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MULTIPLE PASS LAYOUT OF GRAPHICAL OBJECTS WITH ELASTICS

BACKGROUND OF THE INVENTION

In recent years, the number of users on the internet has increased
exponentially. With this increase in popularity, there has also come an increased
demand for tools which enhance the "on line experience." To this end, new object
oriented computer programming languages such as Java™ have been developed.
While these languages are an advance over prior technology, there is still room for
improvement, particularly in the ability to efficiently modify layout of complex
structures of graphical objects in variable sized windows. It is difficult to implement
high quality, real time graphics on a web site using these languages.

Java allows minimum and maximum sizes to be specified for graphical
objects and uses those values in a way that causes objects to act more stretchy when
the differences between their minimum and maximum sizes is large.

A language explicitly developed for internet applications is the MIT Curl
Language by M. Hostetter et al, "Curl: A Gentle Slope Language for the Web,"
WorldWideWeb Journal, Vol II. Issue 2, O'Reilly & Associates, Spring 1997.

Embodiments of the present invention extend the Curl language. (The language of
this embodiment of the present invention will be referenced as "Curl" and is to be
distinguished from the prior "MIT Curl" language.) MIT Curl used a three-pass
layout negotiation scheme and allowed objects to describe their size preferences in

terms of a minimum size and a stretchiness coefficient.

TeX is a widely used text formatting program developed by Donald Knuth.
Donald E. Knuth, The TeXBook, Addison-Wesley, Reading, MA, 1984. TeX uses
a concept known as "glue" to express dimensional preferences of fill objects and
incorporates different stretch and compression orders that can be used to describe
the stretchiness and compressibility of different kinds of fill objects. As the overall
dimensions of a layout change, the dimensions of individual fill objects change

dependent on preferred sizes and stretchiness of those objects.
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A graphics tool kit developed by Robert Halstead called Stk incorporates the
concept of an elastic, known as "glue," having a minimum size, a stretchiness
coefficient and a stretch order associated with graphical objects having content. The
tool kit formalizes the layout computations of horizontal and vertical boxes of
graphical objects in terms of elastic add, max and divide operations. Stk is not
widely known or used. The layout mechanism of Stk was incorporated into Swat, a
graphics toolkit developed at MIT by Harold Abelson, James Miller and Natalya
Cohen.

SUMMARY OF THE INVENTION

In accordance with the present invention, a system, method and data
structure are provided for processing of graphical objects to layout the graphical
objects. Preferred sizes and elasticities of the graphical objects are computed along
a first dimension. Size values of the graphical objects are computed along the first
dimension from the preferred sizes and elasticities. Preferred sizes and elasticities of
the graphical objects along a second dimension are then computed based on the size
values of the graphical objects along the first dimension. Size values of the
graphical objects along the second dimension are computed from the preferred sizes
and elasticities. The first dimension may be selected to be width and the second
dimension may be selected to be height, or vice versa.

Preferably, elasticities includes stretchiness and compressibility properties.
The properties may include stretch and compress orders and stretchiness and
compressibility coefficients. Minimum size values may be included in computing
size values.

The sizes and elasticities of parent graphical objects may be computed from
sizes and elasticities of child graphical objects. The size values computed for parent
graphical objects are distributed among child graphical objects.

In one preferred embodiment a method for overriding an original layout
elastic for a graphical object comprises receiving a new layout elastic for a
dimension of the graphic object. The new layout elastic is then stored. A resulting
layout elastic is determined from the new layout elastic and the original layout

elastic. Finally, the resulting layout elastic is returned.

PCT/US00/19769
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BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the invention
will be apparent from the following more particular description of preferred
embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead being placed upon
illustrating the principles of the invention.

Figure 1 presents an example display window including a large number of
graphical objects to illustrate an application of the invention.

Figure 2 is a partial view of the hierarchy of graphical objects displayed in
the window of Figure 1.

Figures 3A-E illustrate the concept of elasticity where two graphical objects
are varied in size to fill varying window widths.

Figure 4 illustrates left and right extents, ascent and descent relative to an
origin in a graphical object.

Figure 5 illustrates the use of vertical origins to align a graphical object with
the baseline of a line of text.

Figure 6 presents the hierarchy of the graphical objects displayed in Figure 5.

Figure 7 illustrates the use of horizontal origins to align a column of
numbers.

Figure 8 presents the hierarchy of graphical objects displayed in Figure 7.

Figure 9 illustrates the left and right extents of three graphical objects of an
HBox and the corresponding elastics.

Figure 10 illustrates a grid of four graphical objects.

Figure 11 illustrates the use of padding in an HBox containing three
rectangles of different heights.

Figure 12 illustrates the use of padding in an HBox containing centered
rectangles of different heights.

Figure 13 illustrates the graphical hierarchy for a horizontal arrangement of
three text boxes.

Figure 14 illustrates the horizontal arrangement of the three text boxes of

Figure 13 when given their preferred widths.
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Figure 15 illustrates the horizontal arrangement of the three text boxes of
Figure 14 when given somewhat less than their preferred widths.

Figure 16 illustrates the horizontal arrangement of the three text boxes of
Figures 14 and 15 when given significantly less than their preferred widths.

Figure 17 is a flowchart illustrating a first pass in a three-pass method for
processing an HBox.

Figure 18 is a flowchart illustrating a second pass for processing an HBox.

Figure 19 is a flowchart illustrating a third pass in processing an HBox.

Figure 20 presents an HBox of three graphical objects used in illustrating the
method of Figure 17.

Figures 21 A and 21B illustrate the method of Figure 18.

Figure 22 illustrates the method of Figure 19.

Figure 23 illustrates the horizontal arrangement of two text boxes and their
corresponding elastics including overrides.

Figure 24 illustrates the hierarchy of graphical objects displayed in Figure
23.

Figure 25 is a flowchart illustrating a method for providing overrides for

elastics.

DETAILED DESCRIPTION OF THE INVENTION

One of the jobs faced by any 2-D graphics system is computing the layout
(the positions and sizes) of the objects to be displayed. Graphical displays in the
Curl programming language are constructed by grouping primitive "leaf graphics”
into larger assemblies by placing them inside graphical containers known as Boxes.
Boxes can in turn be placed within other Boxes and in this way arbitrarily complex

graphical displays can be constructed.
The leaf graphics can include several kinds of graphical objects:

1. Simple geometrical shapes such as rectangles and ellipses, whose sizes may

either be specified in the Curl program or may be computed at layout time, as
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specified in the program. Simple character strings such as labels also fall into this

category.

2. Images and other graphics that can be scaled, but should be scaled in a way

that preserves their aspect ratio (the ratio of width to height).

3. Blocks of formatted text, where the width and height can be scaled but must
have an approximately inverse relationship to each other. (If the width decreases,

the height must increase.)

Figure 1 shows a typical Curl window containing a large number of
graphical objects, including both leaf graphics and Boxes. Figure 2 shows the
structure of the graphical objects that are visible in Figure 1, rendered in a partly
expanded outline form. Each graphical object, whether a Box or a leaf graphic, is
shown in Figure 2 on a single line with a name such as " {VBox 74} " that indicates
the type of the object (VBox) and includes a unique number (74) designating the
particular object associated with this line of the diagram. Each Box is shown on a
line containing a triangle icon to the left of the Box's name, while each leaf graphic
is shown with a square icon next to the graphic's name. When the triangle icon
corresponding to a Box points down, as in {VBox 74} or {HBox 63}, the graphics
contained within the box are shown on subsequent lines by means of the line
connected to the bottom of the triangle that links the triangle with the icon of each
object contained directly as a child of the Box. When a Box's triangle points to the
right, as in {CdeButton 64} or {HBox 70}, the Box may have children that, for
brevity, are not shown. However, not all Boxes that are shown with
rightward-pointing triangles actually have child objects. For example,
{CastTextFlowBox 60} has no child objects.

The diagram of Figure 2 shows that the top-level object in Figure 1 is
{CdePaneView 1}, which in turn has {VBox 74} as its single graphibal child.
{VBox 74}, in turn, has several child objects, each of which fills the pane
horizontally and which are arranged from top to bottom. {MenuBar 75} is the menu

bar object which defines the menu bar 75 in Figure 1, containing the words "File",
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"Edit", etc. {HBox 72} is the toolbar object that lies next below those words.
Figure 2 shows this HBox expanded to show the separate CdeButton objects that
correspond to the toolbuttons labeled "Print", "Windows", etc. {CdeButton 62} is
the "Print" toolbutton, which in turn has been expanded to show that it contains a
Frame object {Frame 61}, which in turn contains {VBox 59}. Finally, {VBox 59}
is the entity that stacks up the printer icon {Picture 44} and the word "Print" which
is contained within {CastTextFlowBox 60}. The other objects displayed in Figure 1
are grouped in a similar fashion: notably, {PageViewPane 77} corresponds to the
large region containing the words "Welcome to Curl" and the associated text and
graphics, while {StretchyTextDisplay 78} corresponds to the blank status pane at the
very bottom of the screen, which from time to time displays messages indicating the
state of the application program that is running.

