wo 2017/083044 A1 I 0N OO OO0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/083044 A1

18 May 2017 (18.05.2017) WIPOIPCT
(51) International Patent Classification: (72) Inventors: SALAJEGHEH, Mastooreh; 5775 Morehouse
GO6F 21/53 (2013.01) GO6F 21/56 (2013.01) Drive, San Diego, California 92121-1714 (US). GUPTA,
. . e) Rajarshi; 5775 Morehouse Drive, San Diego, California
@1 TInternational Application Number: CTIUS2016/056443 92121-1714 (US). ISLAM, Nayeem; 5775 Morchouse
Drive, San Diego, California 92121-1714 (US).

(22) International Filing Date: 11 Octaber 2016 (11102016 (74 Agents: HANSEN, ROBERT M. ctal; The Marbury Law
ctober (11.10.2016) Group, PLLC, 11800 Sunrise Valley Drive 15th Floor, Re-

(25) Filing Language: English ston, Virginia 20191 (US).
(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every
L.) kind of national protection available). AE, AG, AL, AM,
(30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; DO, DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,

ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

[Continued on next page]

(54) Title: DETECTING PROGRAM EVASION OF VIRTUAL MACHINES OR EMULATORS

(57) Abstract: Various embodiments include methods implemented on a

. 400

computing device for analyzing a program executing within a virtual environ-
ment on the computing device. The methods may include determining wheth -
er the program is attempting to detect whether it is being executed within the

virtual environment, and analyzing the program within a protected mode of
the computing device in response to determining that the program is attempt-

402

Analyze program executing within a virtual
environment on a computing device

(]

Monitor attempted access by program to API
properties of the virtual environment

|, — 404

Is the program trying to
check whether it is being executed in
the virtual environment?

408

Continue analysis of program within the virtual
environment

410

Terminate program and re-execute and
analyze within a protected mode of the
computing device

FIG. 4

ing to detect whether it is being executed within the virtual environment.

WO 2017/083044 A1 |IWAK 00T 00O R O A

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

WO 2017/083044 PCT/US2016/056443

TITLE

Detecting Program Evasion of Virtual Machines or Emulators
BACKGROUND

[0001] Various computing devices, including desktop computers, laptops, tablets,
and mobile computing devices such as smart phones, execute programs and processes
according to software instructions stored in memory. Some programs, such as
malware, execute malicious code when run on a computing device. There are a
various ways to detect and analyze programs to determine whether or not those

programs are malicious.

[0002] One method of analyzing programs is to execute the program within a virtual
environment on the computing device, such as a virtual machine or emulator. The
virtual environment provides an artificial self-contained environment for the program
to execute. An anti-malware application or other program analyzer may observe and
analyze the behavior of the program within the virtual environment to determine

whether or not it is malicious.

[0003] However, some malicious programs may try to evade virtual environment
testing by attempting to detect whether the program is executing within a virtual
environment. For example, the program may attempt to call certain functions or
access certain data structures indicative of a virtual operating environment. If the
program detects that it is executing within a virtual environment, the program may
behave in a benign manner and thus escape detection. When the program is released
and executed within the normal operating system of a computing device, the program

may then act maliciously.
SUMMARY

[0004] Various embodiments include methods implemented on a computing device
for analyzing a program executing within a virtual environment on the computing
device. The methods of the various embodiments may include determining whether

the program is attempting to detect whether the program is being executed within the

WO 2017/083044 PCT/US2016/056443

virtual environment. In response to determining that the program is attempting to
detect whether the program is being executed within the virtual environment, the

program may be analyzed within a protected mode of the computing device.

[0005] In some embodiments, the protected mode may be a system management
mode. Some embodiments may further include continuing analysis of the program
within the virtual environment in response to determining that the program is not
attempting to detect whether the program is being executed within the virtual

environment.

[0006] In some embodiments, determining whether the program is attempting to
detect whether the program is being executed within the virtual environment may
include monitoring access of the program to application programming interface (API)
properties of the virtual environment. In some embodiments, the API properties may
include at least one member selected from the group consisting of a model specific
register, a length of an instruction, a store interrupt descriptor table register, a
debugger function, and an instruction for host-guest communication. In some

embodiments, the virtual environment may be a virtual machine or an emulator.

