Abstract: The present invention is directed to display devices comprising a watermark area and a non-watermark area. The watermark aims to protect against counterfeiting or to be used for decoration purposes. The watermark is visible at certain viewing angles and/or under certain lighting conditions and it does not interfere with displaying of the regular images.

Figure 3
DISPLAY DEVICE WITH WATERMARK

Field of the Invention

The present invention is directed to a display device wherein the viewing side of the display device has a watermark area and a non-watermark area and the display cells in the watermark area are modulated to be distinguishable from the display cells in the non-watermark area. The display device comprising the watermark feature is useful for protecting against counterfeiting or decoration purposes.

Background of the Invention

US Patent Nos. 6,930,818 and 6,795,138 disclose image display devices based on the microcup technology. The patents describe the manufacture of microcups as display cells. The microcups are then filled with a display fluid. The top openings of the microcups may have the same size and shape and such microcups spread across the entire display surface.

Brief Discussion of the Drawings

Figures 1 and 2 depict top view of display devices.

Figure 3 shows a watermark area in which the walls of the display cells are thicker than those in the non-watermark area.

Figure 4 shows the wall thickness in the watermark area may vary.

Figure 5 shows the thickness of the wall on at least one side of a display cell may vary.

Figure 6 shows a watermark area in which the shape of the display cells is different from that in the non-watermark area.

Figure 7 shows a cross-sectional view of a display panel.

Figure 8 shows a watermark having different color intensities.

Summary of the Present Invention

The first aspect of the present invention is directed to a display device comprising display cells wherein the viewing side of the display device has a watermark area and a non-watermark area and the display cells in the watermark area are modulated to be distinguishable from the display cells in the non-watermark area.
In one embodiment, the walls of the display cells in the watermark area have a different width than the walls of the display cells in the non-watermark area.

In one embodiment, the walls of the display cells in the watermark area are thicker than the walls of the display cells in the non-watermark area.

In one embodiment, the walls of the display cells in the watermark area are thinner than the walls of the display cells in the non-watermark area.

In one embodiment, the walls of the display cells in the watermark area are at least about 5% thicker or thinner than those in the non-watermark area.

In one embodiment, the walls of the display cells in the watermark area have different thickness.

In one embodiment, the wall of at least one side of a display cell in the watermark area has varying thickness.

In one embodiment, the walls of the display cells in the watermark area have a different height than the walls of the display cells in the non-watermark area.

In one embodiment, the display cells in the watermark area have a different shape than the display cells in the non-watermark area.

In one embodiment, the display cells in the watermark area have more than one type of shape.

In one embodiment, the display device is a reflective type of display device.

In one embodiment, the display device is a transmissive type of display device.
In one embodiment, the display device is a transreflective type of display device.

In one embodiment, the display device is an electrophoretic display.

In one embodiment, the display device is a liquid crystal display.

In one embodiment, the display device further comprises a color layer on the non-viewing side of the display device. The color layer may be a sealing layer, an adhesive layer or an electrode layer. The color layer may be of a reflective nature, such as a metallic layer or a scattering reflective nature.

Another aspect of the present invention is directed to a display device comprising display cells separated by partition walls wherein at least one parameter of the display cells in the watermark area is modulated with at least two variations which are different from that parameter in the non-watermark area. In one embodiment, the parameter is the partition wall height. In another embodiment, the parameter is the partition wall width. In a further embodiment, the parameter is the shape of the display cells.

Detailed Description of the Invention

The present inventors have now found that a watermark feature may be added to a display device, which watermark is useful to protect against counterfeiting when a security measure is required for the display device. In addition, the watermark may also be used for ornamental design/decoration purposes.

The watermark feature may be achieved by modulating (i.e., altering) at least one parameter of the display cells, in the watermark area.

Figures 1 and 2 depict top views of a display device. In the two examples, the display cells have a square or hexagonal top opening, respectively. The entire surface of the display device may be divided into the display cell area (shaded) and the partition wall area (11 and 21). The display cell area comprises a plurality
of display cells (12 and 22) which are micro-containers filled with a display element, such as a display fluid.

Each individual display cell usually has a cell width (cw) smaller than 300 µm. The cell width, in the context of this application, is defined as the distance between two opposing parallel sides of a display cell.

Because of their small size and uniform shape, the individual display cells are barely perceivable by naked eyes. Therefore such a display device can display images without the grid-like feel.

The wall width (ww) of the partition walls is usually in the range of about 5 to about 30 µm.

Therefore, display devices prepared by the microcup technology (as described in US Patent Nos. 6,930,818 and 6,795,138) are most suitable for the present invention because the microcup-based display cells are sufficiently small and they may be formed to have a uniform size and shape. However, the scope of the invention may also extend to any display device as long as it has display cells which are sufficiently small and have well-defined sizes and shapes that may be pre-determined before manufacture. The display cells, e.g., microcups are formed of a transparent material.

