CONTINUOUS TECHNIQUES FOR MAKING FLAT WOVEN SYNTHETIC FABRICS

Morton L. Ubert, West End, N.J., and Bernard L. Schwartz, Scarsdale, N.Y., assignors to Patchoque Plymouth Company, a division of Avison Corporation, New York, N.Y., a corporation of Delaware

Filed by continuation of application Ser. No. 378,179, June 26, 1964. This application June 27, 1968, Ser. No. 740,627

Int. Cl. D03d 15/00; B29h 7/18

U.S. Cl. 28—72

3 Claims

ABSTRACT OF THE DISCLOSURE

A continuous technique for manufacturing flat woven fabrics wherein thermoplastic material is extruded into a web which is stretch-oriented to increase its tensile strength, the web being slit before or after orientation to produce individual strips that are folded into narrow ribbons in which the cut edges of the strips are concealed, the ribbons being directly supplied into a loom where they are woven into a flat fabric.

Another object of the invention is that it eliminates such conventional operations as beaming, thereby effecting significant production economies.

Another object of the invention is to provide a continuous technique of the above type in which the folding serves to conceal the cut edges of the strips, thereby facilitating proper weaving operations, the folding serving to improve the edge tear-strength and hence the tear values of the resultant fabric.

Also an object of the invention is to provide a low-cost, sheet-like woven fabric whose structural characteristics are superior to those heretofore produced at higher cost.

Briefly stated, these objects are attained in a technique wherein molten thermoplastic material, such as polypropylene, is continuously extruded into a film-like web which is stretch-oriented to increase its tensile strength, the web being slit before or after orientation to produce individual strips which are then folded with the cut edges thereof turned inward to provide relatively narrow ribbons having smooth folded edges, which ribbons are fed directly into a loom where they are interwoven to form a flat fabric. Thus the process in accordance with the invention transforms molten raw material into a woven fabric in a rapid, uninterrupted, sequential operation.

For a better understanding of the invention, as well as other objects and further features thereof, reference is made to the following detailed description to be read in conjunction with the accompanying drawing, wherein:

FIG. 1 schematically shows a system for carrying out a continuous technique for producing a sheet-like woven fabric in accordance with the invention;

FIG. 2 is a perspective view of one of the folding units;

FIG. 3 is a side view of the folding unit and of the associated calender rolls.

FIG. 4 is a transverse section taken through a ribbon produced by forming a strip; and

FIG. 5 is a plan view of the sheet-like fabric produced by the weaving operation.

The raw material used to make fabric in accordance with the invention may be any known form of molecularly orientable, thermoplastic polymeric material such as polyethylene, polypropylene, polyamide, polyester.

Polymers are synthetic substances composed of large molecules that have been formed by the union of a group of single molecules with one another.

As shown in FIG. 1, the selected raw material is rendered molten and extruded through a suitable extruder assembly 10 to form a film-like web 11. The manner in which the raw material is converted into web-form is entirely conventional, and any standard equipment may be used for this purpose.

Web 11 is pulled from extruder 10 by feed rolls 12, the web being cooled before it reaches these rolls, so that it is below its softening point. Longitudinal orientation is then effected by the process of drawing to irreversibly stretch the web and thereby increase its tensile strength considerably. This is accomplished by cooled draw rolls 13, the peripheral speed of which is greater than that of heated feed rolls 12, the ratio between the two rolls being termed the "draw ratio."

The stretch-oriented web 14 emerging from draw rolls 13 is conveyed into a slitter mechanism 15 where it is divided by rotary blades or equivalent means into a multiplicity of individual flat strips 21 to 26. Alternatively, slitting may be effected prior to orientation. Because orientation imparts to the material a tendency to fibrillate at the edges when subjected to stresses, strips 21 to 26 emerging from the slitter have somewhat rough edges containing fine fibrils.

Each strip is conveyed through a folding unit 16 having a tapered bore 17...
3,503,106

therein with an oblong cross-section of progressively diminishing dimensions. Thus the edges E_a and E_b of strip S_b, entering the input side of the folding unit at which the bore has its largest dimension, engage the wall of the bore and are caused thereby to fold over as the bore dimensions become smaller, so that the strip emerges from the output side of the bore with the edges E_a and E_b folded over, as shown in FIG. 4.

