A multi-compartment beverage container is compatible with conventional beverage can manufacturing techniques and keeps contained liquids in discrete hermetically sealed compartments. The container is capable of opening several compartments simultaneously with a conventional flip tab, or by removal of screw-on caps. In the case of flip tab openings, a scored panel depressed by the flip tab opens multiple compartments. A supplementary drinking cap facilitates mixing within a mixing chamber defined by the cap removably attached to the lid after opening and during consumption.
FIGURE 8
MULTI-COMPARTMENT FLUID STORAGE DEVICE

RELATED APPLICATION

[0001] This application is a continuation in part of and claims the benefit of priority of co-pending U.S. non-provisional application Ser. No. 10/941,771 filed Sep. 15, 2004, the entire contents of which are incorporated herein by this reference.

FIELD OF THE INVENTION

[0002] This invention relates to containers, and, in particular, to multi-chamber beverage containers that have a flanged secondary container between a lid and primary chamber.

BACKGROUND

[0003] People the world over consume mixed drinks—sometimes such drinks are a mixture of alcoholic and non-alcoholic beverages, carbonated and non-carbonated beverages, flavorings and water, nutritional supplements and water, or any combination of fluids and/or fluid compatible ingredients. Sometimes the combination of such ingredients may produce an unsavory flavor if they are mixed with one another for some extended period of time. One component may settle, absorb carbonation or otherwise react with the other components. Usually, the flavor of these mixed drinks is optimized by consuming the beverage immediately after mixing the constituents. As a result, the component fluids are usually kept in separate containers until they are mixed.

[0004] For example, when a beverage such as a wine spritzer is mixed, the wine and carbonated beverage are mixed only immediately before consumption. Otherwise, the adverse affect of the wine and carbonated beverage when they are combined for some extended period of time would render the drink unpalatable. The wine often acquires a bitter taste, while the carbonated beverage becomes “flat.” The same general effects are observed as an alcoholic beverage such as rum is mixed with cola or fruit juice.

[0005] Because of the adverse effects associated with the extended mixing of certain components of common mixed drinks, these components are often stored separately until immediately before consumption. Individuals must therefore mix drinks. Not only is such mixing tedious, but the process is inherently imprecise, resulting in some drinks that are much stronger or weaker than others. Additionally, the ingredients are stored separately and tend to be depleted at different times, making it difficult to maintain an inventory of adequate amounts of all constituents of a mixed drink.

[0006] Recognizing the advantages that a multi-compartment container would provide, inventors have conceived various dual chamber containers over the years. For example, U.S. Pat. No. 3,305,368 discloses a container having a top wall and a shallow compartment wall underlying and spaced adjacent to the top wall. The compartment wall provides a hermetic seal and divides the interior of the container into an upper compartment for storing a small volume of syrup and a lower compartment for storing a much larger volume of carbonated water. The compartment wall is in sufficiently close proximity to the top wall to be raptured by the blade of a can opener. U.S. Pat. No. 4,139,114 discloses a composite container with a plurality of separable, independently closed container compartments. U.S. Pat. No. 4,919,295 discloses a can having a cup-shaped insert with an open top essentially in the same plane with the open top of the can. A cover seals the can and the insert. The cover includes two separate pull tabs, one sealing the insert and the other sealing the can. Similarly, U.S. Pat. No. 5,355,813 discloses a can with a hollow internal vessel having a top rim engaged in channels of the lid to provide a good seal. U.S. Pat. No. 5,492,244 discloses a partitioned can with a rotatable tab that allows opening each partitioned section. U.S. Pat. No. 5,992,677 discloses a can with an indented cup formed in the lid and configured to hold a removable tube-like container.

[0007] While the above cited inventions disclose useful multi-compartment containers, they do not address the unique conveniences inherent in the present invention. In the art, there is no known container that is compatible with conventional beverage can manufacturing techniques, keeps constituents in discrete hermetically sealed compartments, is capable of opening both compartments simultaneously with a conventional flip tab, and facilitates mixing of the constituents within the container after opening and during consumption.

