

We Claim:

1. An access terminal, comprising:

 a communications interface;

 a non-transitory storage medium comprising a sector indicator corresponding to a preceding overhead message, and at least one sequence number corresponding to the preceding overhead message; and

 a processing circuit coupled to the communications interface and the storage medium, the processing circuit configured to:

 receive, via the communications interface, a subsequent sector indicator and at least one subsequent sequence number, each corresponding to a subsequent overhead message, wherein the subsequent sector indicator comprises a value for at least one reserved bit in a general page message including the subsequent overhead message;

 determine whether a value of the subsequent sector indicator is the same as the value of the sector indicator stored in the storage medium;

 determine whether the at least one subsequent sequence number is the same as the at least one sequence number stored in the storage medium; and

 ignore the subsequent overhead message when the subsequent sector indicator is the same as the sector indicator stored in the storage medium, and when the at least one subsequent sequence number is the same as the at least one sequence number stored in the storage medium.

2. The access terminal as claimed in claim 1, wherein the processing circuit is further configured to: obtain the subsequent overhead message when the subsequent sector indicator is different from the sector indicator stored in the non-transitory storage medium.

3. The access terminal as claimed in claim 1, wherein the processing circuit is further configured to: obtain the subsequent overhead message when the at least one subsequent sequence number is different from the at least one sequence number stored in the non-transitory storage medium.

4. A method of processing a general page message, the method comprising:
 - receiving a general page message including a subsequent sector indicator as a value for at least one reserved bit of the general page message;
 - obtaining the subsequent sector indicator and at least one subsequent sequence number from the general page message, each corresponding to a subsequent overhead message;
 - determining whether the subsequent sector indicator is the same as a stored sector indicator;
 - determining whether the at least one subsequent sequence number is the same as at least one stored sequence number; and
 - ignoring the subsequent overhead message when the subsequent sector indicator is the same as the stored sector indicator, and when the at least one subsequent sequence number is the same as the at least one stored sequence number.
5. The method as claimed in claim 4, further comprising:
 - prior to obtaining the subsequent sector indicator and the at least one subsequent sequence number, receiving a preceding overhead message comprising the stored sector indicator and the at least one stored sequence number; and
 - storing the stored sector indicator and the at least one stored sequence number.
6. The method as claimed in claim 4, wherein the general page message comprises the subsequent overhead message.
7. The method as claimed in claim 4, wherein determining whether the subsequent sector indicator is the same as the stored sector indicator comprises:
 - determining whether the value for the at least one reserved bit corresponding to the subsequent overhead message is the same as a stored value of at least one reserved bit corresponding to a preceding overhead message.
8. The method as claimed in claim 4, further comprising:

receiving the subsequent overhead message when the subsequent sector indicator is different from the stored sector indicator.

9. The method as claimed in claim 4, further comprising:

receiving the subsequent overhead message when the at least one subsequent sequence number is different from the at least one stored sequence number.

10. An access terminal, comprising:

means for receiving a general page message including a subsequent sector indicator as a value for at least one reserved bit of the general page message;

means for obtaining the subsequent sector indicator and at least one subsequent sequence number from the general page message, each corresponding to a subsequent overhead message;

means for determining whether the subsequent sector indicator is the same as a stored sector indicator;

means for determining whether the at least one subsequent sequence number is the same as at least one stored sequence number; and

means for ignoring the subsequent overhead message when the subsequent sector indicator is the same as the stored sector indicator, and when the at least one subsequent sequence number is the same as the at least one stored sequence number.

11. The access terminal as claimed in claim 10, wherein:

the subsequent sector indicator comprises a value for at least one reserved bit corresponding to the subsequent overhead message; and

the stored sector indicator comprises a value for at least one reserved bit corresponding to a preceding overhead message.

12. The access terminal as claimed in claim 10, further comprising:

means for receiving the subsequent overhead message when the subsequent sector indicator is different from the stored sector indicator.

13. The access terminal as claimed in claim 10, further comprising:
 - means for receiving the subsequent overhead message when the at least one subsequent sequence number is different from the at least one stored sequence number.
14. A network node, comprising:
 - a communications interface;
 - a non-transitory storage medium comprising general page message operations; and
 - a processing circuit coupled to the communications interface and the non-transitory storage medium, the processing circuit configured to perform the general page message operations comprising:
 - generate a general page message including a sector indicator configured to distinguish the general page message from messages associated with another sector, wherein the sector indicator comprises a value for at least one unassigned reserved bit in the general page message; and
 - transmit the general page message via the communications interface.
15. The network node as claimed in claim 14, wherein the value of the sector indicator is configured to distinguish the general page message from messages associated with another sector.
16. The network node as claimed in claim 14, wherein the general page message includes an overhead message comprising one or more corresponding sequence numbers.
17. The network node as claimed in claim 14, wherein the processing circuit is configured to perform the general page message operations comprising: transmit the general page message on a pilot, wherein the pilot is the same pilot employed by the other sector.
18. The network node as claimed in claim 17, wherein the processing circuit is configured to perform the general page message operations comprising: determine that the other sector employs the same pilot before the general page message is generated.

19. A method of processing a general page message at a network node, comprising:
 - generating a general page message comprising a sector indicator configured to distinguish the general page message from messages associated with another sector, wherein the sector indicator comprises a value for at least one unassigned reserved bit in the general page message; and
 - transmitting the general page message.
20. The method as claimed in claim 19, wherein the value of the sector indicator distinguishes the general page message from messages associated with another sector.
21. The method as claimed in claim 19, wherein the general page message comprises an overhead message with one or more corresponding sequence numbers.
22. The method as claimed in claim 19, wherein transmitting the general page message comprises: transmitting the general page message on a pilot, wherein the pilot is the same pilot employed by the other sector.
23. The method as claimed in claim 22, further comprising: determining that the other sector employs the same pilot prior to generating the general page message.
24. A network node, comprising:
 - means for generating a general page message comprising a sector indicator configured to distinguish the general page message from messages associated with another sector, wherein the sector indicator comprises a value for at least one unassigned reserved bit in the general page message; and
 - means for transmitting the general page message.
25. The network node as claimed in claim 24, wherein the value of the sector indicator is configured to distinguish the general page message from messages associated with another sector.

26. The network node as claimed in claim 24, wherein the general page message comprises an overhead message comprising one or more corresponding sequence numbers.

Dated 17/06/2014

[P. SEETHA]
OF REMFRY & SAGAR
ATTORNEY FOR THE APPLICANT[S]