The folded-over edges are pressed down by calender rolls 18, as shown separately in FIG. 3, to form flat and relatively narrow ribbons R_1 and R_n, the creased edges of the ribbons being the folded-over edges of the strip. Hence the creased edges of the ribbon present a smooth surface. The width of the strip is such that when folded over as described above, the resultant ribbon constitutes a yarn of the desired denier.

Ribbons R_1 to R_n are then fed into a standard loom 19 for weaving man-made yarns, such as a Draper loom, the ribbons being interwoven to form a fabric having a flat surface, as shown in FIG. 5. In practice, where it is desired that the flat yarn have, say, a two-mil thickness, the strips are made in a one-mil thickness to produce folded-over ribbons or flat yarn of two-mil thickness.

It is also possible to carry out the process in accordance with the invention by commencing with a commercial roll of oriented or unoriented synthetic thermoplastic material. Where the roll is formed of oriented film, the web thereof, as it is unwound from the roll, is fed into the slitter, the resultant strips being first folded and then fed directly into the loom in the manner previously described. But should the web be of unoriented film, the orientation may be effected in the course of feeding the folded ribbons into the loom by means of stretch rolls. In either case, the strips are so folded as to present smooth edges to facilitate weaving.

While there has been described and shown preferred techniques in accordance with the invention, it will be appreciated that many changes and modifications may be made therein without, however, departing from the essential spirit of the invention as defined in the annexed claims.

What we claim is:

1. A continuous technique for producing a flat fabric, comprising the steps of:
 (a) extruding raw material formed of an orientatable synthetic thermoplastic material selected from the class consisting of polypropylene and polyethylene into a film-like web,
 (b) orienting the web to increase the tensile strength of the material to a point at which fibrils are formed at the edges of individual strips subsequently derived from the web by slitting,
 (c) slitting the web into individual strips,
 (d) folding each strip with its fibrillated edges folded in to produce relatively narrow ribbons and then calendering the ribbons to press in the folds thereof to produce yarn-like ribbons having smooth creased edges; and
 (e) interweaving said yarn-like ribbons directly into a flat fabric.

2. A technique as set forth in claim 1, wherein said slitting is effected before orientation.

3. A technique as set forth in claim 1, wherein said slitting is effected after orientation.

References Cited

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor</th>
<th>Class</th>
<th>Claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,960,725</td>
<td>11/1960</td>
<td>Lefevre</td>
<td>264—147</td>
<td>X</td>
</tr>
<tr>
<td>3,110,905</td>
<td>11/1963</td>
<td>Rhodes</td>
<td>57—31</td>
<td>X</td>
</tr>
<tr>
<td>3,193,904</td>
<td>7/1965</td>
<td>Evans et al.</td>
<td>264—147</td>
<td>X</td>
</tr>
<tr>
<td>3,253,072</td>
<td>5/1966</td>
<td>Scragg et al.</td>
<td>264—147</td>
<td>X</td>
</tr>
<tr>
<td>3,327,468</td>
<td>6/1967</td>
<td>Page</td>
<td>57—140</td>
<td>X</td>
</tr>
<tr>
<td>3,336,645</td>
<td>8/1967</td>
<td>Mirsky</td>
<td>139—11</td>
<td>X</td>
</tr>
<tr>
<td>3,398,220</td>
<td>8/1968</td>
<td>Port et al.</td>
<td>264—147</td>
<td>X</td>
</tr>
<tr>
<td>3,435,865</td>
<td>4/1969</td>
<td>Port et al.</td>
<td>139—389</td>
<td>X</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Country</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>180,540</td>
<td>12/1954</td>
<td>Austria</td>
<td></td>
</tr>
<tr>
<td>702,381</td>
<td>1/1965</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>1,035,227</td>
<td>7/1966</td>
<td>Great Britain</td>
<td></td>
</tr>
<tr>
<td>98,780</td>
<td>10/1961</td>
<td>Norway</td>
<td></td>
</tr>
</tbody>
</table>

JAMES KEE CHI, Primary Examiner

U.S. Cl. X.R.

57—140; 139—11, 420; 264—103, 147