ANGPTL4 和 ANGPTL4 激动剂或 ANGPTL4 拮抗剂的组合物。例如，调节受试者中甘油三酯和胆固醇的血清水平。一个实施方案中，给药 ANGPTL4 或 ANGPTL4 激动剂，其导致甘油三酯或胆固醇在血清中累积。另一实施方案中，给药受试者有效量的 ANGPTL4 拮抗剂，由此与治疗之前、没有接受治疗或接受减量治疗的受试者相比，降低受试者血清中甘油三酯、游离脂肪酸和 / 或胆固醇中至少一项的水平。平均血清胆固醇和甘油三酯水平可如本领域已知那样测定。

[0195] ANGPTL4 也可调节脂肪细胞。例如，ANGPTL4 可刺激前脂肪细胞增殖或诱导前脂肪细胞的细胞迁移。脂肪组织主要由脂肪细胞构成，其也在能量动态平衡中起重要作用。当营养重组时脂肪细胞合成并储存脂质，并且在需要营养时将游离脂肪酸释放进入循环。白色脂肪组织 (WAT) 和棕色脂肪组织 (BAT) 见于脊椎动物。根据动物的营养需要 WAT 存储并释放脂肪。WAT 存储脂肪用于：(1) 热量隔离 (例如皮下脂肪)，(2) 机械缓冲 (例如周围内部器官)，和 (3) 作为能量来源。BAT 烧脂肪，其应答低温度通过热生成作用释放脂肪作为能量以通过增加热生成来维持热量动态平衡以及应答于热量摄入的增加通过增加能量消耗维
通常，BAT随年龄减少，但可在特定条件下再活化，例如长期暴露于寒冷，保持高脂肪饮食以及存在产生去甲肾上腺素的肿瘤。

【0198】但是，脂肪组织的生长和 / 或形成通常不是所需的。例如，肥胖症通常时热量摄入超过热量消耗导致的，通过肥大性和增殖性生长导致脂肪组织的生长和 / 或形成。肥大性生长是脂质累积刺激的脂肪细胞体积增大。增生性生长定义为脂肪组织中脂肪细胞的数目增加。

【0199】肥胖症是慢性疾病，高度流行于现代社会并与社会难题以及寿命缩短和各种医学问题有关，包括不良的心理发育，生殖疾病诸如多囊卵巢疾病，皮肤疾病诸如感染，静脉曲张，黑棘皮症和湿疹，运动不耐受，胰岛素抵抗，高血压，高胆固醇血症，胆石病，骨关节炎，矫形损伤，血栓栓塞性疾病，癌症和冠状动脉心脏病。Rissmanen et al., British Medical Journal, 301: 835-837 (1990)。肥胖症的治疗涉及利用食欲抑制剂和其他减肥诱导剂，饮食改变等，但类似胰岛素抵抗患者，大多数肥胖症患者都经历最初的饮食失败，因此不能获得理想体重。ANGPTL4 抗抗剂可用于治疗肥胖症和 / 或减少受试者的总体重，其中利用有效
量的 ANGPTL4 抗剂。肥胖症可通过 BMI 和 / 或肥胖症确定性特征来测定，这是本领域已知的并在本文描述。例如，肥胖症的治疗通常指降低哺乳动物 BMI 到约 25.9 以下，并保持该体重至少 6 个月。该治疗适宜导致动物的食物或热量摄入减少。此外，本发明的治疗指在肥胖情形开始之前给药治疗的情况下防止肥胖发生。治疗包括抑制和 / 或完全抑制肥胖动物中的脂质生成，即脂肪细胞内脂质的过量累积或脂肪细胞的累积，其是人和动物肥胖症的主要特征之一，以及总体体重减轻。总体体重的减轻可利用标准技术（例如天平）来测定。一个实施方案中，受试者的肥胖（脂肪）减轻。在该种方式中，与肥胖症有关的疾病也可得到治疗，例如心血管疾病，糖尿病等。

ANGPTL4 在 ob/ob (leptin 被切除) 和 db/db (leptin 受体被切除) 小鼠中上调。本发明提供调节 leptin 和 / 或 leptin 活性的方法，其通过给药有效量的 ANGPTL4, ANGPTL4 激动剂或 ANGPTL4 抗剂进行。Leptin 水平可利用标准技术测定，例如 SDS-PAGE, 免疫印迹等。

ANGPTL4, ANGPTL4 激动剂和 / 或 ANGPTL4 抗剂可用于治疗与脂质动态平衡以
及脂肪代谢的有关疾病和病症，其包括但不限于，例如代谢疾病诸如心脏疾病，心血管、内皮或血管生成疾病，血脂异常，高血压，动脉粥样硬化，冠状动脉疾病 (CAD)，冠状动脉心脏病，高胆固醇血症，心衰，发作综合征，糖尿病，胰腺功能异常，骨关节炎，胆石症，癌症，青光眼，肥胖症，以及相关疾病诸如脂肪过多 (adipositas)，饮食疾病，消耗综合征 (恶病质)，睡眠呼吸暂停等。例如多种人类疾病的特征在于组织、细胞、膜以及细胞外区或结构的脂质组成不同。例如，在动脉粥样硬化中，胆固醇（非酯化的，酯化的和氧化的形式）和其它脂质在细胞以及动脉壁的细胞外区以及其它位点累积。这些脂质可能具有有害的生物作用，例如通过改变细胞功能，包括基因表达，以及通过使血管变窄，阻断血流。脂质水平的调节将提供多种实质益处。给药 ANGPTLA，其激动剂或拮抗剂的效应可通过暴露于已知的多种测定法测定，包括分析脂肪细胞和组织，诸如脂肪垫，总体重，肌肉、肝和脂肪中的甘油三酯水平，以及 leptin 的非禁食水平，以及血液中游离脂肪酸和甘油三酯的水平。ANGPTLA 拮抗剂可通过给药有效量的 ANGPTLA 拮抗剂而抑制前脂肪细胞的迁移。

[0204] 在本发明的一些方面中，需要结合 ANGPTLA，ANGPTLA 激动剂或 ANGPTLA 拮抗剂和其它治疗方案。ANGPTLA 或 ANGPTLA 激动剂可与其它因子的给药结合，例如诸如本文所述的那些。对于拮抗剂，ANGPTLA 拮抗剂可与例如治疗剂结合以治疗高脂血症（以及与高脂血症相关的疾病，例如肥胖症，高胆固醇血症，动脉粥样硬化，心血管疾病，糖尿病，甲状腺机能减退，Cushing 综合征等）。例如，包括但不限于，例如烟酸，消胆胺，考来替泊 (colestipol)，吉非贝齐 (gemfibrozil)，氯贝特 (clofibrate)，他汀类药物 (statins)，氟伐地汀 (fluvastatin)（来适可 (Lescol)），帕伐他汀 (pravastatin)，辛伐他汀 (simvastatin)，罗苏伐他汀钙 (ZD-4522)，匹伐他汀 (pitavastatin) (NK104)，普雷马林 (premarin) / 普拉固 (pravachol)（雌激素 / 帕伐他汀），依泽替米贝 (ezetimibe) / 辛伐他汀 (simvastatin)，superstatin，立普妥 (Lipitor)，CETP 抗体（胆固醇酯转移蛋白），BMS-201038（微粒体甘油三酯转运蛋白），FM-VP4（胆固醇转运抑制物），phyostalin，降血糖药，胰岛素，普兰林肽 (pramlintide)，糊精，AC2993 合成 exendin-4，Xenical (奥利司他 orlistat)，毛状神经营养因子 (ciliary neutrophic factor)，Axokine，Metformin XT，Merformin，Glucovance（二甲双胍 / 格列本脲），dextiplomat (R+/- α 硫辛酸)，PPAR 激动剂，beta-3-肾上腺能受体激动剂，脂酶抑制剂，ATL-962，leptin，致厌食药物 (anorectics) 或食欲抑制剂，苯丁胺，西布曲明 Meridia (sibutramine)，安非他酮 (Wellbutrin) (buproprion)，氨甲酸环己丙酯 (Procycline)（氯甲苯嗪 diazoxide），Tenuate (安非拉酮 (diethylpropion))，Revia (纳曲酮)，Bontril (苯甲酸站)，Zoloft (含曲林)，毛状神经营养因子 (ciliary neurotrophicfactor) (CNTF)，Axokine，CBL-大麻素受体激动剂，SR141716，phytopharm，AOD9604，hCH177-191，减肥药剂，及其衍生物（例如，盐，PEG 化的形式等）。也见，W096/04260（治疗 11 型糖尿病的化合物），W094/01420，W095/17394，W097/36579，W097/25042，W099/08501，W099/19313，和 W099/16758。生活方式的改变也可与本发明的治疗药剂结合。它们包括但不限于，例如饮食，运动，限制胆固醇摄入，停止吸烟等。也见 W091/19702（降血糖和降血脂药）。一些方面中，ANGPTLA 拮抗剂可与例如细胞因子和其它促炎分子以及多种可抑制脂肪生成的生长因子联用。这些包括但不限于，例如肿瘤坏死因子 (TNF)-α，IL-1，PDGF，FGF，EGF，转化生长因子 (TGF)-α，-β，前脂肪细胞因子
1(pref-1),等。见例如, Gregoire et al., Physiological Reviews, 78(3): 783-809 (1998)。

【0205】“减肥药剂”指用于治疗或预防肥胖症的分子, 所述分子包括例如, 激素 (儿茶酚胺, 胰高血糖素, ACTH, 以及生长激素与 IF-1 的组合), Ob 蛋白; 脂类; 卤化物; 氨甲酰酸; 氯丙嗪; 作用于去甲肾上腺素神经递质的食欲抑制药物, 诸如氯苯咪咈嗪和苯乙胺的衍生物, 例如苯乙胺, 安非他酮, 苯丁甲, 苯甲曲秦, 苯非他明, 苯丙胺, 苯氧酸和芬美曲秦; 作用于 5-羟色胺神经递质的药物, 如五羟色胺, 色氨酸, 5-羟色酸, 氟西汀和曲度林; 中枢活性药物诸如纳洛酮, 神经肽 Y, 促生长激素神经肽, 促肾上腺素释放激素；和缩胆囊素; 胆碱能激动剂诸如吡啶斯的明, 乙酰胆碱以与，溶血性神经肽 (lysosphingolipid) 或其衍生物, 如生药石酸衍生物诸如甲胎蛋白、麻黄素; beta-肾上腺素能激动剂；影响胃肠道的药物诸如酶抑制剂, 例如 tetrahydrodilipostatin, 可摄入的食物诸如蔗糖聚合酶, 以及胃排空抑制剂诸如氯烷酸 (threo-chlorocitric acid) 或其衍生物; B-肾上腺素能激动剂诸如异丙肾上腺素和肾上腺素；茶碱以增加氧合的 beta-肾上腺素能样效果, α-肾上腺素能阻断药物诸如单独的氯丙嗪或与生长激素释放肽联用; 干扰胃肠吸收的药物诸如双磷酸二亚甲双氨基和苯乙双胺; 体积填充物 (bulkfillers) 诸如甲基纤维素; 代谢阻断药物诸如羟基柠檬酸盐 (hydroxyocitrate); 黄体酮; 缩胆囊素激动剂; 模拟酮酸的小分子; 促肾上腺素释放激素; 抑制激素的激动剂; 麦角胺相关的催乳素抑制物，其用于减少脂肪存储 (U.S. Pat. No. 4, 738, 469 公开于 1988-11-8) ; beta-3 激动剂; 液态环肽; 类阿片活性肽拮抗剂; 神经肽 Y 拮抗剂; 胰岛素样受体拮抗剂; 生长激素激动剂; 其组合等。

【0206】其它用途

【0207】ANGPTLA 也是炎性反应的非调节因素。本发明的一些实施方案中, ANGPTLA 或 ANGPTLA 激动剂可用于抑制免疫反应, 例如在不良的或有害的免疫反应中, 例如在移植排斥或移植物 - 拒绝治疗中。ANGPTLA 拮抗剂可用于刺激免疫系统。例如, 刺激免疫系统在自体免疫, 其它类型的癌症, 免疫受损的患者（例如 AIDS 患者等）等中是需要的。

[0209] ANGPTL4 也可用于诊断实验中。许多不同的实验和实验模式可用于检测相对于对照样品ANGPTL4在样品中的量。这些模式，可用于本发明的诊断实验中，其可用于检测受试者中本文所述疾病的可能或存在。

[0210] 本领域已知的任何用于测定可溶性分析物的方法可用于本发明的实践。所述方法包括但不限于竞争性和非竞争性测定系统，其利用诸如放射免疫测定法，酶联免疫测定法（EIA）例如ELISA，例如“免疫测定法，沉淀素反应，凝胶扩散反应，免疫扩散实验，凝集实验，补体固定实验，放射免疫测定，荧光免疫测定，蛋白A免疫测定，以及免疫电泳测定法。见例如，U. S. Pat. Nos. 4, 845, 026 和 5, 006, 459。

[0211] NGFPTL4 的短基因敲除动物

[0212] 编码ANGPTL4 或其修饰的任何形式的核酸也可用于产生转基因动物或“敲除”动物，其可用于开发和筛选治疗有用的药剂。转基因动物（例如小鼠或大鼠）是具有这样的细胞的动物，所述细胞含有转基因，该转基因在出生以前如胚胎期被导入动物或被导入动物的祖先。转基因是整合入转基因动物的细胞的细胞的基因组的DNA。本发明提供编码ANGPTL4的cDNA，其可用于将编码ANGPTL4的基因组DNA根据确定的技术，还提供用于产生含有表达编码ANGPTL4的DNA的细胞的转基因动物的基因组序列。

[0214] 通常，可靶向特定细胞的细胞利用组织特异性增强子渗入ANGPTL4转基因。转基因动物可用于检验编码ANGPTL4 多肽的DNA的表达增加的效果，其中所述转基因动物包括在胚胎期导入动物生殖细胞系的ANGPTL4编码型转基因的拷贝。所述动物可用作被认为例如与其过表达相关的病理性疾病产生保护作用的药物的检测动物。根据本发明的这方面，可利用该药物治疗动物，并且与携带该转基因的未经治疗的动物相比病理性疾病的发生率降低表示对所述病理性疾病的有效治疗性干预。

[0215] 可选，ANGPTL4的非人同系物可用于构建ANGPTL4“敲除”动物，其具有缺陷或改变的编码ANGPTL4蛋白质的基因。这是由于编码ANGPTL4的内源基因和导入动物胚胎干细胞的编码ANGPTL4的改变的基因组DNA之间的同源重组造成的。一些实施方案中，该敲除动物是哺乳动物，例如啮齿类诸如大鼠或小鼠。例如，编码ANGPTL4的cDNA可用于根据确立的技术克隆编码ANGPTL4的基因组DNA。编码ANGPTL4的基因组DNA的一部分可缺失或被另一基因取代，诸如编码可用于监测整合的可选标记物的基因。通常，未改变的侧翼DNA（5’ 和3’ 末端）的数千个碱基包含在载体内（见例如，Thomas and Capecchi, Cell, 51: 503（1987）中对同源重组载体的描述）。

此外，敲除小鼠对于发现基因功能以及药物靶的药物用途以及确定与给定靶有关的可能的 on-target 副作用非常有用。基因功能和生理学在小鼠和人之间相当保守，这是由于它们都是哺乳动物并含有相似数目的基因，其在物种之间相当保守。最近发现，例如小鼠染色体 16 上的大部分基因具人向同系物（Murah et al., Science 296: 1661-71 (2002))。

尽管胚胎干细胞 (ES) 中的基因打靶已经使得在许多与人疾病相关的基因中具有突变的小鼠的构建成为可能，并非所有遗传疾病由于空突变造成的。可通过确定基因取代（敲入）的方法建立有用的人疾病的小鼠模型，其将破坏小鼠基因座并导入具有突变的人对应物。随后，可在体内进行靶向人蛋白的药物研究 (Kitamoto et al., Biochemical and Biophysical Res. Commun., 222:742-47 (1996))。

