
DE69918818T220050825
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 699 18 818 T2 2005.08.25

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 066 699 B1
(21) Deutsches Aktenzeichen: 699 18 818.0
(86) PCT-Aktenzeichen: PCT/CA99/00244
(96) Europäisches Aktenzeichen: 99 908 723.2
(87) PCT-Veröffentlichungs-Nr.: WO 99/049612
(86) PCT-Anmeldetag: 23.03.1999
(87) Veröffentlichungstag

der PCT-Anmeldung: 30.09.1999
(97) Erstveröffentlichung durch das EPA: 10.01.2001
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 21.07.2004
(47) Veröffentlichungstag im Patentblatt: 25.08.2005

(51) Int Cl.7: H04L 9/08
H04L 9/32

(54) Bezeichnung: Verfahren zur Erzeugung eines öffentlichen Schlüssels in einem sicheren digitalen Kommunika-
tionssystem und implizites Zertifikat

(30) Unionspriorität:
2232936 23.03.1998 CA
2235359 20.04.1998 CA

(73) Patentinhaber:
Certicom Corp., Mississauga, Ontario, CA

(74) Vertreter:
Flaccus, R., Dipl.-Chem. Dr.rer.nat., Pat.-Anw.,
50389 Wesseling

(84) Benannte Vertragsstaaten:
CH, DE, FR, GB, LI

(72) Erfinder:
QU, Minghua, Mississauga, CA; VANSTONE, A.,
Scott, Waterloo, CA

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/26

DE 699 18 818 T2 2005.08.25
Beschreibung

[0001] Die Erfindung betrifft Schlüsselverteilungsschemata für den Transfer und die Authentifizierung von
Verschlüsselungsschlüsseln

HINTERGRUND DER ERFINDUNG

[0002] Mit der Diffie-Hellman-Schlüsselübereinstimmung ("Diffie-Hellman key agreement") wurde die erste
praktikable Lösung für das Schlüsselverteilungsproblem in kryptographischen Systemen zur Verfügung ge-
stellt. Das Schlüsselübereinstimmungsprotokoll ermöglichte es, zwei Parteien, die zuvor noch keinen Kontakt
miteinander gehabt oder kein Schlüsselmaterial ausgetauscht hatten, ein gemeinsames Geheimnis durch den
Austausch von Nachrichten über einen offenen (ungeschützten) Kanal zu etablieren. Hierbei beruht die Sicher-
heit auf der Nicht-Zurückverfolgbarkeit des Diffie-Hellman-Problems und dem damit zusammenhängenden
Problem der Berechnung diskreter Logarithmen.

[0003] Mit dem Aufkommen des Internets und ähnlicher Einrichtungen gewinnen das Erfordernis der Vertei-
lung von öffentlichen Schlüsseln ("public keys") in großem Maßstab sowie Zertifikate für öffentliche Schlüssel
("public key"-Zertifikate) zunehmend an Bedeutung. Public-Key-Zertifikate sind ein Vehikel, mit dem öffentliche
Schlüssel gespeichert, verteilt oder zugestellt werden können, und zwar über ungesicherte Medien, ohne dass
dabei die Gefahr einer unentdeckbaren Manipulation besteht. Ziel hierbei ist es, den öffentlichen Schlüssel ei-
ner Partei anderen in einer Weise zur Verfügung zu stellen, dass dessen Authentizität und Gültigkeit ("validity")
überprüft werden können.

[0004] Ein Public-Key-Zertifikat ist eine Datenstruktur, die aus einem Datenteil und einem Signaturteil besteht.
Der Datenteil enthält Klartextdaten, welche, als Minimum, einen öffentlichen Schlüssel und einen die mit die-
sem Schlüssel zu assoziierende Partei identifizierenden Datenstring enthält. Der Signaturteil besteht aus einer
digitalen Signatur einer Zertifizierungsstelle (CA, "certificate authority") über dem Datenteil, hierdurch wird die
Identität der Entitäten an den spezifizierten öffentlichen Schlüssel gebunden. Die CA ist eine vertrauenswürdi-
ge dritte Partei, deren Signatur auf dem Zertifikat für die Authentizität des an die betreffende Entität gebunde-
nen öffentlichen Schlüssels bürgt.

[0005] Identitätsbasierte Systeme ("ID-based systems") sind gewöhnlichen Public-Key-Systemen insofern
ähnlich als sie eine geheime Transformation und eine öffentliche Transformation beinhalten, jedoch haben die
Parteien, anders als vorher, keine expliziten öffentlichen Schlüssel. Stattdessen wird der öffentliche Schlüssel
durch die öffentlich zugängliche Identitätsinformation (z.B. Name oder Netzadresse) einer Partei ersetzt. Als
Identitätsinformation kann hierbei jede öffentlich zugängliche Information dienen, durch welche die Partei ein-
deutig identifiziert wird und die unleugbar mit dieser Partei assoziiert werden kann.

[0006] Eine alternative Vorgehensweise bei der Verteilung öffentlicher Schlüssel verwendet implizit zertifizier-
te öffentliche Schlüssel. Zwar existieren hier explizite öffentliche Schlüssel der Benutzer, doch müssen diese
rekonstruiert werden anstatt dass sie, wie bei zertifikatsbasierten Systemen, durch Public-Key-Zertifikate
transportiert werden. Somit können implizit zertifizierte öffentliche Schlüssel als ein alternatives Mittel zur Ver-
teilung öffentlicher Schlüssel (z.B. Diffie-Hellman-Schlüssel) Verwendung finden.

