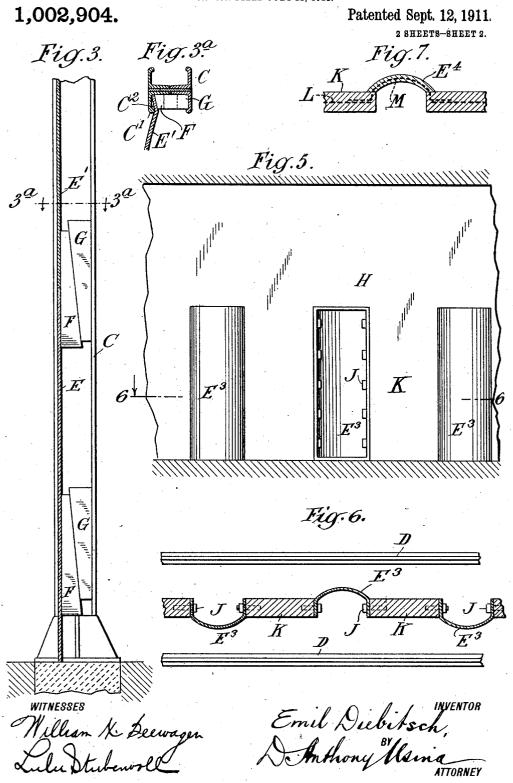

E. DIEBITSCH. SUBWAY CONSTRUCTION. APPLICATION FILED JULY 11, 1911.


1,002,904.

Patented Sept. 12, 1911.

Eig.1.

E. DIEBITSCH. SUBWAY CONSTRUCTION. APPLICATION FILED JULY 11, 1911

COLUMBIA PLANOGRAPH CO., WASHINGTON, D. C.

UNITED STATES PATENT OFFICE.

EMIL DIEBITSCH, OF NUTLEY, NEW JERSEY.

SUBWAY CONSTRUCTION.

1,002,904.

Specification of Letters Patent. Patented Sept. 12, 1911.

Application filed July 11, 1911. Serial No. 637,864.

To all whom it may concern:

Be it known that I, EMIL DIEBITSCH, a citizen of the United States, and a resident of Nutley, Essex county, New Jersey, have 5 invented certain new and useful Improvements in Subway Constructions, of which

the following is a specification.

In building railway tunnels and subways it is customary where they are far below 10 the surface to construct a separate tube for each track, smaller tubes being better adapted to the methods of boring in use. At the same time such single tubes serve as cylinders through which the train runs in the manner of a piston carrying a considerable quantity of air along with it or ahead of it, and so ventilating the tunnel. In subways constructed near the surface it is more economical to build one tube to 20 carry a plurality of tracks. In use, however, such a subway is not ventilated to any substantial extent by the movement of the trains, because of the smallness of their transverse section compared with that of the 25 subway. According to this invention I purpose to divide such a subway by suitable partitions extending from the roof to the floor into separate tubes for each of the trains, so as to provide the desired ventila-30 tion by the movement of the trains, and to provide a partition of special design and construction whereby the erection of such partitions in existing subways will be facilitated.

The accompanying drawings illustrate

embodiments of the invention.

Figure 1 is a transverse section, and Fig. 2 a partial horizontal section of a four-track subway. Fig. 3 is an enlarged vertical longi-40 tudinal section on the line 3—3 of Fig. 2. Fig. 3^a is a section on the line 3^a—3^a of Fig. 3. Fig. 4 is a modification, being a vertical section on the line 4—4 of Fig. 2. Fig. 5 is a face elevation and Fig. 6 a section on 45 the line 5-5, of another style of construc-

tion embodying the invention. Fig. 7 is a horizontal section of still another style.

Referring to Figs. 1 and 3, the roof girders A are supported by the side columns B and the interior columns C. The tracks D are arranged between the vertical supports of the roof. In the usual prior constructions longitudinal spaces are left between the columns which permit track walkers or other work-55 men to pass from one track to the other in order to avoid passing trains. But occasion-

ally in avoiding one train the workman fails to observe another coming on the adjacent track and is struck by the second train. These openings also prevent automatic ven- 60 tilation. This lack of ventilation is a serious matter, especially where the roof of the subway is near the surface of the earth so that it becomes quite hot in the summer. The friction incident to the passing of the 65 trains also adds very much to the heat within the subway. The air is vitiated by the large number of passengers usually carried as well as heated by the conditions above referred to and the volume of air is so great 70 that ventilation by fans and other extraneous means is almost if not quite imprac-

ticable.

