发明名称 一种斜井沉井方法

摘要

一种涉及斜井过表土段流砂层的建井方法，为了克服现有技术中沉井施工过程安全不易保障，所需设备多和材料消耗大等缺陷而提供的一种以改变沉井结构为特点的斜井沉井方法。在该方法中，沉井上部采用封闭拱形的巷道结构，且一端为封闭端以防流砂通人，另一端为敞口并沿斜井坡度通向地面，因此施工安全性好，吊装设备简单，同时挖掘出的泥砂可随时回填至沉井上部以增大下沉速率，减少了沉井的材料消耗，简化了施工过程，效率高、造价低。
权利要求书

1. 一种涉及斜井过表土层流砂层的建井方法，属于斜井沉井法，包括以下步骤：

1) 在地表之下，潜水位之上确定沉井的相对位置；
2) 将预先加工好的沉井刃脚置于已找平的垫木上，该摆放位置应与设计井简的位置相一致；
3) 沿刃脚向上绑扎墙体时向钢筋的同时，在钢筋与钢筋之间采用纵向筋和联接筋相连而形成沉井的设计形状，所述的沉井是由两部分构成，即一端开口、另一端呈拱形封闭状的一段水平巷道和一段两端均敞开的倾斜巷道连接而成；沉井的巷道断面上部呈拱形；沉井的长度应为水平段与倾斜段巷道长度之和，其中水平段长度 = \frac{H \times \cos \alpha + G}{\tan \alpha}；倾斜段长度 = \frac{E_0 - E_1}{\sin \alpha}；

式中: H 为设计井筒的掘进高度；
\alpha 为斜井井筒的设计坡度；
G 为安全岩柱高度，根据岩性条件而定，一般取 2 米以上；
E_0 为所测量的潜水位标高；
E_1 为所测量的基岩标高；

沉井断面的净高度应至少大于设计井简的掘进高度；
沉井断面的净宽度应至少大于设计井筒的掘进宽度；

4) 分别组装沉井的刃脚、墙体和顶部模板，并浇灌混凝土；
5) 在沉井内，且垂直于两侧墙体进行临时支撑；
6) 对称、同步抽取垫木，挖运流砂至地面使沉井下沉；
7) 当沉井沉至基岩时，将刃脚与基岩用混凝土封闭。
说明书

一种斜井沉井方法

本发明是一种间接方式的建井方法，用于斜井过表土段流砂层时将水和松散的土砂隔离于沉井井筒之外，而在沉井井壁的保护下再进行斜井井筒的砌筑。

在现有技术中，对于通过较薄流砂层的斜井施工一般采用大揭盖、疏干、板桩等方法进行。但遇到中厚或厚的流砂层时，就需要采用沉井法强行通过。该方法是根据斜井井筒所要穿过含水层的位置与深度的要求，采用具有若干个长方形多孔矩形断面的沉井结构，沿斜井断面中心线的方位垂直下沉。当沉井穿过预定的不稳定含水层后，进行封底、注浆固井，然后再在已下沉就位的沉井井筒内，按照设计斜井的坡度打通沉井联系墙以及长端的部分井壁，砌筑斜井井筒。最后回填其余的沉井空间。由于在此方法中比照了立井沉井过流砂层的形式，故该斜井沉井采用了长跨度多孔矩形断面的结构，使工人各自在每个矩形井孔内工作，这不仅需要配备二套以上提吊设备，且随着沉井下沉深度的增加，对于施工人员的安全越来越不易保障，在沉井出现偏斜时也不便协调指挥，且工序较复杂，难于组织。当沉井沉到基岩封固后，它并不能象立井那样一次成井，而是需用放炮等方法打通沉井联系墙及长端的部分井壁；同时为了增大沉井重率和加快下沉速度，还需衬砌配重井壁，这些都无疑增加了材料的消耗，工序也更为复杂。
为了克服上述现有技术中的不足，本发明的目的在于提供一种以改变沉井结构为特点的新的斜井沉井法，从而在确保施工安全的同时，提高施工效率、简化施工过程。

本发明是通过以下技术措施来实现的：

一种涉及斜井过表土段流砂层的建井方法，属于斜井沉井法，包括以下步骤：

(1) 在地表之下，潜水位之上确定沉井的相对位置；

(2) 将预先加工好的沉井刃脚置于已找平的垫木上，该摆放位置应与设计井筒的位置相一致；

(3) 沿刃脚向上绑扎墙体竖向钢筋的同时，在钢筋与钢筋之间采用纵向筋和联接筋相连而形成沉井的设计形状；所述的沉井是由两部分构成，即一端开口、另一端呈拱形封闭状的一段水平巷道和一段两端均敞口的倾斜巷道连接而成；沉井的巷道断面上部呈拱形；沉井的长度应为水平段与倾斜段巷道长度之和，

其中水平段长度 = \(\frac{H}{\cos \alpha + G} \) \(\frac{1}{\tan \alpha} \) 每斜段长度 = \(E_0 - E_1 \) \(\frac{1}{\sin \alpha} \)

式中；

\(H \) 为设计井筒的掘进高度；

\(\alpha \) 为斜井井筒的设计坡度；

\(G \) 为安全岩柱高度，根据岩性条件而定，一般取2米以上；

\(E_0 \) 为所测量的潜水位标高；

\(E_1 \) 为所测量的基岩标高；

沉井断面的净高度应至少大于设计井筒的掘进高度；

沉井断面的净宽度应至少大于设计井筒的掘进宽度；
(4) 分别组装沉井的刃脚、墙体和顶部模板，并浇灌混凝土；
(5) 在沉井内，且垂直于两侧墙体进行临时支撑；
(6) 对称、同步抽取垫木，挖运流砂至地面使沉井下沉；
(7) 当沉井沉至基岩时，将刃脚与基岩用混凝土封闭。
本发明的优点是显而易见的。