[0007] Ein Beispiel für einen implizit zertifizierten Public-Key-Mechanismus ist in dem schweizerischen Patent
CH 678134 beschrieben und als Günthersches Verfahren mit implizit zertifiziertem (ID-basierten) Public-Key
bekannt. Bei diesem Verfahren:

1. wählt ein vertrauenswürdiger Server T eine geeignete, feste, öffentliche Primzahl p und einen Generator
α von Z . T wählt eine zufällige ganze Zahl t, mit 1 ≤ t ≤ p-2 und gcd(t,p-1) = 1, als seinen geheimen Schlüs-
sel und veröffentlicht seinen öffentlichen Schlüssel u = αt mod p, zusammen mit α, p.
2. T weist jeder Partei A einen eindeutigen Namen oder einen identifizierenden Datenstring IA und eine zu-
fällige ganze Zahl kA mit gcd(kA, p-1)=1 zu. Dann berechnet T PA = mod p. PA sind A's öffentliche Schlüs-
selrekonstruktionsdaten, die es anderen Parteien ermöglichen, (PA)a, siehe unten, zu berechnen.
3. Unter Verwendung einer geeigneten Hash-Funktion h löst T die nachfolgende Gleichung für a:

4. T schickt das Paar (r,s)=(PA,a), wobei es sich um T's ElGama1-Signatur auf IA handelt, gesichert an A (a
ist A's geheimer Schlüssel für die Diffie-Hellman-Schlüsselübereinstimmung).
5. Jede andere Partei ist dann in der Lage, den Diffie-Hellman Public-Key P der Partei A vollständig aus
öffentlich zugänglichen Informationen (α, IA, u, PA, p) durch Berechnen von

p
*

A
a

2/26

DE 699 18 818 T2 2005.08.25
zu rekonstruieren.

[0008] Somit ist bei Problemen der Berechnung des diskreten Logarithmus zur Signierung eines Zertifikates
eine einzige Potenzierungsoperation erforderlich, die Rekonstruktion des ID-basierten implizit-verifizierbaren
öffentlichen Schlüssels jedoch erfordert zwei Potenzierungen. Bekanntermaßen ist die Potenzierung in der
Gruppe Z sowie ihre analoge skalare Multiplikation eines Punktes in E(Fq) rechnerisch aufwendig. So ist z.B.
ein RSA-Schema im Vergleich zu Systemen auf Basis elliptischer Kurven extrem langsam. Trotz der enormen
Überlegenheit von EC-Systemen gegenüber Systemen des RSA-Typs stellt der Rechenaufwand insbesondere
für Recheneinrichtungen, die über begrenzte Rechenleistung verfügen, wie z.B. "Smart Cards", "Pager" und
dergleichen, jedoch immer noch ein Problem dar.

ZUSAMMENFASSUNG DER ERFINDUNG

[0009] Das Ziel der vorliegenden Erfindung besteht in der Bereitstellung eines effizienten Schemas mit ID-ba-
siertem implizitem Zertifikat, welches gegenüber bestehenden Schemata eine verbesserte Rechengeschwin-
digkeit aufweist. Der Einfachheit halber werden hier die Schemata über Zp beschrieben, jedoch können diese
Schemata ebenfalls in auf elliptischen Kurven basierenden Kryptosystemen implementiert werden.

[0010] Erfindungsgemäß wird ein Verfahren zur Erzeugung eines identitätsbasierten öffentlichen Schlüssels
in einem sicheren digitalen Kommunikationssystem, das wenigstens eine vertrauenswürdige Entität CA und
Teilnehmerentitäten A umfasst, bereitgestellt, welches folgende Schritte umfasst:

a) für jede Entität A wählt die vertrauenswürdige Entität CA eine eindeutige Identität IA, durch welche die
Entität A gekennzeichnet wird;
b) Erzeugung öffentlicher Daten γA zur Rekonstruktion des öffentlichen Schlüssels der Entität A durch ma-
thematisches Kombinieren eines Generators der vertrauenswürdigen Partei CA mit einem geheimen Wert
der Entität A, so dass das Paar (IA, γA) als das implizite Zertifikat von A dient;
c) Kombinieren der impliziten Zertifikatsinformation (IA, γA) gemäß einer mathematischen Funktion F(γA, IA),
um eine Entitätsinformation f abzuleiten;
d) Erzeugen eines geheimen Schlüssels a der Entität A durch Signieren der Entitätsinformation f und

 Übertragen des geheimen Schlüssels a an die Entität A, wobei der öffentliche Schlüssel der Entität A aus der
öffentlichen Information, dem Generator γA und der Identität IA relativ effizient rekonstruiert werden kann.

[0011] Gemäß einem anderen Aspekt der Erfindung wird ein Public-Key-Zertifikat bereitgestellt, das eine
Mehrzahl öffentlicher Schlüssel unterschiedlicher Bit-Stärken umfasst und bei dem einer der öffentlichen
Schlüssel ein implizit zertifizierter öffentlicher Schlüssel ist.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0012] Im Folgenden werden, lediglich beispielhaft, