A method for thermal management of an electronic device is disclosed. The method includes monitoring temperature detection data (200), storing temperature detection data in memory (202), and analyzing temperature data (204). If temperature detection data is above temperature range data (206), priority data is analyzed (208), and thermal elements (210) are adjusted. Otherwise, priority data is not analyzed, and the process continues.

[Continued on next page]
Declarations under Rule 4.17:
— as to the identity of the inventor (Rule 4.17(i))
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(U))
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(Ui))

Published:
— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
ELECTRONIC DEVICE THERMAL MANAGEMENT SYSTEM AND METHOD

BACKGROUND
[0001] Electronic devices, such as laptop or notebook computers, generate thermal energy during operation, which can result in a temperature increase of all or portions of the external surfaces of such devices (e.g., the housing of the device). However, if the electronic device is placed on a user's lap, for example, thermal energy generated by the electronic device can be felt by the user, thereby creating an uncomfortable experience for the user.

BRIEF DESCRIPTION OF THE DRAWINGS
[0002] FIGURE 1 is a diagram illustrating a perspective view of an electronic device employing an embodiment of a thermal management system to advantage;
[0003] FIGURE 2 is a diagram illustrating a perspective view of another embodiment of the electronic device employing the thermal management system of FIGURE 1;
[0004] FIGURE 3 is a block diagram illustrating the electronic device of FIGURE 1; and
[0005] FIGURE 4 is a flow diagram illustrating an embodiment of a thermal management method.
DETAILED DESCRIPTION OF THE DRAWINGS

[0006] Various embodiments and the advantages thereof are best understood by referring to FIGURES 1-4 like numerals being used for like and corresponding parts of the various drawings.

[0007] FIGURE 1 is a diagram illustrating a perspective view of an electronic device 10 employing an embodiment of a thermal management system 12 to advantage. In the embodiment illustrated in FIGURE 1, thermal management system 12 is configured to monitor the temperature of portions of the external surfaces of electronic device 10 and dynamically control the use of computer components 14 and/or cooling fans 16i and/or 162 of electronic device 10 in response to detecting a surface temperature above a predetermined temperature/threshold. In the embodiment illustrated in FIGURE 1, electronic device 10 comprises a laptop or notebook computer 18; however, it should be understood that electronic device 10 may comprise any type of electronic device such as, but not limited to, a tablet personal computer, a personal digital assistant, a desktop computer, a cellular telephone, a gaming device, an entertainment device or any other type of portable or non-portable electronic device. In the embodiment illustrated in FIGURE 1, electronic device 10 comprises a display member 20 rotatably coupled to a base member 22. Display member 20 and base member 22 each comprise a housing 24 and 26, respectively, formed having a number of walls. For example, housing 26 comprises a top wall defining a working surface 28, a bottom wall 30, a front wall 32 a rear wall 34 and a pair of sidewalls 36 and 38.

[0008] In operation, thermal management system 12 is configured to dynamically adjust a temperature level within housing 24, thereby adjusting a temperature of walls 28, 30, 32, 34, 36 and/or 38 of electronic device 10, based on a signal indicative of a temperature of walls 28, 30, 32, 34, 36 and/or 38. For example, if a temperature of bottom wall 30 is above the predetermined temperature/threshold (e.g., a temperature making it uncomfortable to rest bottom wall 30 of housing 24 on a user’s lap or on any other surface), thermal management system 12 is operable to adjust one or more components 14 and/or the operation and/or speed of the one or
more cooling fans (e.g., and/or 16, within electronic device 10 to reduce the temperature within electronic device 10 and thus wall 30.