[0007] Further embodiments include a computing device including a memory and a
processor configured with processor-executable instructions to perform operations of
the methods described herein. Further embodiments include a non-transitory
processor-readable storage medium having stored thereon processor-executable
software instructions configured to cause a processor to perform operations of the
methods described herein. Further embodiments include a computing device that
includes means for performing functions of the operations of the methods described

herein.
BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The accompanying drawings, which are incorporated herein and constitute

part of this specification, illustrate exemplary embodiments, and together with the

WO 2017/083044 PCT/US2016/056443

general description given above and the detailed description given below, serve to

explain the features of the claims.

[0009] FIG. 1 is a block diagram of a computing device for use with various

embodiments.

[0010] FIG. 2 is a block diagram illustrating program analysis within a virtual

environment on a computing device according to various embodiments.

[0011] FIG. 3 is a block diagram illustrating program analysis within a protected

mode on a computing device according to various embodiments.

[0012] FIG. 4 is a process flow diagram illustrating a method for analyzing a

program on a computing device according to various embodiments.

[0013] FIG. 5 is a component block diagram of a mobile computing device suitable

for implementing some embodiment methods.

[0014] FIG. 6 is a component block diagram of a computing device suitable for

implementing some embodiment methods.
DETAILED DESCRIPTION

[0015] Various embodiments will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts. References made to
particular examples and implementations are for illustrative purposes, and are not

intended to limit the scope of the written description or the claims.

[0016] As used herein, the term “computing device” refers to any one or all of
cellular telephones, smart phones, personal or mobile multi-media players, personal
data assistants, desktop computers, laptop computers, tablet computers, servers, smart
watches, smart books, palm-top computers, wireless electronic mail receivers,
multimedia Internet-enabled cellular telephones, wireless gaming controllers, and
similar personal or enterprise electronic devices that includes a programmable

Processor and mcmory.

WO 2017/083044 PCT/US2016/056443

[0017] Computing devices execute programs and applications that provide a number
of functions and services for users. A threat to computing devices and the services
provided to users is malware, which refers to a variety of programs written to perform
unauthorized operations that in many cases are malicious. For example, malware that
executes on a computing device may be designed to take control of the computing
device, delete or corrupt critical files on the computing device, spy or track user
actions on the computing device, provide unwanted advertisements to users, or extort
or trick users into paying money or giving away financial or personal information.
Thus, methods of detecting and protecting against malware have received much

attention.

[0018] There are a number of ways to detect malicious programs. One method is to
execute a potentially malicious program within a virtual environment on the
computing device, such as a virtual machine or emulator. The virtual environment
may provide a self-contained environment that resembles the normal operating system
of a computing device. Program operations may be analyzed within the virtual
environment to determine whether it exhibits malicious behaviors. However, there is
a risk that some malware programs vary their behavior depending on whether they are
being executed within a virtual environment. These programs may behave benignly in
a virtual environment but behave maliciously in a normal operating system

environment.

[0019] In overview, various embodiments provide systems and methods for
analyzing a program executing within a virtual environment on a computing device.
Various embodiments may include determining whether the program is executing
operations that indicated the program is attempting to detect whether it is being
executed within the virtual environment. In response to determining that the program
1s attempting to detect whether it is being executed within the virtual environment, the
program may be analyzed within a protected mode of the computing device. In
response to determining that the program is not attempting to detect whether it is

being executed within the virtual environment in, the analysis of the program may

WO 2017/083044 PCT/US2016/056443

continue within the virtual environment. The virtual environment may be a virtual
machine or an emulator. The protected mode may be a system management mode on
the computing device or another computing device that is isolated from other network

components and/or sensitive information.

[0020] Methods for recognizing when the program is attempting to detect whether it
1s being executed within the virtual environment may include monitoring access of the
program to application programming interface (API) properties of the virtual
environment. The API properties being monitored may include at least one of a
model specific register, a length of an instruction, a store interrupt descriptor table
register, a debugger function, and instructions for host-guest communication (e.g.,
IN/OUT instructions for accessing data from an input/output port, and use of illegal

opcodes within a virtual environment).

[0021] FIG. 1 is a functional block diagram of a computing device 100 suitable for
implementing various embodiments. The computing device 100 may be, among other
things, a desktop computer, laptop, tablet, any type of mobile electronic device, a
server or any type of consumer or enterprise electronic device. The computing device
100 includes a central processing unit (CPU) 102 for executing software instructions,
and a memory 104 for storing code and data. The memory 104 may be a non-
transitory computer-readable storage medium that stores processor-executable

instructions. The memory 104 may store an operating system 106.