[0008] What is needed is a multi-compartment beverage container that is compatible with conventional beverage can manufacturing techniques, is capable of keeping constituents in discrete hermetically sealed compartments, is capable of opening both compartments simultaneously with a conventional flip tab, and facilitates mixing of the constituents within the container after opening and during consumption. The invention is directed to overcoming one or more of the problems and solving one or more of the needs as set forth above.

SUMMARY OF THE INVENTION

[0009] An object of this invention is to provide a multi-compartment beverage container that is compatible with conventional beverage can manufacturing techniques. Another object of this invention is to provide a multi-compartment beverage container that keeps separate constituents in discrete hermetically sealed compartments. Yet another object of the invention is to provide a multi-compartment beverage container that allows opening several compartments simultaneously with a conventional flip tab or by removal of screw-on caps. Still another object of the embodiment of the invention is to provide a multi-compartment beverage container that facilitates mixing of the constituents within the container or within a mixing chamber defined by a cap attached to the lid after opening and during consumption.

[0010] To solve one or more of the problems set forth above and achieve one or more of the objectives set forth above, in an exemplary implementation of the invention, a beverage container includes a thin walled canister with a closed bottom, an open top and a top sidewall edge. An inner tubular cylinder has a penetrable flanged head with a central opening and a rim for engaging the top sidewall edge. A lid is connected to the container. The penetrable flanged head is disposed between the top sidewall edge and the lid. The lid has a top surface and a bottom surface and a pull tab attached to the top surface of the lid. The tab has a grip. A scored panel is positioned on the top surface of the lid in functional alignment with the grip of the pull tab and configured to partially detach from the lid when depressed by the grip of the pull tab. The scored panel penetrates the flanged head when depressed. The canister contains a first liquid and the inner tubular cylinder contains a second liquid. The penetrable flanged head hermetically seals the first liquid from the second liquid.
In one embodiment, the pull tab is riveted to the lid. In another embodiment, the pull tab is hingedly coupled to the lid and removable from the lid. The inner tubular cylinder has a bottom abutting the closed bottom of the thin walled canister.

In one embodiment, the flanged head includes a scored horizontal panel adjacent to the central opening, and the inner tubular cylinder includes a scored vertical panel adjacent to the horizontal panel. The scored panel disposed on the top surface of the lid is aligned and configured to detach the vertical panel and the horizontal panel when depressed by the tip of the pull tab.

In another embodiment, the penetrable flanged head includes a concentric recessed plateau scored around the periphery thereof and configured to partially detach when depressed by the scored panel. The partially detached recessed plateau provides a fluid communication path from the central opening of the inner tubular cylinder to the panel.

Optionally, a removable drink cap may be attached over the lid, the drink cap defining a mixing chamber between the drink cap and the lid. The drink cap includes an opening for consumption.

In another exemplary embodiment, a beverage container includes a thin walled canister with a closed bottom and an open top with a top sidewall edge. An inner vessel has a plurality of elongated fluid storage compartments, a central top opening for each storage compartment and a flanged head and a rim for engaging the top sidewall edge. A lid is connected to the container. The flanged head is disposed between the top sidewall edge and the lid. The lid has a top surface and a bottom surface. A threaded neck projects from the top surface in alignment with and associated with each central top opening. A pull tab is riveted to the lid in functional alignment with a scored panel. The pull tab has a tip configured to depress and partially detach the scored panel from the lid when the pull tab is lifted. The scored panel is configured to provide an opening in the lid for consumption of a liquid contained in a storage compartment in alignment with the scored panel. A form fitting penetrable gasket is disposed between the lid and flanged head. The form fitting penetrable gasket is comprised of plastic and has a partially detachable panel associated with and in alignment with each central top opening. Thus, the gasket is configured to seal the central top opening for each storage compartment and a resealable joint made therebetween. The gasket is contoured to seal the central top opening when the scored panel associated with the central top opening is depressed and partially detached from the lid. Each elongated fluid storage compartment has a bottom abutting the closed bottom of the thin walled canister.