首先由于采用了拱形巷道式的沉井结构，即沉井上部为封闭半圆拱形，因此不仅使沉井的受力更加合理，还使沉井在下沉的同时，能够不断将挖掘出的砂土回填于沉井之上，从而在本方法中无需以增砌配重井壁的方式自然地增加了沉井的下沉力，既减少了沉井的砌筑量和土方挖掘量，降低了材料消耗，提高了施工效率，也保证了在沉井中施工人员的作业安全。

又由于本发明中沉井呈一端拱形封闭的水平巷道和另一端与倾斜巷道相连接且井口敞开通向地面的结构形式，可利用其封闭端防止泥沙涌入，而另一端供提升和行人。这种沉井结构同时还使得实施本方法施工时，无需准备多套提吊设备，而只用一套斜井提升设备和采用普通V型矿车运输即可，所需施工设备少，生产系统简单；另外，沉井纵向中心线的位置是设置于斜井设计井筒的中心线上，且其倾斜段的倾角与斜井设计井筒的倾角一致，当沉井倾斜段的施工质量合格时，还可代替设计斜井的永久井筒。

实践证明，本发明的斜井沉井法与现有技术相比，在同等地质条件下进行斜井沉井施工，其工期可缩短一个多月，而成本则降低了1/3左右。因此该方法既具有施工简单，便于管理，易为工人掌握；无特殊设备和材料要求；施工条件安全，工程质量易
于保证等优点，而且使用该方法施工的工期短，造价低，经济合理，实用性强，极具推广应用价值。

本发明的附图说明如下：
图1为本发明中沉井结构的纵向剖面视图；
图2为本发明中沉井结构的断面视图；
图3为本发明中沉井结构的平剖面视图。

下面将结合附图对本发明的具体实施方式作进一步的详细描述。

自1988年以来，已先后对六个斜井工程采用本方法实施，均得到了成功的验证。现仅举一例加以说明。

1993年10月开始对霍洛湾煤矿井井采用本发明斜井沉井方法施工建造斜井井筒。该井设计井口标高+1151.72米，斜长217米，其中表土段斜长80.21米；井筒净宽4.3米；净高2.95米；砌体厚度0.35米，设计倾角15°。根据水文地质资料确定潜水位标高为+1144.6米；基岩标高为+1137.53米；流砂层厚度7.07米。在确定了井口位置和井筒方位后，在潜水位以上用明挖法挖出明槽。根据计算沉井的水平段长度，即\[\frac{H}{\cos \alpha} + G = 23.95 \text{米} \]

式中全岩柱高度值G因基岩为风化砂质岩，故取3米；
沉井倾斜段长度为\[\frac{E_0 - E_1}{\sin \alpha} = 27.32 \text{米} \];

沉井净宽度为6.0米。

沉井的墙体高度取值考虑到设计井筒墙高、允许通过的矿车高度及支撑梁高度等因素，确定为1.30米；沉井的砌体厚度为0.4
米。在已确定好的位置上设置垫木和沉井刃脚，并将每节刃脚逐一焊接组装。沿刃脚向上焊接或绑扎墙体竖向钢筋（φ14mm），然后再绑扎纵向钢筋（φ14mm）及双层钢筋间的联接筋（φ6.5mm），最后形成沉井设计结构的形状；该形状即是一端开口，另一端呈拱形封闭状的一段水平巷道和一段两端均敞口的倾斜巷道相互连接，见图1、图2、图3，分别组装沉井的刃脚墙体和顶部模板并用200＃混凝土进行多点、均匀、对称浇筑。在刃脚1及墙体2位置拆模后，及时采用φ159×5mm无缝钢管3和φ200mm以上的圆木4对刃脚上部两侧墙体进行保护支撑，支撑间距为1米，（墙体的支撑应注意不影响矿车的运行通过）。在沉井混凝土凝固20天后，对称、同步地抽取垫木，在沉井水平段巷道5内开挖和排水，由敞口一端向永久提升方向按斜井设计坡度开挖、铺轨和提碴，同时使得沉井下沉。随着水平段巷道的下沉，也可分段向井口方向接长倾斜段巷道6。而此时不断挖掘出的泥砂可通过设于沉井巷道中的V型矿车和绞车运至地面，或翻到沉井水平段5上部以加大沉井重率和缩短运距。在挖掘过程中，应注意人员的均匀分布，均匀挖掘，使沉井均衡下沉，以防造成偏斜。当出现沉井偏斜时，要及时采用偏挖掘的方法纠偏，力争确保斜井沉井的准确位置与设计斜井的井筒位置相一致。在沉井沉到基岩时，由于基岩面是不整合面，易引起涌砂冒泥，应及时采用混凝土对刃脚与基岩面进行封闭，使刃脚与基岩形成整体，待混凝土凝固并达到设计强度后，方可进行设计斜井的井筒掘进作业。

应用本发明斜井沉井法，该井表上段从施工准备到井筒施工
建设完成仅用了近四个月时间，平均月沉井速度为20米/月，工程合格率100%，沉井单位造价5200元/米。实践完全证明了本发明在施工、安全、质量和经济等各方面的实用性和先进性。我们相信，这种特殊的斜井施工方法，定会对矿井建设事业的发展产生积极的推动作用。