[0022] A virtual environment 108 may be created and executed within the operating
system 106. The virtual environment 108 may be a virtual machine or emulator — that
1s, the virtual environment 108 may be used to simulate the software and/or hardware
environment and functionality of another computing system. The virtual environment
108 may be based on the computer architecture, hardware, and/or software of the
computing system that the virtual environment 108 is trying to simulate. The virtual

environment 108 may be used for a number of different purposes. One use of the

WO 2017/083044 PCT/US2016/056443

virtual environment 108 may be as a testing ground or artificial environment to

analyze the behavior of potentially malicious programs.

[0023] The computing device 100 may also include a protected mode 110. The
protected mode 110 may be a special mode of the computing device 100 that when
activated suspends the operation of the operating system 106 or otherwise insulates
the computing device from malicious actions by malware. The protected mode 110
may be a particular operating mode of the CPU 102 that has special privileges with
respect to hardware and software functions on the computing device 100. The
protected mode 110 may be implemented within firmware or a hardware-assisted
debugger on the computing device 100. An example of the protected mode 110 is a
system management mode (SMM), which may be provided in certain CPU chipsets.
The SMM may be triggered by asserting the system management interrupt (SMI) pin
on the CPU 102. The handler for the SMM may be stored in special memory
accessible only by the SMM.

[0024] The protected mode 110 may be used for performing special tasks such as
power management or error handling. The protected mode 110 is a “real” computing
environment in that it runs within the actual hardware on the computing device 100
rather than simulated hardware as in the virtual environment 108. The protected mode
110 may also provide certain safeguards against malicious code, such as locking out
programs from high level access (e.g., root access). Thus, in various embodiments the
protected mode 110 may serve as an alternate testing environment for potentially
malicious programs, especially if the programs are designed to evade the virtual

environment 108.

[0025] The computing device 100 may also include various other components not
illustrated in FIG. 1. For example, the computing device 100 may include a number
of input, output, and processing components such as a speaker, microphone, modem,

transceiver, subscriber identification module (SIM) card, keypad, mouse, display

WO 2017/083044 PCT/US2016/056443

screen or touchscreen, various connection ports, audio or graphics processor,

additional hard drives, and many other components known in the art.

[0026] FIG. 2 includes a block diagram 200 illustrating program analyses using a
virtual environment on a computing device. The computing device may include an
operating system 202. A virtual environment 204 may run within the operating
system 202. The virtual environment 204 may provide a self-contained computing
environment within the operating system 202. For example, the virtual environment
204 may be a virtual machine or emulator that simulates the software and/or hardware
functionality of another computing system. The virtual environment 204 may be used
to analyze a program 206 to determine whether or not it is malicious. A program 206
executed within the virtual environment 204 is not able to access the operating system
202 or other resources of the computing device outside of the virtual environment.
Thus, if the program 206 is malicious, the program 206 is not capable of coopting or
damaging the operating system 202 or the computing device on which the virtual

environment 204 executes.

[0027] The virtual environment 204 may include an application programming
interface (API) 208 that is used by the operating system 202 to interact with and
control the virtual environment 204. The API 208 may include a number of functions,

routines, protocols, and data structures.

[0028] Some malicious programs (e.g., program 206) may be designed to attempt to
discover whether they are executing within a virtual machine, or within an operating
system. Such programs may behave benignly when executing within the virtual
environment 204 and thus may evade malicious code detection. Once the programs
are released into the operating system 202, the programs may begin acting

maliciously.

[0029] The malicious program 206 may attempt to discover whether it is executing
within a virtual environment 204, such as by attempting to call certain functions or

access certain data structures in the API 208. Certain return values from the called

WO 2017/083044 PCT/US2016/056443

functions or data structures of the API 208 may confirm that the program 206 1s
executing within the virtual environment 204. Therefore in various embodiments, the
virtual environment 204 or the operating system 202 may be configured to monitor
operations and behaviors of the program 206 within the virtual environment 204 to
determine whether the program 206 is calling certain functions or accessing certain
data structures in the API 208 in an attempt to discover whether it 1s executing within
the virtual environment 204. There are several types of functions and/or data
structures that a malicious program 206 might execute or attempt to access in an effort
to detect a virtual environment, and that the virtual environment 204 may be

configured to detect.

[0030] A non-limiting example of an action that a malicious program 206 might
perform and that the virtual environment 204 may be configured to detect includes
accessing a model specific register that is valid on a quick emulator (QEMU)

simulator but returns an exception when called in the actual computing device.