[0009] In the embodiment illustrated in FIGURE 1, thermal management system 12 comprises a plurality of sensors 40 on and/or near housing 24 to measure the temperature of one or more of walls 28, 30, 32, 34, 36 or 38. For example, in FIGURE 1, thermal management system 12 comprises a plurality of temperature sensors 40i, 4O₂, 4O₃, 4O₄ and 4O₅ spaced apart on bottom wall 30 to detect the surface temperature of bottom wall 30. In FIGURE 1, electronic device 10 comprises five sensors 40i, 4O₂, 4O₃, 4O₄ and 4O₅; however, it should be understood that a greater or fewer number of sensors 40 may be utilized. In the embodiment illustrated in FIGURE 1, sensors 40 are embedded within and/or are coupled directly to bottom wall 30 and are disposed generally adjacent to components 14; however, it should be understood that sensors 40 may be otherwise located and embedded within and/or coupled to any other wall 28, 32, 34, 36 and/or 38 of base member 22 and/or at any other location within base member 22. Components 14 may comprise a variety of different types of devices used in the operation of electronic device 10 that may generate thermal loads within housing 26, thereby increasing the temperature within housing 26 and on walls 28, 30, 32, 34, 36 and/or 38. In the embodiment illustrated in FIGURE 1, components 14 comprise a processor 14i, a graphics chip 14₂, and a wireless radio module 14₃, thermally coupled via heat transport elements 42i and 42₂ to a pair of heat exchangers 44 and 46, respectively, to dissipate heat generated by processor 14i and graphics chip 14₂. In the embodiment illustrated in FIGURE 1, cooling fans 16, and/or 16₂ are operable to generate an airflow through housing 26 to dissipate heat generated by components 14 using heat exchangers 44 and/or 46. In operation, sensors 40 monitor the temperature of the interior area of housing 26 by measuring the temperature of walls 28, 30, 32, 34, 36 and/or 38 to enable thermal management system 12 to regulate the heat generated within housing 26 and thus the temperature of walls 28, 30, 32, 34, 36 and/or 38).
[0010] FIGURE 2 is a diagram illustrating a perspective view of another embodiment of electronic device 10 employing thermal management system 12 of FIGURE 1. In the embodiment illustrated in FIGURE 2, thermal management system 12 is operable to adjust a baffle system 68 to direct and/or re-direct an airflow generated by cooling fan 16. For example, in the embodiment illustrated in FIGURE 2, heat exchangers 44 and 46 are configured adjacent to cooling fan 16 to receiving cooling air. A baffle 70 is movably positionable within cooling fan 16 in the directions of arrow 72 to direct cooling air generated by cooling fan 16 to one or both of heat exchangers 44 and 46. For example, in the embodiment illustrated in FIGURE 2, in the event sensors 40i and/or 40j detect a temperature of bottom wall 30 higher than the temperature measured by sensors 40k and/or 40l, thermal management system 12 adjusts the position of baffle 70 to at least partially block the airflow through exchanger 46 and otherwise divert all or a portion of the airflow toward exchanger 44 to increase the cooling rate of component 14i.

[0011] FIGURE 3 is a block diagram illustrating electronic device 10 of FIGURES 1 and 2. In FIGURE 3, thermal management system 12 comprises sensor(s) 40 and a thermal management controller 50 configured to receive inputs from sensor(s) 40. In the embodiment illustrated in FIGURE 3, electronic device 10 comprises processor 14, sensor(s) 40, an interface 48, baffling system 68, a memory 54 and one or more cooling fans 16. In the embodiment illustrated in FIGURE 3, memory 54 comprises temperature detection data 56, temperature threshold data 58 and priority data 60. In FIGURE 3, thermal controller 50 may comprise hardware, software, firmware or a combination of hardware, software and firmware. In operation, thermal controller 50 receives temperature data collected from sensor(s) 40 and stores it as temperature detection data 56. Thermal controller 50 compares temperature detection data 56 to temperature threshold data 58 to determine whether temperature detection data 56 is above a predetermined temperature threshold value (e.g., whether the detected temperature is above a predetermined temperature) stored as temperature threshold data 58. For example, in the event a sensor 40 detects a temperature level of
bottom wall 30 (FIGURE 1) greater than the value stored as temperature threshold data 58 (e.g., the highest acceptable temperature of bottom wall 30), thermal management controller 50 generates a command to adjust the performance of one or more components 14 (e.g., adjusting data transfer rates, turning off and/or reducing a performance level of radio module 14_3, adjusting a clock frequency of processor 14i, etc.), adjusts baffling system 68 and/or adjusts the speed of cooling fans 16-i and/or 16_2.

[0012] In the embodiment illustrated in FIGURE 3, baffling system 68 comprises baffle 70 and a positioning system 74 for variably positioning baffle 70 to direct and/or redirect cooling air flow through electronic device 10. According to some embodiments, positioning system 74 may comprise an electric motor to drive a worm gear and/or any other mechanism to variably position baffle 70 within electronic device 10; however, it should be understood that other methods of variably positioning baffle 70 are available.