转基因动物的用途

一些实施方案中，本发明包括筛选化合物鉴定模拟 ANGPTL4（激动剂）和阻止 ANGPTL4 的效应（拮抗剂）的方法。模拟 ANGPTL4 的激动剂在诱导 ANGPTL4 活性中特别有治疗价值，例如本发明所述的，并且在基于利用基因组包含 ANGPTL4 编码基因的破坏的非人转基因动物的发现观察到负性表型的情况中特别有治疗价值。阻止 ANGPTL4 效应的拮抗剂在阻止 ANGPTL4 活性中特别有治疗价值，例如本发明所述的，以及基于利用非人转基因敲除动物的观察观察到阳性表型的情况中特别有治疗价值。设计拮抗剂药物的筛选实验以鉴定与本发明鉴定的基因编码的 ANGPTL4 结合或复合或干扰编码的多肽与其它细胞蛋白的相互作用的化合物，例如 ANGPTL4 受体（例如 α, β, β,）, 脂酶蛋白等。

例如，ANGPTL4 拮抗剂的效应可通过将 ANGPTL4 拮抗剂给药野生型小鼠以模拟已知的敲除表型来评估。因此，可先敲除目的 ANGPTL4 基因并观察敲除或破坏 ANGPTL4 基因导致的表型。随后，可通过将 ANGPTL4 拮抗剂给药野生型小鼠评估 ANGPTL4 拮抗剂的效力。预期有效的拮抗剂可模拟在敲除小鼠中最初观察到的表型效应。

同样，可通过将 ANGPTL4 激动剂给药非人转基因小鼠以缓解已知的负性敲除表型来评估 ANGPTL4 激动剂的效应。因此，可先敲除目的 ANGPTL4 基因并观察敲除或破坏 ANGPTL4 基因导致的表型。随后，可通过将 ANGPTL4 激动剂给药非人转基因小鼠评估 ANGPTL4 激动剂的效果。有效的激动剂预期可缓解最初在敲除动物中观察到的负性表型效应。

拮抗剂的另一实验中，哺乳动物细胞或表达该受体的膜制备物与标记的 ANGPTL4 在候选化合物的存在下保温。随后测定化合物提高或阻断该反应的能力。

抗体
说明书

[0225] 本发明的抗体包括抗-ANGPTL4抗体或ANGPTL4的抗原结合片段、抗-α、β抗体或本文所述的其它抗体。示例性抗体包括，例如多克隆、单克隆、人化的片段，多特异性、异源偶联的，多价的，效应功能等抗体。抗体可为激动剂或拮抗剂。

[0226] 多克隆抗体

[0227] 本发明的抗体包括多克隆抗体。制备多克隆抗体的方法是本领域技术人员已知的。例如，抗ANGPTL4的多克隆抗体通过多次给动物皮下(sc)或腹膜内(ip)注射相关抗原和佐剂而产生。用双功能试剂或衍生试剂，如马来酰亚氨苯甲酰基硫代琥珀酰亚胺酯(通过半胱氨酸残基结合)、N-羟基琥珀酰亚胺(通过赖氨酸残基)、戊二酸、琥珀酰胺、SOC12或R′N＝C＝NR(R和R′是不同烷基)，将所述相关抗原与所免疫的物种中具有免疫原性的蛋白(如匙孔血蓝蛋白(keyhole limpet hemocyanin)、血清白蛋白、牛甲状腺球蛋白或大豆胰蛋白酶抑制剂)进行偶联是有效的。

[0228] 用ANGPTL4、免疫原性偶联物或衍生物免疫动物，方法是，将100μg或5μg蛋白或偶联物(分别针对兔或鼠)与3倍体积的弗氏完全佐剂混合，在多位点皮内注射该溶液。1个月后，多位点皮下注射起始量的1/5至1/10的肽或与弗氏完全佐剂中的偶联物来加强免疫。7至14天后，对动物采血，测定血清中的抗体滴度。对动物的加强免疫直到滴度达到平台期为止。通常给动物加强注射相同抗原的偶联物，但也可以是偶联至不同蛋白和/或通过不同的交联剂偶联。偶联物还可以是重组细胞培养中产生的融合蛋白。此外，可用明矾等聚集剂增强免疫应答。

[0229] 单克隆抗体

[0230] 例如，单克隆抗体可用由Kohler等，自然(1975)首次描述的杂交瘤技术制备，或用重组DNA方法制备(美国专利4,816,567)。

[0231] 在杂交瘤方法中，如上所述免疫小鼠或其它适合的宿主动物如仓鼠，以激发那些产生或能产生与用于免疫之蛋白特异性结合的抗体的淋巴细胞。另外，可体外免疫淋巴细胞。然后用适当融合剂，如聚乙二醇，使淋巴细胞与骨髓瘤细胞融合，形成杂交瘤细胞(Goding,单克隆抗体;原理及应用，PP.59-103(Academic Press,1986))。

[0232] 将如此制备的杂交瘤细胞接种至适当培养基中并培养，优选该培养基含有一种或多种能抑制未融合的亲本骨髓瘤细胞生长或存活的物质。例如，如果亲本骨髓瘤细胞缺乏次黄嘌呤鸟嘌呤磷酸核糖转移酶(HGPRT或HPRT)，杂交瘤培养基通常将包含次黄嘌呤、氨基蝶呤和胸腺嘧啶核苷(HAT培养基)，这些物质阻止HGPRT-缺陷型细胞的生长。

[0233] 优选骨髓瘤细胞是那些能有效融合、支持所选抗体生成细胞以稳定的高水平产生抗体，并对诸如HAT培养基等类似培养基敏感的细胞。其中，优选的骨髓瘤细胞系是骨髓瘤系，如由Salk Institute Cell Distribution Center, San Diego, California USA提供的MOPC-21和MPC-11小鼠肿瘤细胞和由美国典型培养物保藏中心，Rockville, Maryland USA提供的SP-2或X63-Ag8-653细胞。也有报道称，人骨髓瘤细胞系可以从病人中获得(Marcel Dekker, Inc., New York, 1987)。

[0234] 可在含有生长期的杂交瘤细胞的培养基中分析针对所述抗原的单克隆抗体的产生。优选，杂交瘤细胞所产的单克隆抗体的结合特异性通过免疫沉淀或通过体结合试验，如放射免疫分析(RIA)或酶联免疫吸附试验(ELISA)来分析。单克隆抗体的结合亲和力可

[0236] 由亚克隆分泌的单克隆抗体可用常规免疫球蛋白纯化方法如蛋白 -A-Sepharose、羟基磷灰石层析、凝胶电泳、透析或亲和层析从培养基、腹水或血清中适宜地分离。

[0237] 单克隆抗体也可通过重组DNA方法制备，诸如美国专利4,816,567中描述的那些。编码单克隆抗体的DNA可用常规方法很容易地分离和测序（如利用能与编码小鼠抗体重链和轻链的基因特异结合的寡核苷酸探针）的杂交瘤细胞是这类DNA的优选来源。DNA分离后，可将其插入表达载体中，然后用此表达载体转染宿主细胞，如大肠杆菌细胞、猴COS细胞、中国仓鼠卵巢(CHO)细胞或不产生免疫球蛋白的骨髓瘤细胞，以便在重组宿主细胞中合成单克隆抗体。抗体的重组产生在下文详细描述。

[0239] DNA也可通过例如用人类重链和轻链的恒定区编码序列取代小鼠同源序列来修饰（美国专利4,816,567; Morrison等，美国国家科学院院报，81:6851 (1984)），或通过将非免疫球蛋白多肽的全部或部分编码序列与免疫球蛋白编码序列共价结合来修饰。

[0240] 通常用上述非免疫球蛋白多肽取代抗体恒定区，或取代抗体的一个抗原结合点的可变区，形成二价嵌合抗体，其中一个抗原结合位点特异于一种抗原而另一个抗原结合位点特异于另一种抗原。

[0241] 人源化和人抗体

是用人类轻链或重链特定位型的所有抗体的共有序列作为特定位架区。相同的位架可用于
几种不同的人源化抗体 (Carter 等, 美国国家科学院学报, 89: 4285(1992); Presta 等, 免疫
学杂志, 151: 2623(1993))。

[0244] 重重要是的，将抗体人源化后保留了对抗原的高亲合力和其它有利的生物特性。
为达到此目的，在一种优选方法中，通过用亲本序列和人源化序列的三维模型分析亲本序
列和各种概念性人源化产物来制备人源化抗体。免疫球蛋白三维模型已有商品，是本领域
技术人员所熟悉的。还有用于描述和显示所选免疫球蛋白序列可能的三维构象的计算机程
序。通过观察这些显示结果可分析残基在候选免疫球蛋白序列的功能中可能发挥作用的
能力。该分析影响候选免疫球蛋白与其抗原结合的能力的残基，通过这种方法，可从受者和引
入序列中选出 FR 残基并组合，从而得到所需抗体性质。如对靶抗原的亲和力增加。总之，高
变区残基直接并且最主要涉及对抗原结合的影响。

[0245] 可选可制备如下转基因动物（如小鼠），它们通过免疫能产生人类抗体的所有成
分而不产生人源免疫球蛋白。例如，有报道称，嵌合反种系（germ-line）突变小鼠中抗体
重链连接区（J）基因的纯合缺失导致人源抗体的产生被完全抑制。将人类种系免疫球蛋白
基因阵列转移到这类种系突变小鼠中将导致因抗原攻击而诱导类人的抗体产生。见例
如, Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90: 2551(1993); Jakobovits et al.,
Nature, 362: 255-258(1993); Bruggermann et al., Year in Immunol.7: 33(1993); and
Duchosal et al., Nature 355: 258(1992). Human antibodies can also be derived from
phage-display libraries (Hoogenboom et al., J. Mol. Biol., 227: 381(1991); Marks et al.,

[0246] 人抗体也可利用本领域已知的各种技术，包括噬菌体展示文库 (Hoogenboom and
此技术，将抗体 V 区基因克隆在与丝状噬菌体 (如 M13 或 fd) 主要或次要衣壳蛋白基因相同
的框架内，并在噬菌体颗粒的表面展示为功能性抗体片段。因为丝状颗粒包含噬菌体基因
组的单链 DNA 片段，根据抗体的功能特点进行的选择也导致对显示这些性质的抗体的编码
基因进行选择。因此，噬菌体展示了 B 细胞的外显特。噬菌体展示可以有多种形式进行：
这些综述见 Johnson, Kevin S. 和 Chiswell, David J., 结构生物学的最新观点 (Current
Opinion in Structural Biology) 3: 564-571(1993)。可使用 V 基因片段的多个来源进行
噬菌体展示。Clackson 等, 自然, 352: 624-628(1991) 从免疫小鼠脾脏来源的 V 基因的随机
组合小文库中分离了抗 - 恶唑酮抗体的多样性阵列。可基本如 Marks 等, 分子生物学杂志
宿者 V 基因所有组成成分，并分离针对抗原多样性阵列 (包括自身抗原) 的抗体。亦参
见美国专利 5565332 和 5573905。Cole 等和 Boerner 等的技术也用于制备人单克隆抗体
(Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan Rliss, p77(1985) 和
而产生 (见美国专利 5, 567, 610 和 5, 229, 275)。

[0247] 抗体片段

[0248] 抗体片段也包括在本发明中。已开发了生成抗体片段的多种技术。传统上，这些
片段通过对完整抗体的蛋白水解性消化获得 (见 Morimoto 等, 生物化学和生物物理学方法

0249 多特异性抗体 (例如双特异性)

0251 制备双特异性抗体的方法是本领域已知的。完整双特异性抗体的制备方法是基于免疫球蛋白重链 - 轻链对的共表达, 其中这两条链具有不同特异性 (Millstein 等, 自然, 305:537-539 (1983))。由于免疫球蛋白重链轻链随机分配, 这些四交瘤 (quadroma) 可能产生 10 种不同抗体分子的混合物, 其中只有一种具有正确的双特异性结
构。对所述正确分子的纯化（通常通过亲和层析步骤来进行）非常复杂，且产量很低。类似的方法见W093/08829和Traunecker等，EMBO J, 10；3655–3659(1991)。

【0252】依据另一种方法，可将具有所需结合特异性（抗体-抗原结合位点）的抗体可变区与免疫球蛋白恒定区序列融合。该融合优选与包含铰链区的至少一部分、CH2及CH3区的免疫球蛋白重链恒定区融合。优选使含有轻链结合所需位点的第一重链恒定区（CH1）出现在至少一种融合中。可将编码免疫球蛋白重链融合体，以及必要时，编码免疫球蛋白轻链的DNA插入不同表达载体，共转染至适当宿主生物。这使得在使用非等比的三种多肽链进行构建的实施方案中，能够非常灵活地调整三种多肽片段的相互比例，以获得最佳产量。但也可在至少两种多肽链以等比例表达而获得高产时或所述比例无特别意义时，将两种或所有三种多肽链的编码序列插入同一表达载体。

【0253】在该方法的一个优选实施方案中，所述双特异性抗体由一条臂上的带有第一结合特异性的杂合免疫球蛋白重链和另一条臂上的杂合免疫球蛋白重链-轻链对（提供第二结合特异性）构成。已发现这种不对称结构有利于从非必要免疫球蛋白链的混合物中分离出所需双特异性化合物，因为只有该双特异性分子的一半上存在免疫球蛋白轻链，这使得分离更加容易。此方法公开于W094/04690中。制备双特异性抗体的进一步细节，见Suresh等，酶学方法，121；210 (1986)。

【0254】根据W096/27011所述的另一种方法，可改造一对抗体分子之间的界面，使得从重组细胞培养中获得的异源二聚体的百分比最大。优选的界面包括抗体恒定区CH3结构域的至少一部分。在该方法中，源于第一抗体分子的界面上的一条或多条氨基酸小侧链被较大侧链（如酰胺酸或色氨酸）取代。与所述侧链大小相同或相近的互补“沟”可通过将氨基酸大侧链用小侧链（如丙氨酸或苏氨酸）取代而第二抗体分子的界面上形成。这使得异二聚体的产量比其它不需要的产物如同型二聚体的高。

【0255】从抗体片段制备双特异性抗体的技术已有文献。例如，双特异性抗体可利用化学连接制备。Brennan等，科学，229；81 (1985)中描述了将完整抗体经蛋白水解制备F(ab')2片段的方法。这些片段在二巯基复合剂亚砷酸钠存在时被还原，从而稳定相邻的巯基，并阻止分子间二硫键的形成。生成的Fab'片段被转化为硫硝基苯甲酸盐(TNB)衍生物。其中一种Fab'—TNB衍生物经巯基乙胺还原成Fab'—硫醇，再与等分子量的其它Fab'—TNB衍生物混合形成双特异性抗体。如此产生的双特异性抗体可作为酶的选择性固相化中所用的试剂。

【0256】近期的发展促进了Fab'—SH片段从大鼠柄菌的直接回收，该片段可经化学偶联形成双特异性抗体。Shalaby等，实验医学杂志，175；217–225 (1992)中描述了完全人源化双特异性抗体F(ab')2分子的产生。每一Fab'片段分别从大肠杆菌中分泌出来，经体外直接化学偶联形成双特异性抗体。如此制备的双特异性抗体能与过表达Erbb2受体的细胞和正常人T细胞结合，还能引发人体细胞毒淋巴细胞对人乳腺肿瘤靶的裂解活性。

【0257】直接从重组细胞培养中制备并分离双特异性抗体片段的多种技术也已有描述。例如，可用亮氨酸拉链制备双特异性抗体。Kostelny等，免疫学杂志，148(5)；1547–1553 (1992)。将来自Fos和Jun蛋白的亮氨酸拉链肽与两种不同抗体的Fab'部分通过基因融合而连接。使抗体的同型二聚体在铰链区被还原成单体，然后被再氧化形成抗体的异二聚体。该方法也可用于制备抗体同型二聚体。由Hollinger等，美国国家科学
院学报, 90: 6444-6448 (1993)) 描述的“二价抗体”技术提供了另一种制备双特异性抗体片段的方法。所述片段中含有重链可变区 (V\text{H})，其通过接头与轻链可变区 (V\text{L}) 相连，该接头非常短，使得同一链的两个结构域之间无法配对。因此，同一片段上的 V\text{H} 和 V\text{L} 结构域被接与另一片段上的互补 V\text{H} 和 V\text{L} 结构域配对，从而形成两个抗原结合位点。此外还报道了另一种用单链 Fv (slFv) 二聚体来制备双特异性抗体的策略。见 Gruber 等, 免疫学杂志, 152: 5368 (1994)。