[0031] Another non-limiting example of an action that a malicious program 206
might perform and that the virtual environment 204 may be configured to detect
includes accessing a length of an instruction. This is because the length of an
instruction will be finite in an actual computing device but may be arbitrarily long in a

virtual environment.

[0032] Another non-limiting example of an action that a malicious program 206
might perform and that the virtual environment 204 may be configured to detect
includes accessing a store interrupt descriptor table register. This is because the base
address in a virtual environment may differ from an actual computing device, and may

exceed a certain function.

[0033] Another non-limiting example of an action that a malicious program 206
might perform and that the virtual environment 204 may be configured to detect

includes calling a debugger function. For example, the environment 204 may be

WO 2017/083044 PCT/US2016/056443

configured to detect when a program calls IsDebuggerPresent() or

CheckRemoteDebuggerPresent().

[0034] Another non-limiting example of an action that a malicious program 206
might perform and that the virtual environment 204 may be configured to detect
includes executing an IN or OUT instruction used to read or write data from an
input/output port used during host-guest communications. Such an IN or OUT
instruction may involve reading/writing data from port addresses that exist within a
virtual environment but that would raise an exception when called in the underlying

computing device.

[0035] Another non-limiting example of an action that a malicious program 206
might perform and that the virtual environment 204 may be configured to detect
includes an attempt to execute illegal opcodes during host-guest communication. This
1s because an error handler of the underlying computing device may handle a call to
an illegal opcode but the virtual environment may not have an error handler. For
example, an illegal opcode may include an undefined opcode or an illegal coding of
an existing opcode. Which opcodes are illegal may depend on the particular virtual

environment 204 and/or hardware or software of the computing device.

[0036] If the virtual environment 204 detects that the program is attempting to detect
whether it 1s executing within the virtual environment 204 (i.e., the program is trying
to evade testing in a virtual environment), the virtual environment 204 may mark or
flag the program 206 as an evading program and terminate the program 206. The
virtual environment 204 or the operating system 202 may then signal the computing
device that the program 206 should be executed and analyzed within a protected mode

on the computing device. This is illustrated in FIG. 3.

[0037] FIG. 3 is a block diagram 300 illustrating program analysis using a protected
mode on a computing device. The computing device may include an operating system
302. A virtual environment 304 may operate within the operating system 302 to

analyze potentially malicious programs, such as the program 306. The virtual

WO 2017/083044 PCT/US2016/056443

environment 304 may detect that the program 306 is attempting to detect whether it is
being executed within the virtual environment 304 as described with reference to FIG.
2. The virtual environment 304 may flag the program 306 as evading and terminate
the program 306. The computing device may then initiate a protected mode 310, such
as SMM. The protected mode 310 may be triggered by a system interrupt, such as the
SMI for a SMM. The program 306 may be re-executed within the protected mode
310.

[0038] The protected mode 310 may also provide a self-contained environment for
analyzing the program 306, but is an environment that is based on the actual
computing device rather than a simulation of another computing device. Thus, the
program 306, which may be designed to evade the virtual environment 304, will not
detect that it is executing in a virtual environment and thus will not behave in a
manner designed to evade the protected mode 310 (i.e., the program 306 behaves
normally rather than pretending to be benign). The protected mode 310 may prevent
the program 306 from accessing critical parts of the computing device, for example
preventing root access. An anti-malware application or another program analyzer may
analyze the program 306 within the protected mode 310 to determine whether or not it
1s malicious. The protected mode 310 may utilize more computing resources than the
virtual environment 304, so in some embodiments only programs that evade the

virtual environment 304 may be analyzed within the protected mode 310.

[0039] FIG. 4 illustrates a method 400 for analyzing a program executing within a
virtual environment on a computing device according to various embodiments. With
reference to FIGS. 1-4, the method 400 may be implemented with a processor (e.g.,
the CPU 102 and/or the like) of a computing device (such as the computing device
100) that is capable of running a virtual environment (e.g., a virtual machine or

emulator) and a protected mode (e.g., SMM).

[0040] In block 402, the processor may analyze a program executing within a virtual

environment on the computing device. The program may be potential malware or any

10

WO 2017/083044 PCT/US2016/056443

other unknown program, and the processor may be analyzing the program to
determine whether or not it is malicious. The virtual environment may be a virtual
machine or emulator that simulates the software and/or hardware environment of
another computing system. The virtual environment may include an API that is used

by the computing device to control and interact with the virtual environment.

