

[54] APPARATUS FOR FIXING RADIOACTIVE WASTE

[75] Inventors: **John D. Murphy**, Bedford Hills; **John Pirro, Jr.**, Rutland; **Monsey Lawrence**; **Stanley F. Wisla**, both of Yorktown Heights, all of N.Y.

[73] Assignee: **Atcor Inc.**, Park Mall, Peekskill, N.Y.

[22] Filed: **July 20, 1970**

[21] Appl. No.: **56,625**

[52] U.S. Cl..... **252/301.1 W**

[51] Int. Cl..... **C09k 3/00**

[58] Field of Search **252/301.1 R, 301.1 W**

[56] References Cited

UNITED STATES PATENTS

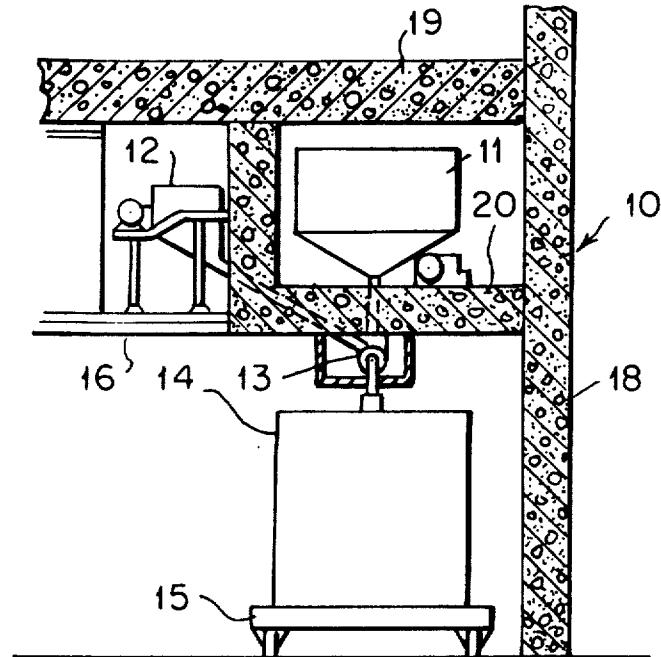
3,012,385 12/1961 Hufft..... 252/301.1 W
3,142,648 7/1964 Lefillatre et al. 252/301.1 W
3,507,801 4/1970 Kausz et al. 252/301.1 W
3,513,100 5/1970 Stogner..... 252/301.1

OTHER PUBLICATIONS

Stoller et al., Reactor Handbook, Vol. II, Fuel Re-processing, 1961, p. 498.

Lawroski et al., "Reactor Fuel Processing," Vol. 8, No. 3, 1965, pp. 172-173, USAEC-Argonne National Lab.

Flagg, Chemical Processing of Reactor Fuels, Academic Press, New York, 1961, p. 467.


Martin et al., Chemical Processing of Nuclear Fuels, Academic Press, New York, 1958, p. 198.

Primary Examiner—Benjamin R. Padgett
Assistant Examiner—R. L. Tate

[57] ABSTRACT

Fixing radioactive waste is disclosed in which the waste is collected as a slurry in aqueous media in a metering tank located within the nuclear facilities. Collection of waste is continued from time to time until a sufficient quantity of material to make up a full shipment to a burial ground has been collected. The slurry is then cast in shipping containers for shipment to a burial ground or the like by metering through a mixer into which fixing materials are simultaneously metered at a rate to yield the desired proportions of materials.

3 Claims, 4 Drawing Figures

PATENTED MAY 13 1975

3,883,441

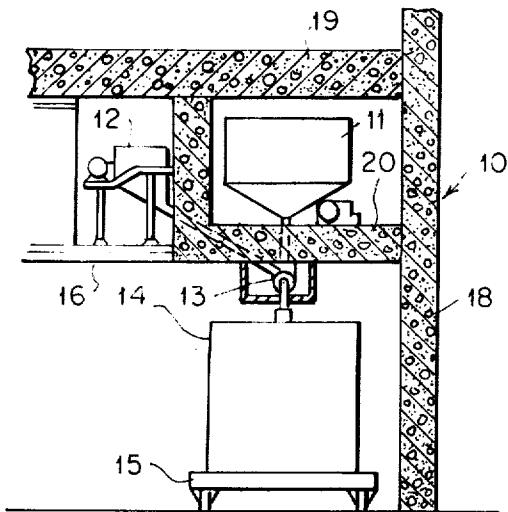


Fig. 1.

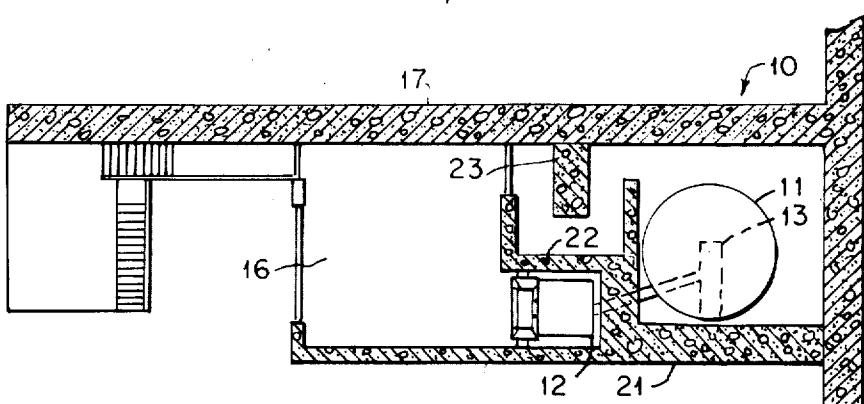
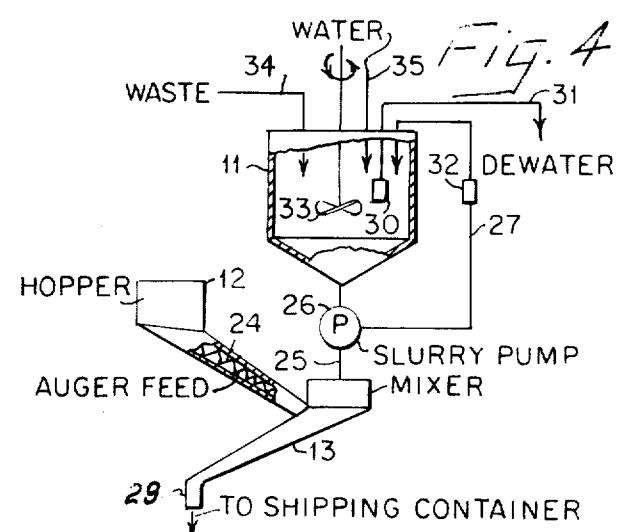