Since Curl supports all of these kinds of graphics and since any combination
of them can be put together in a Box, Curl needs a solution, provided by its layout

system, to the following two basic problems:

1. Representing the size preferences of graphical objects that may be either
simple leaf graphics or composite graphics (i.e., Boxes). This representation must
be such that a Box can query its component graphics for their size preferences and
combine those results into a representation of the size preference of the Box itself,
The representation must be able to encode the size preferences of both rigid objects,
such as many simple graphics, and stretchy objects such as images and formatted

text.

In Curl, this role is played by "elastics." As discussed in greater detail
below, elastics are defined for heights and widths of individual graphical objects.
The elastics for composite graphical objects are computed from the elastics of their

components.

2. Computing graphical layouts in a way that takes into account the size

preferences of both rigid and stretchy objects. The existence of stretchy objects that

PCT/US00/19769
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enforce a relationship between height and width, such as both constant-aspect-ratio

images and blocks of formatted text, make this problem more complicated.

In Curl, this role is played by a three-pass layout negotiation algorithm that
has two forms: width-first and height-first. The width-first algorithm collects width
preferences in the first pass through the graphical object tree, computes width
assignments and collects height preferences in the second pass, and computes height
assignments in the third pass. The height-first algorithm is similar but interchanges
the roles of height and width. By collecting height preferences after width
assignments are known (or vice versa in the case of height-first layout), this
algorithm accommodates objects whose height and width preferences are not

independent of each other.

The General Concept of Elastics

Graphical objects in a layout may have preferred dimensions. For example,
in Figure 3, two side-by-side graphical objects A and B may have preferred widths
P, and P,. However, to meet hardware display dimensions or window dimensions
within the display where a user expands or shrinks a window containing the
graphical objects A and B. the widths of A and B must vary in order to fill a space or
to avoid clipping peripheral features from the view. For example, if the two objects
A and B must fill a width W,, the two objects might expand proportionately to the
resulting widths W, and Wy, illustrated in Figure 3B. The result of Figure 3B
assumes that the two graphical objects are of the same elasticity with respect to
expansion, that is, they are of the same stretchability. However, by defining elastics
for each graphical object, one object might be caused to stretch preferentially to the
other. For example, if the object B is defined to be highly stretchable relative to
object A, object A may remain at its preferred width P, with all expansion to fill the
full width W, being borne by the object B as illustrated in Figure 3C. Similarly, if
the combined objects must be reduced to a reduced width W,, the two objects might
be compressed proportionately as illustrated in Figure 3D. On the other hand, object
A may be defined to have higher compressibility such that a larger share of

compression is borne by object A as illustrated in Figure 3E.
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An elastic represents behavior much like that of a mechanical spring. Like a
spring, an elastic has a "préferred size" which is its length when not subjected to any
deforming forces. Like a spring, when an elastic is compressed to a smaller size
than its preferred size, the elastic can be thought of as exerting a force that opposes
that compression. This force increases as the degree of compression increases, but
unlike simple mechanical springs, an elastic in general can display discontinuous
changes in the strength of the force or the rate of change of the force with respect to
changes in the length of the elastic.

If instead of being compressed, an elastic is stretched to a length greater than
its preferred size, then it can be thought of as opposing the stretching with a force
that, like the compressive force, increases with the magnitude of the deformation.

As is the case with springs, different elastics can have different degrees of
stretchiness or compressibility. The greatest degrees of stretchiness or
compressibility are associated with the elastics that exhibit the smallest forces
opposing a given deformation.

Unlike physical springs, elastics can also have different "orders" of
stretchiness or compressibility. An elastic with a higher stretch (or compress) order
is infinitely stretchier (or more compressible) than one with a lower stretch (or
compress) order. If two elastics with different stretch orders are put end to end and
the assembly is stretched, the elastic with the lower stretch order will remain at its
preferred size and all of the extra distance will be accounted for by stretching the
elastic with the larger stretch order.

If the two elastics in this scenario have the same stretch order, however, then
they will both stretch. Each elastic is stretched to the length that causes the forces
opposing the stretch in the two elastics to be equal. In practice, this means that if
one of the elastics is N times stretchier than the other, then the amount by which that
elastic stretches beyond its preferred size will be N times greater than the amount of
stretch that is apportioned to the other elastic.

If instead of being stretched, the assembly of two elastics is compressed
below its preferred size, the behavior is analogous to that described above except

that stretching is replaced by compression.
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For performing graphical layout, elastics are used to represent the height and

width preferences of graphical objects, and therefore it is necessary to be able to:

1. Combine the elastics that describe graphics in a Box to produce elastics that

describe the height and width preferences of the Box itself.

2. Given a height or width assignment of a Box as a whole, and given the
height or width elastics of the graphics within the Box, compute the height or width
assignment for each of those graphics.

To support these needs, elastics must support certain fundamental operations:

1. The "add" operation corresponds to placing two elastics end to end. It would
be used, for example, to compute the width elastic of a Box that contains two or

more graphics arranged in a horizontal row as in Figure 3.

2. The "max" operation corresponds to laying two elastics side by side. It
would be used, for example, to compute the height elastic of a Box containing
several graphics arranged in a horizontal row.

3. The "divide" operation is applied to two elastics and a length. It computes
the portion of the length that should be apportioned to each elastic if the two elastics
were placed end to end and that assembly stretched or compressed to take on the
specified length. It would be used, for example, by a Box containing two graphics
arranged in a horizontal row as in Figure 3, to compute the width assignment for
each graphic, given a specified width assignment for the Box. As discussed below,
this operation can be used together with the add operation to apportion a specified
width or height among any number of objects that are arranged in a sequence along

the dimension of interest.

In addition to these fundamental operations, there are some other operations

that also figure into Curl's use of elastics:

PCT/US00/19769
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4, The "scale" operation "multiplies" an elastic times a number N>0. If N is an
integer, the result is the saﬁle as that produced by putting N copies of the elastic end
to end using the add operation. IfN is not an integer, then the result is interpolated
in the obvious way between the results corresponding to the two integer values

nearest to N.

5. The "equal" operation on two elastics returns true if the two elastics exert the

same force at all sizes.

6. The "equal at size" operation applies to two elastics and a specified length. It
returns true if the two elastics exert the same force when deformed to the given

length.
Other operators, such as "subtract,” can also be envisioned.

Implementation of Elastics in the Curl Language

While the general concept of elastics described above is a powerful basis for
layout computation, it can be expensive to implement in its most general form.
Accordingly, Curl implements an approximation to the general elastic concept

described above. Curl's approximation has the following properties:

1. It is capable of representing elastics whose stretchiness (and stretch order)

differs from their compressibility (and compress order).

2 It incorporates the notion of a "minimum size." Curl's elastics very strongly

resist compression to a size less than their minimum size.

3. There is a bound on how large the representation of an elastic can grow as
add, max, and the other operations listed above are performed on it. No elastic
representation that has this property can yield exact results for all possible elastic
operations, so Curl yields approximate results for add, max, and other operations

where that is necessary to keep the size of the result from growing.

PCT/US00/19769
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4. There are compact representations for some of the more commonly occurring
elastic values. For exampie, elastics whose stretchiness and compressibility are
equal can be represented more compactly than general elastics for which this
equality does not hold.

In summary, the standard Curl elastic has six fields:

1. The minimum size (a floating-point number).

2. The preferred size (a floating-point number).

3. The compressibility coefficient (a floating-point number).
4, The compress order (an integer).

5. The stretchiness coefficient (a floating-point number).

6. The stretch order (an integer).

A Curl object representing an elastic has a type code (as all Curl objects do)
plus fields containing the above values. Compact representations of special-case
elastics have a different type code and a subset of the above fields. The values
associated with the missing fields are computed by reference to the type code and to
the fields that are supplied in the compact representation. For example, the type
code StretchyElastic is associated with an object that contains fields (1)-(4) from the
list above. When values corresponding to fields (5) or (6) are needed, they are
supplied by providing the values from fields (3) and (4), respectively.

Another example of a compact elastic representation is RigidElastic, which
has only a preferred size field. When values corresponding to the other fields are
needed, they are computed so that the minimum size equals the preferred size and

fields (3)-(6) have values that are associated with a standard "rigid" object.
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Implementation of the Fundamental Elastic Operations in the Curl Language
Curl's implementation of the fundamental elastic operations can be described
in terms of the standard six elastic fields, as follows.

The add operation produces a result with the following fields:

1. The minimum size is the sum of the operands' minimum sizes.
2. The preferred size is the sum of the operands' preferred sizes.
3. The compressibility coefficient is the sum of the operands' compressibility

coefficients if both operands have the same compress order. Otherwise the

compressibility coefficient of the result is equal to the compressibility coefficient of

whichever operand had the greater compress order.
4. The compress order is equal to the greater of the operands' compress orders.
5. The stretchiness coefficient is the sum of the operands' stretchiness

coefficients if both operands have the same stretch order. Otherwise the stretchiness
coefficient of the result is equal to the stretchiness coefficient of whichever operand

had the greater stretch order.

6. The stretch order is equal to the greater of the operands' stretch orders.

The elastic produced according to these rules is sometimes only an
approximation of the ideal result of the add operation. For example, if an elastic A
with a small preferred size and a large compress order is added to an elastic B with a
large preferred size and a small compress order, the compress order of the resulting
elastic C will be equal to that of A and the preferred size of C will be the sum of
those of A and B. Thus, C will be an easily compressible elastic that remains easily
compressible even after its size is reduced to less than the preferred size of B alone.
This behavior differs from the behavior of a physical system of springs. In the

physical system, once the highly compressible elastic A had been compressed to
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zero length, no further compression of A would be possible and the elastic C would
then become more difficult to compress, corresponding to B's compress order.

Although the add operation as described here is only approximate, it has the
virtue of being able to represent its result in a fixed amount of space. Every scheme
that produces the ideal result from elastic add operations must require increasing
amounts of space as the results of add operations are themselves provided as
operands to further add operations, leading to space and time costs that must be
balanced against the increased fidelity of the result. The approximation described
above can be computed efficiently and gives good results in practice.

The max operation on two elastics A and B produces a result with the

following fields:
1. The minimum size is the greater of the operands’ minimum sizes.
2. The preferred size favors the preferred size of the elastic which is least elastic

toward the preferred size of the other. Elasticity is determined first by order and, if
order is equal, by comparing coefficients. Since one elastic must stretch to match
the other while the other must compress to match the first, the elasticity comparisons
are comparisons of compressibility against stretchiness. More specifically, the

preferred size is equal to the preferred size of A if

* the preferred size of A is greater than that of B and either
(1) the compress order of A is less than the stretch order of B, or
(i1) the compress order of A equals the stretch order of B and the
compressibility coefficient of A is less than or equal to the

stretchiness coefficient of B; or

* the preferred size of A is less than that of B and either
(i) the stretch order of A is less than the compress order of B, or
(ii) the stretch order of A equals the compress order of B and the
stretchiness coefficient of A is less than the compressibility

coefficient of B.



10

15

20

25

WO 01/09839

-14-
Otherwise, the preferred size of the result is equal to the preferred size of B.

3. The compressibility coefficient is the compressibility coefficient of the
elastic whose preferred size was chosen for the value of the preferred size field (2).
If both operands have the same preferred size, then if the operands have different
compress orders, the compressibility coefficient associated with the lesser compress

order is used; otherwise, the lesser of the two compressibility coefficients is used.

4, The compress order is the compress order associated with the compressibility

coefficient chosen for field (3).

5. The stretchiness coefficient is the stretchiness coefficient of the elastic whose
preferred size was chosen for the value of field (2). If both operands have the same
preferred size, then if the operands have different stretch orders, the stretchiness
coefficient associated with the lesser stretch order is used; otherwise, the lesser of

the two stretchiness coefficients is used.

6. The stretch order is the stretch order associated with the stretchiness

coefficient chosen for field (5).

Like the add implementation described above, this implementation of the
max operation produces only an approximate result in some situations. For
example, suppose an elastic A has a small preferred size and a small compress order,
while an elastic B has a larger preferred size and a larger compress order. If the
stretch orders of A and B are greater than B's compress order, then the preferred size
of the elastic C that is the max of A and B will be equal to the preferred size of B.
Likewise, C's compressibility and compress order will be equal to those of B and
hence C will be easily compressible. Based on the analogy to physical springs, we
might expect C to become more difficult to compress once the preferred size of A is
reached, but if the elastic C is computed according to the rules outlined above, this

will not happen.

PCT/US00/19769
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As in the case of the add operation, total fidelity in the max operation must
be accompanied by an inabﬂity to bound the space and time required to compute the
result. The approximation described above is used because it can be computed
efficiently and gives good results in practice.

5 The divide operation on two elastics A and B and a length x, written as
divide(A,B,x), produces a length of the object having the elastic A. The divide

operation is performed as follows:
1. If x is less than the sum of the two elastics' minimum sizes, then the length x
is divided in proportion to the elastics' minimum sizes. Thus, the result of the divide

10 operation will be

X * A.minimum-size

A.minimum-size + B.minimum-size

2. Otherwise, an excess (or deficit) e is computed by subtracting the sum of the
15 two elastics' preferred sizes from x. e is apportioned between the two elastics as

follows:
a. If e is an excess and the two elastics have equal stretch orders, divide
€ in proportion to the two elastics' stretchiness coefficients. Thus, the excess

that is apportioned to elastic A is given by

20 e * A.stretchiness

A.stretchiness + B.stretchiness

b. If e 1s a deficit and the two elastics have equal compress orders,

divide e in proportion to the two elastics' compressibility coefficients.
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c. If e is an excess and the two elastics have unequal stretch orders,

apportion all of e to the elastic with the greater stretch order.

d. If e is a deficit and the two elastics have unequal compress orders,

apportion all of e to the elastic with the greater compress order.

The result of the divide operation is then the sum of A's preferred size and
the portion of e that was apportioned to A, except that this result is adjusted if
necessary to avoid assigning either to A or to B a size less than its minimum size.

The scale operation applies a scale factor f to an elastic A. The parameters of

the resulting elastic are computed from those of A as follows:

1. The minimum size is f times the minimum size of A.

2. The preferred size is f times the preferred size of A.

3. The compressibility coefficient is f times the compressibility coefficient of
A.

4, The compress order is equal to the compress order of A.

5. The stretchiness coefficient is f times the stretchiness coefficient of A.

6. The stretch order is equal to the stretch order of A.

Other elastic operations are implemented in an analogous way.

Graphical Origins and Dimensions

As discussed above, Curl uses elastics to describe size preferences for
graphical objects. Each such object has a width and a height and also has an
"origin" point that lies somewhere within those bounds. The origin is a useful way

to represent, for example, the location of the baseline of a line of text that extends
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both below and above the baseline. Origins can also be useful for vertical
alignments: for example, if numbers are rendered into text strings whose origins are
at the location of their decimal points, then the decimal points of a column of
numbers can be aligned simply by aligning their origins.

Accounting for origins, there are four size preferences to be described using
elastics as illustrated in Figure 4:

' "

1. The distance from an object's origin to its top (the object's "ascent").

o

The distance from an object's origin to its bottom (the object's "descent").

3. The distance from an object's origin to its left edge (the object's "left
extent").

4. The distance from an object's origin to its right edge (the object's "right
extent").

It is convenient to bundle together the elastics describing size preferences for
ascent and descent into a single unit describing size preferences in the vertical
dimension, and similarly it is convenient to bundle together the elastics that describe
preferences for an object's left and right extents. Accordingly, the Curl
implementation provides a class OriginElastic that contains a pair of elastic objects
describing size preferences on the two sides of an origin point.

Simple graphics such as pictures and rectangles simply synthesize suitable
elastics to describe their size preferences based on internal parameters such as the
number of pixels in the picture. Graphical containers, on the other hand, generate
their elastics by combining their component graphics' elastics using the elastic

operations discussed above.

The Use of Elastics by HBoxes and VBoxes
For example, Curl has a container known as HBox that places a collection of

graphics in a horizontal row. HBox has several options that make it possible to
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specify that the components of the HBox should be aligned by their origins,
bottoms, tops, or centers. If we consider an HBox that aligns its components'
origins, then the origin of the HBox itself will be collocated with the origin of the
first (leftmost) object in the HBox, and the origins of all the other components of the
HBox will be aligned on the same horizontal line as the origin of the HBox itself.

Figure 5 illustrates an HBox containing three objects: a CastTextFlowBox, a
Rectangle, and another CastTextFlowBox. Figure 6 iltustrates the graphic hierarchy
of this HBox. This particular HBox is arranged to align the vertical origins of the
component objects. Rectangle produces an elastic that requests an origin at the
lower left-hand corner of the rectangle, while text produces elastic that requests an
origin at the left-hand end of the text and aligned with the baseline of the text. Thus
when these three objects are displayed within this HBox, the bottom of the
Rectangle is aligned with the baseline of the text, which is generally the alignment
that would be desired. The use of origins enables this alignment even though the
bottom of each text block is below the text block's baseline, as is illustrated by the
positions of the descender characters "y" and "g" in the text blocks.

Figure 7 illustrates a VBox containing several objects that have been aligned
by their horizontal origins. As this figure illustrates, lining up decimal points in a
column of numbers is one application for aligning horizontal origins. Figure 8
shows the graphic hierarchy corresponding to Figure 7 fully expanded so that all
objects that appear in Figure 7 are shown explicitly in Figure 8. It would be possible
in Curl to create a graphical object containing text whose origin would be located
just to the left of the decimal point for all text strings that represent decimal
numbers, but since no such object is built into Curl, each row of digits is constructed
as an HBox containing two text blocks, the first containing the material to the left of
the decimal point and the second containing the decimal point and the material to its
right, if any. Each HBox has been configured so as to put its origin at the right-hand
end of the first text block. The Rule object is responsible for displaying the
horizontal line just below "33.333". The Rule object is configured to have a fixed
height of 1/72 inch but its width is stretchy, so it automatically conforms its width to
the width of the VBox itself.