[0041] In block 404, the processor may monitor attempted accesses by the program
to certain APIs and data structures that could reveal properties of the virtual
environment. Attempts by the program to access such API and/or data structure
properties may indicate that the program is attempting to detect whether the program
1s being executed within a virtual environment. A non-limiting example of an API
property that may be monitored in block 404 is a model specific register (which is
valid on a quick emulator (QEMU) simulator but returns an exception when called in
the actual computing device). Another non-limiting example of an API property that
may be monitored in block 404 is a length of an instruction (which may be arbitrarily
long in a virtual environment). Another non-limiting example of an API property that
may be monitored in block 404 is a store interrupt descriptor table register (the base
address may be different in a virtual environment and may also exceed a certain
function). Another non-limiting example of an API property that may be monitored in
block 404 is a debugger function (e.g., IsDebuggerPresent() or
CheckRemoteDebuggerPresent()). Another non-limiting example of an API property
that may be monitored in block 404 1s an IN/OUT instruction used for host-guest
communication. Another non-limiting example of an API property that may be

monitored in block 404 is illegal opcode handling used for host-guest communication.

[0042] In determination block 406, the processor may determine from the monitored
behaviors whether the program is attempting to discover whether it is being executed
within the virtual environment. For example, the processor may determine that the
program is attempting to access the monitored API that could reveal properties unique

to virtual environments.

11

WO 2017/083044 PCT/US2016/056443

[0043] In response to determining that the program is not attempting to detect
whether it 1s being executed within the virtual environment (i.e., determination block
406 = “No”), the processor may continue analysis of the program within the virtual
environment in block 408. That is, if the program is not trying to evade virtual
environment testing, the processor may continue analyzing the program in the virtual

environment.

[0044] In response to determining that the program is attempting to detect whether it
1s being executed within the virtual environment (i.e., determination block 406 =
“Yes”), the processor may terminate the program, and re-execute and analyze the
program within a protected mode on the computing device in block 410. For example,
the processor may flag or otherwise identify that the program has evading and trigger
the protected mode. The protected mode may be the SMM on the computing device,
which may be triggered using a SMI. The protected mode may allow continued
analysis of the program in an environment based on the actual computing device
rather than a simulation of another computing system, but that still prevents the
program from accessing and damaging critical parts of the computing device. In this
manner, the method 400 provides a way to analyze potentially malicious programs

that evade virtual environment testing.

[0045] Various embodiments, including the embodiments illustrated in FIG. 4, may
be implemented in any of a variety of computing devices, an example of which (e.g.,
computing device 500) is illustrated in FIG. 5. According to various embodiments,
the computing device 500 may be similar to the computing device 100 as described
with reference to FIG. 1. As such, the computing device 500 may implement the

method 400 in FIG. 4.

[0046] The computing device 500 may include a processor 502 coupled to a
touchscreen controller 504 and an internal memory 506. The processor 502 may be
one or more multi-core integrated circuits designated for general or specific

processing tasks. The internal memory 506 may be volatile or non-volatile memory,

12

WO 2017/083044 PCT/US2016/056443

and may also be secure and/or encrypted memory, or unsecure and/or unencrypted
memory, or any combination thereof. The touchscreen controller 504 and the
processor 502 may also be coupled to a touchscreen panel 512, such as a resistive-
sensing touchscreen, capacitive-sensing touchscreen, infrared sensing touchscreen,
etc. Additionally, the display of the computing device 500 need not have touch screen
capability.

[0047] The computing device 500 may have a cellular network transceiver 508
coupled to the processor 502 and to an antenna 510 and configured for sending and
receiving cellular communications. The transceiver 508 and the antenna 510 may be
used with the above-mentioned circuitry to implement various embodiment methods.
The computing device 500 may include one or more SIM cards 516 coupled to the
transceiver 508 and/or the processor 502 and may be configured as described herein.
The computing device 500 may include a cellular network wireless modem chip 517

that enables the processor to communication via a cellular network.

[0048] The computing device 500 may also include speakers 514 for providing audio
outputs. The computing device 500 may also include a housing 520, constructed of a
plastic, metal, or a combination of materials, for containing all or some of the
components discussed herein. The computing device 500 may include a power source
522 coupled to the processor 502, such as a disposable or rechargeable battery. The
rechargeable battery may also be coupled to the peripheral device connection port to
receive a charging current from a source external to the computing device 500. The
computing device 500 may also include a physical button 524 for receiving user
inputs. The computing device 500 may also include a power button 526 for turning

the computing device 500 on and off.