The inner vessel may have two elongated fluid storage compartments and one pull tab configured to depress and partially detach the scored panel associated with each central top opening. The inner vessel may have three elongated fluid storage compartments and one pull tab configured to depress and partially detach the scored panel associated with each central top opening. The inner vessel may have four elongated fluid storage compartments and one pull tab configured to depress and partially detach the scored panel associated with each central top opening. The inner vessel may have four elongated fluid storage compartments and two pull tabs, each pull tab being configured to depress and partially detach the scored panel associated with two central top openings.

Optionally, a removable drink cap is attached over the lid. The drink cap defines a mixing chamber between the drink cap and the lid. The drink cap includes an opening for consumption.

In yet another embodiment, a beverage container includes a thin walled canister with a closed bottom and an open top with a top threaded sidewall edge. An inner vessel has at least one elongated fluid storage compartment, a central top opening for each elongated fluid storage compartment and a flanged head and a rim for engaging the top threaded sidewall edge. A cap with a threaded opening threadedly engages the top threaded sidewall edge. A form fitting removable gasket disposed between the cap and flanged head seals the central top opening for each fluid storage compartment.

In still another embodiment, a beverage container includes a thin walled canister with a closed bottom and an open top with a top sidewall edge. An inner vessel has a plurality of elongated fluid storage compartments, a central top opening for each of the elongated fluid storage compartments and a flanged head and a rim for engaging the top sidewall edge. A lid is connected to the container. The flanged head is disposed between the top sidewall edge and the lid. The lid has a top surface and a bottom surface. A threaded neck projects from the top surface in alignment with and associated with each central top opening and defining a fluid communication path through the neck into the associated central top opening. A cap with a threaded opening threadedly engages the threaded neck. A form fitting penetrable gasket disposed between the lid and flanged head is configured to seal the central top opening for each fluid storage compartment from each other central top opening for each other fluid storage compartment.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects, objects, features and advantages of the invention will become better understood with reference to the following description, appended claims, and accompanying drawings, where:

FIG. 1 shows a perspective and side plan view of components of a first exemplary multi-compartment fluid storage device having a can, an inner cylinder with a flanged head, a lid and a tab configured to open the lid and inner cylinder according to principles of the invention; and

FIG. 2 shows a perspective and side plan view of components of a second exemplary multi-compartment fluid storage device having a can, an inner cylinder with a flanged head, a lid and a reinforced tab configured to open the lid and inner cylinder according to principles of the invention; and

FIG. 3 shows a perspective and side plan view of components of a third exemplary multi-compartment fluid storage device having a can, an inner cylinder with a recessed scored flanged head, a lid and a tab configured to open the lid and recessed scored flanged head according to principles of the invention; and

FIG. 4 shows a perspective and side plan view of components of a fourth exemplary multi-compartment fluid storage device having a can, a dual (2) chamber insert, a gasket, a lid and a tab configured to open the lid above each chamber according to principles of the invention; and

FIG. 5 shows a perspective and side plan view of components of a fifth exemplary multi-compartment fluid storage device having a can, a dual (2) chamber insert, a gasket, a lid, a tab configured to open the lid above each
chamber, and a removable perforated drinking cap according to principles of the invention; and

Figs. 6 shows a perspective and side plan view of components of a sixth exemplary multi-compartment fluid storage device having a can, a quadraple (4) chamber insert, a gasket, a lid and a tab configured to open the lid above each chamber according to principles of the invention; and

Fig. 7 shows a perspective and side plan view of components of a seventh exemplary multi-compartment fluid storage device having a can, a quadraple (4) chamber insert, a gasket, a lid with threaded open necks above each chamber and a threaded cap for each neck according to principles of the invention; and

Fig. 8 shows a perspective view of components of an eighth exemplary multi-compartment fluid storage device having a can with a threaded neck, a tubular insert, a gasket, and a threaded cap for each neck according to principles of the invention.