10

20

25

WO 01/09839

-19-

In a scenario such as that of Figure 5, the left extent elastic of the HBox will
simply be the left extent eiastic of the first component. The right extent elastic of
the HBox is computed by using the elastic add operation to combine the right extent
elastic of the first component with the left and right extent elastics of all the
remaining components. The ascent elastic of the HBox is computed by using the
elastic max operation to combine the ascent elastics of all the HBox's components,
and the descent elastic of the HBox is likewise computed by using the elastic max
operation to combine the descent elastics of all the HBox's components.

The above discussion explains how the elastics that describe an HBox's size
preferences are computed from the elastics that describe the size preferences of the
HBox's graphical children. The other part of the picture is the use of these elastics to
make layout decisions. In a width-first layout negotiation, after an HBox computes
its width elastics, the HBox's graphical parent will eventually determine numerical
values for the HBox's left and right extents and will communicate those values to the
HBox. The HBox uses this information, in combination with the width elastics
obtained earlier from the HBox's graphical children, to calculate the left and right
extents, as well as the horizontal origin location, for each of the HBox's graphical
children.

The left extent of the HBox's first child is easily computed, since it is just
equal to the left extent of the HBox itself, but computing the remaining left and right
extents of the HBox's children is a more complex task. Consider the case of an
HBox with three graphical children A, B, and C, as shown in Figure 9. The origin
of each object is marked by an "*".

The left extents of A, B, and C are denoted by al, bl, and cl, respectively, and
the right extents of A, B, and C are denoted by ar, br, and cr, respectively. The
symbols AL, AR, etc., stand for the corresponding elastics that describe the width
preferences of A, B, and C used to compute the extents.

As noted earlier, al is equal to the left extent of the HBox as a whole, but the
sum ar+bl+br+cl+cr must be made equal to the right extent of the HBox. There are
several methods for computing these values. A simple method proceeds from right
to left by means of successive applications of the elastic divide operation. The first

such divide operation computes
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cr = divide(CR, AR+BL+BR+CL, r)

where r is the right extent of the HBox and AR+BL+BR+CL is the elastic sum of
the four elastics AR, BL, BR, and CL. The second divide operation computes

cl=divide(CL, AR+BL+BR, r-cr)

5  The third computes
br = divide(BR, AR+BL, r-cr-cl)
and the computation proceeds in this way until all of the required extents have been
computed. This procedure generalizes in the obvious way to HBoxes that have more
or less than three graphical children.
10 An alternative method differs from this method but produces the same result.
The alternative method first computes cl+cr as
cl+cr = divide(CL+CR, AR+BL+BR, r)
and then decomposes that result into its components ci and cr as follows:
cl =divide(CL, CR, cl+cr)
15 cr = (cl+cr) - cl
Further iterations of the same method yield bl+br followed by bl and br, and
so on. This method slightly simplifies the computations, described later, by which
an HBox computes the amount of padding to be inserted, if necessary, around
comparatively rigid graphical objects contained within the HBox.
20 Yet other orders of calculation are possible. For example, the flow chart of

Figure 18 illustrates a method in which extents are calculated form left to right.
Curl also has a container known as VBox that works exactly like HBox, but

with the roles of the horizontal and vertical dimensions interchanged.
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Why the HBox and VBox Elastic Computations Work Correctly

The motivation for the particulars of the definitions of the elastic add and
divide operations, given above, can be derived from the policy described above for
computing the horizontal extents of component objects in an HBox. For one
example, consider the situation if all five of the elastics AR, BL, BR, CL, and CR in
the above example are equal. It then is intuitively desirable that all five of the

extents ar, bl, br, cl, and cr be equal. In order for this to be true, the operation
cr = divide(CR, AR+BL+BR+CL, r)

must yield a result that is 1/5 of the value of r. and similarly the operation
cl+cr = divide(CL+CR, AR+BL+BR, r)

must yield a result that is 2/5 of the value of r. These desired results are in fact
achieved by the definitions of add and divide given above because of three principal

properties of the elastic that results from an add operation:
1. The result's preferred size is the sum of the operands' preferred sizes.

2. When the operands' stretch orders are equal, the result's stretchiness

coefficient is the sum of the operands' stretchiness coefficients.

3. When the operands' compress orders are equal, the result's compressibility

coefficient is the sum of the operands' compressibility coefficients.

Thus, in a sum of N equal elastics, the sum's preferred size, stretchiness
coefficient, and compressibility coefficient are each N times the value of the
corresponding property of the operand elastics. If the value r in a divide operation
divide(A, B, r) is greater than the sum s of the preferred sizes of A and B, and the
stretch orders of A and B are equal, then the divide operation will allocate the excess

s-r between A and B in proportion to their stretchiness coefficients. The analogous
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property holds when a divide operation must apportion a deficit of space between
two elastics with equal cofnpress orders. These properties of the divide operation
combine with the way that the add operation computes preferred sizes, stretchiness
coefficients, and compressibility coefficients to insure that the above computations
indeed produce the intuitively desirable resuits. If elastics did not have stretchiness
coefficients or compressibility coefficients, these results could not be produced,
since there would be no general way for the divide operation to understand that the
sum AR+BL+BR+CL contains four units among which space will need to be
allocated, whereas the sum AR+BL+BR contains only three.

For another example, consider the case where all of the elastics in question
are equal, except that CL has a greater stretch order than all the others. Assume
further that the distance r in the example is greater than the preferred size of
AR+BL+BR+CL+CR, so there will be an excess of space to be allocated.
Intuitively, it is desirable that all of the excess space be allocated to CL, since it has
a larger stretch order than all the other elastics. In this case, it can be seen from the
definition of the elastic add operation that any elastic sum that includes CL, such as
CL+CR or AR+BL+BR+CL, will have the same stretch order as CL and will have a
stretchiness coefficient equal to that of CL. On the other hand, an elastic sum that
does not include CL, such as AR+BL+BR, will have a smaller stretch order and a
stretchiness coefficient proportional to the number of summed elastics, as explained

above. In this case, divide operations such as
cr = divide(CR, AR+BL+BR+CL, r)

where CL is included in the right-hand operand will allocate all of the excess space
to the right-hand operand and hence cr will equal the preferred size of CR.

However, divide operations such as

cl =divide(CL, AR+BL+BR, r-cr)

PCT/US00/19769
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where CL is included in the left-hand operand will allocate all of the excess space to
the left-hand operand and therefore cl will be equal to the preferred size of CL plus

the amount of excess space to be allocated. Finally, divide operations such as
br = divide(BR, AR+BL, r-cr-cl)

that include CL in neither operand will operate as described earlier. By following
this logic, it can be seen that the design of the add and divide operations work
together to ensure that the intuitively desirable outcome of allocating all of the
excess space to CL will result no matter what order of divide operations is used to
allocate a distance among a set of summed elastics, for example, no matter whether

the first step is

cr = divide(CR, AR+BL+BR+CL, r)
or

clter = divide(CL+CR, AR+BL+BR, 1)

The same conclusion follows from the many other examples of this nature

that could be constructed.

Grids and Tables

Complex graphical layouts can be produced by nesting HBoxes and VBoxes
inside each other. Curl also has Grid and Table containers, which can be used to
produce layouts such as in Figure 10 where the vertical alignment of A and C (and B
and D) must be maintained as well as the horizontal alignment of A and B (and C
and D). Such layouts cannot be produced simply by nesting HBoxes and VBoxes.
Although Grid and Table can enforce richer collections of geometrical constraints
than HBox and VBox, their geometry too is computed by successive applications of

the basic elastic operations.
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Fill Objects

It is frequently useful in producing graphical layouts to use Fill objects that
perform no drawing operations but do have height and width preferences and do take
up space. Rigid Fill objects can be used within HBoxes and VBoxes to put padding
and/or indentation around other graphical objects. Stretchy Fill objects can be used
for justification and centering purposes. For example, suppose one wishes to

produce a table of contents such as the following:

A Midsummer Night's Dream 5
The Tempest 89
The Two Gentlemen of Verona 173

In Curl, this layout can be specified as a VBox containing one object for each
line of the table of contents. Each line is in turn an HBox containing three objects: a
text object containing a title, a Fill object whose width preference has a larger stretch
order than that of a text object, and a text object containing a page number. The
VBox will assign the same width to all of its child HBoxes, and each HBox in turn
will place the title flush left and the page number flush right assigning all excess
width to the Fill object because the stretch order of its width preference is the largest
among the width stretch orders of all the graphical children of the HBox.