[0049] Various embodiments, including the embodiments illustrated in FIG. 4, may
be implemented in any of a variety of computing devices, an example of which (e.g.,
computing device 600) is illustrated in FIG. 6. According to various embodiments,

the computing device 600 may be similar to the computing device 100 as described

13

WO 2017/083044 PCT/US2016/056443

with reference to FIG. 1. As such, the computing device 600 may implement the

method 400 in FIG. 4.

[0050] A computing device 600 (which may correspond, for example, to the
computing device 100 in FIG. 1) may include a touchpad touch surface 617 that
serves as the pointing device of the computing device 600, and thus may receive drag,
scroll, and flick gestures similar to those implemented on wireless devices equipped
with a touch screen display and described below. The computing device 600 will
typically include a processor 611 coupled to volatile memory 612 and a large capacity
nonvolatile memory, such as a disk drive 613 of Flash memory. The computing
device 600 may also include a floppy disc drive 614 and a compact disc (CD) drive
615 coupled to the processor 611. The computing device 600 may also include a
number of connector ports coupled to the processor 611 for establishing data
connections or receiving external memory devices, such as a universal serial bus
(USB) or FireWire® connector sockets, or other network connection circuits for
coupling the processor 611 to a network. In a notebook configuration, the device
housing includes the touchpad 617, the keyboard 618, and the display 619 all coupled
to the processor 611. Other configurations of the computing device 600 may include a
computer mouse or trackball coupled to the processor (e.g., via a USB input) as are

well known, which may also be used in conjunction with various embodiments.

[0051] The foregoing method descriptions and the process flow diagrams are
provided merely as illustrative examples and are not intended to require or imply that
the operations of various embodiments must be performed in the order presented. As
will be appreciated by one of skill in the art the order of operations in the foregoing
embodiments may be performed in any order. Words such as “thereafter,” “then,”
“next,” etc. are not intended to limit the order of the operations; these words are
simply used to guide the reader through the description of the methods. Further, any

(13 2% <C
a

reference to claim elements in the singular, for example, using the articles an” or

“the” 1s not to be construed as limiting the element to the singular.

14

WO 2017/083044 PCT/US2016/056443

[0052] The various illustrative logical blocks, modules, circuits, and algorithm
operations described in connection with the embodiments disclosed herein may be
implemented as electronic hardware, computer software, or combinations of both. To
clearly illustrate this interchangeability of hardware and software, various illustrative
components, blocks, modules, circuits, and operations have been described above
generally in terms of their functionality. Whether such functionality 1s implemented
as hardware or software depends upon the particular application and design
constraints imposed on the overall system. Skilled artisans may implement the
described functionality in varying ways for each particular application, but such
implementation decisions should not be interpreted as causing a departure from the

scope of the present embodiments.

[0053] The hardware used to implement the various illustrative logics, logical
blocks, modules, and circuits described in connection with various embodiments may
be implemented or performed with a general purpose processor, a digital signal
processor (DSP), an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable logic device, discrete gate or
transistor logic, discrete hardware components, or any combination thereof designed
to perform the functions described herein. A general-purpose processor may be a
microprocessor, but, in the alternative, the processor may be any conventional
processor, controller, microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a combination of a DSP
and a microprocessor, a plurality of microprocessors, one or more microprocessors in
conjunction with a DSP core, or any other such configuration. Alternatively, some
operations or methods may be performed by circuitry that is specific to a given

function.

[0054] In one or more exemplary embodiments, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored as one or more instructions or

code on a non-transitory computer-readable storage medium or non-transitory

15

WO 2017/083044 PCT/US2016/056443

processor-readable storage medium. The operations of a method or algorithm
disclosed herein may be embodied in a processor-executable software module that
may reside on a non-transitory computer-readable or processor-readable storage
medium. Non-transitory computer-readable or processor-readable storage media may
be any storage media that may be accessed by a computer or a processor. By way of
example but not limitation, such non-transitory computer-readable or processor-
readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-
ROM or other optical disk storage, magnetic disk storage or other magnetic storage
devices, or any other medium that may be used to store desired program code in the
form of instructions or data structures and that may be accessed by a computer. Disk
and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital
versatile disc (DVD), floppy disk, and Blu-ray disc where disks usually reproduce
data magnetically, while discs reproduce data optically with lasers. Combinations of
the above are also included within the scope of non-transitory computer-readable and
processor-readable media. Additionally, the operations of a method or algorithm may
reside as one or any combination or set of codes and/or instructions on a non-
transitory processor-readable storage medium and/or computer-readable storage

medium, which may be incorporated into a computer program product.