[0013] In the embodiment illustrated in FIGURE 3, temperature detection data 56 comprises information associated with signals collected and/or otherwise received by sensor(s) 40 such as temperature data (the temperature measured by a particular sensor 40). Temperature threshold data 58 comprises information associated with known and/or predetermined signal values that are used to evaluate temperature detection data 56 to determine whether the operation of electronic device 10 should be modified (e.g., reduce the performance of processor 14i, graphics chip 14_2 and/or radio module 14_3, turning on and/or increasing a speed of fan(s) 16i and/or 16_2, adjusting baffling system 68, etc.) to reduce the heat generated within housing 26 and thus the warming of walls 28, 30, 32, 34, 36 and/or 38. For example, acceptable threshold temperature levels associated with bottom wall 30 of electronic device 10 may be approximately ninety degrees Fahrenheit such that in the event electronic device 10 is utilized on a user's lap, thermal energy generated within electronic device 10 prevents warming of bottom wall 30 to an uncomfortable level. Accordingly, if temperature detection data 56 is greater than ninety degrees Fahrenheit, thermal management controller 50 sends a signal to increase the speed of fan(s) 16 to dissipate thermal
energy, to adjust baffling system 68 via positioning system 74, and/or to reduce the performance of one or more components 14 to decrease the thermal output of the one or more components 14. In some embodiments, thermal controller 50 is configured to automatically regulate the temperature of electronic device 10 via input from sensor(s) 40; however, it should be understood that, additionally or alternatively, thermal controller 50 may be configured to enable a user to selectively regulate the temperature within electronic device 10 via interface 48. For example, in response to an undesired/uncomfortable temperature of bottom wall 30 (e.g. an uncomfortable temperature of bottom wall 30 while resting on a user's lap), thermal controller 50 is configured to enable a user to selectively adjust the performance of electronic device 10 and/or increase the speed of cooling fan(s) 16 reduce the amount of thermal energy generated therein and thus the temperature of bottom wall 30. Furthermore, interface 48 enables a user to adjust and/or set temperature threshold data 58. For example, in the event a user desires to withstand a higher temperature level of bottom wall 30 (e.g., in instances when electronic device 10 is utilized on a table or surface other than the user's lap), a user can adjust the upper threshold of temperature threshold data 58 via interface 48 to accommodate the increased temperatures.

In FIGURE 3, priority data 60 comprises a prioritization of the various components 12 (e.g., a level of importance to a user of electronic device 10) to facilitate control of use of components 12 to enable operation of electronic device 10 below a designated temperature. For example, in the embodiment illustrated in FIGURE 3, priority data 60 comprises a listing of high priority elements 62, medium priority elements 64 and low priority elements 66. High priority elements 62 generally comprise an identification of one or more components 14 having a generally high level of priority of use by a user of electronic device 10. Low priority elements 66 generally comprise an identification of one or more components 14 considered as having a low level of priority of use by a user of electronic device 10. Correspondingly, medium priority elements 64 comprise an identification of one or more components 14 having a priority level of use greater than low priority elements 66 but less than high priority
elements 62. It should be understood that the priority levels used herein are for illustrative purposes only as the prioritization could be more or less granular.

[0015] In operation, thermal management controller 50 communicates with sensor(s) 40 to monitor the temperatures of wall 28, 30, 32, 34, 36 and/or 38 of electronic device 10. If the measured temperature of any of walls 28, 30, 32, 34, 36 and/or 38 is above temperature threshold data 58, thermal controller 50 automatically controls and/or adjusts use of components 14 and/or fans 16 based on priority data 60 to enable use of electronic device 10 below the threshold temperature level. For example, if the temperature of any one of the walls 28, 30, 32, 34, 36 and/or 38 increases above threshold temperature data 58, thermal controller 50 automatically accesses priority data 60 and automatically controls and/or cessates use of one or components 14, adjusts the speed of one or more cooling fans 16 and/or adjusts baffling system 68 (FIGURE 2) to enable use of electronic device 10 at temperature levels at or below temperature threshold data 58. Preferably, thermal management controller 50 controls and/or ceases use of low priority elements 66 before controlling and/or cessating use of medium priority elements 64, and controls and/or cessates use of medium priority elements 64 before controlling and/or cessating use of high priority elements 62. Thus, if an e-mail application executed by processor 14i is identified as a low priority element 66, thermal management controller 50 sends a signal to processor 14i to automatically close and/or cessate use of the e-mail application. For example, in response to closing of the e-mail application, if temperature detection data 56 falls within temperature threshold data 58 (e.g., the temperature of wall 30 falls within temperature threshold data 58), no further action by thermal controller 50 may be necessary. However, if the temperature of wall 30 remains outside of temperature threshold data 58, thermal management controller 50 proceeds to control and/or cease use of additional low priority elements 66, medium priority elements 64 and/or high priority elements 62 to enable use of the electronic device 10 within the values of temperature threshold data 58. It should be understood that thermal controller 50 may
be configured to analyze and/or control use of components 14, cooling fans 16 and baffle 70 on a continuous or periodic basis.