Stretchy Fill objects can also be used to center a graphical object within a
graphical container larger than the graphical object to be centered. In this case, one
stretchy Fill object is placed on each side of the object to be centered, as in the

following Curl expression:

{HBox {Fill}, object, {Fill}}

Since the Fill objects have a greater stretch order than the other object, all
excess width will be allocated to the Fill objects. If both Fill objects have identical
stretch orders and stretchiness coefficients, then the excess will be divided equally
between them. As a result, each Fill object will have the same width and the

graphical object will be centered within the space taken up by the HBox. If the two
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Fill objects have the same stretch order but not the same stretchiness, then the excess
space will be allocated in pfopoﬂion to their stretchinesses, making possible other
layouts such as one in which the space allocated to the left of an object is half as
wide as the space allocated to its right.

The fact that Curl's elastics have stretch orders as well as stretchiness
coefficients is crucial to the success of the above techniques. Without stretch orders,
there would be no way to allocate all excess width to the Fill objects, and inevitably
some fraction of the excess width would be allocated to the centered or justified

objects, deforming them at least slightly.

Padding Elastics

Certain objects are intuitively considered to be "rigid," meaning that they are
not to be stretched or squeezed except under the most extreme circumstances. For
example, Figure 11 shows three rectangles of different heights contained in an
HBox. The HBox's height is equal to that of the tallest rectangle, but even though
this is the case it would not be desirable to stretch the other rectangles to match the
height of the HBox because rectangles are normally considered to be rigid objects.
On the other hand, if a stretchy object such as a Fill object were included in the same
HBox, it would be desired that the stretchy object stretch to the full height of the
HBox.

These goals are achieved in Curl by using padding elastic to fill the areas
into which rigid objects should not be stretched. For example, padding elastic is
used above each of the rectangles in Figure 11.

The padding elastic has a stretch order whose value is known as
padding-threshold-stretch-order. All objects whose stretch order is less than
padding-threshold-stretch-order are thus considered rigid (because the padding will
stretch in preference to stretching the object). So that the width and height
preferences of the HBox will accurately reflect those of the HBox's children, the
padding elastic is not used in calculating the HBox's width and height preferences.
However, when the time comes to allocate the HBox's assigned width and height
among the HBox's children, the padding elastic is used as a device to avoid

stretching rigid objects.
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The example in Figure 11 aligns objects by their bottoms, so padding elastic
is only needed above the ijects. In other cases, such as in Figure 12 where the
objects are aligned by their centers, padding is needed both above and below each
object.

A similar padding policy is used by VBox and by other containers that would
otherwise have the potential of stretching rigid objects contained within them. Some
Curl graphical containers have an option that can be used to disable the use of
padding in special situations where the stretching of rigid objects is desired, but by

default the padding is used.

The Use of Elastics by TextFlowBoxes

Curl's TextFlowBox container is the vehicle for displaying paragraphs of text
formatted onto lines of a given length. Although a single TextFlowBox can contain
many paragraphs of text, TextFlowBoxes containing a single paragraph are an
important special case because many graphical displays such as tables contain
blocks of text that can be treated as a single paragraph. The choice of elastics to use

to describe a TextFlowBox's width and height preferences satisfies three goals:

1. In the absence of other constraints, a TextFlowBox should spread out far

enough horizontally so that each of its paragraphs can be rendered on a single line.

2. If several TextFlowBoxes are contained in an HBox or a similar container
(such as a row of a Table) and there is not enough space available for them all to be
rendered as in (1), then the available space should be apportioned among the

TextFlowBoxes in a way that causes their heights to be roughly equalized.

3. If several TextFlowBoxes are contained in a VBox or a similar container
(such as a column of a Table), the width preferences of the VBox should be

governed by the TextFlowBox that would be the widest when rendered as in (1).

Suppose a VBox contains two TextFlowBoxes, one of which contains a long

paragraph and one of which contains a very short paragraph (such as a couple of
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words). This principle states that, in the absence of other constraints, the short
paragraph should not "pull.in” the horizontal bounds of the VBox in a way that
forces the long paragraph to be rendered as several lines of text.

These design goals are met by computing a TextFlowBox's width elastic as
follows. (A TextFlowBox's width preferences request that the TextFlowBox's origin
be placed along its left-hand edge, so the elastic for the TextFlowBox's left extent is
a highly rigid elastic whose preferred size is 0. Therefore, the width elastic

described below is the elastic corresponding to the TextFlowBox's right extent.)

1. The minimum size is the width of the longest unbreakable text element

(typically a word of text) within the TextFlowBox.

2. The preferred size is the width that would be required so that the longest
paragraph within the TextFlowBox could be laid out as a single line of text,

achieving objective (1) above.

3. The compressibility coefficient is proportional to the total amount of text in
the TextFlowBox's longest paragraph -- in other words, the length of the longest

paragraph without including any fixed left or right indents for margins and the like.

4. The compress order is a standard value known as text-flow-compress-order.
5. The stretchiness coefficient is equal to the compressibility coefficient.
6. The stretch order is a standard value known as text-flow-stretch-order.

Importantly, text-flow-stretch-order is greater than text-flow-compress-order and is

less than padding-threshold-stretch-order.

The fact that text-flow-stretch-order is greater than text-flow-compress order
achieves objective (3) above. Consider a case where two or more TextFlowBoxes of
different sizes are contained in a VBox or a similar container, as specified in the

description of objective (3). The elastic max operation will be performed on the
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width elastics of these TextFlowBoxes. Since the stretchiness of each TextFlowBox
is infinitely greater than the compressibility of any of the TextFlowBoxes (because
their stretch orders are greater than their compress orders), the rules for the elastic
max operation dictate that the result will be equal to the width elastic that has the
greatest preferred size, which will be that of the TextFlowBox that contains the
longest paragraph.

The fact that text-flow-stretch-order is less than padding-threshold-stretch-
order means that TextFlowBoxes act as rigid objects in the sense described above in
the discussion of padding elastic. Thus, if a TextFlowBox appears in a context
where more space is available than the preferred width of the TextFlowBox, the
TextFlowBox will not be stretched horizontally unless the use of padding has been
disabled. This policy conforms to normal notions of how to treat text, although it
could be changed if desired by giving a TextFlowBox a width elastic with a stretch
order greater than padding-threshold-stretch-order.

The compressibility coefficient in the TextFlowBox's width elastic is the
parameter that enables the satisfaction of objective (2) above. The particular case
that we choose to target is the case where each of the TextFlowBoxes in question
consists of a single paragraph of text. This case is targeted because it is by far the
most commonly occurring case in practical situations in which it is desired to
equalize the height of neighboring TextFlowBoxes, notably when such
TextFlowBoxes appear as components of a table.

This compressibility coefficient is derived based on the assumption that a
given block of text occupies a constant area on the display -- in other words, if the
width is reduced, the height will increase so as to keep the product of width times
height approximately constant, and vice versa. There are several reasons why text
does not follow this model exactly, but the model is a fairly serviceable
approximation. Consider two blocks of text P and Q that obey this model, such that
the preferred width of P is p and the preferred width of Q is q. Consider further that
these two blocks of text need to be laid out horizontally in a space of total width w,
where w <p+q. We need to apportion the deficit d = (p+q) - w between P and Q in
such a way that the heights of P and Q will be equalized. When the preferred widths

of P and Q are proportional to their areas -- which is true in the case we have been
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considering where each of P and Q contains a single paragraph of text -- it can be
shown that this desired ap}ﬁortionment allocates the deficit between P and Q in
proportion to their areas. For example, if P has a greater area than Q, then a
proportionately greater share of the deficit d should be allocated to P.

The satisfaction of objective (2) by the current Curl implementation is
illustrated in Figures 14, 15, and 16, which show the appearance of a graphical
hierarchy having the structure illustrated in Figure 13 when it is constrained to each
of three different widths. As shown in Figure 13, the structure displayed in Figures
14-16 is an HBox containing three TextFlowBoxes, each one of which has a single
paragraph of a different length. When laid out at its preferred width, the resulting
appearance is shown in Figure 14. Each TextFlowBox has been given exactly the
space needed to render it on a single line, which is the preferred appearance of a
TextFlowBox that contains a single paragraph. When the available width is
reduced, the reduction is apportioned among the constituent TextFlowBoxes in
proportion to their compressibility coefficients (i.e., in proportion to the length of
text contained within them). Figure 15 illustrates the situation that results when the
width reduction is moderate, showing how the apportionment of this width reduction
to each TextFlowBox leads to the desired layout in which all three boxes have
comparable heights. Figure 16 illustrates the result when the width reduction is
more severe, illustrating once again how the apportionment of the reduction tends to
keep the heights of the TextFlowBoxes equalized.

Because words are vary in length and line breaks can only occur between
words (or perhaps at specific positions within hyphenated words), this policy will
not always exactly equalize the heights of the TextFlowBoxes: it is fairly common
to encounter marginal situations where one TextFlowBox has just barely expanded
to an additional line of text while other TextFlowBoxes have not. Also, once the
width of a TextFlowBox has been reduced to a value equal to or less than the width
of its longest word (or other unbreakable object), divergences from the ideal
behavior become more common. Nevertheless, over a wide range of conditions the
TextFlowBox width elastic described here performs well at keeping TextFlowBox

heights equalized.
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In a width-first layout negotiation, expressing the height preference of a
TextFlowBox is straightfofward because the width for the text is already known
before the height preference needs to be computed. As a result, the TextFlowBox's
height preference is just a rigid elastic whose minimum and preferred sizes are both
equal to the height actually required to display all the text.