Those skilled in the art will appreciate that the figures are not intended to be drawn to any particular scale; nor are the figures intended to illustrate every embodiment of the invention. The invention is not limited to the exemplary embodiments depicted in the figures or the shapes, relative sizes, ornamental aspects or proportions shown in the figures.

DETAILED DESCRIPTION

Referring to the Figures, in which like parts are indicated with the same reference numerals, various views of exemplary multi-chamber beverage containers and components thereof are provided. With reference to Fig. 1, a beverage container according to principles of the invention is comprised primarily of an aluminum alloy. A thin sheet of aluminum is cut into a circle, called a blank, which forms the bottom and sides of the can. After the circular blank is cut, it is drawn, pulled and pressed into a cup 100 having an open compartment 115, bottom 105 and cylindrical sidewall 110. After the cup is formed, a punch presses against the base (i.e., the bottom), causing the bottom 105 to bulge inward. This concavity counteracts the pressure of carbonation contained in the can 100. Afterwards the top edges of the cylindrical sidewall 110 are trimmed, leaving the upper walls straight and level. The can 100 may then be cleaned and imprinted with a label. After the can 100 is decorated, it is squeezed in slightly at the top to make a neck 175, and the neck 175 is given an outward flange at the very top edge, which will be folded over once a lid 150 is added.

A lid 150 is cut to a diameter for attachment to the walls of the container. The center of the lid 150 is stretched upward slightly and drawn to form a rivet. A pull tab 145 is inserted under the rivet and secured by it. Then the lid 150 is scored in a generally elliptical or oval path that defines a separable panel, referred to herein as a tongue 160. When the tab 145 is pulled by a consumer, scored edges of the tongue 160 will detach easily, allowing the tongue to bend downwardly into the can 100 and leave a proper opening 165. A rim defining the periphery of the lid is configured to engage the top edges 110 of the can 100.

An inner tubular cylinder 120 includes a flanged head 125 with a central opening 130, a rim 135 for engaging the top edges 110 of the can 100, and a scored horizontal and vertical tongues 140, 170. The inner tubular cylinder 120 may comprise an aluminum alloy comparable to, or the same as, the aluminum alloy comprising the can 100 and/or lid 150.

The inner tubular cylinder 120 may be formed from a circular blank that is drawn, pulled and pressed into the appropriate shape.

The assembly is completed by filling the compartments and bending or rolling and then seaming the edges of the can 100, flange 125 and lid 150, to form a hermetic seal. First, the can 100 may be filled with a volume of liquid equal to the total volume of the can 100 minus the volume occupied by the tube 120 and any spillage. Then the tube 120 may be filled and installed on the can 100, with the tube 120 extending downwardly into the filled cavity 115 of the can 100 and the flange 125 resting atop the top edges of the sidewall 110 of the can 100. Then the lid 150 is placed atop the flange 125. Then the lid 150, flange 125 and neck 175 are adjoined by bending. By way of example and not limitation, the neck 175 may be bent around the peripheral edges of the flange 125 and lid 150 and sealed shut, to provide a strong hermetic seal. This step, which entails bending the neck 175 around peripheral edges of the lid 150, is performed in conventional aluminum can manufacturing processes, without the presence of a flange 125 and corresponding inner tube 120. Skilled artisans will appreciate that this embodiment of the present invention preserves conventional aluminum can manufacturing processes and merely adds steps of forming, inserting and filling the inner tube 120 with the flanged head 125.