[0016] In the embodiment illustrated in FIGURES 1-3, thermal management controller 50 is operable to dynamically adjust operation of electronic device 10 such that the temperature within housing 26 reduces and/or substantially eliminates the likelihood of walls 28, 30, 32, 34, 36 and/or 38 warming above temperature threshold data 58. For example, in the event sensor 40 of FIGURE 1 detects a temperature of a portion of bottom wall 30 adjacent to processor 14i above temperature threshold data 58, thermal management controller 50 sends a signal to increase the speed of fan 16, to increase the cooling rate of processor 14i via increased thermal dissipation within heat exchanger 46. Additionally and/or alternatively, thermal management controller 50 can optionally send a signal to control (e.g., reduce) the performance of processor 14-1 based on, for example, priority data 60. Likewise, in the event sensor 40 of FIGURE 1 detects a temperature well below temperature threshold data 58, thermal management controller 50 sends a signal to turn off and/or otherwise decrease the speed of fan 16, to utilize less energy and/or increase the performance of graphics chip 142.

[0017] FIGURE 4 is a flow diagram illustrating an embodiment of a thermal management method. In the embodiment illustrated in FIGURE 4, the method begins at block 200 where thermal management controller 50 monitors temperature detection data 56 acquired and/or otherwise detected by sensor(s) 40. For example, in the embodiment illustrated in FIGURE 3, thermal controller 50 monitors the temperature of bottom wall 30 via sensors 40 (FIGURE 1). At block 202, the temperature detected by sensors 40 is stored in memory as temperature detection data 56. At block 204, thermal controller 50 analyzes temperature detection data 56 using temperature threshold data 58 to determine whether the temperature within electronic device 10 should be decreased based on the temperatures detected by sensor(s) 40. At decisional block 206, thermal controller 50 makes a determination as to whether temperature detection data 56 is above a predetermined threshold as defined by
temperature threshold data 58 for walls 28, 30, 32, 34, 36 and/or 38. If the temperature detection data 56 is above a predetermined threshold, the method proceeds to block 208, where thermal management controller 50 analyzes priority data 60 to automatically control and/or cessate use of one or more components 14, to automatically adjust the speed of one or more cooling fans 16 and/or to adjust baffling system 68 to enable use of electronic device 10 at temperature levels below temperature threshold data 58 as indicated at block 210. The method proceeds to block 204 wherein controller 50 continues analyzing temperature detection data 56. In the event temperature detection data 56 is determined not to be above a predetermined threshold at decisional block 206, the method proceeds to block 204 wherein controller 50 continues analyzing temperature detection data 56.

[0018] Thus, embodiments of thermal management system 12 monitor and regulate the temperature of electronic device 10 (e.g. housing 24 and/or 26). In particular, embodiments of thermal management system 12 regulate the temperature of surfaces 28, 30, 32, 34, 36 and/or 38 of electronic device 10 by automatically adjusting components 14, one or more cooling fans 16 and/or a baffling system 68 therein.
WHAT IS CLAIMED IS:

1. An electronic device thermal management system (12), comprising:
 a thermal management controller (50) configured to maintain a temperature level
 within a housing (24) of an electronic device (10) below a predetermined temperature
 based on a signal indicative of a temperature of at least a portion of a wall (28, 30, 32, 34, 36, 38)
 of the housing (24) of the electronic device (10).

2. The system (12) of Claim 1, further comprising at least one temperature
 sensor (4O₁, 4O₂, 4O₃, 4O₄, 4O₅) disposed on the wall (28, 30, 32, 34, 36, 38)
 of the electronic device (10).