Objective (2) above is difficult to satisfy when height-first layout negotiation
is used, so in this case a TextFlowBox's size preferences are simply computed based
on the assumption that it is a rigid object of the dimensions that would be required to

lay out the contained text as described for objective (1) above.

Simple Rigid Objects

TextFlowBoxes are an example of a graphical object whose width and height
are approximately inversely proportional to each other, but there are much simpler
graphical objects, such as polygons and ellipses, that simply have a certain natural
size and should not normally be deformed. The width and height preferences of

these rigid objects are expressed by elastics of the following nature:

1. The minimum size is the natural size (width or height, as appropriate) of the
object.

2. The preferred size is equal to the minimum size.

3. The compressibility coefficient is a standard value such as 1.

4, The compress order is a standard value known as minsize-stretch-order.

minsize-stretch-order is less than text-flow-compress-order and is used as the
compress order of all elastics where the preferred and minimum sizes are equal. In
truth, it matters little what compress order or compressibility coefficient is used in
such an elastic because the elastic divide operation will only allocate an elastic a
space less than its minimum size under extreme conditions, no matter what the

elastic's compress order and compressibility coefficient are.
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5. The stretchiness co.efﬁcient 1s a standard value such as 1.
6. The stretch order is equal to text-flow-stretch-order.
The key properties of this elastic are
1. It strongly resists being compressed below the natural size of the object.
2. Since its stretch order is less than padding-threshold-stretch-order, it will not

be stretched beyond its natural size when placed within a container such as HBox or

VBox that uses padding elastic.

3. Since the stretch order of a rigid object is greater than the compress order of
a TextFlowBox (and likewise the stretch order of the TextFlowBox is greater than
the compress order of a rigid object), if a VBox contains some combination of
TextFlowBoxes and rigid objects, none of the objects contained within the VBox
will cause any other object within the VBox to be compressed to less than its

preferred width.

During width-first layout negotiation, the height preference of a
TextFlowBox is expressed as a rigid elastic whose natural size is the height required
to lay out the text contained in the TextFlowBox, given the width that has been

allocated for that TextFlowBox.

Constant-Aspect-Ratio Objects.

A third family of objects includes graphics such as images, which can be
rendered at different sizes but which, for good appearance, must be rendered at a
specified "aspect ratio” (the ratio of height to width). If the desired height and width
are known in advance, such objects can be treated just like rigid objects. However,
it is sometimes convenient to let the height and width be variable so that the object's
size can accommodate to its surroundings. This can be achieved in the Curl layout

system by providing a stretchy elastic during the first layout negotiation pass (e.g.,
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providing a stretchy elastic as the width preference during a width-first layout
negotiation). This stretchy elastic can have whatever parameters will result in the
desired level of accommodation to the surrounding graphics. During the second
layout negotiation pass, the size allocated during the first layout negotiation pass
(e.g., the width, in the case of width-first layout negotiation) will be known. The
size preference returned during the second layout negotiation pass can therefore be a
rigid elastic whose natural size is computed using the object's aspect ratio and the

size allocated during the first layout negotiation pass.

Overriding Elastics

It is sometimes useful to override the default width or height preference of a
graphic object. The overridden values can be used when a graphic object reports its
own preferences to a parent graphic object, thereby communicating graphic
relationships that the override created up to the parent graphic object. In Curl

overrides can be done easily by means of the "width" and "height" options, thus:
{Fill width=2cm, height=1cm}

The values specified for these options can either be linear measurements
(such as "2cm" in the above example) or other elastic values. If the supplied width
or height value is an OriginElastic, it is used directly as a substitute for the width or
height preference that would otherwise be provided by the graphic object. However,
if the supplied value is not an OriginElastic, it is necessary to use the supplied value
as a guide in modifying the OriginElastic returned by the object to compute the
override OriginElastic that will actually be used for layout purposes by the object's
graphical parent (e.g., an HBox container).

If the supplied width or height value is a linear measurement such as 2cm, it
is converted to a rigid elastic (as described above under "Simple Rigid Objects")
whose natural size equals the linear measurement. Thus, there are only two cases to
consider when determining the override OriginElastic for a graphic object:

1. The case, already considered above, in which the override width or

height value is supplied as an OriginElastic.
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2. The case in which the supplied value is an elastic.

In the former case, the graphic object stores the override OriginElastic

supplied and simply returns it when asked for its OriginElastic.

In the latter case, it is desirable to compute an override OriginElastic having
two properties:

1. The sum of the override OriginElastic’s two component elastics
(using the elastic add operation) equals the supplied width or height
value.

2. Subject to constraint (1), the relationship between the two component

elastics of the override OriginElastic corresponds as closely as possible to the

relationship between the two component elastics of the original OriginElastic

supplied by the object to describe its width or height preference.

Figure 23 illustrates the horizontal arrangement of two text boxes and their
corresponding elastics. Two text boxes, X and Y, are contained in the graphic object
HBox. For the purposes of this example it is assumed that text boxes (X and Y)
have been configured such that the origin of the Hbox lies at the line that separates
the two text boxes (X and Y). The original OriginElastic that would be returned is
represented by the line containing A and B. The original OriginElastic will be
returned when the width value has not been overridden. T represents the situation
where the width value has been overridden. As noted above, the override value can
be an option value (represented perhaps by a rigid elastic) or an OriginElastic. If the
override value is an OriginElastic no computation needs to be performed to return an
override OriginElastic; the supplied OriginElastic is simply returned. If the override
value is not supplied, an override OriginElastic must be computed.

Since property (2), in particular, is a somewhat subjective criterion, there are
several different ways of computing an override OriginElastic that can be said to
have these properties. The method outlined below is the method actually used in the
Curl implementation and has proven to compute values that are reasonable for

practical use. In the following description, A and B (Fig. 23) represent the "first"
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and "last" components of the original OriginElastic. T represents the elastic
supplied as the width option value. AA and BB répresent the first and last
components of the resulting override OriginElastic. The method is described using
Curl programming notation. The code uses two procedures (subroutines)
distribute-stretch-to-components and distribute-stretch-to-first. Lines beginning

with "|" vertical bars contain comments.

| Fetch the parameters of T.

I tminis T's minimum size

Il tprefis T's preferred size

|| tcompress is T's compressibility coefficient

(| tordercis T's compress order

|| tstretch is T's stretchiness coefficient

|l torders is T's stretch order

let (tmin:gdim, tpref:gdim, tcompress:float, torderc:int,
tstretch:float, torders:int) =

{T.unpack-as-elastic}

{| Fetch the parameters of A.

|| aminis A's minimum size

|| aprefis A's preferred size

| acompress is A's compressibility coefficient

|| aorderc is A's compress order

|| astretch is A's stretchiness coefficient

|| aordersis A's stretch order

let (amin:gdim, apref:gdim, acompress:float, aorderc:int,
astretch:float, aorders:int) =

{A.unpack-as-elastic}

|| Fetch the parameters of B.
| bmin is B's minimum size

|l bprefis B's preferred size
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|| bcompress is B's compressibility coefficient

|| bordercis B's cdmpress order

|| bstretch is B's stretchiness coefficient

|| borders is B's stretch order

let (bmin:gdim, bpref:gdim, bcompress:float, borderc:int,
bstretch:float, borders:int) =

{B.unpack-as-elastic}

|| Set amin to divide(A,B,tmin).
set amin = {A.divide B, tmin}
set bmin = tmin - amin
let abpref:gdim = apref + bpref
let pref-excess:gdim = tpref - abpref
|| Set apref to divide(A,B,tpref).
set apref = {A.divide B, tpref}
set bpref = tpref - apref
let ac:float
let ao:int
let be:float
let bo:int
{if pref-excess <= 0 then

set ac = acompress

set ao = aorderc

set bc = bcompress

set bo = borderc

else
set ac = astretch
set ao = aorders
set bc = bstretch
set bo = borders
}

|| If either A or B ends up with its min size equal to its

PCT/US00/19769
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|| preferred size, adjust the compress orders if necessary

|| so that all of the cbmpressibility of the total will be

| allocated to the one that actually could shrink.