[0258] 还考虑了二价以上的抗体。如可制备三特异性抗体。Tutt 等, 免疫学杂志, 147: 60 (1991)。

[0259] 异源偶联的抗体

[0261] 多价抗体

[0262] 本发明的抗体包括多价抗体。多价抗体比二价抗体可更快地被表达与该抗体结合的抗原的细胞内化（和 / 或异化）。本发明的抗体可以具三个或更多个抗原结合位点的多价抗体（例如四价抗体）（它们不是 IgM 类），通过使编码所述抗体多肽链的核酸重组表达可轻易制备该抗体。多价抗体可以包含二聚体化结构域和一个或更多个抗原结合位点。优选的二聚体化结构域包括 Fc 区或铰链区，或由它们组成。在本文中，抗体包含一个 Fc 区和三个或更多个位于 Fc 区氨基端的抗原结合位点。优选的多价抗体在此包括三到约八个抗原结合位点，但优选四个抗原结合位点，或由它们组成。多价抗体包括至少一条或多肽链（并优选两条多肽链），其中所述多肽链包含两个或多个可变区。例如，多肽链可包含 VD1-(X1)n-VD2-(X2)n-Fc，其中 VD1 是第一可变区，VD2 是第二可变区，Fc 是 Fc 区的一条多肽链，X1 和 X2 代表氨基酸或多肽，n 是 0 或 1。例如，多肽链可包含 VH-CH1-柔韧接头 (flexible linker)-VH-CH1-Fc 区域; 或 VH-CH1-VH-CH1-Fc 区域。本文的多价抗体优先进一步包含至少两个（优选四个）轻链可变区多肽。例如本文的多价抗体包含从约二个到约八个轻链可变区多肽。本文的轻链可变区多肽包含轻链可变区以及可选地进一步包含 CL 结构域。

[0263] 效应物功能改良

中文术语“补救受体结合位点”是指IgG（例如IgG1, IgG2, IgG3, 或 IgG4）Fc区中负责延长该IgG分子的体内血清半衰期的位点。

[0265] 免疫偶联物

[0266] 本发明还涉及免疫偶联物，所述免疫偶联物包含与细胞毒性药剂结合的抗体，细胞毒性药剂例如化学治疗剂、毒素（例如，细菌、真菌、植物或动物的酶活性毒素，或其片段），或放射性同位素（即，放射偶联物）。多种放射性核素可用于制备放射偶联抗体。实例包括但不限于，例如，212Bi, 131I, 131Xe, 90Y和188Re。

[0267] 用于产生所述免疫偶联物的化剂剂已经在上文描述。例如，BCNU, 群脲菌素（streptozocin），长春新碱和5-氟尿嘧啶，美国专利5,053,394,5,770,710所述的已知统称为LL-E33288 复合物的药剂家族，以及esperamicins（美国专利5,877,296）等（也参见本文的化剂剂的定义）可偶联于抗-ANGPTL4 抗-血管生成抗体或其片段。

[0268] 为了选择性破坏细胞，抗体可包括高度放射活性的原子。多种放射性同位素可用于产生放射偶联的抗-ANGPTL4 或其片段。实例包括但不限于 211At, 131I, 125I, 90Y, 188Re, 188Re, 153Sm, 212Bi, 212Po, 212Pb, 111In 以及 Lu 的放射性同位素等。当所述偶联物是用于诊断时，其可以包含用于闪烁成像研究的放射性原子，例如 Tc99 或 Tc125，或用于导核共振（NMR）成像（也称为磁共振成像，MRI）的自旋标记物，例如碘-123、碘-131、铟-111、氟-19、碳-13、氮-15、氧-17、钆、锰或钛。

[0269] 可以用已知的方法将放射标记物或其它标记物掺入到所述偶联物中。例如，可以利用包含，例如适当位置的氟-19 或氧的适配的氨基酸前体，通过化学的氨基酸合成生物合成或化学合成所致的。Te99 或 Tc125、Re188、Re188 和 In111 标记物可以通过肽中的半胱氨酸残基附着。钇-90 可以通过赖氨酸残基附着。IODGEN ©法（Fraker 等，Biochem. Biophys. Res. Commun. 80：49-57（1978）可用于掺入碘-123。在 "Monoclonal Antibodies in Immunoscintigraphy " （Chatal, CRC Press1989）中描述了结合放射性核素的其它方法。

[0270] 可以应用的酶活性毒素及其片段包括：白喉毒素 A 链、白喉毒素的非结合活性片段、外毒素 A 链（来自铜绿假单胞菌）、蓖麻毒蛋白 A 链、相思豆毒蛋白 A 链、蕈根毒素 A 链、α-合曲毒素、油桐（Aleurites fordii）蛋白、石竹素蛋白、美洲商陆（Phytolacca Americana）蛋白（PAPI, PAPII, PAP-S）、苦瓜（Momordica charantia）抑制因子、麻疯树毒蛋白、巴豆毒蛋白、肥皂草（Saponaria officinalis）抑制剂，白树毒素，米托亭素（mitogellin）、局限曲菌素、酚霉素、依诺霉素和单端孢菌毒素（tricothecenes）。例见 1993 年 10 月 28 日公开的WO93/21223。

[0271] 拮抗剂与细胞毒制剂的偶联物可通过多种双功能蛋白偶联剂来连接，所述双功能蛋白偶联剂如：N-琥珀酰亚氨基-3-(2-吡啶基二硫基) 丙酸酯（SPDP），琥珀酰亚氨基-4-(N-马来酰亚氨甲基) 环已烷-1-羧酸酯，iminothiolane (IT)，亚氨酰酯的双功能衍生物（如丙氨酸乙二酰甲酯盐酸盐），活性酯类（如二琥珀酰亚胺基辛二酰酸酯），醛类（如戊二醛 (glutaredehyde)，双-叠氮化合物（如双-对-叠氮基苯甲酰基）己二胺），双-叠氮衍生物（如双-(对-重氮苯甲酰基)-乙二胺)，二氮氧化物（如亚甲代苯基 2,6-二氮氧化物），和双-叠氮化合物（如 1,5-二氮-2,4-二叠氮苯）。例如，蓖麻毒蛋白免疫毒素可如 Vitetta 等, 科学238；1098(1987)所述制备。C11 标记的 1- 异硫氰酸苯甲
基 -3- 甲基二亚乙基三氨五乙酸酰 (MX-DTPA) 是将放射性核苷酸偶联至抗抗体的示例性偶联剂。见 W094/11026。这种接头可能是有利于细胞毒药物在细胞内释放的“可断开的接头”。例如，可使用酸不稳定型接头，肽酶敏感型接头，二甲基接头或含硫键的接头 (Chari 等, 癌症研究 52 :127-131 (1992))。

[0272] 有可选, 可制备包含抗-ANGPTLA 和细胞毒剂的融合蛋白, 例如通过重组技术或肽合成。DNA 的长度可包括编码偶联物的两个部分的不同的区域, 其或相邻或通过编码不破坏偶联物所需性质的接头肽的区域分隔。

[0273] 在一些实施方法中, 抗体可与肿瘤预靶向中的应用的 “受体” (如癌毒素亲素和素) 偶联, 将该抗体与受体偶联物给予患者, 后用清除剂除去循环中未结合的偶联物, 再给予已偶联了细胞毒制剂 (如放射性核苷酸) 的“配体” (如素和素)。一些实施方法中, 抗体和具有溶活性的化合物 (例如, 核糖核酸酶或 DNA 核酸内切酶诸如脱氧核糖核酸酶,Dnase) 形成免疫偶联物。

[0274] 美登木素和美登木素生物碱

[0275] 本发明还提供偶联于一或多个美登木素生物碱分子的本发明的抗体。美登木素生物碱是含有丝氨酸抑制剂, 通过抑制微管蛋白的聚合作用。美登木素最早自东印度木叶美登木 (美国专利 3,896,111) 分离。随后, 发现特定的微管素也可产生美登木素生物碱, 例如美登木醇 (maytansinol) 和 C-3 美登木醇酯 (美国专利 4,151,042)。本领域人员熟悉合成美登木醇和美登木醇类似物, 并在例如美国专利 4,137,230 ;4,248,870 ;4,256,746 ;4,260,608 ;4,265,814 ;4,294,757 ;4,307,016 ;4,308,268 ;4,308,269 ;4,309,428 ;4,313,946 ;4,315,929 ;4,317,821 ;4,322,348 ;4,331,598 ;4,361,650 ;4,364,866 ;4,424,219 ;4,450,254 ;4,362,663 ;和 4,371,533 中公开, 其公开内容在此包含作为参考。

[0276] 例如, 抗-ANGPTLA 抗体或抗-α,β 抗体偶联物美登木素生物碱分子而明显降低抗体或美登木素生物碱分子的生物活性。偶联于每个抗体分子的平均 3-4 个美登木素生物碱分子显示可有效增强靶细胞的细胞毒性而不会对抗抗体的功能或溶解性造成不利影响, 但预期即使一个毒素/抗体分子将相对于裸抗体的使用提高细胞毒性。美登木素生物碱是本领域已知的并可通过已知技术合成并分离自自然来源。适宜的美登木素生物碱公开于例如美国专利 5,208,020 以及上文所述的其他专利和非专利文献。一个实施方法中, 美登木素生物碱是美登醇 (maytansinol) 和在芳香环或美登醇的其他位置修饰的美登醇类似物, 诸如各种美登醇的酯。

[0278] 抗体和美登木素生物碱的偶联物可通过多种双功能蛋白偶联剂来连接, 所述双功能蛋白偶联剂如 :N- 琥珀酰亚胺基 -3-(2-吡啶基二硫代) 丙酸酯 (SPDP), 琥珀酰亚胺基 -4-(N- 马来酰亚胺基) 环已烷 -1- 羟酸酯, 亚胺硫烷 (iminiothiolane) (IT), 亚胺酸酯的双功能衍生物 (如盐酸二甲基琥珀亚氢氯 (dimethyladipimidate HCl)), 活性酯类 (如二琥珀酰亚胺基辛二酸酯), 酰类 (如戊二醛 (glutaraldehyde)), 双 - 磺氮化合物 (如双(对 - 氮基苯甲酰基) 乙二胺), 双 - 重氮衍生物 (如双(对 - 重氮苯甲酰基) - 乙
二胺),二异氰酸酯（如三苯基基苯 2,6-二异氰酸酯), 和双-活性氯化合物（如 1,5-二氯
-2,4-二硝基苯）。尤其优选的偶联剂包括 N- 磷酸酯亚胺基 -3-(2- 吡啶基亚硫代) 丙
啶基亚硫代) 戊酸酯 (SPP) 来提供二硫连接。

[0279] 接头可附着于美登木素生物碱分子的不同位点, 这取决于连接的类型。例如, 使用
传统的偶联技术通过与羟基反应形成酯连接。该反应可出现在含有羟基的 C-3 位置, 经羟
基修饰的 C-14 位置, 经羟基修饰的 C-15 位置, 以及含羟基的 C-20 位置。在优选的实施
方案中, 在美登木醇或美登木醇类似物的 C-3 位置形成连接。

[0280] 加利车霉素 (calicheamicin)

[0281] 另一种目的免疫偶联物包括抗 -ANGPTL4 抗体或偶联于一或多个加利霉素分
子的抗 -a, b 抗体。抗体的加利霉素家族能在亚皮摩尔浓度产生双链 DNA 断裂。加
利霉素家族的偶联物的制备见美国专利 5,712,374,5,714,586,5,739,116,5,767,285,
5,770,701,5,770,710,5,773,001,5,877,296 均 属 于 American Cyanamid Company) 可
使用的加利霉素的结构类似物包括但不限于, γ 1, a 2, a 3, N-acetyl-γ 1, PSAG 和
γ 1 (Hinman et al., CancerResearch 53:3336-3342[1993], Lode et al., Cancer
Research 58:2925-2928(1998) 以及前述属于 American Cyanamid 的美国专利)。另一种可
与抗体偶联的抗肿瘤药物是 QFA, 其为抗叶酸素。加利霉素和 QFA 具有细胞内作用位点并
不容易透过脂质膜。因此, 通过抗体介导的内化进行的这些药剂的细胞吸收大大提高它们
的细胞毒效应。

[0282] 其他抗体修饰

[0283] 涉及其他抗体修饰。例如, 抗体可连接到各种非蛋白性聚合物, 例如聚乙二醇,螺
丙二醇, 聚氧化烯, 或聚乙二醇以及聚丙二醇的共聚物。抗体也可包埋在通过例如凝聚
技术或界面聚合在胶质药物递送系统（例如脂质体, 白蛋白微球体, 微乳液, 纳米颗粒或
纳米胶囊）或粗乳液中制备的微胶囊中（例如分别为羟基纤维素或凝胶 - 微胶囊以及
聚 - (甲基丙烯酸酯 (methylmethacrylate)) 微胶囊。所述技术公开于 Remington's

[0284] 脂质体和纳米颗粒

[0285] 本文公开的抗体还可脂质体中配制。例如, 本发明的抗体也可配制成免疫脂质
专利 4, 485, 045 和 4, 544, 545。在美国专利 5, 013, 566 中公开了循环时间已增加了的脂质
体。通常, 脂质体的配制和使用是本领域技术人员已知的。

[0286] 特别有用的脂质体可利用包含磷脂酰胆碱、胆固醇和 PEG 衍生的磷脂酸乙醇胺
(PEG-PE) 的脂质组合物经反相蒸发法制备。通过使脂质体在挤压之下穿过指定孔径大小
的滤膜, 可获得具有所需直径的脂质体。本发明抗体的 Fab' 片段可如 Martin 等, J. Biol.
也可用于包埋本发明的多肽。一个实施方案中, 可生物降解的多聚烷基 (polyalky)- 氟基
丙烯酸酯纳米颗粒可与本发明的多肽一起使用。

[0287] 其他用途
抗-ANGPTL4 抗体具有多种用途。例如，抗-ANGPTL4 抗体可用于 ANGPTL4 或
ANGPTL4 片段的诊断实验中，例如，检测其在特定细胞、组织或血清中的表达，从而检测疾
病，例如检测本发明所述的疾病等。一个实施例中，ANGPTL4 抗体可用于选择可利用本
发明提供的方法治疗的患者群。本领域已知的各种诊断试验技术可使用，诸如，竞争结合
试验、直接或间接夹心试验以及在异或同质期进行的免疫沉淀测定 (Zola, Monoclonal
使用的抗体可用可检测部分标记。所述可检测部分应能直接或间接产生可检测信号。
例如，所述可检测部分可为放射同位素，诸如 3H, 14C, 32P, 35S, 或 125I, 荧光或化学发光化合物，
诸如荧光素异硫氰酸酯，若丹明，或萤光素，或酶，诸如碱性磷酸酶，beta- 半乳糖苷酶或辣
根过氧化物酶。本领域已知的任何将抗体与可检测部分偶联的方法可使用，包括 Hunter
et al., Nature, 144:495 (1962); David et al., Biochemistry, 13:1014 (1974); Pain
30: 407 (1982) 描述的方法。

抗-ANGPTL4 抗体可用于对来自重组细胞培养物或天然来源的 ANGPTL4 进行亲和
纯化。在该过程中，使用本领域已知的方法将抗 ANGPTL4 抗体固定在适宜支持物上，诸如
Sephadex 柱或滤纸。然后由该固定的抗体与含有待纯化的 ANGPTL4 的样品接触，然后用
可基本去除样品中除未 ANGPTL4 的所有物质的适宜溶剂洗涤支持物，其中的 ANGPTL4 结合
于固定的抗体。最后，利用另一种适宜的溶剂洗涤支持物，将 ANGPTL4 从抗体释放。

B. 载体，宿主细胞和重组方法

本发明所述多肽可利用轻易可得的技术和材料重组制备。

为进行本发明多肽的重组生产，分离编码它的核酸并把核酸插入可复制的载体中
进一步克隆 (DNA 扩增) 或表达。编码糖蛋白的 DNA 易于利用传统方法分离和测序（例如，
通过使用能够与编码糖蛋白的基因特异结合的寡核苷酸探针）。可利用许多载体。载体的
组分通常包括，但不限于，以下物质中的一种或多种：信号序列，复制起点，一个或多个标记
基因，增强子，启动子，和转录终止序列。

信号序列成分

本发明的多肽不仅可直接被重组生产，也可以作为与异源多肽的融合蛋白被生
产，该异源多肽优选是信号序列或在成熟蛋白或多肽的 N 末端具有特定切割位点的其它多
肽。选定的异源信号序列优选是可由宿主细胞识别和加工（即，由信号肽酶切割）的序列。
对于不识别和加工天然多肽信号序列的原核细胞，信号序列由以下原核信号序列取代，例
如选自碱性磷酸酶，青霉素酶，Ipp，或热稳定肠毒素 I 前导序列。对于酵母分泌物，天然
信号序列可由例如酵母转化酶前导序列，α-因子前导序列（包括糖酵母 (Saccharomyces)
和克鲁维酵母 (Kluyveromyces) α-因子前导序列），或酸性磷酸酶前导序列，白色念珠菌
(C. albicans) 葡糖淀粉酶前导序列，或 WO90/13646 中所述的信号序列。在哺乳动物细胞表
达中，可利用哺乳动物信号序列以及病毒分泌性前导序列，例如，单纯疱疹 gD 信号。