In use, when the tab 145 is pulled upwardly in a familiar manner, as depicted in Fig. 1, the tip of the tab 145 presses against the top of the tongue 160, thus rupturing the scored periphery of the tongue 160. The pressure caused by the tip of the tab 145 depresses the tongue 160 of the lid 150 against the scored horizontal tongue 140 of the inner tube flange 125, rupturing the scored periphery of the horizontal tongue 140. The scored horizontal tongue is then urged into the scored vertical tongue 170, which also ruptures, thus providing a path for fluid communication from the interior cavity 130 of the inner tube 120 to the interior cavity 115 of the can 100 and to the opening 165 formed in the lid 150. This allows contained fluid to be dispensed from the interior cavity 130 of the inner tube 120 as well as from the interior cavity 115 of the can 100, through the opening 165. Thus, advantageously, a single stay on tab 145 provides a means for opening all compartments of the container.

With reference to Fig. 2, an alternative exemplary embodiment of a beverage container according to principles of the invention includes a robust pull tab opener comprising a finger tab 215, a pointed tip 210 and a pivoting hinge 205 coupled to the lid 150. The hinge 205 may be connected to the lid via a weld, bond, or rivet. In use, when the finger tab 215 is urged upwardly, the tip 210 presses against the top of the scored tongue 220, thus rupturing the scored periphery of the tongue 220. The pressure caused by the tip 210 depresses the tongue 220 of the lid 150 and pierces both the inner tube flange 125 and sidewall of the inner tube 120, thus providing a path for fluid communication from the interior cavity 130 of the inner tube 120 to the interior cavity 115 of the can 100 and to the opening formed in the lid. This allows contained fluid to be dispensed from the interior cavity 130 of the inner tube 120 as well as from the interior cavity 115 of the can 100, through the opening. Thus, advantageously, a single stay on tab provides a means for opening all compartments of the container. After the can is opened, the robust pull tab opener may be torn from the lid 150, by pulling it away from the lid 150. Upon pulling, the scored path surrounding the robust pull tab rup-
tures, allowing the robust pull tab and the panel 220 of the lid to which it is attached to separate from the lid 150.

[0036] With reference to FIG. 3, another alternative beverage container according to principles of the invention is conceptually illustrated. In this embodiment, the inner tubular cylinder 120 includes a central opening 130 and a flanged head 305 with a rim 135 for engaging the top edges 110 of the can 100 and a recessed scored horizontal plateau 3 10. The recessed plateau 310 is scored around its outer periphery. Thus, the plateau 310 does not have to be rotated in alignment with the tongue 160 of the lid 150. In use, when the tab 145 is pulled upwardly in a familiar manner the tip of the tab 145 presses against the top of the tongue 160, thus rupturing the scored periphery of the tongue 160. The pressure caused by the tip of the tab 145 depresses the tongue 160 of the lid 150 against the scored recessed plateau 310 of the inner tube flange 125, rupturing a portion of the scored periphery of the recessed plateau 310. The ruptured portion of the recessed plateau 310 is then urged into the interior cavity 115 of the can 100. As the plateau 310 is recessed, fluid in the inner tube 120 may freely flow from the inner tube 120 through the space between the lid 150 and the recessed plateau 310. Thus a path is formed for fluid communication from the interior cavity 130 of the inner tube 120 to the interior cavity 115 of the can 100 and to the opening 165 formed in the lid. This allows contained fluid to be dispensed from the interior cavity 130 of the inner tube 120, as well as from the interior cavity 115 of the can 100, through the opening 165. Thus, advantageously, a single stay on tab 145 provides a means for opening all compartments of the container.

[0037] With reference to FIG. 4, another alternative beverage container according to principles of the invention is conceptually illustrated. In this embodiment, an inner container 415 includes two separate compartments 425, 430 formed by drawing, pulling and pressing. Each compartment 425, 430 has an opening 410, 420 level with a flanged head and rim 405 for engaging the top edges 110 of the can 100. A plastic gasket 475 with scored recessed panels 465, 470 for sealing the chambers 425, 430 is sandwiched between the lid 150 and flanged head and rim 405. Each recessed panel 465, 470 is configured to be partially received in an opening 410, 420 of a compartment 425, 430 to provide a tight seal.