{if apref <= amin and bpref > bmin and ao >= bo then

setao=bo-1

}

{if bpref <= bmin and apref > amin and bo >= ao then
setbo=ao - 1

}

set (acompress, aorderc, bcompress, borderc) =
{distribute-stretch-to-components

ac, ao, bc, bo, tcompress, torderc}

set (astretch, aorders, bstretch, borders) =
{distribute-stretch-to-components

astretch, aorders, bstretch, borders, tstretch, torders}

Il Assemble AA from its components:
|l amin becomes AA's minimum size
| apref becomes AA's preferred size
|| acompress becomes AA's compressibility coefficient
|| aorderc becomes AA's compress order
|| astretch becomes AA's stretchiness coefficient
|| aorders becomes AA's stretch order
set AA =
{pack-elastic

amin, apref, acompress, aorderc, astretch, aorders}

|| Assemble BB from its components:
|l bmin becomes BB's minimum size
I bpref becomes BB's preferred size

| bcompress becomes BB's compressibility coefficient
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|| borderc becomes BB's compress order
|| bstretch becomeé BB's stretchiness coefficient
|| borders becomes BB's stretch order
set BB =
{pack-elastic

bmin, bpref, bcompress, borderc, bstretch, borders}

|| Define the distribute-stretch-to-components procedure:
{define {distribute-stretch-to-components

acoeff:float, aorder:int, beoeff:float, border:int,

tcoeff:float, torder:int}: {return float, int, float, int}
{if aorder == border then

set aorder = torder

set border = torder

let sum-coeff:float = acoeff + beoeff

let ratio:float = acoeff / sum-coeff

set acoeff = tcoeff * ratio

set beoeff = tcoeff - acoeff
elseif aorder > border then

set (acoeff, aorder, bcoeff, border) =

{distribute-stretch-to-first

acoeff, aorder, bcoeff, border, tcoeff, torder}

else
set (bcoeft, border, acoeff, aorder) =
{distribute-stretch-to-first
beoeff, border, acoeff, aorder, tcoeff, torder}
}
{return acoeff, aorder, beoeff, border}
}

|| Define the distribute-stretch-to-first procedure:

{define {distribute-stretch-to-first
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acoeff:float, aorder:int, bcoeff:float, border:int,
tcoeff:ﬂoat; torder:int}: {return float, int, float, int}
{if border >= torder then
set border = torder - 1
}
set aorder = torder
set acoeff = tcoeff

{return acoeff, aorder, beoeff, border}

}

Figure 24 illustrates the hierarchy of graphical objects displayed in Figure
23. The graphic container object, Hbox 150, is the root of a hierarchy containing
Graphic Objects X and Y 156. Each graphic object has an associated Layout Object
154; layout objects describe the positions and sizes of objects to be displayed. The
override 152, either as an Elastic or OriginElastic, is also stored in the graphic
hierarchy.

Figure 25 is a flowchart illustrating a method for providing overrides for
graphic objects defined with elastics. The process begins at step 160. The original
OriginElastic 1s first determined from the graphic object (Step 162). The original
OriginElastic is computed for a compound graphic object and is simply stored for a
simple graphic object. If no override is associated with a graphic object (Step 164),
then the original OriginElastic is simply copied to the resulting OriginElastic (Step
166). If an override is present the resulting override OriginElastic is computed (see
method described using Curl programming notation above) from the original
OriginElastic and the stored override Elastic (Step 168). The resulting OriginElastic
(from Step 166 or Step 168) is then returned in Step 170. The process ends at Step
172.

Overriding elastics is an effective mechanism for altering the display
characteristics of graphical objects while preserving certain display relationships.
Specifically, the relationship between the two component elastics in the resulting
OriginElastic is close to the relationship between the two component elastics in the

original OriginElastic.
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Curl's Three-Pass Layout Negotiation Algorithm

As discussed earlief, Curl supports two layout negotiation orders: width-first
and height-first. For applications in which text is formatted primarily into horizontal
lines (e.g., when using Western languages), width-first negotiation generally yields
better results, as illustrated in the above discussion of the width preferences for
TextFlowBoxes. The following discussion describes width-first layout negotiation;
the details for height-first negotiation are completely analogous except that the roles
of width and height are interchanged.

Width-first layout negotiation with an object g begins when the object's
parent calls g's get-width-preference method. This method is responsible for
returning a pair of elastics (or information that can be converted to a pair of elastics)
describing g's preferences for the amount of space to be allocated to its left and right
extents. If g is a Box, this information will generally be derived by calling the
get-width-preference method of each of g's graphical children and combining the
results in a suitable way.

The next step in width-first layout negotiation with g occurs when g's
constrain-width method is called. That method takes as arguments the left and right
extent values that have been computed for g, and is responsible for returning a pair
of elastics (or information that can be converted to a pair of elastics) describing g's
preferences for the amount of space to be allocated to its ascent and descent. If g is
a Box, this method will generally compute the left and right extents for each
graphical child of g and then call each child's constrain-width method to obtain a
height preference for each child. Those height preferences are then combined in a
suitable way to yield g's height preference.

The final step in layout negotiation with g occurs when g's set-size method is
called. That method receives as its argument a description of the left and right
extents, as well as the ascent and descent, that have been allocated to g. g can make
note of this information for future reference. If g is a Box, it is also expected to call
the set-size methods on each of its graphical children with suitable arguments.

Since this layout negotiation strategy does not require information about
height preferences until after width decisions have been made, it provides an

opportunity for objects such as text blocks and pictures to defer deciding their height
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preferences until after their width allocations are known. In this way, paragraphs
with word wrap and pictﬁres with constant aspect ratios can both be formatted more
intelligently.

Figures 17, 18 and 19 present flowcharts explaining how HBox, a
representative graphical container, handles layout. Each flowchart shows how HBox
behaves during one of the three passes of a three-pass width-first layout negotiation.
The behavior during a height-first layout negotiation is similar, although the detailed
sequence of operations is different.

The methods of HBox that are called during the three phases of layout

negotiation are as follows:

First pass:  {HBox.get-width-preference}
Second pass:  {HBox.constrain-width lextent:float, rextent:float}

Third pass:  {HBox.set-size bounds:GRect}

The HBox.get-width-preference method returns an OriginElastic
representing the width preference of the HBox, and the HBox.constrain-width
method returns an OriginElastic representing the height preference of the HBox.
The lextent and rextent arguments to HBox.constrain-width give the left and right
extents that should be assumed for purposes of calculating the HBox's height
preference. The GRect object that is supplied as an argument to HBox.set-size
contains four floating-point numbers indicating the left and right extents, as well as
the ascent and descent values representing the rectangular area that has been
allocated to the HBox.

The flowcharts of Figures 17, 18 and 19 will now be described. It will be
recognized that, since the graphical layout can be a complex tree, each object may be
a parent object having a number of child components, and each of those child
components may itself be a parent to its child components and so on to the leaves of
the tree. Each of the flowcharts of Figures 17 through 19 represents the process in a
child when the corresponding routine is called by its parent. Within each routine,

the child makes the same call to each of its children. Thus, the call is passed from
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the root of the tree through to the leaves which return their respective results back
through to the tree root. -

The flowcharts are restricted to the case where the HBox aligns the origins of
the contained objects and does not include the logic required to align bottoms, tops,
or centers. Specifying the logic for an HBox with those added capabilities is a
straightforward exercise. The flowcharts will be described relative to the simple
example of Figure 9 where a call is made to an HBox which in turn makes the calls
to its three children A, B and C.

The computation is described using several variables that are understood to
be private to the HBox, including the following:

A,D,L and R, elastics used for internal computations.

P, an elastic used for padding.

C, a pointer to a child graphical object of current interest.

1, an integer index variable.

CWE, an array of Origin Elastics that stores the width preferences received
from child objects.

CHE, an array of Origin Elastics that stores the height preferences received
from child objects.

RR, an array of elastics used for accumulating the width preference of the
HBox.

lextent, rextent, ascent, descent, casc, cdesc, cp, after and cspace, numbers
used to designate sizes or positions of graphical objects.

CLEX and CREX, arrays of left and right extent values, respectively,
computed for the child objects.

XPOS, an array of x coordinates of the child objects’ origins.

CBOUNDS, a GRect object.

When the parent to the HBox calls get-width-preference (Figure 17), the
HBox in this example returns a width elastic WE comprised of left and right elastics
L and R. The left elastic of the HBox is the left elastic of object A, and the right
elastic is the summation of the remaining elastics AR, BL, BR, CL and CR as
illustrated in Figure 20. To that end, the HBox itself makes the get-width-preference

call to each of its children A, B and C to obtain their respective left and right
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elastics. More specifically, at 102, the left and right elastics of the HBox are
initially set at zero and the number of children i of the HBox is set at 3. At 104,11s
initially three and thus greater than zero, so the system continues to 106. At 106, the
HBox makes the get-width-preference call to its child C (i=3) to receive CL and CR.
The right elastic, still at zero, is stored at R[3] for reference in a subsequent method.
The overall width preference of child C is also saved in CWE[3] for reference in a
subsequent method. The right component CR of child C is added to the value R
which serves as an accumulator for the right elastic of the HBox. (In the flowchart,
the terms last component/first component refer to the right extent/left extent and
descent/ascent, respectively, depending on whether a width-first or height-first
process is being performed. In this example, last/first correspond to right/left.)