在阅读框架中，此种前体区的 DNA 连接于编码所述抗体的 DNA。

复制成分的起点

表达载体和克隆载体都包含能使该载体在一或多种选定的宿主细胞中复制的核
酸序列。一般情况下，在克隆载体中，这种序列是能使该载体独立于宿主染色体 DNA 而复制
的序列，包括复制起点或自我复制序列。这样的序列在各种细菌、酵母和病毒中都是众所周知的。质粒 pBR322 的复制起点适合大多数革兰氏阴性细菌，2μ质粒起点适合酵母菌，多种病毒起点（SV40、多瘤病毒（Polyoma）、腺病毒、HSV 或 BPV）可用于哺乳动物细胞中的克隆载体。复制组分的起点一般不是哺乳动物表达载体所必需的（SV40 起点的使用通常是由于其包含早期启动子）。

【0298】选择基因成分

【0299】表达载体和克隆载体应该包含选择基因，也称选择标记。选择的基因编码具有以下性质的蛋白：（a）赋予对抗生素或其它毒素（如氨苄青霉素，新霉素，氨甲蝶呤或四环素）的抗性，（b）弥补营养缺陷，或（c）提供复合培养基不能供给的关键营养物，例如编码芽孢杆菌 D-丙氨酸消旋酶的基因。

【0300】选择方案的一个实例是利用药物含在宿主细胞的生长。那些被异源基因成功转化的细胞产生一种赋予药物抗性的蛋白，从而在该选择环境中存活。这种显性选择可以采用的药物有新霉素，四环素和潮霉素。

【0301】适合于哺乳动物细胞的另一例选择标记是允许鉴定能摄取多肽核酸的细胞的那些标记，如 DHFR 或胸苷激酶，金属硫蛋白 -I 和 -II，优选灵长类金属硫蛋白基因，腺苷脱氨酶，鸟氨酸脱羧酶等。

【0302】例如，用 DHFR 选择基因转化的细胞首先通过将所有转化体培养在包含氨甲蝶呤（Mtx，为 DHFR 的一种竞争性拮抗剂）的培养基中来进行鉴定。当采用野生型 DHFR 时，合适的宿主细胞包括 DHFR 活性有缺陷的中国仓鼠卵巢（CHO）细胞系。

【0303】或者，宿主细胞（尤其包含内源 DHFR 的野生型宿主）被编码 Bv8 的 DNA 序列，野生型 DHFR 蛋白，以及另一种选择标记如氨基糖苷 3′－磷酸转移酶（APH）转化或共转化以后，可以通过在含有针对该选择标记的选择试剂如氨基糖苷类抗生素（如卡那霉素，新霉素或 G418）的培养基中培养细胞来进行选择。参见美国专利 4,965,199。

【0304】适用于酵母的合适选择基因是存在于酵母质粒 YRp7 中的 trpl 基因（Stinchcomb 等，Nature, 282 :39（1979））。Trpl 基因为不能在色氨酸中生长的酵母突变株（例如 ATCC44076 或 PEP4-1）提供了选择标记（Jones, Genetics, 85 ;12（1977））。此后，酵母宿主细胞基因组中 trpl 损伤的存在提供了通过在缺乏色氨酸的条件下生长而检测转化的有效环境。类似地，Leu2－缺陷型酵母菌株（ATCC20,622 或 38,626）可以由携带 Leu2 基因的已知质粒来补充。

【0306】启动子成分

【0307】表达载体和克隆载体通常包含能被宿主生物识别的启动子，它与多肽核酸可操作相连。适用于原核宿主的启动子，包括 phoA 启动子，β－内酰胺酶和乳糖启动子系统，碱性磷酸酶，色氨酸（trp）启动子系统，和杂化启动子如 tac 启动子。然而，也可以使用其它未知的细菌启动子。适用于细菌系统的启动子还包含与编码多肽的 DNA 可操作相连的
Shine-Dalgarno (S.D.) 序列。

[0308] 真核生物的启动子序列也是已知的。几乎所有的真核基因在转录起始点上游约 25-30 个碱基处具有 AT- 富集区。很多基因在其转录起始点上游 70-80 个碱基处有另一种序列：CNCAAT，其中 X 可以是任何核苷酸。大多数真核基因的 3’端是 AATAAA 序列，它可以作为一种信号用于将 poly-A 尾添加到编码序列 3’端。所有这些序列都适合于插入真核表达载体中。

[0310] 其它的酵母启动子，即那些还具有由生长条件控制转录的优点的诱导型启动子，是下述基因的启动子区：酵母乙醇酸 2，异丙烯等 C，亚酸性磷酸酶，与二氢化的相关的降解酶、金属硫蛋白、甘油激酶，3’-磷酸甘油酸激酶和负责麦芽糖和半乳糖利用的酶。在 E. coli 657 中进一步描述了适用于酵母表达系统的载体和启动子。酵母增强子与酵母启动子联合使用也是有利的。

[0311] 在哺乳动物宿主细胞中，从载体转录抗体制可以受启动子调控，所述启动子例如来自病毒基质组，如复制病毒、鸡痘病毒（1988 年 7 月 5 日公告的 UK211504）、腺病毒（如腺病毒 2）、牛乳头瘤病毒、禽肉瘤病毒、巨细胞病毒、逆转录病毒、乙型肝炎病毒和猴病毒 40（SV40）的启动子，或者来自异源哺乳动物的启动子，如肌动蛋白启动子或免疫球蛋白启动子等，来自热休克蛋白的启动子，前者是这些启动子与宿主细胞系统相容。

[0313] 增强子成分

[0314] 编码本发明多肽的 DNA 在高等真核生物中的转录常常通过将增强子序列插入载体中来增加。目前已知很多哺乳动物基因（球蛋白，弹性蛋白酶，白蛋白，甲胎蛋白和胰岛素）的增强子序列。但通常使用真核细胞病毒的增强子。实例包括在在其复制起始点晚期侧 (late side) 的 SV40 增强子 (bp 100-270)，巨细胞病毒早期启动子增强子，在其复制起始点晚期侧的多形瘤增强子，和腺病毒增强子。也可参见 Yaniv, Nature, 297: 17-18 (1982) 所述用于活化真核启动子的增强元件。所述增强子可以剪接插入载体中抗体编码序列的 5’或 3’位置，但优选位于启动子的 5’位置。

[0315] 转录终止成分

[0316] 用于真核宿主细胞（酵母、真菌、昆虫、植物、动物、人或来自其它多细胞生物的有核细胞）的表达载体，还包括对转录终止和稳定 mRNA 所必需的序列。这些序列通常来自真
核或病毒 DNA 或 cDNA 的 5’（偶尔为 3’）非翻译区。这些区域包含转录为编码抗体的 mRNA
的非翻译区中聚腺苷酸化片段的核苷酸片段。一种有用的转录终止元件是牛生长激素多腺
苷化区。见 W094/11026 和其中公开的表达载体。
[0319] 宿主细胞的选择和转化
[0319] 克隆或表达本文所提载体中 DNA 的适宜宿主细胞，包括原核生物、酵母或高等真
核细胞。适于此目的的原核生物包括真细菌，如革兰氏阴性和革兰氏阳性细菌，例如肠杆菌
科（Enterobacteriaceae），如埃希氏菌属（Escherichia），例如，大肠杆菌（E.coli），
肠杆菌属（Enterobacter），欧文菌属（Erwinia），克雷白菌属（Klebsiella），变型杆菌属
（Proteus），沙门菌属（Salmonella）（如鼠伤寒沙门菌（Salmonella typhimurium）），沙雷
菌属（Serratia）（如粘质沙雷菌（Serratia marcescens））和志贺菌属（Shigella）等，以及
芽孢杆菌属（Bacilli）如枯草芽孢杆菌（B.subtilis）和地衣芽孢杆菌（B.licheniformis）
（例如 1989 年 4 月 12 日出版的 DD266, 710 中所述地衣芽孢杆菌 41P）等，假单胞菌属
（Pseudomonas）如铜绿假单胞菌（P.aeruginosa），及链霉菌（Streptomyces）。优选
的大肠杆菌克隆宿主是大肠杆菌 294（ATCC31, 446），但其它菌株，如大肠杆菌 B，大肠杆菌
X1776（ATCC31, 537）和大肠杆菌 W3110（ATCC27, 325）也是合适的。这些实例是用于说明，
并不限制。
[0320] 除了原核生物，真核微生物如丝状真菌或酵母也是适合于抗体编码载体的克隆或
表达的宿主。酿酒酵母或常见的面包酵母是最常用的低等真核宿主微生物。还有多个其它
属，种和株已有商品供应，并且可以用于本发明，例如栗属裂殖酵母（Schizosaccharomyces
pombe），克鲁维酵母属（Kluyveromyces）宿主，例如乳克鲁维酵母（K.lactis），胞壁克鲁维
酵母（K.frugilis）（ATCC12, 424），保加利亚克鲁维酵母（K.bulgariicus）（ATCC16, 045），威
克曼氏克鲁维酵母（K.wickeramii）（ATCC24, 178），K.waltii（ATCC56, 500），果酿克鲁维酵
母（K.drosophilarem）（ATCC36, 906），耐热克鲁维酵母（K.thermoterolans）和马克斯克鲁
维氏酵母（K.marxianus）等；sarrowia（EP402, 226）；巴斯德毕赤酵母（pichiapastoris）
（Trichoderma reesia）（EP244, 234）；粗糖链孢霉；许氏酵母属（schwanniomyces）如西
方许氏酵母（schwanniomyces occidentalis）等；和丝状真菌，例如链孢霉属，青霉属，
Tolypocladium 以及曲霉属宿主如构巢曲霉和黑曲霉。
[0321] 适合于表达糖基化多肽的宿主细胞来自多细胞生物。无脊椎动物细胞的实例包括
植物和昆虫细胞。目前可以从上述宿主中鉴定了大量的杆状病毒株和变体以及相应的许可
型昆虫宿主细胞；草地夜蛾（SpodopteraFrugiperda, 毛虫）、埃及伊蚊（Aedes aegypti,
蚊子）、白纹伊蚊（Aedesalbopictus, 蚊子）、Drosophila melanogaster（果蝇）和家蚕蛾
（Bombyxmori）等。用于转染的各种病毒株公众可以获得，例如加利福尼亚 Y 级夜蛾
（Autographa california）NPV 的 L-1 变体和家蚕蛾 NPV 的 Bm-5 株，并且这些病毒可以在此
用作本发明的病毒，尤其是用于转染草地夜蛾细胞。棉花、玉米、土豆、大豆、矮牵牛、西红柿
和烟草等的植物细胞培养物也可以用作宿主。
[0322] 然而，关注最多的是脊椎动物细胞，而且在培养（组织培养）中繁殖脊椎动物细
胞已经成为常规方法。有效哺乳动物宿主细胞系的实例是用 SV40 转化的猴肾 CV1 细胞系
（COS-7, ATCC CRL6511）；人胚肾细胞系（293 细胞或经过再克隆以便能在悬浮培养物中生

[0323] 利用上述表达或克隆载体转化宿主细胞以进行抗体制备并培养在经改进的常规营养培养基中，所述培养基适于诱导启动子，选择转化体，或扩增编码所需序列的基因。

[0324] 培养宿主细胞

[0325] 可在多种培养基中培养用于生产本发明多肽的宿主细胞。作为商品提供的培养基例如 Ham’s F10 (Sigma)，极限必需培养基 (Minimal Essential Medium) (MEM, Sigma)，RPMI-1640 (Sigma)，和 Dulbecco’s 改良的 Eagle 培养基 (DMEM, Sigma) 适宜培养宿主细胞。此外，Ham 等，Meth. Enzym. 58:44(1979)，Barnes 等，Anal. Biochem. 102:255(1980)，美国专利 4,767,704; 4,657,866; 4,927,762; 4,560,655; 或 5,122,469; WO90/03430; WO87/00195; 或美国专利 Re. 30,985 中所述的任何培养基可用作宿主细胞的培养基。在需要时均可向这些培养基的任何一种补充氨基酸和/或其它生长因子 (例如胰岛素，转铁蛋白，或表皮生长因子)，盐 (例如氯化钠，钙，镁，和磷酸盐)，缓冲液 (例如 HEPES)，核苷酸 (例如腺苷酸和胸腺嘧啶)，抗生素 (例如 GENTAMYCIN) 药物)，微量元素 (定义为无机化合物，通常浓度在微摩尔范围内)，和葡萄糖或对等的能源。也可包括本地熟练技术人员所知的适当浓度的任何其它必需添加剂。培养条件，例如温度，pH，等是此前选择用于表达的宿主细胞的条件，并且是本领域普通熟练技术人员显而易见的。培养条件诸如温度，pH 等，是被选用于表达的宿主细胞的那些条件，并且是本地领域技术人员所知的。

[0326] 多肽纯化

[0327] 使用重组技术时，本发明的多肽例如 ANGPTL4，抗-ANGPTL4 抗体或抗 -a, b, c 抗体可在细胞内，壁膜间隙产生，或直接分选到培养基中。本发明的多肽可收集自培养基或宿主细胞裂解物。如果是膜结合的，其可利用适宜洗涤溶液 (例如 Triton-X100) 或通过酶促裂解释放自膜。用于表达本发明多肽的细胞可通过各种物理或化学方法破坏，诸如冻 - 干循环，超声波破坏法，机械破坏或细胞裂解剂。

[0328] 需要从重组细胞蛋白或多肽纯化本发明的多肽。以下步骤是适宜纯化步骤的实例：在离子交换柱上分级；乙醇沉淀；相反 HPLC；在硅胶上层析，在阴离子或阳离子交换树脂 (诸如聚天冬氨酸柱，DEAE 等) 上进行肝素 SEPHAROSE 层析；色层焦集法；SDS-PAGE；硫酸铵沉淀；利用例如 Sephadex G-75 的凝胶过滤；蛋白 A 凝胶糖凝胶柱以去除污染物如 IgG；以及金属螯合柱以结合本发明多肽的表位标记的形式。各种蛋白纯化方法可使用，诸如本领域已知的那些以及在以下文献中描述的那些；Deutscher, Methods in Enzymology, 182(1990); Scopes, Protein Purification; Principles and Practice, Springer-Verlag, 49.
New York (1982)。所选纯化步骤有赖于例如使用的制备过程的性质以及产生的具体的本发明的多肽。

[0329] 例如，由细胞制备的抗体组分可使用例如如下方法纯化：例如，经磷酸盐层析，
凝胶电泳，透析和亲和层析，优选亲和层析作为常用的纯化技术。蛋白A作为亲和配体的适
宜性有赖于存在于糖蛋白中的任何免疫球蛋白Fc区的种类和同种型。蛋白A可用于纯化
蛋白G用于所有小鼠同种型和人（Guss 等，EMBO J. 5:15671575 (1986)）。亲和配体附
着的基质通常是琼脂糖，但也可用其它基质。机械稳定的基质例如孔径被控制的玻璃或聚
（苯乙烯二乙烯）苯 (poly(styrenedivinyl benzene) 比使用琼脂糖获得更快的流率而且
加工时间更短。对于含有C3区的抗体，Bakerbond ABX™树脂 (J. T. Baker, Phillipsburg,
N.J) 可用于纯化。根据待回收的抗体，也可利用其它蛋白纯化技术，例如上文所述那些。也
质周隙的抗体的方法。

[0330] 本发明多肽的共价修饰

[0331] 本发明多肽例如 ANGPTLA 或多肽激动剂或或多肽拮抗剂的共价修饰包括在本发明
的范围内。如果可以，它们可通过化学合成或酶或化学裂解所述多肽来制备。其他类型的多
肽共价修饰通过使靶向的多肽氨基酸残基与能与选定的侧链或N-或C-末端残基反应的有
机衍生物药剂反应或将修饰的氨基酸或非天然氨基酸掺入生长中的多肽链来导入分子，例
US 专利申请 20030108885 和 20030082575。