The microcup-based display cells may be manufactured by any of the processes (such as microembossing) described in the US patents identified above, both of which are incorporated herein by reference in their entirety. Briefly the modulated parameter(s) may be built-in in the male mold to be used for forming the microcup-based display cells in an embossing process.

The display element filled in the display cells may be an electrophoretic fluid comprising charged pigment particles dispersed in a solvent or solvent mixture. An electrophoretic display typically comprises two plates with electrodes placed opposing each other. When a voltage difference is imposed between the two
electrodes, the pigment particles in the display fluid migrate to one side or the other causing either the color of the pigment particles or the color of the solvent being seen from the viewing side.

Alternatively, an electrophoretic fluid may comprise two types of charged pigment particles of contrasting colors and carrying opposite charges, and the two types of the charged pigment particles are dispersed in a clear solvent or solvent mixture. In this case, when a voltage difference is imposed between the two electrode plates, the two types of the charged pigment particles would move to opposite ends (top or bottom) in a display cell. Thus one of the colors of the two types of the charged pigment particles would be seen at the viewing side of the display cell.

While electrophoretic display is specifically mentioned, it is understood that the present application is applicable to other types of display device as well, such as other types of reflective display device or transmissive and transreflective display devices, including liquid crystal display devices.

The watermark created according to the present invention is visible at certain viewing angles and/or under certain lighting conditions. The watermark would not interfere with the desired regular images displayed (based on movement of charged pigment particles in a solvent or solvent mixture in an electrophoretic display, for example).

In one embodiment of the present invention, the width of the partition walls of the display cells is modulated. As shown in Figure 3, the display device has a watermark area (W) and a non-watermark area (nW). In the watermark area (alphabet 'Ε '), the partition walls of the display cells are wider than those in the non-watermark area.

In another embodiment, the partition walls in the watermark area may be thinner than those in the non-watermark area.
In general, the width of the partition walls in the watermark area may be at least about 5% thicker or thinner than those in the non-watermark area. It is noted that the wall thickness in some of the drawings is exaggerated for clarity.

In another embodiment as shown in Figure 4, the thickness of the partition walls in the watermark area may vary. In this case, the differences in the wall width can generate different levels of color intensity to display a grey-scale-like image for the watermark.

In a further embodiment as shown in Figure 5, the wall thickness may vary within the partition wall on at least one side of a display cell. By varying the wall thickness on at least one side of a display cell, it may create a different optical effect in the watermark area to cause it to be distinguished from the non-watermark area.

In yet a further embodiment, the shape of the display cells may be a modulating parameter. In an example as shown in Figure 6, the display cells in the watermark area (alphabet "0") have a different shape (i.e., triangle) than those in the non-watermark area (i.e., square). The shapes in the watermark area or the non-watermark area are not limited to triangle or square. They may be any regular shapes or irregular shapes as long as the shape of the display cells in the watermark area is different from that in the non-watermark area. It is also possible that not all of the display cells in the watermark area have the same shape. The term "shape", in this embodiment of the invention, refers to the shape of the top opening of the display cells.

The different shapes of the display cells in the watermark area may be achieved by a number of methods. Certain methods are described in U.S. Patent Application No. 13/765,588, the content of which is incorporated herein by reference in its entirety. Briefly, the design of the different shape of the display cells (e.g., microcups) in the watermark area may be achieved by removing partition walls of non-altered display cells and replacing the removed partition walls with new partition walls. Alternatively, the design of the different shape of the
display cells (e.g., microcups) in the watermark area may be achieved by independently shifting apex points of non-altered display cells within a defined area, and reconnecting the shifted apex points. Utilizing these design methods, the display cells in the watermark area may have different shapes (i.e., randomized).

In yet a further embodiment, the height of the partition walls of the display cells may be a modulating parameter for the watermark area.

The watermark is not limited to characters, numbers or geometric shapes. It may also be complex images such as pictures with grey levels.

As stated above, the watermark may only be visible in a display device at certain angles or under strong lighting conditions; and it usually will not be seen in the normal display mode so that the quality of the regular images displayed is not affected.

Figure 7 shows a cross-sectional view of a display panel. A plurality of display cells (70) filled with a display fluid, are sandwiched between two electrode layers (71 and 72). As discussed above, the width of the display cell walls (70a) may be modulated to form a watermark. In the case of microcup-based display cells, the filled microcups are sealed with a sealing layer (73). The electrode layer (71) is laminated over the filled and sealed microcups, optionally with an adhesive layer (74). This display panel is viewed from the side of the electrode layer (72).

In one embodiment of the present invention, a color layer may be added to enhance the viewing of the watermark. The color layer is on the side opposite of the viewing side. In other words, the color layer is on the non-viewing side.

When a color layer is present, the watermark can be better seen even when the image is at the full black or white color state.
The color layer may be achieved by making the sealing layer (73), the adhesive layer (74) or the electrode layer (71) colored. For example, a pigment or dye material may be added to a sealing composition or adhesive composition to cause the sealing or adhesive layer to be colored. The electrode layer may be colored (e.g., a metallic shade).