To insure ventilation by the moving trains, a partition is extended along the 75 lines of the interior columns. The construction of such a partition in existing subways which have been built without the same is a matter of difficulty and expense, taking into consideration the necessary mode of 80 introduction of the material through the stations and the necessity of avoiding interruption of traffic or reducing such interruption to a minimum. The material of the partitions must also be strong enough to 85 withstand the sudden air pressures to which they are subjected by passing trains. To provide for these conditions I propose to make the partitions of sheets of suitable material, the sheets being made beforehand 90 of lengths at least sufficient to extend integrally from one column to the next; the panel between each two columns consisting of a single sheet of the full height or of several of such sheets, one above another.

Where the columns are close enough the sheets may be made longer than the distance between two successive columns. For example, each sheet may span three or more of the columns. In the preferred construction tion, illustrated, however, each sheet is equal in length to the panel and each sheet is fastened at its edge to a column. A great variety of fastening devices may be used. I have shown a style of fastening in Figs. 1, 105 2, 3 and 3^a which is especially adapted to the columns illustrated in that it uses the channels in the faces of the column and does not require the drilling of rivet holes or any similar operations upon the columns 110 themselves. Each sheet E has each of its edges entering a channel in one of the col-

umns and fastened therein by a pair of wedges F and G driven between the edge of the sheet and the opposite flange of the column. The columns, as shown in the enlarged view, Fig. 3a, are built up of angles and the central plate, the outer edges of the angles being provided with ribs or beads C'. The edge of the sheet is bent around such ribs leaving a triangular space C2 which 10 may be filled with a strip of transite board or a suitable material to take the pressure of the wedges. The combination of wedges with this particular type of column is especially useful, the thickness of the wedges 15 being only such as will bring them within the beads C'; so that when the wedges are driven home the beads prevent their outward movement as well as increasing the hold upon the edge of the sheet. The fitting 20 of the edges of the sheets in the channels of the columns is also advantageous as it can be accomplished with little or no cutting and fitting of the sheets. The columns are usually provided at their upper ends with 25 triangular braces C³ (Fig. 1) which would interfere with the laying of the sheets against the side faces of the columns, but which are not in the way when the construction illustrated is adopted. The sheets E may be of any suitable material. I prefer to use transite board, a material made of asbestos and cement, which can be readily molded to the shape and dimensions desired and which has the neces-35 sary strength and the very desirable quality of being fireproof. This material is also very much less resonant than metal, which is an important advantage, the unavoidable noise in such subways being so great that it 40 is important to stifle it as much as possible. The introduction of a partition into a subway of the design shown in Figs. 1 and 2 cuts off the possibility of a track walker passing from one track to another at all Openings will be provided at intervals for this purpose; but in order to provide an abundant refuge for such men I purpose to make some of the sheets bent or curved in horizontal section as shown in the 50 Fig. 2. This provides the desired refuge and protects the workman from inadvertently getting into the way of another train. Preferably all of the sheets are so curved and the successive sheets are curved in alter-55 nate directions and at any point on the track the sheet at one side projects inward and at the opposite side projects outward. Thus there is provided a series of niches into which the track walker can retreat. If he is 60 in the center of the track he can step into a

niche immediately at one side of him. If

he is at one side of the track he can walk forward or backward to the next panel at

the same side of the track and find a suitable

65 refuge.

It is not necessary that the niche formed by the curved sheets extend clear to the top of the track. For example, as shown in Fig. 4, the curved sheet or sheets E may extend only a sufficient height to accommo- 70 date a man and the sheet or sheets E' constituting the upper part of the partition may be flat. The flat sheets are more economical of material and more easily molded. When such a construction is used the curved 75 sheet E (or the upper one of such sheets where a plurality of them are used in a panel) must also be molded with a horizontal portion E² to close the gap which would otherwise exist at the upper edge of the curved 80 sheet; or the piece E² may be separately

made and set in place.