[0332] 半胱氨酸残基通常与 a-卤代乙酸酯（以及相应的胺）诸如氯乙酸或氯乙酰胺
反应产生烃基甲基或烃基氨基甲基衍生物。半胱氨酸残基也通过与溴代三氟丙酮，a-溴
代-β-（5-咪唑基（imidozoyl））丙酸，氯代乙酰磷酸（chloroacetylphosphate）、N-烷
基马来酰亚胺，3-硝基-2-吡啶基二硫化物，甲醛 2-吡啶基二硫化物，p-对氯苯甲酸甲
酸，2-氯苯甲酸-4-硝基苯甲酸，或氯代-7-硝基苯甲酸-2-氧代（oxa）-1,3-二唑。组氨酸残基通过在
pH5.5-7.0 与焦碳酸二乙酯反应衍生物化，因为该药剂对于组氨酸侧链的相对特异性。
对-溴苯甲酸甲基也有用；该反应通常在pH6.0 在 0.1mM 二甲基亚砜中进行。

[0333] 氨基酸和氨基末端残基与琥珀酸或其它羧酸酯反应。利用这些试剂进行衍生物化对于
反转胺氨基酸残基的电荷有效。其它适宜衍生物化含有 a-氨基的残基的药剂包括亚氨酸
酸酯；诸如甲基肽氮三氮甲二酯 (methylpicolinimidate)，磷酸酯氨酯，酰胺，氯代氨氮
化物，三硝基苯甲酸，0-甲基异烟酸，2,4-甲二酮，和转氨酶催化的与乙酰氨基的反应。

[0334] 精氨酸残基通过与一或多种常规药剂反应来修饰，其中包括苯乙酰乙酸，2,3-丁二
酮，1,2-肌醇和水合醛三酮。精氨酸残基的衍生物化需要在碱性条件下进行反应，因为胺功能
基团可 pKa 较高。此外，这些药剂可与精氨酸的基团以及精氨酸 epsilon-氨基基团反应。

[0335] 酰氨酸残基的具体修饰具体可通过与芳香重氮化合物或四硝基甲烷反应而将光
谱标记导入酰胺残基。通常，N-乙酰咪唑 (acetylimidazole) 和四硝基甲烷可使用以分别
形成 0-乙酰酰氨酸种类和 3-硝基衍生物。酰氨酸残基利用 1251 或 1311 碘化以制备用于
放射免疫测定的标记的蛋白。

[0336] 羧基侧链（天冬氨酸或谷氨酸）通过与碳化二亚胺（R-N = C = N-R’）反应选
择性修饰，其中 R 和 R' 是不同的烷基基团，诸如 1-环己基-3-(2-吗啉基-4-乙基) 碳化二亚胺或 1-乙基-3-(4-azonia-4,1-甲基胺) 碳化二亚胺。此外，天冬氨酸和谷氨酰残基通过与酰离子反应转化为天冬酰胺酰和谷氨酰胺酰残基。

[0337] 谷氨酰胺酰和天冬酰胺酰残基经常被脱去酰基群分别成为相应的谷氨酰和天冬氨酰残基。这些残基在中性或碱性条件下脱去酰基群。这些残基的酰基酰基形式在本发明的范围内。

[0341] 本发明多肽的另一种共价修饰包括将多种非蛋白聚合物中的一种与多肽相连，所述聚合物例如聚乙二醇或聚氨乙稀，其方式如美国专利 4,640,835; 4,496,689; 4,301,144; 4,760,417; 4,791,192 或 4,179,337 所述。

[0342] 药物组合物

[0343] 可以制备根据本发明使用的本发明的分子，ANGPTL4, ANGPTL4 激动剂或 ANGPTL4 拮抗剂的治疗剂复合体用于保存，方法是将具有适当纯度的所需分子例如多肽与可选的用药载体，赋形剂，或稳定剂 (Remington’s Pharmaceutical Sciences, 16 ed., 1980) 混合形成冻干配制剂或水溶液。可接受的载体，赋形剂，稳定剂在所用剂量及浓度下对受者无毒性，并包括缓冲剂例如磷酸盐，柠檬酸盐及其它有机酸；抗氧化剂包括抗坏血酸和蛋氨酸；防腐剂（例如十八烷基二甲基苯基氯化铵；氯化己烷双胺；氯化苯铵氯化苯 (benzalkonium chlorate), 苯甲基氯化铵, 酚, 丁醇或苯甲醇；烷基对羟基苯甲酸酯如甲基或苯基对羟基苯甲酸酯；邻苯二酚，间苯二酚，环己醇；3-戊醇；间甲醇）；低分子量多肽（少于 10 个氨基酸）；蛋白质如血清白蛋白，明胶或免疫球蛋白；亲水聚合物如聚乙烯吡咯烷酮；氨基酸如甘氨酸，谷氨酰胺，天冬酰胺，组氨酸，精氨酸或赖氨酸；单糖，二糖及其它碳水化合物包括葡萄糖，甘露糖，或糖精；螯合剂如 EDTA；糖类如蔗糖，甘露醇，海藻糖或山梨醇；成盐反离子如钠；金属复合物（例如锌-蛋白复合物）；和/或非离子表面活性剂，例如

一些实施方案中，用于体内给药的配制品必须是无菌的。在冻干和重建之前或之后通过除菌滤膜过滤可容易地实现无菌。

可制备缓释制备物。缓释制备物的适当实例包括具有一定形状且含有本发明化合物的固体疏水聚阳离子半通透基质，如膜或微胶囊。缓释基质实例包括聚酯、水凝胶 (如聚(2- 羟基乙基 - 异丁烯酸酯) 或聚 (乙烯醇)，聚交酯 (美国专利 3773919, EP58, 481L- 谷氨酸与 γ 乙基 -L- 谷氨酸的共聚物，不可溶解的乙烯酸乙酯，或可溶解的乳酸 - 羟基乙酸共聚物如 Lupon Depot() 由乳酸 - 羟基乙酸共聚物和亮氨酸脯氨酸 (leuprolide)乙酸酯组成的可注射的微球体)，以及聚 D-(-)-3- 羟丁酸。对乙聚物如乙酸 - 乙酸酯和乳酸 - 羟乙酸使得能够释放分子 100 天以上，一些水凝胶释放蛋白的时间持续较短。当包被的抗体在体内保持较长时间，它们由于在 37°C 暴露于潮湿环境而发生变性和聚集，导致生物活性的丧失以及免疫原性的可能的改变。可根据涉及的机制设计合理的稳定化策略。例如，如果发现聚集机制是细胞间通过硫代二硫化物交换形成 S-S 键，稳定化可通过修饰硫基残基、从酸性溶液冻干、控制适度含量、使用适宜的添加剂以及开发具体的聚合物基质组合物实现。也见，例如，US Patent No. 6, 699, 501，其描述具有聚合电解质覆盖物的胶囊。

[0350] 剂量和给药

[0352] 根据疾病的严重程度，大约 1 µg/kg 到 50 mg/kg(例如 0.1-20 mg/kg) 的 ANGPTL4, ANGPTL4 激动剂或 ANGPTL4 拮抗剂是给药患者的初始候选剂量，给药方式可为一或多次分开的给药或连续输注。当体内给药 ANGPTL4 或其激动剂或拮抗剂时，根据给药途径，正常的剂量可根据给药途径从每天大约 10 ng/kg 到高达 100 mg/kg 哺乳动物体重或更多，优选大约 1 g/kg/天到 10 mg/kg/天。关于具体剂量和给药方法的指导在文献中提供，参见，例如，美国专利号 4,657, 760 ; 5,206, 344 ; 或 5,225, 212。可预期不同的配制品对不同的治疗化合物和不同的疾病有效，例如，针对一种器官或组织的给药必须以不同于另一种器官或组织的方式给药。对于在数天或更长时间内的重复给药，可将持续或对疾病症状的理想的抑制出现。但是，也可采用其它剂量方案。通常，临床医师将给药本发明的分子直到达到提供所需
生物效应的剂量。本发明治疗的过程容易通过常规技术或测定法监测。

【0353】本发明的治疗组合物可通过任何适宜方法给药，包括但不限于，胃肠外，皮下，腹腔内，肺内，脑脊髓内，皮下，关节内，滑膜内，肌肉，皮下，局部，以及鼻内给药。胃肠外输注包括肌内，静脉内，动脉内，腹腔内或皮下给药。此外，治疗组合物可通过脉冲输注适宜给药，具体利用递减的量的抗体。一些实施方案中，治疗组合物通过注射给药，例如静脉内或
皮下注射，根据给药是短暂的还是长期的而不同。

【0354】如本发明所述，ANGPTLA，ANGPTLA 激动剂或 ANGPTLA 抗体，可与一或多种治疗剂
组合。组合的抗体包括共给药，其利用分离的配制剂或单个药物配制剂，还包括以任何顺序
的连续给药。多种药物的使用也包括在本发明中。例如，ANGPTLA 或 ANGPTLA 激动剂可在其
它治疗剂之前、之后或交替给药，或可同时给药。一个实施方案中，存在两种（或所有）活性
药剂同时显示它们的生物活性的时间段。

【0355】一些实施方案中，本发明的治疗涉及 ANGPTLA 抗体以及一或多种治疗剂的联合
给药。本发明还涉及给药多种抑制剂。联合给药包括共给药，其利用分离的配制剂或单个
药物配制剂，还包括以任何顺序的连续给药。多种药物的使用也包括在本发明中。例如，
ANGPTLA 或 ANGPTLA 激动剂可在其它治疗剂之前、之后或交替给药，或可同时给药。一个实
施方案中，存在两种（或所有）活性药剂同时显示它们的生物活性的时间段。

【0356】为预防或治疗疾病，适宜剂量的 ANGPTLA，ANGPTLA 激动剂或 ANGPTLA 抗体，有赖于
于待治疗疾病的类型，如上所述，疾病的严重性和病程，给药是为了预防还是为了治疗，以
前的治疗，病人的临床病史以及对药物的反应，以及主治医师的判断。在一次和连续多次的
治疗中将药物适宜给药患者。在联用治疗方案中，本发明的组合物以治疗有效量或治
疗协同量给药。如本发明所述，治疗有效量是这样的量，其使得 ANGPTLA，ANGPTLA 激动剂或
ANGPTLA 抗体以及一或多种其它治疗剂的联合给药，或者本发明组合物的给药导致靶疾病
或病症的减轻或抑制。治疗协同量是 ANGPTLA，ANGPTLA 激动剂或 ANGPTLA 抗体以及一
或多种其它治疗剂（例如本文所述的那些）协同或明显减轻或消除具体疾病相关的情形或
症状所需的量。

【0357】制品

【0358】在本发明的另一实施方案中，提供了含有用于所述方法以及疾病治疗的上述物质
的制品。该制品包含容器，标签和包装插入物。合适的容器包括，例如，瓶子，小瓶，注射器
等。容器可由诸如玻璃或塑料等各种材料制成。该容器中含有的有效治疗疾病的组合物且可
以具有无菌入口（例如，该容器可以是具有通过皮下注射针头可刺入的塞子的静脉内用溶
液袋或小瓶）。组合物中的至少一种活性药剂是 ANGPTLA，ANGPTLA 激动剂或 ANGPTLA 抗
剂。容器上的或者与其相连的标签指示该组合物用于治疗选定的疾病。该产品还可包含第
二个容器，该容器中含有药用上可接受的缓冲液，例如磷酸盐缓冲液，林格（Ringer’s）溶
液和葡萄糖溶液。它还包含从商业和用户角度需要的其它材料，包括其它缓冲液，稀释剂，
过滤器，针头，和注射器。可选，一组说明，通常是书面说明，包含在其中，其涉及 ANGPTLA，其
激动剂或拮抗剂针对本文所述疾病的使用和剂量。试剂盒内包含的说明通常包括治疗疾病
的剂量，给药方案以及给药途径的信息。ANGPTLA，ANGPTLA 激动剂或 ANGPTLA 抗体的容
器可为单位剂量，大包装（例如，多剂量包装），或亚单位剂量。

【0359】材料的保藏
如前所述,下列材料保存在美国典型培养物保藏中心,10801UniversityBoulevard,Manassas,VA.20110-2209,USA(ATCC):

<table>
<thead>
<tr>
<th>材料</th>
<th>ATCC保藏号</th>
<th>保藏日</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGPTL4</td>
<td>209284</td>
<td>9/18/97</td>
</tr>
<tr>
<td>(NL2-DNA22780-1078)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

按照博达佩斯条约的规定在国际上认可的用于专利程序的微生物保藏机构并按其实施细则（博达佩斯条约）进行这些保藏。这样保证了该保藏物的活培养物从保藏日起维持30年。按博达佩斯条约的条款该保藏物由ATCC使其可获得且按Genentech,Inc.与ATCC之间的协议进行，该协议保证在相关美国专利颁发时或在任何美国或外国专利申请公开提供给公众时，无论哪一个在先，该保藏物的培养物后代可持久和无限制地为公众获得，且保证按照35USC §122和依据其委员会规定（包括具体参考88606683的37C.F.R. §1.14）对其授权的美国专利和商标委员会认定的个人获得其子代。

本申请的受让人同意如果保藏的该材料的培养物在合适条件下培养时如果死亡导致丢失或破坏时,该材料将在通知时用另一相同材料迅速替换。该保藏材料的可获得性不应解释为允许违反任何政府机构按其专利法批准的权利来实施本发明。

实施例

实施例1:ANGPTL4诱导人肝细胞的细胞粘附和增殖

腺病毒载体的产生和转导:腺病毒构建体已经基本上按照生产商所述,将Not1-Not1cDNA插入到克隆到Stratagene(Lajolla,CA)的Ad-easy载体构建试剂盒的多接头位点来构建。见例如,Hesser et al.,Blood,104(1):149-158(2004)。

hAngpt14(23-406)(PUR9384),mAngpt14(184-410)-IgG(PUR9388)和
mAngpt14(23-410)(PUR9452)单Flag标记的蛋白的产生:使收获的细胞培养物液体在抗-Flag M2树脂(Sigma#A-2220)上过夜。用PBS洗涤柱子到基线然后用50mM柠檬酸钠pH3.0洗涤。该体积在Amicon-1510,000MWCO(Millipore#UF901024)上浓缩。最后的步骤是透析入1mM HCl/Super QH2O和0.2μm过滤。利用4-20%tris-甘氨酸(Invitrogen#EC6028box)SDS page凝胶/+-10mM DTT确定纯度。通过质谱或Edman’sn-末端测序鉴定正确的蛋白质。

hAngpt14(184-406)-IgG(PUR9441)n-末端标记的产生以及随后的n-末端hu Fe标记的产生:收获的细胞培养物液体在ProSep A(Amersham#113111835)上过柱过夜。用PBS洗涤柱子到基线。然后进行四倍柱体积的0.5M TMAc PBS pH7.5洗涤步骤,之后利用PBS洗涤到基线。洗涤步骤利用50mM Na Citrate pH3.0泵。该体积在Amicon-1510,000MW CO(Millipore#UF901024)上浓缩。最终的步骤是透析入1mM HCl/Super Q H2O以及0.2μm过滤。利用4-20%tris-甘氨酸(Invitrogen#EC6028box)SDS page凝胶/+-10mM DTT确定纯度。通过质谱或Edman’sn-末端测序鉴定正确的蛋白质。重组蛋白也可利用本领域已知的标准技术制备。

Ad--ANGPTL4-SiRNA的产生:基于完整长度hANGPTL4序列,产生4个可能的ANGPTL4-SiRNA分子(Qiagen)。基于siRNA抑制hANGPTL4表达的能力选择一个ANGPTL4-SiRNA。其靶向ANGPTL4的以下DNA靶序列GGGCCAGGTGTCCGGAAGA(SEQ ID NO:3),例如,r(GGCGACGGCGCGCAAGAUU)(SEQ ID NO:4)和/or(r(UUCUCCAGGGCGCUCAGG)
(SEQ ID NO: 5)。利用 RNA 启动子将该 siRNA 克隆入 CMVpShuttle-HI.1 转移载体，所述启动子例如，HI 启动子 (GenScript)。siRNA 表达盒随后被克隆以产生腺病毒 AdhAngPTLA-SiRNA 构建体。腺病毒构建体已经基本上按照生产商的描述，通过将 NotI-NotI DNA 插入物克隆入 Stratagene (LaJolla, CA) 的 Ad-easy 载体构建试剂盒的多接头位点中来构建。见例如，Hesser et al., Blood, 104(1): 149-158 (2004)。