[0055] The preceding description of various embodiments is provided to enable any
person skilled in the art to make or use the claims. Various modifications to these
embodiments will be readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to some embodiments without departing
from the scope of the claims. Thus, the present disclosure is not intended to be limited
to the embodiments shown herein but is to be accorded the widest scope consistent

with the following claims and the principles and novel features disclosed herein.

16

WO 2017/083044 PCT/US2016/056443

CLAIMS

What is claimed is:

1. A method for analyzing a program executing within a virtual environment on a
computing device, comprising:

determining whether the program is attempting to detect whether it is being
executed within the virtual environment; and

analyzing the program within a protected mode of the computing device in
response to determining that the program is attempting to detect whether the program

1s being executed within the virtual environment.

2. The method of claim 1, wherein the protected mode is a system management mode.

3. The method of claim 1, further comprising continuing analysis of the program
within the virtual environment in response to determining that the program is not
attempting to detect whether the program is being executed within the virtual

environment.

4. The method of claim 1, wherein determining whether the program is attempting to
detect whether the program is being executed within the virtual environment
comprises:

monitoring access of the program to application programming interface (API)

properties of the virtual environment.

5. The method of claim 4, wherein the API properties include at least one member
selected from the group consisting of a model specific register, a length of an
instruction, a store interrupt descriptor table register, a debugger function, and an

instruction for host-guest communication.

17

WO 2017/083044 PCT/US2016/056443

6. The method of claim 1, wherein the virtual environment comprises a virtual

machine or an emulator.

7. A computing device, comprising:
a processor configured with processor-executable instructions to perform
operations comprising:
determining whether a program executing within a virtual environment
on the computing device is attempting to detect whether it is being executed
within the virtual environment; and
analyzing the program within a protected mode of the computing device
in response to determining that the program is attempting to detect whether the

program 1s being executed within the virtual environment.

8. The computing device of claim 7, wherein the protected mode 1s a system

management mode.

9. The computing device of claim 7, wherein the processor is further configured with
processor-executable instructions to perform operations comprising continuing
analysis of the program within the virtual environment in response to determining that
the program is not attempting to detect whether the program is being executed within

the virtual environment.

10. The computing device of claim 7, wherein the processor is configured with
processor-executable instructions such that determining whether the program is
attempting to detect whether the program is being executed within the virtual
environment comprises:

monitoring access of the program to application programming interface (API)

properties of the virtual environment.

18

WO 2017/083044 PCT/US2016/056443

11. The computing device of claim 10, wherein the API properties include at least
one member selected from the group consisting of a model specific register, a length
of an instruction, a store interrupt descriptor table register, a debugger function, and an

instruction for host-guest communication.

12. The computing device of claim 7, wherein the virtual environment comprises a

virtual machine or an emulator.

13. A non-transitory computer readable storage medium having stored thereon
processor-executable software instructions configured to cause a processor of a
computing device to perform operations comprising;:

determining whether a program executing within a virtual environment on the
computing device is attempting to detect whether it is being executed within the
virtual environment; and

analyzing the program within a protected mode of the computing device in
response to determining that the program is attempting to detect whether the program

1s being executed within the virtual environment.

14. The non-transitory computer readable storage medium of claim 13, wherein the

protected mode is a system management mode.

15. The non-transitory computer readable storage medium of claim 13, wherein the
stored processor-executable software instructions are configured to cause the
processor to perform operations further comprising continuing analysis of the program
within the virtual environment in response to determining that the program is not
attempting to detect whether the program is being executed within the virtual

environment.

19

WO 2017/083044 PCT/US2016/056443

16. The non-transitory computer readable storage medium of claim 13, wherein the
stored processor-executable software instructions are further configured to cause the
processor to perform operations such that determining whether the program is
attempting to detect whether the program is being executed within the virtual
environment comprises:

monitoring access of the program to application programming interface (API)

properties of the virtual environment.