In another aspect, each modulating parameter, according to the present invention, may have one or more variations in the watermark area from the non-watermark area. For example, the wall widths of the display cells may be modulated and the display cells in the watermark area may have one or more wall widths which are different from that in the non-watermark area. In another example, the wall heights of the display cells may be modulated and the display cells in the watermark area may have one or more wall heights which are different from that in the non-watermark area. In another example, the shapes of the display cells may be modulated and in this case, the display cells in the watermark area may have one or more shapes which are different from that in the non-watermark area.

When there are two or more variations for a modulating parameter in the watermark area, the watermark may show different color intensities. As shown in Figure 8, there are different color intensities in the watermark area (i.e., a logo and the word "SiPix") because there are more than one wall widths which are different from that in the non-watermark area.

While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation, materials, compositions, processes, process step or steps, to the objective and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
What is claimed is:

1. A display device comprising display cells wherein the display device has a watermark area and a non-watermark area and the display cells in the watermark area are modulated to be distinguishable from the display cells in the non-watermark area.

2. A display device of Claim 1, wherein the walls of the display cells in the watermark area have a different width than the walls of the display cells in the non-watermark area.

3. The display device of Claim 2, wherein the walls of the display cells in the watermark area are thicker than the walls of the display cells in the non-watermark area.

4. The display device of Claim 2, wherein the walls of the display cells in the watermark area are thinner than the walls of the display cells in the non-watermark area.

5. The display device of Claim 2, wherein the walls of the display cells in the watermark area are at least about 5% thicker or thinner than those in the non-watermark area.

6. The display device of Claim 2, wherein the walls of the display cells in the watermark area have different thickness.

7. The display device of Claim 2, wherein the wall of at least one side of a display cell in the watermark area has varying thickness.

8. The display device of Claim 1, wherein the walls of the display cells in the watermark area have a different height than the walls of the display cells in the non-watermark area.

9. The display device of Claim 1, wherein the display cells in the watermark area have a different shape than the display cells in the non-watermark area.
10. The display device of Claim 9, wherein the display cells in the watermark area have more than one type of shape.

11. The display device of Claim 1, which is a reflective type of display device.

12. The display device of Claim 1, which is a transmissive type of display device.

13. The display device of Claim 1, which is a transreflective type of display device.

14. The display device of Claim 1, which is an electrophoretic display.

15. The display device of Claim 1, which is a liquid crystal display.

16. A display device comprising display cells separated by partition walls wherein at least one parameter of the display cells in a watermark area is modulated with at least two variations which are different from that in a non-watermark area.

17. The display device of Claim 16, wherein the parameter is the partition wall height.

18. The display device of Claim 16, wherein the parameter is the partition wall width.

19. The display device of Claim 16, wherein the parameter is the shape of the display cells.

20. The display device of Claim 1, further comprising a color layer on the non-viewing side of the display device.

21. The display device of Claim 20, wherein the color layer is a sealing layer.

22. The display device of Claim 20, wherein the color layer is an adhesive layer.
23. The display device of Claim 20, wherein the color layer is an electrode layer.
A. CLASSIFICATION OF SUBJECT MATTER
G09F 9/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G09F 9/00; B42D 15/10; G09F 13/16; G02B 5/18; G02F 1/1368; G02F 1/1343; G09F 13/12; G02F 1/1335

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: display cells, watermark area, non-watermark area

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2011-002617 A1 (3M INNOVATIVE PROPERTIES COMPANY) 6 January 2011 See pages 3-5, 11; claims 1-26; and figure 7.</td>
<td>1,9-16,19</td>
</tr>
<tr>
<td>Y</td>
<td>KR 10-2005-0087553 A (LG PHILIPS LCD CO., LTD.) 31 August 2005 See page 3; and figure 3.</td>
<td>20-23</td>
</tr>
<tr>
<td>A</td>
<td>JP 2009-098469 A (EPSON IMAGING DEVICES CORP.) 7 May 2009 See paragraphs [0037]-[0046]; and figures 3-7.</td>
<td>1-23</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2010-0042444 A (HYDIS TECHNOLOGIES CO., LTD.) 29 April 2010 See paragraphs [0025]-[0027]; and figure 2.</td>
<td>1-23</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"B" earlier application or patent but published on or after the international filing date
"C" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
"D" document referring to an oral disclosure, use, exhibition or other means
"F" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search
27 August 2013 (27.08.2013)

Date of mailing of the international search report
27 August 2013 (27.08.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
189 Cheonsga-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer
KIM Do Weon
Telephone No. +82-42-481-5560

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2011-002617 Al</td>
<td>06/01/2011</td>
<td>CN 102473370 A</td>
<td>23/05/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2449547 Al</td>
<td>09/05/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012-532336 A</td>
<td>13/12/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012-0086660 Al</td>
<td>12/04/2012</td>
</tr>
<tr>
<td>KR 10-2005-0087553 A</td>
<td>31/08/2005</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>JP 2009-098469 A</td>
<td>07/05/2009</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>KR 10-2010-0042444 A</td>
<td>26/04/2010</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>