[0370] ANGPTLA 的表达通过利用抗 FLAG 抗体进行 Western 印迹分析来确认。选择一个强表达的克隆并根据生产商说明扩大滴度。病毒制备物利用 CsCl 离心纯化并通过 PCR 检测回复体。病毒滴度通过 96 孔细胞裂解试验根据生产商说明测定。这些载体，以及提供的 pShuttleCMV-lacZ 在 BJ5183 electro 感受态细菌中利用含有 E1 和 E3 区缺失的 Ad5 基因组的 AdEasy 载体进行重组。原代病毒母液通过将重组的 AdEasy 质粒瞬间转染到宿主 HEK293 细胞中制备。腺病毒母液进一步在 HEK293 细胞中扩增，并利用 CsCl 梯度纯化方法如生产商所述进行纯化。腺病毒的工作滴度通过 E1isa 测定法获得。

[0371] mANGPTLA 的产生:293 细胞利用含有编码全长 mANGPTLA(1-410) 的核酸的构建体瞬时转染。从上清纯化上清并用于试验。

[0372] 肝细胞的细胞粘附: ANGPTLA 诱导原代肝细胞的细胞粘附的能力在 96 孔板中进行评价。该板用小鼠 Angpt1 亚序列 23-410, 连接蛋白或对照蛋白 N.A 以各种浓度被包，例如无包被，0.3 μg/ml, 3.0 μg/ml 或 30 μg/ml, 60 μg/ml, 14°C 过夜。去除过量蛋白并用 200 μg 13% BSA 的 PBS 溶液在 37°C 包被 1/2 小时。保温后，吸出上清并利用 PBS 洗涤一次。

[0373] 原代人肝细胞细胞培养在正常生长培养基 (Cambrex) 中生长。细胞利用 PBS 洗涤 3 次。细胞经胰蛋白酶后用胰蛋白酶中和溶液 (Clonetics) 处理。细胞随后重悬于正常生长培养基 (Cambrex) 中。然后将细胞重悬于正常生长培养基中。细胞以 1.5x10^6 细胞 / 孔接种在 200 μl 总体积中。细胞在 5% 二氧化碳中于 37°C 保温 2 小时。去除上清。利用结晶紫染染色法测定细胞粘附。在孔中加入 50 μl 110% 甲醛溶液并固定 10 分钟。细胞利用 PBS 仔细洗涤一次。加入使用前经过过滤的 50 μl 10.5% 结晶紫溶液。在孔中于室温保温溶液 30 分钟或更长时间。用 PBS 洗孔 3-5 次。从孔中去除 PBS 并干燥。在 ODs50 对 96 孔板进行读数。见图 4。也可使用 Landegren 的 PNAG 法。见 Landegren, U. (1984). J. Immunol. Methods 67: 379-388。如图 4 中所见，重组 mAngpt14(23-410) 诱导原代肝细胞在体外的细胞粘附。

[0375] 实施例 2: ANGPTLA 诱导前脂肪细胞增殖

[0376] 前脂肪细胞增殖: 评估了 ANGPTLA 诱导前脂肪细胞增殖的能力。通过将细胞以 3,000 个细胞 / 孔分入 3ml 含有血清的生长培养基 (前脂肪细胞生长培养基 (Cambrex)) 中使人前脂肪细胞 (内脏或皮下) 生长在 6 孔皿 (Falcon, Primaria) 中。接种细胞后，直接加入来自 COS 细胞的 500 μl COS 细胞调节培养基，所述 COS 细胞用腺病毒构建体转导,
(6) 或重组蛋白（重组鼠 Angpt14 (23–410) (2)；IgG–mAngpt14 (184–410) (3) 或未添加任何
物质(1)，其中浓度为(mAngpt14 (23–410) (5 µg/ml)；IgG–mAngpt14 (5 µg/ml))。使细胞
在37℃、5% CO₂ 保温箱中生长5天。用500 µl x 肝蛋白酶消化细胞3–5分钟。吸取细胞
混合物(0.5ml) 到9.5ml 的等张缓冲液中在细胞计数小瓶中计数（稀释因子为20）。如
图6的图A所示，重组鼠 Angpt14 (23–410) (2) 和经调节含有 hAngpt14 (23–406) (5) 的COS
细胞培养基诱导原代人皮下脂肪细胞增殖。图6的图B显示重组鼠 Angpt14 (23–410) (2)
和经调节含有 hAngpt14 (23–406) (5) 的 COS 细胞培养基诱导原代人皮下脂肪细胞增殖。

Angpt14 与人原代脂肪细胞结合的 FACS 分析：ANGPTL4 与人原代脂肪细胞的结合
通过 FACS 分析检测。以 500,000–1x10⁶ 细胞/样品孔将原代人皮下脂肪细胞铺于10cm培
养皿中。细胞在 FACS 分析前一晩消化。细胞利用 PBS 洗涤一次，然后加入 10ml 120mM EDTA
的 PBS 溶液并保温10–20分钟。20分钟后，从板刮出细胞。加入 10ml 15% FCS 的 PBS 溶液并
将细胞转入 50ml Falcon 管。细胞在 4℃、1.8K rpm 旋转 5min。去除上清并将细胞重悬于
1ml 15% FCS 的 PBS 溶液。将 100 µl 1细胞悬液分入含有 1µg 蛋白质的 5ml FACS 管并在冰上保
温 30 分钟或更长时间。使用以下蛋白：mAngpt14 (23–410), PUR9452, 0.428mg/ml (2 µl /样
品)；hAngpt14 (23–406), PUR9384, +/-90 µg/ml (10 µl /样品)；mAngpt14 (184–410)–IgG,
PUR9388, 8.5mg/ml (0.2 µl /样品)；hAngpt14 (184–406)–IgG, PUR9441, 1.5mg/ml (1 µl /样
品)；和对照FLAG–BAP (Sigma) 0.1mg/ml (2 µl /样品)。保温后，管中充满 5ml 15% FCS 的 PBS
溶液并置于冰上。在 2K rpm 离心细胞 5 分钟。去除上清。加入抗–FLAG–FITC抗体 (Sigma)
(2 µl 抗体 [100 µg/ml 溶液] 并在冰上保温 5 分钟或更长时间。最终的抗体浓度为 1µg/ml.
加人 5ml 15% FCS 的 PBS 溶液并在 4℃、1.8K rpm 离心细胞 5 分钟。去除上清并将细胞
重悬于含有 5% FCS 的 0.25ml PBS，置于冰上。也可存在 0.05% 叠氮化钠以防止受体内化。
每份样品中加入 1µl 11:50 稀释的碘化丙啶 (PI)。然后对细胞进行 FACS。如图 7 所示，在
这些条件下，人 ANGPTL4 形式，rhAngpt14 (23–406)，和 rhIgG–hAngpt14 (184–406) 与小鼠同
系物相比更为有效地结合皮下脂肪细胞。

实施例 3：Angpt14 诱导原代人皮下脂肪细胞的迁移

Angpt14 诱导细胞迁移：我们检测了 Angpt14 诱导原代人皮下脂肪细胞的细
胞迁移的能力。细胞运动性如所述（见例如，Camenish et al., J. Biol. Chem., 277(19):
17281–17290 (2002)）利用具有 3 µm 孔径的 HTS Multiwell 组织培养物插入物 (Becton
Dickinson, NJ) 测定。将 hANGPTL4 (1–406) 在 50/50/0.1% BSA 中稀释到 1, 和 0.2 µg/ml。
作为阳性对照，将膜与含有 10% 胰牛血清 (FCS) 的培养基或 0.1 µg/ml 重组人 PDGF–BB (R&D
Systems) 一起保温。将 PBM/0.1% BSA 用作阴性对照。原代人脂肪细胞利用 PBS 洗涤三次，
经收获以大约 2–5x10⁶ 细胞/ml 重悬于 PBM/0.1% BSA。检测以下细胞制备物，其中 ANGPTL4
表示为 N12。

[0378] 实施例 3：Angpt14 诱导原代人皮下脂肪细胞的迁移

[0379] Angpt14 诱导细胞迁移：我们检测了 Angpt14 诱导原代人皮下脂肪细胞的细
胞迁移的能力。细胞运动性如所述（见例如，Camenish et al., J. Biol. Chem., 277(19):
17281–17290 (2002)）利用具有 3 µm 孔径的 HTS Multiwell 组织培养物插入物 (Becton
Dickinson, NJ) 测定。将 hANGPTL4 (1–406) 在 50/50/0.1% BSA 中稀释到 1, 和 0.2 µg/ml。
作为阳性对照，将膜与含有 10% 胰牛血清 (FCS) 的培养基或 0.1 µg/ml 重组人 PDGF–BB (R&D
Systems) 一起保温。将 PBM/0.1% BSA 用作阴性对照。原代人脂肪细胞利用 PBS 洗涤三次，
经收获以大约 2–5x10⁶ 细胞/ml 重悬于 PBM/0.1% BSA。检测以下细胞制备物，其中 ANGPTL4
表示为 N12。
[0381] 将制备物加入底部小室并将制备物在 37°C 保温 19 小时。
[0382] 将细胞悬液 (250 μl) 加入上方小室并允许细胞在 37°C,5% CO₂ 加湿的保温箱中迁移过夜。保温后，吸出上方和下方小室中的培养基，并用甲醇固定（4°C,400 μl MeOH 固定 30 分钟,去除 MeOH 并风干 40 分钟）,并用 YO-PRO-1 碘化物（Molecular Probes, OR）(400 μl YO-PRO-1 碘化物,浓度 10 μM (1:100 自 1mM 母液稀释获得)) 染色。迁移结果利用 Openlab 软件（Improvision, MA）在 20 倍放大率定量为细胞平均数 / 显微镜视野。如图 8 的图 A 所示，加入原代皮下脂肪细胞 hAngpt14 诱导它们迁移。图 8 的图 B 显示 7 小时的迁移。图 8 的图 C 图示了脂肪细胞在用以下方式处理 7 小时之后的迁移：无血清 (1), 10% 胎牛血清 (FCS) (2), PDGF-BB (3), mANGPTLA (4)。
[0383] 实施例 4: Angpt14 的变体
[0384] 变体 ANGPTLA 利用标准诱变试剂盒（例如, QuickChange XL Site-Directed Mutagenesis Kit (Invitrogen, Carlsbad, California)) 根据生产商的方案制备。在人 ANGPTLA 序列中产生两个氨基酸取代（见例如图 2）。取代位于位置 162 和 164 (R162G 和 R164E), 导致 PKR 变为 GKE。ANGPTLA 蛋白 (L280 质粒, aal-406) 或变体 ANGPTLA 分离自瞬时转染的 COS-7 细胞的上清。为了纯化, 将上清加载到镍柱上。蛋白质通过 Western 印迹利用抗 -FLAG- HRP 抗体进行检测。见图 3, 图 B。进行取代并将变体 ANGPTLA 与天然或野生型 ANGPTLA 蛋白进行比较, 发现通过 Western 印迹测定的该变体 ANGPTLA 的分子量高于天然 ANGPTLA。天然蛋白中位置 162 和 164 由 RKR 到 GKE 的取代防止的 ANGPTLA 的蛋白水解降解。
[0385] 实施例 5: Angpt14 结合整合素 aV B5
[0386] 血管生成素是分泌型因子，其通过经由它们的纤维蛋白原 (FBN) - 样结构域结合内皮细胞特异性酪氨酸激酶受体 Tie2 调节血管生成。发现分泌的配体的家族中存在的螺旋区对于配体聚合化是必需的（见例如, Procopio et al., J. Biol. Chem., 274: 30196-201 (1999)).
类似血管生成素，ANGPTL3 和 ANGPTL4 是分泌型糖蛋白，每种都由 N 末端信号肽然后是螺旋区和 C 末端 FBN 样结构域组成。确定了 ANGPTL3 通过 FBN 样结构域结合 αvβ3。我们确定了 ANGPTL4 结合 αvβ5。检测 αvβ3 整合素稳定转染的 293-1953 细胞系结合或粘附 ANGPTL4 包被的板的能力。收集细胞并在不含血清、包含以下物质的培养基中稀释到 10^5 细胞/ml；PBS, 1% BSA, 1mM CaCl2 和 1mM MgCl2。细胞与抗-整合素 αvβ3 抗体（MAB1961（Chemicon, Temecula, CA））或肽或不与上述物质一起 37°C 预保温 15 分钟。将重组 mANGPTL4, BSA 被连蛋白（1 µg, 3 µg, 10 µg, 或 30 µg/ml）包被在 Nunc Maxisorp96 孔平底微量滴定板上，4°C 过夜，并用含 200 µl 13% BSA 的磷酸缓冲液（PBS, pH 7.4, 37°C 封闭 1.5 小时。将细胞悬液（5x10^6 细胞 / 100 µl / 孔（5x10^6/ml））加入包被的板并将板在 37°C 保温 5.5 小时。未粘附的细胞用 PBS 洗涤去除，通过加入 200 µl CyQuant GD Dye（Molecular Probes（Invitrogen detection Technologies（Carlsbad, California）））（1:400）/ 细胞裂解缓冲液并保温 2-5 分钟来测定细胞粘附。样品荧光度利用 480nm 最大发射和 520nm 最大发射来测定。可使用 Lanndegren 的 PNAG 法（见例如, Lanndegren, J. Immunol. Methods, 67: 379-388 (1984))。与阴性对照 BSA 相比，表达 αvβ3 的细胞显示与 ANGPTL4 和阳性对照玻连蛋白粘附（USBiological, Swampscott, Massachusetts）。见图 9, 图 A。

为测定 αvβ5 整合素是否足以介导 ANGPTL4 细胞粘附, 在细胞粘附实验中检测封闭型抗体抑制粘附的能力。将功能性封闭型抗体（抗-αvβ3 抗体（MAB1961（Chemicon, Temecula, CA））或抗-hANGPTL4 抗体）加入 293-1953 细胞然后与蛋白 (BSA, vitronecitrin(2) 或 ANGPTL4(3)）包被的孔保温。图 9, 图 B。抗-αvβ3 和抗-hANGPTL4 抗体消除了 ANGPTL4 细胞粘附活性。

进行其它实验确定 ANGPTL4 结合 αvβ3。进行 ELISA 实验检测 mANGPTL4, IgG-hANGPTL4-N 末端（1-183）和 / 或 IgG-hANGPTL4-C 末端（184-406）是否结合 αvβ3（USBiological, Swampscott, Massachusetts）包被的板。100 µl /孔整合素 αvβ3 稀释液（1 µg/ml 包被型缓冲液（50mM 碳酸盐 / 重碳酸盐, pH9.6））和包被缓冲液一起在 4°C 保温过夜。用洗涤缓冲液（PBS,pH7.4, 0.05% Tween–20）洗板三次, 并加入 100 µl /孔封闭缓冲液（PBS, pH7.4, 0.05% BSA）在室温轻轻搅拌 1 小时。各种量（0.0.070 µg, 0.22 µg, 0.66 µg, 2 µg, 或 6 µg）的样品，mANGPTL4, IgG-hANGPTL4-N 末端（1-183）和 / 或 IgG-hANGPTL4-C 末端（184-406）在样品缓冲液（0.5% BSA, 50mM Tris, pH7.4, 0.05% Tween20, 1mM MnCl2, 50 µM CaCl2, 50 µM MgCl2, 100mM NaCl）中进行准备并保温 30 分钟。将样品加入板（100 µl /孔，按照上文所示的量）并在室温保温 2 小时同时轻轻搅拌。用缓冲液洗涤板，以 100 µl /孔加入含有抗-hFlag- 辣根过氧化物酶 (HRP)（100ng/ml）(Jackson, #109-036-098) 的测定缓冲液（PBS, pH7.4, 0.05% BSA, 0.05% Tween20)，并在室温保温 1 小时同时轻轻搅拌。洗涤板。加入 100 µl /孔四甲基联苯胺 (TMB) (Moss, Inc.)，室温在板中保温直到出现好的颜色。加入 100 µl /孔终止溶液（1M H3PO4）终止反应。在 630nm 读板。mANGPTL4, IgG-hANGPTL4-N 末端和 IgG-hANGPTL4-C 末端结合 αvβ3 包被的板，但与板结合的 IgG-hANGPTL4-C 末端稍多。见图 9, 图 C。