Subways or tunnels are sometimes designed with a masonry partition between tracks as shown in Figs. 5 and 6, with open- 85 ings at intervals through the masonry to provide a refuge and to permit crossing from one track to another. My invention may be applied to such a subway by means of sheets E³ similar to those used in the construction 90 previously referred to and extending across the openings in the wall K (an opening or door being left clear at long intervals for crossing from one track to another). The sheets E3 in this case may have their edges 95 bearing against the edges of the openings in the wall and fastened by means of expansion bolts J screwing into the wall. When the openings in the masonry are only a little higher than a man the sheet E³ will be 100 curved throughout its height. The parts K of the masonry wall are in effect columns which aid in supporting the roof and between which the sheets of partitioning material are applied, similarly to the columns 105 C of Figs. 1 and 2. Such masonry walls are ordinarily quite thick and, depending upon the depth of the niche required and upon the thickness of the wall the sheets E³ may be more or less curved or may be laid flush 110 with one face of the wall.

For masonry walls where the improvement is to be applied during construction of the wall, the method illustrated in Fig. 7 is probably better. Here the wall K is 115 provided with reinforcing material L a web of which is embedded in the masonry and runs lengthwise. When an opening in the wall is to be left a sheet of reinforcing material M is set up with its edges embedded 120 in the edges of the masonry and with its intermediate part bent around to the horizontal section of the panel (or extending straight across the opening where the panel is to be flat). Thereafter a coating of plaster or mortar is applied to the netting to form a thin panel E⁴ corresponding with the sheet of transite board E³, Fig. 6.

What I claim is:-

1. A tunnel or subway carrying a plural- 130

ity of tracks, and having a partition comprising a line of columns between said tracks and sheets of suitable material between each two successive columns, each sheet extend-5 ing integrally from one column to the next and being fastened at its opposite edges respectively to successive columns.

2. A tunnel or subway carrying a plurality of tracks, and having a partition com-10 prising a line of columns between said tracks and sheets of transite board between each two successive columns, each sheet extending integrally from one column to the next and being fastened at its opposite edges re-15 spectively to successive columns.

3. A tunnel or subway carrying a plurality of tracks and having a partition comprising a line of columns between said tracks and sheets of suitable material between each 20 two successive columns, some of said sheets

being curved in plan and providing niches

for refuge from passing trains.
4. A tunnel or subway carrying a plurality of tracks and having a partition comprising a line of columns between said tracks and sheets of suitable material between each two successive columns, successive sheets being extended outward on opposite sides of the line of the columns.

5. A tunnel or subway carrying a plurality of tracks and having a partition comprising a line of columns between said tracks and sheets of suitable material between each two successive columns, said sheets being 35 curved to provide niches between successive pairs of columns, the successive niches along the partition being at opposite sides thereof.

6. A tunnel or subway carrying a plurality of tracks, and having a partition comprising a line of columns between said tracks and sheets of suitable material between each two successive columns said sheets being curved to provide niches between successive pairs of columns, the successive niches along 45 the partition being at opposite sides thereof the curvature in the partition at opposite sides at any points in the track being at opposite directions so as to provide a niche at one side or the other throughout the 50 length of the track.

7. A tunnel or subway carrying a plural-

ity of tracks and a partition comprising a line of columns between said tracks and sheets of suitable material between each two successive columns, the lower part of each 55 panel being curved in transverse section to provide a niche for retreat from passing trains, and the upper part of the panel being

8. A tunnel or subway carrying a plural- 60 ity of tracks and having a partition com-prising a line of columns between said tracks and sheets of suitable material fastened to said columns, each sheet extending integrally in a longitudinal direction for a dis- 65 tance equal at least to that between two successive columns.

9. A tunnel or subway carrying a plurality of tracks and having a line of columns between said tracks, the transverse faces of 70 said columns being provided with vertical channels and sheets of suitable material between each two successive columns, each sheet extending integrally from one column to the next and having its edges entering 75 the channels in the transverse faces of said columns and fastened therein.

10. A tunnel or subway carrying a plurality of tracks and having a partition comprising a line of columns having their trans- 80 verse faces channeled and provided with inward beads on the edges, sheets having their edges within said channels and fastening means for the edges of the sheets, said fastening means being held in by said beads. 85

11. A tunnel or subway carrying a plurality of tracks and having a partition comprising a line of columns having their transverse faces channeled and provided with inward beads on the edges, sheets having 90 their edges within said channels and wedging means between the edges of said sheets and the opposite walls of the channels, said wedging means being held in by said beads.

In witness whereof, I have hereunto 95 signed my name in the presence of two subscribing witnesses.

EMIL DIEBITSCH.

Witnesses:

D. Anthony Usina, WILLIAM N. SEEWAGEN.