[0038] The lid 150 includes a pair of pull tabs 665, 670 pivotally attached by a rivet. The lid 150 is scored in two opposed generally elliptical or oval paths that each defines a separable tongue 440, 455. When the tab 450 is pulled by a consumer, scored edges of the tongue 440, 455 being urged will detach easily, allowing the urged tongue 440, 455 to bend downwardly into a recessed panel 465, 470 thereby urging the recessed panel 465, 470 open. The downwardly bent metal tongue 435, 455 holds the opened recessed panel 465, 470 in an open position. After one opening 435 or 460 has been created, the tab may be rotated 180 degrees to urge open the un-detached tongue 440, 455, thereby creating the second opening 435 or 460. A rim defining the periphery of the lid 445 is configured to engage the top edges of the can 100. This allows contained fluid to be selectively dispensed from either or both of the two separate compartments 425, 430. Thus, advantageously, a single stay on tab 450 provides a means for selectively opening either one and/or all of the compartments of the container.

[0039] With reference to FIG. 5, an embodiment similar to the embodiment depicted in FIG. 4 further includes a plastic drinking cap 510 configured to releasably engage the top edge of the assembled container. The drinking cap 505 includes either an opening or a perforated panel 505 which may readily be removed to create an opening and through which fluids contained in the compartments 425, 430 may flow. The installed drinking cap 505 and lid 445 define a mixing chamber in which fluids from both compartments 425 may mix before flowing through the opening 505 for consumption. Optionally, various baffles, protuberances, barriers and/or textures (not shown) may extend from the interior walls of the drinking cap 510 to facilitate mixing. Another advantage of the drinking cap 510 is that it insulates the consumer’s lips from the top of the lid, which may provide a sanitary cover for drinking. Such a drinking cap 510 may be utilized on any and all embodiments described herein to facilitate mixing prior to consumption and to provide a sanitary drinking surface.

[0040] With reference to FIG. 6, another alternative beverage container according to principles of the invention is conceptually illustrated. In this embodiment, an inner container 630 includes four separate compartments 635, 640 formed by drawing, pulling and pressing. Each compartment 635, 640 has an opening 605, 610, 615, 620 level with a flanged head and rim 625 for engaging the top edges 110 of the can 100. A plastic gasket 695 with scored recessed panels 685, 687, 690, 692 for sealing the chambers 635, 640 is sandwiched between the lid 660 and flanged head and rim 625. Each recessed panel 685, 687, 690, 692 is configured to be partially received in an opening 605, 610, 615, 620 of a compartment 635, 640 to provide a tight seal. Without such a form fitting gasket to provide a good seal, liquid contained in a compartment may seep into another compartment before the lid is opened and the beverage is ready to be consumed.

[0041] The lid 660 includes a pair of pull tabs 665, 670, each of which is pivotally attached by a rivet. A rim defining the periphery of the lid 660 is configured to engage the top edges of the can 100. For each pull tab 665, 670, the lid 660 is scored in two opposed generally elliptical or oval paths that each defines a separable tongue 655 for each scored path. When a tab 665, 670 is pulled by a consumer, scored edges of the tongue 655 will detach easily, allowing the urged tongue 655 to bend downwardly into a recessed panel 685, 687, 690, 692 thereby urging the recessed panel 685, 687, 690, 692 open. The downwardly bent metal tongue 655 holds the opened recessed panel 685, 687, 690, 692 in an open position. After one opening 645, 650 or 675, 680 has been created, each tab 655, 670 may be rotated 180 degrees to urge open the un-detached tongue 655, thereby creating the second opening 645, 650 or 675, 680. This allows contained fluid to be selectively dispensed from either or both of the two separate compartments 635, 640. Thus, advantageously, the pair of stay on tab 665, 670 provides a means for selectively opening either one and/or all of the compartments of the container.