抗-hANGPTL4 抗体抑制 ANGPTL4 与 αvβ3 包被的板结合。进行 ELISA 实验。4°C 保温 100 µl /孔的整合素 αvβ3 稀释液（1 µg/ml 包被型缓冲液（50mM 碳酸盐 / 重碳酸盐, pH9.6））和包被缓冲液过夜。用洗涤缓冲液（PBS, pH7.4, 0.05% Tween–20）洗板三
次，并加入 100 μl/孔的封闭缓冲液（PBS，pH 7.4，0.5% BSA）在温室轻轻摇动 1 小时。将 0.6 μg - 6.0 μg 样品，mANGPTL4, IgG-hANGPTL4-N 末端（1-183）和 / 或 IgG-hANGPTL4-C 末端（183-406），在样品缓冲液中（0.5% BSA, 50mM Tris, pH 7.4, 0.05% Tween20, 1mM MnCl2, 50 μM CaCl2, 50 μM MgCl2, 100mM NaCl）与抗 -ANGPTL4 抗体 (1.5 μg) 或抗 -Dscr (1.5 μg) 一同保温 30 分钟。保温后，将 100 μl/孔样品 +/ - 抗体与板在温室一起保温 2 小时，同时轻轻摇动。板用缓冲液洗涤并加入实验缓冲液（PBS，pH 7.4，0.5% BSA, 0.05% Tween20）中的 100 μl/孔抗 -Flag-HRP (100ng/ml)，在温室保温 1 小时，同时轻轻摇动。洗涤板并加入 100 μl/孔的 TMB，温室在板中保温直到出现良好的颜色。加入 100 μl/孔终止溶液（1M H2PO4）来终止反应。在 630nm 读板。与抗 -Dscr 抗体, 567 单克隆抗体或培养基相比，抗 -ANGPTL4 抗体降低结合于 α,β,γ 包被的板的 mANGPTL4, IgG-hANGPTL4-N 末端和 IgG-hANGPTL4-C 末端的量。见图 9, 图 D。

[0391] 另一个实验中，ANGPTL4 与整合素 α,β,γ 结合通过 ELISA 显示。在该实验中，将 80 μl/孔的 hANGPTL4-C 末端，玻连蛋白或 BSA（5 μg/ml）加入板的包被缓冲液中（0.5% 碳酸盐 / 碳酸氢钠，pH 9.6），4℃保温过夜。洗涤该板（洗涤缓冲液：PBS，pH 7.4，0.05% Tween-20），加入 100 μl/孔的封闭缓冲液（PBS，pH 7.4，0.5% BSA）以及培养基或抗 -hANGPTL4 抗体（15 μg/100 μl）或抗 -Dscr 抗体（15 μg/100 μl），温室保温 1 小时，同时轻轻摇动。洗涤板，加入 1 μl/孔 α,β,γ（100 μl）或抗 -Dscr（5 μg/ml）1 μl, 室温保温 2 小时同时轻轻摇动。洗涤板，加入实验缓冲液（PBS，pH 7.4，0.5% BSA, 0.05% Tween20）中的 1 μg/ml（1:1000）抗 -α,β,γ 抗体（Chemicon）（5 μg/100 μl），室温保温 1 小时，同时轻轻摇动。保温后，洗涤板，将 100 μl/孔辣根过氧化物酶（HRP）抗 - 小鼠（1:5000）加入实验缓冲液。洗涤板，加入 100 μl/孔四甲基联苯胺（TMB），温室保温直到出现良好的颜色。利用 100 μl/孔 1M H2PO4 终止反应, 在 630nm 读板。α,β,γ 结合 ANGPTL4（泳道 1）和玻连蛋白（泳道 4）包被的板。结合被抗 -ANGPTL4 抗体（泳道 2）阻断，但除外使用对照抗体抗 -Dscr（泳道 3）或对照蛋白包被在板上（泳道 5）的情况。见图 9, 图 E。

[0392] 因此，这些发现证实重组 ANGPTL4 特异性结合 α,β,γ 整合素。

[0393] 实施例 6：静脉注射 Angpt14 增加小鼠中的甘油三酯

[0394] 测定注射了各种包含 ANGPTL4 的腺病毒构建体的 C57B1/6 小鼠中的甘油三酯水平。在 C57B1/6 小鼠尾部静脉注射（1）腺病毒 GFP 构建体，(2) 腺病毒 Gd 构建体，(3) 腺病毒 ANGPTL4（1-406）构建体，(4) 腺病毒 ANGPTL4（1-183）构建体，(5) 腺病毒 ANGPTL4（184-406）构建体，(6) 腺病毒 ANGPTL4 变体构建体 ;(7) 腺病毒 ANGPTL4（1-408）构建体和 (8) 腺病毒对照构建体。注射后 7 天测定小鼠血液样品的甘油三酯水平（mg/dl）。如图 10 中所示，ANGPTLAN- 末端构建体（1-183）对甘油三酯水平的影响最为明显，全长 ANGPTL4 构建体和 ANGPTL4 变体构建体也是如此。

[0395] 实施例 7：包含 ANGPTL4 基因破坏的小鼠的产生和分析

[0396] 为了研究 ANGPTL4 的作用，通过同源重组产生 ANGPTL4 基因中的破坏。具体地，包含 ANGPTL4 基因中的破坏的转基因小鼠（即敲除小鼠）通过基因打靶和基因捕获来产生。通过 southern 印迹分析证实突变，以证实对 5’ 和 3’的正确靶向。基因特异性基因分型通过基因组 PCR 来进行，以证实如使用与侧接插入位点的外显子退火的引物进行的 RT-PCR 所示的内源天然转录物的丢失。将靶向型载体电穿孔入 129 属株 ES 细胞，鉴定靶向的克隆。
将靶向的克隆显微注射到宿主胚胎中产生嵌合体。嵌合体与 C57 混交杂产生 F1 杂合体。使杂合体进行杂交产生 F2 野生型，杂合体和纯合体队列。其用于基因分型分析。罕见的是，如果没有产生足够的 F1 杂合体，使 F1 子代与野生型 C57 小鼠杂交以产生足够的杂合体从而产生足够的用于基因分型的队列。所有基因分型分析在出生后 12-16 周进行。

结果

包含 ANGPTL4 基因的小鼠的产生和分析：在这些敲除试验中，编码 ANGPTL4 的基因（Pro197 多肽，称为 DNA22780-1078；Unqi7）被破坏。这些研究的基因特异性信息如下：突变的小鼠基因对应核苷酸参考码；NM_020581; ACCESSION:NM_020581;NID:10181163;或小鼠 (Mus musculus) 血管生成素 - 样 4 (Angptl4); 蛋白参照物; O9Z1P8; ACCESSION:Q9S71P9NID;或小鼠 (Mus musculus) (小鼠 (Mouse)); NG27 (非血管生成素 - 相关蛋白); HEPATIC ANGIOPOEITIN-RELATED PROTEIN (假想蛋白 (HYPOTHETICAL PROTEIN) 425018-1) (纤维蛋白原 / 血管生成素相关蛋白) (血管生成素 - 样蛋白) (血管生成素 - 样 4); MOUSESTRNDB; 基因序列参照; NM_139314; ACCESSION: NM_1393141;ID:21536397 人血管生成素 - 样 4 (ANGPTL4); 人蛋白序列对应参照物: O9BY76; ACCESSION: Q9BY781NID; 或 Homo sapiens (人)。血管生成素 - 相关蛋白 3 受体 (血管生成素 - 样 4) (肝纤维蛋白原 / 血管生成素 - 相关蛋白) (HFAR1) (血管生成素 - 样蛋白 PP1158); HUMANSTRNDB。

破坏的小鼠基因是 Angptl4 (血管生成素 - like 4), 其为 ANGPTL4 的直接同系物。其他名称包括本文描述的那些以及 Btk89, Btk89, FIAF, NG27, NG27, HFARP, Farp-pending, 纤维蛋白原 / 血管生成素 - 相关蛋白, 主要组织相容复合体区 NG27, AR4, PGAR, PPAR, PP1158, ANGPTL2, 非食诱导的脂肪因子, PPAR6 血管生成素相关蛋白, 肝血管生成素 - 相关蛋白, 和肝纤维蛋白原 / 血管生成素 - 相关蛋白。

表型分析的对应下文所示的来自该代的小鼠进行。

<table>
<thead>
<tr>
<th></th>
<th>wt</th>
<th>het</th>
<th>hom</th>
<th>总数</th>
</tr>
</thead>
<tbody>
<tr>
<td>观察的</td>
<td>18</td>
<td>38</td>
<td>11</td>
<td>67</td>
</tr>
<tr>
<td>预期的</td>
<td>16.75</td>
<td>33.5</td>
<td>16.75</td>
<td>67</td>
</tr>
</tbody>
</table>

Chi-Sq. = 2.76 显著性 = 0.26294 (hom/n) = 0.16 平均同窝幼鼠数目 = 7

在胚胎干细胞 (ES) 和所有成人组织样品 (除外尾部) 中通过 RT-PCT 检测到靶基因的野生型表达。RT-PCR 分析揭示转录物在分析的 (-/-) 小鼠中缺失。

1. 表型分析

总体表型总结：编码人血管生成素 - 样 4 (ANGPTL4) 的直接同系物的基因的突变导致 (-/-) 小鼠中胆固醇和甘油三酯水平降低。此外，雄性 (-/-) 小鼠在葡萄糖耐受实验中显示葡萄糖耐量提高。突变 (-/-) 小鼠也显示免疫异常，包括平均血清 IgM 水平和平均绝对中性粒细胞计数相对于其 (+/+) 同窝幼鼠而言升高。通过 RT-PCR 发现转录物缺失。
说明书

心血管表型分析/代谢/血化学：在心血管生物学领域，进行表型检测来鉴定心血管、内皮或血管生成疾病治疗的可能靶点。所述疾病诸如高血压、动脉粥样硬化、心衰，发作综合征，各种冠状动脉疾病，血脂异常诸如高胆固醇（高胆固醇血症）和升高的血清甘油三酯（高甘油三酯血症），癌症和/或肥胖症。表型检测包括测定血清胆固醇和甘油三酯。此外，血化学表型分析还包括葡萄糖耐受实验以检测胰岛素敏感性和血糖代谢的改变。异常葡萄糖耐受实验结果指示但不包括以下疾病或病症：1型和2型糖尿病，X综合征。

【0410】这种情况中的表型检测包括测定血清胆固醇和甘油三酯。

【0411】血脂

【0412】方法：4只野生型和8只纯合雄性小鼠的队列用于这些研究。测定平均血清胆固醇和甘油三酯水平并与性别匹配的（+/-）同窝动物进行比较。同时进行葡萄糖耐受实验，这是由于该实验是确定哺乳动物中受损的葡萄糖动态平衡的标准。葡萄糖耐受实验利用Lifescan血糖仪（glucometer）进行。对动物1P注入2g/kg D-葡萄糖，其作为20%的溶液递送，注射后1,30,60和90分钟之后测定血糖水平。使用COBAS Integra400（Roche）对小鼠进行血化学检验。

【0413】结果：当与性别匹配的野生型同窝动物以及历史平均值相比时，雄性和雌性纯合突变小鼠显示明显降低的甘油三酯水平。这些突变体在与它们的野生型同窝动物相比时也显示降低的平均血清胆固醇水平。同时，当与它们的性别匹配（+/-）的同窝动物和历史平均值相比时，在存在正常禁食葡萄糖时在所有3个受试时间段，雄性（-/-）小鼠显示葡萄糖耐量增加，而雌性（-/-）小鼠显示平均血清葡萄糖水平降低。总之，这些敲除小鼠的脂质和/或葡萄糖代谢方面而言显示阳性表型。因此，ANGPTL4基因缺陷的突变小鼠可作为心血管疾病治疗的模型。ANGPTL4拮抗剂或其编码基因将在调节血脂具体是保持正常胆固醇和甘油三酯代谢中起重要作用。ANGPTL4的所述抑制剂或拮抗剂可用于治疗与血脂异常相关的所述疾病，诸如：高血压，动脉粥样硬化，心衰，发作综合征，各种冠状动脉心脏病，肥胖症和/或糖尿病。

【0414】免疫表型分析：免疫相关的和炎性疾病是较为复杂、通常多重相互联系的生物途径的表现或结果，其在正常生理中对干扰或损伤的应答是重要的，启动对干扰或损伤的修复，并发动内在和获得的对抗生物体的防御。疾病和病理在这些正常生理过程导致附加干扰和损伤时出现，无论与反应强度直接相关，作为异常调节或过度刺激的后果，作为自体反应，或这些的组合。

【0415】尽管这些疾病的发生通常涉及多个步骤，并通常涉及多种不同生物系统/途径，对一或多种这些途径中的关键点的干预可具有缓解或治疗效果。治疗性干预可通过拮抗有害过程/途径或刺激有益过程/途径而出现。

【0416】T淋巴细胞（T细胞）是哺乳动物免疫反应的重要组分。T细胞识别与主要组织相容性复合体（MHC）中的基因编码的自体分子相关的抗原。所述抗原可与MHC分子一同展示在抗原呈递分子，病毒感染的细胞、癌细胞、移植物等的表面。T细胞系统消除这些改变的细胞，其对宿主动物的健康造成威胁。T细胞包括辅助T细胞和细胞毒T细胞。辅助T细胞是在识别抗原呈递细胞上的抗原-MHC复合体之后大量增殖。辅助T细胞也分泌各种细胞因子，例如淋巴因子，其在B细胞、细胞毒T细胞和参与免疫反应的各种其它细胞的活化中起核心作用。

许多免疫相关的疾病是已知的，并被广泛研究。所述疾病包括免疫介导的炎性疾病（例如，类风湿性关节炎，免疫介导的肾病，肝胆疾病，炎性肠病（IBD），银屑病和哮喘），非免疫介导的炎性疾病，感染性疾病，免疫缺陷疾病，肿瘤和移植物排斥等。在免疫学领域，鉴定靶来治疗炎症和炎性疾病。

在免疫学领域，鉴定靶来治疗炎症和炎性疾病。免疫相关的疾病，在一种情况下，可通过抑制免疫反应来治疗。利用具有免疫刺激活性的中和型抗体将在免疫介导的和炎性疾病中的治疗有益。抑制免疫反应的分子可使用（蛋白质直接和经由使用抗体激动剂），以抑制免疫反应由此缓解免疫相关疾病。

进行以下检测：

血清免疫球蛋白同种型实验：血清免疫球蛋白同种型实验利用Cytometric Bead Array (CBA) 试剂盒进行。该实验用于快速鉴定单个样品中小鼠单克隆抗体的同种型的重链和轻链。值表达为“对应荧光蛋白”并基于 kappa 轻链的检测。任何<6 的值是不显著的。

结果：血清免疫球蛋白同种型测定揭示了突变（/-）小鼠与它们性别匹配（+/-）的同窝动物相比显示 IgM 血清免疫球蛋白升高。IgM 免疫球蛋白首先在体液免疫反应中产生，用于中和细菌毒素，并且在补体系统的活化中尤其重要。同样，IgG 免疫球蛋白具有中和效应，对于补体系统活化的重要性程度较小。此外，（/-）小鼠显示平均绝对中性粒细胞计数与其同窝动物（+/+）和历史平均值相比增加。观察到的表型提示 ANGPTL4 是炎性反应的负向调节物。这些免疫异常提示 ANGPTL4 抑制剂（拮抗剂）是刺激免疫系统的重要药剂（例如 T 细胞增殖），并可用于针对对于个体有益的疾病，诸如白血病，和其它类型的癌症，以及免疫受损的患者，诸如 AIDS 患者。因此，ANGPTL4 或其激动剂在抑制免疫反应中起作用，并可用作抑制有害免疫反应的候选物，例如在移植物排斥或移植物抗宿主疾病中。

实施例 8：制备结合 Angptl4 的抗体

制备多克隆抗体和单克隆抗体的技术是本领域已知的并在本发明描述。可使用的抗原（或免疫原）包括本发明纯化的蛋白，蛋白片段，含有所述蛋白的融合蛋白，以及在细胞表面表达重组蛋白和/或蛋白片段的细胞。抗原的选择可由本领域技术人无需不恰当的试验进行。

小鼠，诸如 Balb/c，利用在完全 Freund 佐剂中乳化的抗原来的免疫，并以1-100mg 的量经静脉或腹腔注入。可选，抗原在 MPL-TDM 佐剂（RibiImmunocytotoxic Research, Hamilton, Mont.）中乳化并注入动物后腿的足垫中。随后, 在10-12 天后利用附的在所选佐剂中乳化的抗原对免疫的小鼠进行增强。几周之后，也可用额外的免疫注射对小鼠进行增强。通过照相超血定期从小鼠获得血清样本，用于 ELISA 测定检测抗体。