3. The system (12) of Claim 1, wherein the controller (50) is configured to
 control operation of at least one cooling fan (16₁, 16₂) of the electronic device (10)
 based on the temperature of the wall (28, 30, 32, 34, 36, 38).

4. The system (12) of Claim 1, wherein the controller (50) adjusts a
 performance level of a component (14) of the electronic device (10)
 based on the temperature of the wall (28, 30, 32, 34, 36, 38).

5. The system (12) of Claim 1, wherein the controller (50) is configured to
 adjust a performance level of at least one component (14) based on a prioritization
 of components (14) within the housing (24) based on the temperature of the wall (28, 30, 32, 34, 36, 38).

6. A thermal management method, comprising:
 maintaining a temperature level within a housing (24) of an electronic device (10)
 below a predetermined threshold based on a signal indicative of a temperature of at
least a portion of a wall (28, 30, 32,. 34, 36, 38) of the housing (24) of the electronic
device (10).

7. The method of Claim 6, further comprising detecting a temperature on a
bottom wall (30) of the electronic device (10).

8. The method of Claim 6, further comprising reducing a performance level of
at least one component (14) of the electronic device (10) based on the temperature of
the wall (28, 30, 32,. 34, 36, 38).

9. The method of Claim 6, further comprising identifying a level of
prioritization for at least one component (14) of the electronic device (10) based on the
temperature of the wall (28, 30, 32,. 34, 36, 38).

10. The method of Claim 6, further comprising ceasing use of at least one
component (14) based on the temperature of the wall ((28, 30, 32,. 34, 36, 38).
FIG. 3

ELECTRONIC DEVICE
 10
 PROCESSOR
 14
 SENSORS
 40
 INTERFACE
 48
THERMAL MANAGEMENT CONTROLLER
 50
BAFFLING SYSTEM
 68
 BAFFLE
 70
 POSITIONING SYSTEM
 74
MEMORY
 54
TEMPERATURE THRESHOLD DATA
 58
TEMPERATURE DETECTION DATA
 56
PRIORITY DATA
 60
 HIGH PRIORITY ELEMENTS
 62
 MEDIUM PRIORITY ELEMENTS
 64
 LOW PRIORITY ELEMENTS
 66
FAN(S)
 16
FIG. 4

200 MONITOR TEMPERATURE DETECTION DATA

202 STORE TEMPERATURE DETECTION DATA IN MEMORY

204 ANALYZE TEMPERATURE DATA

206 IS TEMPERATURE DETECTION DATA ABOVE TEMPERATURE RANGE DATA?

YES

208 ANALYZE PRIORITY DATA

NO

210 ADJUST THERMAL ELEMENTS AND/OR COOLING FAN(S)
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2008/005350

A. CLASSIFICATION OF SUBJECT MATTER

G06F 1/20 (2006.01)i, G06F 1/28 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 8 G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO internal) "thermal management, laptop, housing, temperature sensing, electronic device"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2005-049729 A1 (CULBERT et al) 03 Mar 2005 See paragraphs [0034] - [0187], and Claims</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>US 6760649 B2 (COHEN) 06 Jul 2004 See Column 2 line 26 - Column 5 line 65, and Claims</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>US 2007-027580 A1 (LIGTENBERG et al) 01 Feb 2007 See paragraphs [0017] - [0052], and Claims</td>
<td>1-10</td>
</tr>
</tbody>
</table>

- Further documents are listed in the continuation of Box C
- See patent family annex

* Special categories of cited documents
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
29 AUGUST 2008 (29 08 2008)

Date of mailing of the international search report
29 AUGUST 2008 (29.08.2008)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seogu, Daejeon 302-701, Republic of Korea
Facsimile No 82-42-472-7140

Authorized officer
KIM, KYEOUNSOO
Telephone No 82-42-481-8174

Form PCT/ISA/210 (second sheet) (My 2008)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO 2005-017468 A3</td>
<td>17.11.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 267725 B</td>
<td>01.12.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003-22072 1 A1</td>
<td>27.11.2003</td>
</tr>
<tr>
<td>US 2007-027580 A1</td>
<td>01.02.2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 6319114 B1</td>
<td>20.11.2001</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (My 2008)