[0042] With reference to FIG. 7, another alternative beverage container according to principles of the invention is conceptually illustrated. In this embodiment, an inner container 630 includes four separate compartments 635, 640 formed by drawing, pulling and pressing. Each compartment 635, 640 has an opening 605, 610, 615, 620 level with a flanged head and rim 625 for engaging the top edges 110 of the can 100. A plastic gasket 790 with scored perforated recessed panels 770, 775, 780, 785 for sealing the chambers 635, 640 is sandwiched between the lid 790 and flanged head 630 and rim 625. Each recessed panel 770, 775, 780, 785 is configured to be partially received in an opening 605, 610, 615, 620 of a
compartment 635, 640 to provide a tight seal. Without such a form fitting gasket to provide a good seal, liquid contained in a compartment may seep into another compartment before the lid is opened and the beverage is ready to be consumed.

The lid 700 includes a threaded neck 710, 715, 720, 725, and a panel 735, 740, 745, 750 for each compartment 635, 640. A removable threaded cap 750, 755, 760, 765 is used to close the threaded necks 710, 715, 720, 725.

Reference to FIG. 8, a beverage container according to principles of the invention a cup-shaped vessel 805 having an open top 815 providing access to an interior compartment, a bottom 800 and a cylindrical sidewall 805. A collar 820 with a threaded neck 825 is permanently or releasably attached to the top 815 of the vessel 805. An inner tubular cylinder 810 includes a flanged head 830 with a central opening, and a rim with a plurality of perforations 835, 840, 845, 850 configured to engage the top edges of the neck 825. A removable form-fit gasket 855 seals the open top of the inner cylinder 810. A threaded cap 860 threaded engages the neck 825 and encloses the gasket 855 on the top of the inner cylinder 810.

While an exemplary embodiment of the invention has been described, it should be apparent that modifications and variations thereto are possible, all of which fall within the true spirit and scope of the invention. With respect to the above description, it is to be realized that the optimum relationships for the components and steps of the invention, including variations in order, form, content, function and manner of operation, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention. The above description and drawings are illustrative of modifications that can be made without departing from the present invention, the scope of which is to be limited only by the following claims. Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents are intended to fall within the scope of the invention as claimed.

What is claimed is:

1. A beverage container comprising a thin walled canister having a closed bottom and an open top with a top sidewall edge;
 an inner tubular cylinder having a penetrable flanged head with a central opening and a rim for engaging the top sidewall edge;
 a lid connected to said container, said penetrable flanged head being disposed between said top sidewall edge and said lid, said lid having a top surface and a bottom surface and a pull tab attached to the top surface of the lid, said tab having a tip; and
 a scored panel disposed on the top surface of the lid in functional alignment with the tip of the pull tab and configured to partially detach from the lid when depressed by the tip of the pull tab, and said scored panel being configured to penetrate the flanged head when depressed.

2. A beverage container according to claim 1, said pull tab being riveted to the lid.

3. A beverage container according to claim 1, said pull tab being hingedly coupled to the lid and removable from the lid.

4. A beverage container according to claim 1, said flanged head including a scored horizontal panel adjacent to said central opening, and said inner tubular cylinder including a vertical panel adjacent to said horizontal panel.

5. A beverage container according to claim 1, said flanged head including a scored horizontal panel adjacent to said central opening, and said inner tubular cylinder including a vertical panel adjacent to said horizontal panel, and said scored panel disposed on the top surface of the lid being aligned and configured to detach said vertical panel and said horizontal panel when depressed by the tip of the pull tab.

6. A beverage container according to claim 1, said penetrable flanged head including a concentric recessed plate scored around the periphery thereof and configured to partially detach when depressed by said scored panel.

7. A beverage container according to claim 1, said penetrable flanged head including a concentric recessed plate scored around the periphery thereof and configured to partially detach and provide an opening to said canister when depressed by said scored panel, said recessed plate providing a fluid communication path from said central opening of said inner tubular cylinder to said panel.