检测到适宜抗体滴度之后，可向抗体“阳性”动物最后经静脉注入给定的配体。3-4 天后，处死小鼠并收集脾细胞。然后将脾细胞融合（利用 35%聚乙二醇）到选定的鼠骨髓瘤细胞系诸如 P3X63AgU.1，其可获自 ATCC，No. CRL1597。融合产生可通过附于 96 孔组织培养板的杂交瘤细胞，其中含有 HAT（次黄嘌呤，氨基蝶呤，和胸苷）培养基以抑制非融合细
胞、骨髓瘤杂合子和脾细胞杂合子的增殖。

[0427] 在ELISA中筛选杂交瘤细胞针对抗原的反应性。确定本发明分泌所需单克隆抗
ANGPTL4 抗体的“阳性”杂交瘤细胞是本领域技术人员已知的。

[0428] 阳性杂交瘤细胞可经腹腔注入同基因 Balb/c 小鼠产生含有抗 ANGPTL4 单克隆抗
体的腹水。可选，杂交瘤细胞可生长在组织培养瓶或摇瓶中。腹水中产生的单克隆抗体
的纯化可利用硫酸铵沉淀然后利用凝胶排阻层析来实现。可选，可采用基于抗体与蛋白 A
或蛋白 G 的结合的亲和层析。

[0429] 例如，多克隆兔抗体可通过利用在第 1,40 和 70 天在大肠杆菌中产生的 500 µg 重
组人 ANGPTL4 蛋白 (23-406) 免疫兔子产生。免疫后 80 和 120 天收获血清，并通过蛋白交
联葡聚糖柱纯化抗体。

[0430] 实施例 9：封闭或中和型抗体

[0431] 本文所述针对抗原例如，ANGPTL4 的抗体可通过本领域已知的多种技术例如
ELISA 鉴定。例如，板可利用目的多肽例如 ANGPTL4 或其片段包被，并与针对该目的多肽例如，
ANGPTL4 产生的抗体一起保温（例如，美国专利 6, 348, 350, 6, 372, 491 和 6, 455, 496 中的
描述）。结合的抗体可通过各种方法检测。允许

[0432] 拮抗剂（例如封闭或中和型）抗体可通过竞争实验和 / 或活性测定来鉴定。例如，
ANGPTL4 的表达刺激肝细胞或前脂肪细胞的增殖，脂肪细胞迁移，调节甘油三酯量，或结合
α, β,整合素。封闭或中和型 ANGPTL4 抗体的鉴定可通过抗体阻断这些活性的能力显示，例
如，（见例如，图 9，图 B, D 和 E）。例如，肝细胞和前脂肪细胞可铺板并利用由 Ad-hAngptl4
转导的 COS7 细胞的上清液和抗-ANGPTL4 抗体，或对照抗体或 PBS 保温。几天之后，用器官蛋
白酶处理细胞并计数。降低细胞数的抗体鉴定为封闭型或中和型抗体。ANGPTL4 也显示诱
导肝细胞粘附和前脂肪细胞迁移，由此 ANGPTL4 的封闭型或中和型抗体的鉴定可通过抗体
封闭肝细胞粘附和 / 或前脂肪细胞迁移的能力显示。也显示 ANGPTL4 为促血管生成因子。
见例如，Le Jan et al., American Journal of Pathology, 164 (5) :1521-1528 (2003)。因
此，封闭型或中和型抗 ANGPTL4 抗体可利用抗体和 ANGPTL4 在血管生成实验例如 CAM 实验
中测定。

[0433] 本说明书认为足以使得本领域的技术人员能够实施本发明。本发明不限于保藏的
构建体限定的范围，因为保藏物的实施方案是用作对本发明某些方面的单一例证且功能上
等同的任何构建体都在本发明范围内。本文的材料保藏不构成承认文字形式的描述不足以
使得本发明的任一方面，包括其最佳的更多方面能够实施，也不应解释为将权利要求书的
范围局限于所提供的具体例证。事实上，除了本文所示和所述之外，对本发明的各种修饰根
据前面的描述对本领域的技术人员将是显而易见的且落在所附权利要求书的范围内。
<110> 健泰科生物技术公司 (GENENTECH, INC.)
Gerber, Hanspeter
Stuart Bunting
Liang, Xiao Huan

<120> 利用血管生成素样 4 蛋白的组合物和方法

<130> 39766-0208

<140> 200580031686. X

<141> 2005-07-19

<150> PCT/US2005/025650

<151> 2005-07-19

<150> 60/589, 875

<151> 2004-07-20

<160> 5

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1869

<212> DNA

<213> 人 (Homo Sapiens)

<400> 1

```
ctcgccgctca cagatgctgt gatccgatcc tttcgcagcg ctcgtgcaac 60
gccgcgcgtga gcggagctct cagagaaactg cggtaactcc ccgggccggt 120
ccgggcgggt ccggagcgcc cggcgctcgc ggcggagcgg cggagcggcg 180
acggagcgcc ggcggagctct cagagaaactg cggtaactcc ccgggccggt 240
acggagcgcc ggcggagctct cagagaaactg cggtaactcc ccgggccggt 300
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 360
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 420
cggagcggcgg cggagcgcc ggcggagctct cagagaaactg cggtaactcc 480
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 540
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 600
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 660
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 720
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 780
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 840
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 900
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 960
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1020
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1080
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1140
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1200
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1260
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1320
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1380
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1440
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1500
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1560
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1620
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1680
ggcggagctct cagagaaactg cggtaactcc ccgggccggt 1740
```
<210> 2
<211> 406
<212> PRT
<213> 人 (Homo Sapiens)

<220>
<221> 不确定
<222> 221
<223> Xaa = 未知氨基酸

<400> 2
Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala 1 5 10 15
Thr Ala Val Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser 20 25 30
Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu 35 40 45
Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala Glu Arg Thr Arg Ser 50 55 60
Gln Ser Ala Leu Glu Arg Arg Leu Ser Ala Cys Gly Ser Ala Cys 65 70 75 80
Gln Gly Thr Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg 85 90 95
Val Asp Pro Glu Val Leu His Ser Leu Glu Thr Gln Leu Lys Ala Glu 100 105 110
Asn Ser Arg Ile Gin Leu Phe His Lys Val Ala Gin Gin Gin Arg 115 120 125
His Leu Glu Lys Gin His Leu Arg Ile Gin His Leu Gin Ser Gin Phe 130 135 140
Gly Leu Leu Asp His His Leu Asp His Glu Val Ala Lys Pro Ala 145 150 155 160
Arg Arg Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala His 165 170 175
Asn Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Gin Glu Leu Phe 180 185 190
Gln Val Gly Glu Arg Gin Ser Gly Leu Phe Glu Ile Gin Pro Gin Gly 195 200 205
Ser Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Xaa Gly Gly Trp 210 215 220
Thr Val Ile Gin Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg Pro 225 230 235 240
Trp Glu Ala Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe Trp 245 250 255
Leu Gly Leu Lys Val His Ser Ile Thr Gly Asp Arg Asn Ser Arg 260 265 270
Leu Ala Val Gin Leu Arg Arg Trp Asp Gly Asn Ala Glu Leu Leu Gin 275 280 285
Phe Ser Val His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gin Leu 290 295 300
Thr Ala Pro Val Ala Gly Leu Gly Ala Thr Thr Pro Pro Ser 305 310 315 320
Gly Leu Ser Val Pro Phe Ser Thr Trp Asp Gin Asp His Asp Leu Arg 325 330 335
Arg Asp Lys Asn Cys Ala Lys Ser Leu Ser Gin Gly Trp Thr Phe Gly 340 345 350
序列表

Thr Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe Arg Ser Ile Pro
355
Gln Gln Arg Gln Lys Leu Lys Lys Gly Ile Phe Trp Lys Thr Trp Arg
370
Gly Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Met Leu Ile Gln Pro Met
385
Ala Ala Glu Ala Ala Ala Ser
405

＜210＞3
＜211＞21
＜212＞DNA
＜213＞人(Homo Sapiens)

＜400＞3
ggggcaagc ctgccgaag a 21

＜210＞4
＜211＞21
＜212＞RNA
＜213＞人工序列

＜220＞序列是合成的

＜400＞4
ggccaagccu gcggcaagau u 21

＜210＞5
＜211＞21
＜212＞RNA
＜213＞人工序列

＜220＞序列是合成的

＜400＞5
ucuucggca ggcuuggcca c 21
SEQ. ID NO:1:

GCGAGCTGTA GGAGATTCTC ACATGACTGT GATCCGATTC TTPCCAGG 50
CTTCTGCAAC CAAGCGGGTC TTACCCCAGG TCCTCCGCGT CTCCAGTCTT 100
CGCACCCTGGA ACACCAAGGT CCCCGAGAGT CCCCGAATCC CGGCTCCCAG 150
GCTACCTAAG AGGATGACCG GTGGCTTCCGAC GGGCGGGGCA GCCCTGATGC 200
TCTGGCCCGC CCCGCCGCTTG CTACTGACGCG CTACGGCGCG ACCGCGCAG 250
TCCAGCTGCG CGCGCTTTTG GTCTCTTGGGAC GAGATGAATG TCCTGGCCCA 300
CGGACTCTTG CAGCTCGGCC AGGGGTTCGG CGAACACGCC GAGCGCAACC 350
GCAGTCAGCT GTACGCATGCT GAGCGGGCCG TGGAGCCTCGT CGGGCTCCGC 400
TGTCAGGAAA CCAGGCGGTC CACCCGACCTC CCGTTAGCCC TGAGAGCCGG 450
GGTGGACCTT AGGGTCCCTC ACACGCTGCA GACAAACTTC AAGGCTCAGA 500
ACAGCAGAGT CCAGCAGACTC TTCCCAAGGG TGCCCAGCGA GCAGCGGCCAC 550
CTGGAGAGGC AGCACCCTGC CGATTAGCGAT CTCGAAGGCC AGTTTGCCCT 600
CCTGAGACAC AACACCTTAG ACCATGAGGT GGGCAAGCCT GCCGGAAGAA 650
AGGGCTGGC CGAGATGGCC CAGCCGGTTT ACGCGGCTCA AAATGCTAGC 700
CGCCCTGCCG CGCGTCACGG GCTATGGCCAG GACCTTTCCC AGGTTGGGGA 750
GAGGCGAGGT GAGACTATTTA AAATCCAGCC TCAGGGGTCT CGGCCCCATT 800
TGCTGAACGT CAAGATGACG TCAGATGGAG GCTGGACAGT AATTCAGAGG 850
CCACCCGATG GCTCGGGAGA CTTCGATCCG CGCTTGAGGA CCTACAGGCG 900
GGGGTTTGGG GAGGATCCAC CGCGAGTTCGT GCTGGGGTCTG GAGAAGGGTG 950
ATAGCATCAC GGGGGGCGCC AACAGCGGCC TGGCCGTCAG GCTGCGGGGC 1000
TGGGGATGGGA ACGCGAGTTG GCTCCGATGA TCCGGTGACC TGGGTGGCCA 1050
GGCACGCCC TATAGCGCTGC AGCTCAGTGC ACGCGGGGCG GGGCGCGCTG 1100
GGCCACCAC CGTCCCACCC AGGGCGTTCT CGTACCGGCT CTCCACTGTTG 1150
GACCAGGACT ACAGCCTCGG CAGGGCAAG AACTCGCGCA AGAGCCTCTC 1200
TGGAGGCTGG TGGTTGGGCA CCTGCAGCCA TTCCAACCTC AACGGCAGT 1250
ACTTCGCTC CATCCACAG CAGCCGCAGA AGCTTAAGAA GGGAACTCTC 1300
TGGAAAGACCT GGGGGGCG CCCTACTACCCG TGTCAAGGGA CACCACTGTT 1350
GATCCAGCCC ATGGAGACAG AGGCGAGCCTC TCTAGGCTCTGG GGTGGGCCCT 1400
GGTCCCCGCG CCACGAAAGA CGGTGACTCT TGGGCTGCTC CGAGGATGTC 1450
GCGTTCCCT GCTTGGGCGG GGGCTCCAAAG GAGGGGCCAT CGGAAACTT 1500
GTGGACAGAG AAGAAAGACCA CGACTGGAGA AGGCCCCCTTT CGAGAGTCAG 1550
GGGGGCTGCA TGGCTGTGCT CGTGGACATCG AGGCTGAGCG ATATGTCGCTAC 1600
ACTCTAGAGG CGTGGAACCA GGGGCTGAGA GCTTCAGTCT CCGCTGGCCA 1650
GGGAGTTGGG GACCTCAGAG GACCACTTTGG GGCAGGCAG ACTGGCCTCA 1700
ATGGCCGGACT CAGTCACATT GACTGACGGG GACCAACGTT GGTTGGTGGTC 1750
GAGAGGGCCC TCATGGTGCT GTGTCTGTTG TTGTAGGGTCCCTGGGAC 1800
ACAGACGGCC GCCAATGGTA TCTGGGCGGA GCTCAGCAGG TTCTTGGAAT 1850
AAAAGCAACC TCAGAACAC 1869

图1B
<table>
<thead>
<tr>
<th>SEQ. ID NO: 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Ala Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>Lys Ser Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>His Gly Leu Leu Gln Leu Gly Gln Gly Leu Arg Glu His Ala Glu</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>Arg Thr Arg Ser Gln Leu Ser Ala Leu Glu Arg Arg Leu Ser Ala</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>Cys Gly Ser Ala Cys Gln Gly Thr Glu Gly Ser Thr Asp Leu Pro</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>Leu Ala Pro Glu Ser Arg Val Asp Pro Glu Val Leu His Ser Leu</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>Gln Thr Gln Leu Lys Ala Gln Asn Ser Arg Ile Gln Gln Leu Phe</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>His Lys Val Ala Gln Gln Gln Arg His Leu Glu Lys Gln His Leu</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>Arg Ile Gln His Leu Gln Ser Gln Phe Gly Leu Leu Asp His Lys</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>His Leu Asp His Glu Val Ala Lys Pro Ala Arg Arg Lys Arg Leu</td>
</tr>
<tr>
<td>155</td>
</tr>
<tr>
<td>Pro Glu Met Ala Gln Pro Val Asp Pro Ala His Asn Val Ser Arg</td>
</tr>
<tr>
<td>170</td>
</tr>
<tr>
<td>Leu His Arg Leu Pro Arg Asp Cys Gln Glu Leu Phe Gln Val Gly</td>
</tr>
<tr>
<td>185</td>
</tr>
<tr>
<td>Glu Arg Gln Ser Gly Leu Phe Glu Ile Gln Pro Gln Gly Ser Pro</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>Pro Phe Leu Val Asn Cys Lys Met Thr Ser Xaa Gly Gly Trp Thr</td>
</tr>
<tr>
<td>215</td>
</tr>
<tr>
<td>Val Ile Gln Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg Pro</td>
</tr>
<tr>
<td>230</td>
</tr>
</tbody>
</table>

图2A
Trp Glu Ala Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe 245
Trp Leu Gly Leu Glu Lys Val His Ser Ile Thr Gly Asp Arg Asn 260
Ser Arg Leu Ala Val Gln Leu Arg Asp Trp Asp Gly Asn Ala Glu 275
Leu Leu Gln Phe Ser Val His Leu Gly Glu Gly Asp Thr Ala Tyr 290
Ser Leu Gln Leu Thr Ala Pro Val Ala Gly Gln Leu Gly Ala Thr 305
Thr Val Pro Pro Ser Gly Leu Ser Val Pro Phe Ser Thr Trp Asp 320
Gln Asp His Asp Leu Arg Arg Asp Lys Asn Cys Ala Lys Ser Leu 335
Ser Gly Gly Trp Trp Phe Gly Thr Cys Ser His Ser Asn Leu Asn 350
Gly Gln Tyr Phe Arg Ser Ile Pro Gln Gln Arg Gln Lys Leu Lys 365
Lys Gly Ile Phe Trp Lys Thr Trp Arg Gly Arg Tyr Tyr Pro Leu 380
Gln Ala Thr Thr Met Leu Ile Gln Pro Met Ala Ala Glu Ala Ala 395
Ser 400

图 2B

71
图 7
图8A

PDGF-BB: 0.1μg

10% FBS

hAngpt4: 0.2μg

hAngpt4: 1μg

hAngpt4: 5μg
图10