17. The non-transitory computer readable storage medium of claim 16, wherein the
API properties include at least one member selected from the group consisting of a
model specific register, a length of an instruction, a store interrupt descriptor table

register, a debugger function, and an instruction for host-guest communication.

18. The non-transitory computer readable storage medium of claim 13, wherein the

virtual environment comprises a virtual machine or an emulator.

19. A computing device, comprising:

means for determining whether a program executing within a virtual
environment on the computing device is attempting to detect whether it is being
executed within the virtual environment; and

means for analyzing the program within a protected mode of the computing
device in response to determining that the program is attempting to detect whether the

program 1s being executed within the virtual environment.

20. The computing device of claim 19, wherein the protected mode is a system

management mode.

21. The computing device of claim 19, further comprising means for continuing

analysis of the program within the virtual environment in response to determining that

20

WO 2017/083044 PCT/US2016/056443

the program is not attempting to detect whether the program is being executed within

the virtual environment.

22. The computing device of claim 19, wherein the means for determining whether
the program is attempting to detect whether the program is being executed within the
virtual environment comprises:

means for monitoring access of the program to application programming

interface (API) properties of the virtual environment.

23. The computing device of claim 22, wherein the API properties include at least
one member selected from the group consisting of a model specific register, a length
of an instruction, a store interrupt descriptor table register, a debugger function, and an

instruction for host-guest communication.

24. The computing device of claim 19, wherein the virtual environment comprises a

virtual machine or an emulator.

21

WO 2017/083044 PCT/US2016/056443
1/6

1001

v 110

_—108

_ _ ¢ Protected Mode
Virtual Environment

Operating System

FIG. 1

WO 2017/083044

200

2/6

202—

PCT/US2016/056443

Operating System

204—

Virtual Environment

206 —

Program

208 —~

API

FIG. 2

WO 2017/083044 PCT/US2016/056443

3/6
300
302—\
Operating System
304—\ 310—\
Virtual Environment Protected Mode
o | 306—\
| |
: Program ! » Program
| |

FIG. 3

WO 2017/083044

4/6

PCT/US2016/056443

| — 402
Analyze program executing within a virtual
environment on a computing device
Monitor attempted access by program to AP | — 404
properties of the virtual environment
406
Is the program trying to Yes

check whether it is being executed in
the virtual environment?

Continue analysis of program within the virtual
environment

Terminate program and re-execute and
analyze within a protected mode of the
computing device

N
408
410
S —

FIG. 4

/////////////////

000000000000

5/6

I 1 I 1 I 1
N/’ 1
s

PCT/US2016/056443

WO 2017/083044

6/6

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/056443

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/53 GO6F21/56
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Davide Balzarotti ET AL:

Malware",

Retrieved from the Internet:

/ndss/10/pdf/24.pdf
[retrieved on 2016-11-29]
the whole document

"Efficient
Detection of Split Personalities in
i May 2015 (2015-05-01), XP055324245,

URL:https://web.archive.org/web/2015050100
0000*/http://www.isoc.org/isoc/conferences

1-24

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

1 December 2016

Date of mailing of the international search report

08/12/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Meis, Marc

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/056443

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Dhilung Kirat ET AL: "Open access to the
Proceedings of the 23rd USENIX Security
Symposium is sponsored by USENIX
BareCloud: Bare-metal Analysis-based
Evasive Malware Detection BareCloud:
Bare-metal Analysis-based Evasive Malware
Detection",

LISA 17. SEVENTEENTH LARGE INSTALLATION
SYSTEMS ADMINISTRATION CONFERENCE USENIX
ASSOC BERKELEY, CA, USA,

20 August 2014 (2014-08-20), pages
287-301, XP055324257,

ISBN: 978-1-931971-15-7

Retrieved from the Internet:
URL:https://www.usenix.org/system/files/co
nference/usenixsecurityld/secl4-paper-kira
t.pdf

[retrieved on 2016-11-29]

page 290, paragraph 3.3

WO 2013/067505 Al (CYPHORT INC [US])

10 May 2013 (2013-05-10)

paragraph [0175] - paragraph [0198];
figure 13

figure 14

1-24

1-24

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/056443
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2013067505 Al 10-05-2013 CA 2854182 Al 10-05-2013
CA 2854183 Al 10-05-2013
EP 2774038 Al 10-09-2014
EP 2774039 Al 10-09-2014
EP 3093762 Al 16-11-2016
WO 2013067505 Al 10-05-2013
WO 2013067508 Al 10-05-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