Still processing child C, at 108 i=3, so the left component CL of child C is
added to the right component R of the HBox at 110. The index i is decremented at
112 and compared to zero at 104. In the next loop, BR and BL are similarly added
to R at 106 and 110 and value RR[2] is saved. Specifically, RR[2] is the sum of the
left and right elastics of child C.

In the final loop of this example, child A is processed. The value RR[1] is
the sum of the left and right elastics of children B and C. Right elastic AR is added
to the right elastic R of the HBox at 106, but at 108, the system goes to 114. Thus,
the left elastic AL of the final child A becomes the left elastic of the HBox. Finally,
with 1 decremented to zero at 112, the left and right elastics L and R construct the
OriginElastic WE. That OriginElastic for the HBox is returned to its parent. The
value is passed back up the tree through the get-width-preference routines of parents
to the root of the tree.

The width constraints are then passed back down through the tree through
the constrain-width call (Figure 18) causing the HBox to return an OriginElastic HE
constructed from a computed ascent and descent.

Upon receipt of the constrain-width call, the HBox performs the method of
Figure 18. Based on the left and right elastics computed in the method of Figure 17
and on a padding elastic for the HBox, at 118, the padding is removed from the
lextent and rextent (left and right extent distance included in the parent call) through

the divide operation. An ascent and a descent are initialized at zero, as is a cursor
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position value cp. The constrain-width process processes children from left to right,
and cp defines the left edge of the next region to be allocated, counting right from
the origin of the HBox. The child index i is set at 1 for left to right processing. The
value "after" is a distance to be divided among the children and is initially set at
rextent (Figure 21A).

At 120, 11s less than the number 3 of children of the HBox and the system
continues to 122. At 122, the left and right elastics of child A are stored at L and R.
At 124, i=1 for the first child A and the system goes to 126. At 126, the HBox
computes the lextent CLEX[1] and rextent CREX[1] to be forwarded to the child A
in a constrain-width call. The lextent to be forwarded to the first child A is the
lextent received by the HBox. With lextent allocated to CLEX[1], cp is incremented
by lextent The rextent to be forwarded to the child A is a value cspace which is
computed by the divide operation. As illustrated in Figure 21A, the "after" distance,
which at this point in the method is equal to the received rextent, must be divided
between the right elastic R of child A and the accumulated width preference RR[1]
of children B and C determined in the first pass. The portion of "after" allocated to
the elastic R is the value cspace.

The value cspace is then forwarded to the child A as its constrained rextent.
Returned from the child A is the child height OriginElastic which defines the ascent
and descent elastics A and D. A value XPOS[1] which sets the distance of the child
origin relative to the HBox origin is set for child A at zero since the origin of an
HBox is defined to be the same as the origin of the leftmost child.

At 128, the cursor pointer cp is incremented by cspace to the left edge of A,
and the child index 1 is incremented by one. The distance "after" remaining to be
allocated is computed by subtracting cspace of Figure 21 A from "after" of that
Figure to provide a distance to be allocated among the left and right extents of B and
C as illustrated in Figure 21B.

From 120, the method retums to 122 to process the second child B. The left
and right elastics for child B which were computed in the method of Figure 17
define L and R (Figure 21B). Since the first child has been processed, the method
proceeds from 124 to 130. The cspace to be allocated is then computed by dividing

the distance "after" between L+R and RR[2]. The value cspace is then divided
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according to the left and right elastics L and R of the child B to definé CLEX[2], and
the difference between cspace and CLEX[2] defines CREX[2]. The position of the
origin of child B XPOSJ[2] is defined by adding CLEX[2] to the left edge of child B
defined by cp. The HBox also provides a constrain-width call to child B to constrain
child B to the computed CLEX[2] and CREX([2] and to receive from child B its
ascent and descent elastics. The ascent and descent elastics A and D for the HBox
are then defined through the max operation applied to the present ascent and descent
values A and D of the HBox and the ascent and descent values returned from child
B.

In the next loop, the method similarly processes the third child C in steps 122
and 130. The HBox then returns its height OriginElastic which is the maximum
ascent and maximum descent for the three children A, B and C.

Figure 19 illustrates the set-size method by which the HBox is provided with
the values of 1ts left extent, right extent, ascent and descent and by which the HBox
passes the appropriate values to each of its children. At 134, the appropriate
padding for the HBox is stored at P. Ascent and descent are taken from the
components provided in the call from the parent, and the child index i is set at one.
For the first child, the method passes through the decision 136 to 138. At 138, the
ascent and descent elastics A and D for the child A are defined by the corresponding
components of the child height elastic, saved from the computation of Figure 18.
The child ascent and child descent casc and cdesc are then computed by the divide
operation which divides the bounded ascent and descent according to the ascent,
descent and padding elastics (Figure 22). The child bounds are then defined for the
child from the extents previously constrained in the constrain-width method (Figure
18) and the just computed child ascent and descent. Those bounds are then
presented to the child through a set-size call, and the child index is incremented by
one. Once each child has been bounded, the method returns to the parent from
decision 136.

While this invention has been particularly shown and described with
references to preferred embodiments thereof, it will be understood by those skilled
in the art that various changes in form and details may be made therein without

departing from the scope of the invention encompassed by the appended claims.
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CLAIMS
What is claimed is:
1. A method of processing graphical objects to lay out the graphical objects
comprising:
5 computing preferred sizes and elasticities of the graphical objects

along a first dimension;
computing size values of the graphical objects along the first
dimension from the preferred sizes and elasticities;
computing preferred sizes and elasticities of the graphical objects
10 along a second dimension based on the size values of the graphical objects
along the first dimension; and
computing size values of the graphical objects along the second

dimension from the preferred sizes and elasticities.

2. A method as claimed in claim 1 further comprising selecting as the first
15 dimension one of width and height and as the second dimension the other of

width and height.

3. A method as claimed in claim 1 wherein the first dimension is width and the

second dimension is height.

4. A method as claimed in claim 1 wherein the first dimension is height and the
20 second dimension is width.
5. A method as claimed in claim 1 wherein the elasticities include stretchiness

and compressibility properties.

6. A method as claimed in claim 5 wherein the stretchiness and compressibility
properties include stretch and compress orders and stretchiness and

25 compressibility coefficients.
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A method as claimed in claim 6 further comprising providing minimum size

values included in computing size values.

A method as claimed in claim 1 wherein the sizes and elasticities of parent
graphical objects are computed from sizes and elasticities of child graphical
objects, and size values computed for parent graphical objects are distributed

among child graphical objects.

A method of processing graphical objects to lay out the graphical objects
comprising:

computing preferred sizes and elasticities of parent graphical objects
along a first dimension from sizes and elasticities of child graphical objects;

computing size values of the parent graphical objects along the first
dimension from preferred sizes and elasticities;

computing size values of the child graphical objects along the first
dimension from the computed size values of the parent graphical objects and
the child graphical object preferred sizes and elasticities;

computing preferred sizes and elasticities of the parent graphical
objects along a second dimension from the computed size values and
preferred sizes and elasticities of the child graphical objects;

computing size values of the parent graphical objects along the
second dimension from the preferred sizes and elasticities; and

computing size values of the child graphical objects along the second
dimension from the size values of the parent graphical objects and the child

graphical object preferred sizes and elasticities.

A method as claimed in claim 9 further comprising selecting as the first
dimension one of either width and height and as the second dimension the

other of width and height.

A method as claimed in claim 9 wherein the first dimension is width and the

second dimension is height.

PCT/US00/19769
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A method as claimed in claim 9 wherein the first dimension is height and the

second dimension is width.

A method as claimed in claim 9 wherein the elasticities include stretchiness

and compressibility properties.

A method as claimed in claim 13 wherein the stretchiness and
compressibility properties include stretch and compress orders and

stretchiness and compressibility coefficients.

A method as claimed in claim 14 further comprising providing minimum

size values included in computing size values.

A method as claimed in claim 9 wherein the sizes and elasticities of parent
graphical objects are computed from sizes and elasticities of child graphical
objects, and size values computed for parent graphical objects are distributed

among child graphical objects.

A data processing system comprising:

means for computing preferred sizes and elasticities of graphical
objects along a first dimension;

means for computing size values of the graphical objects along the
first dimension from the preferred sizes and elasticities;

means for computing preferred sizes and elasticities of the graphical
objects along a second dimension based on the size values of the graphical
objects along the first dimension; and

means for computing size values of the graphical objects along the

second dimension from the preferred sizes and elasticities.

A system as claimed in claim 17 further comprising means for selecting as
the first dimension one of width and height and as the second dimension the

other of width and height.

PCT/US00/19769
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A system as claimed in claim 17 wherein the elasticities include stretchiness

and compressibilify properties.

A system as claimed in claim 19 wherein the stretchiness and compressibility
properties include stretch and compress orders and stretchiness and

compressibility coefficients.

A system as claimed in claim 20 further comprising means for providing

minimum size values in computing size values.

A system as claimed in claim 17 wherein the sizes and elasticities of parent
graphical objects are computed from sizes and elasticities of child graphical
objects, and size values computed for parent graphical objects are distributed

among child graphical objects.
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