Fig. 3

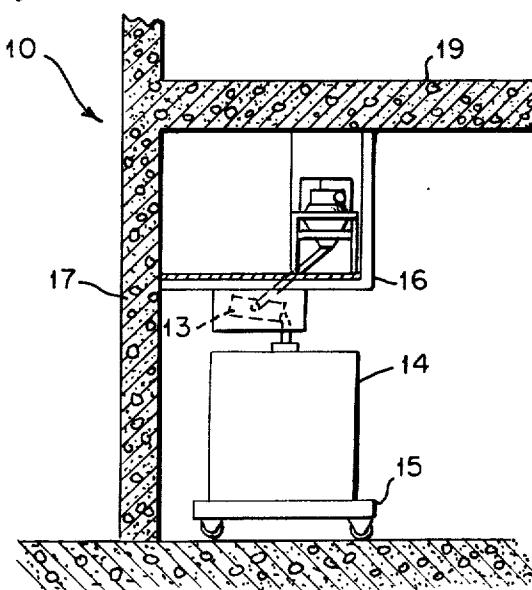


Fig. 2

JOHN D. MURPHY
JOHN PIRRO, JR.
LAWRENCE RUTLAND
STANLEY F. WISLA
INVENTORS

BY
McLean, Morton and Bowles
ATTORNEYS

derside of platform 16, is housed in a steel shielded compartment 28 and is provided internally with a power driven agitator such that fixing material and waste discharged from hopper 12 and tank 11 into the upper end of mixer 13 feed by gravity to the lower end of mixer 13 while being thoroughly mixed, such that they are discharged through outlet 29 in a suitably mixed condition for casting.

Finally, it will be noted, referring particularly to FIG. 4 that water can be withdrawn through a filter 30 and line 31 from tank 11 when it is desired to dewater the contents. Also a radiation detector 32 is located in line 27 to measure the radioactivity of the contents during recirculation. An agitator 33 is also provided in metering tank 11 to provide thoroughly mixed slurry of uniform consistency.

In operation radioactive waste is collected from time to time and slurried and delivered to metering tank 11, for example, through a line 34. Spent resin in a demineralizer, for example, can be backflushed and fed as a slurry through line 34 to metering tank 11. The operation of agitator 33 assures that the mixture is uniform without hot spots. Recirculation through line 27 enables radiation measurements to be made to verify that the Curie capacity of the shipping cask or casks to be used is not exceeded. Radiation measurements could be made on the surface of the metering tank alternatively.

As wastes are accumulated in tank 11, the radiation level rises to the maximum of the desired shipment. A shipping cask 14 fitted with a tank liner or ICC approved drums is then transferred and positioned, for example, by dolly 15 under platform 16 beneath mixer 13. At this point, with a knowledge of the volume of liquid contents in metering tank 11 and of the volume of shipping cask or casks 14 and with the knowledge of the proportion of water to fixing materials required, excess water present in the slurry in tank 11 is removed through filter 30 and line 31. On the other hand, if additional water is required, it is supplied through line 35 followed by sufficient agitation utilizing agitator 33 to

insure a uniform mixture. Slurry pump 26 is then operated to discharge the contents of tank 11 into mixer 13 at a regulated rate. At the same time auger 24 is operated to supply fixing materials from hopper 12 into mixer 13 in the proper proportion for the slurry introduced from tank 11. Mixer 13 is also operated to agitate the mix so that, as it is discharged from outlet 29 into the shipping cask, the mix is properly uniform. After cask 14 is filled it is sealed and the top secured, and the cask is shipped to the burial site typically on a flat bed trailer. Depending on the means of transportation, one or more shipping casks 14 may be filled during the course of the operation.

We claim:

- 15 1. A waste processing facility for preparing radioactive wastes for disposal which includes means defining a shielded enclosure, a metering tank positioned in said enclosure, said metering tank including metering means for removing liquid contents therefrom at a metered rate and measuring means for measuring the radioactivity of liquid contents thereof, mixing means for continuously receiving, mixing and discharging fixing materials and liquids said mixing means being connected to said metering means to receive the contents of said tank through said metering means, fixing materials feed means connected to said mixing means to deliver fixing materials thereto at a regulated rate, means defining a space in which to position a container relative to said mixing means to receive the discharged contents therefrom.
- 20 2. A waste processing facility according to claim 1 which further includes means for storing fixing materials adjacent said enclosure defining means.
- 25 3. A waste processing facility according to claim 1 in which said means defining an enclosure is located on a platform in which said mixing means is positioned on the underside of said platform, the space beneath said platform thereby constituting said space in which to position a container.

* * * * *