8. A beverage container according to claim 1, said canister containing a first liquid and said inner tubular container containing a second liquid, and said penetrable flanged head hermetically sealing said first liquid from said second liquid.

9. A beverage container according to claim 1, further comprising a removable drink cap attached over the lid, said drink cap defining a mixing chamber between said drink cap and said lid, and said drink cap including an opening for consumption.

10. A beverage container according to claim 1, the inner tubular cylinder having a bottom abutting the closed bottom of the thin walled canister.

11. A beverage container comprising a thin walled canister having a closed bottom and an open top with a top sidewall edge;
 an inner vessel having a plurality of elongated fluid storage compartments, a central top opening for each storage compartment and a flanged head and a rim for engaging the top sidewall edge;
 a lid connected to said container, said penetrable flanged head being disposed between said top sidewall edge and said lid, and said lid having a top surface and a bottom surface, and a scored panel disposed on the top surface in alignment with and associated with each central top opening, a pull tab riveted to the lid in functional alignment with a scored panel, said pull tab having a tip configured to depress and partially detach the scored panel from the lid when the pull tab is lifted, and said scored panel being configured to provide an opening in the lid for consumption of a liquid contained in a storage compartment in alignment with the scored panel; and
 a form fitting penetrable gasket disposed between said lid and flanged head and configured to seal the central top opening for each storage compartment and rupture over and in alignment with one of the central top openings when said scored panel associated with the central top opening is depressed and partially detached from the lid.

12. A beverage container according to claim 11, wherein said inner vessel has two elongated fluid storage compart-
ments and the lid has one pull tab configured to depress and partially detach the scored panel associated with each central top opening.

13. A beverage container according to claim 11, wherein said inner vessel has three elongated fluid storage compartments and the lid has one pull tab configured to depress and partially detach the scored panel associated with each central top opening.

14. A beverage container according to claim 11, wherein said inner vessel has four elongated fluid storage compartments and the lid has one pull tab configured to depress and partially detach the scored panel associated with each central top opening.

15. A beverage container according to claim 11, wherein said inner vessel has four elongated fluid storage compartments and the lid has two pull tabs, each pull tab being configured to depress and partially detach the scored panel associated with each central top openings.

16. A beverage container according to claim 11, further comprising a removable drink cap attached over the lid, said drink cap defining a mixing chamber between said drink cap and said lid, and said drink cap including an opening for consumption.

17. A beverage container according to claim 1, each elongated fluid storage compartment having a bottom abutting the closed bottom of the thin walled canister.

18. A beverage container according to claim 1, said form fitting penetrable gasket being comprised of plastic and having a partially detachable panel associated with and in alignment with each central top opening.

19. A beverage container comprising a thin walled canister having a closed bottom and an open top with a top threaded sidewall edge;

an inner vessel having at least one elongated fluid storage compartment, a central top opening for each of said at least one elongated fluid storage compartments and a flanged head and a rim for engaging the top threaded sidewall edge;

a cap with a threaded opening configured to threadedly engage said top threaded sidewall edge;

and a form fitting removable gasket disposed between said cap and flanged head and configured to seal the central top opening for each fluid storage compartment.

20. A beverage container comprising a thin walled canister having a closed bottom and an open top with a top sidewall edge;

an inner vessel having a plurality of elongated fluid storage compartments, a central top opening for each of said at least one elongated fluid storage compartments and a flanged head and a rim for engaging the top sidewall edge;

a lid connected to said container, said flanged head being disposed between said top sidewall edge and said lid, and said lid having a top surface and a bottom surface, and a threaded neck projecting from the top surface in alignment with and associated with each central top opening and defining a fluid communication path through said neck into the associated central top opening;

a cap with a threaded opening configured to threadedly engage threaded neck;

and a form fitting perforated gasket disposed between said lid and flanged head and configured to seal the central top opening for each fluid storage compartment from each other central top opening for each other fluid storage compartment.

* * * * *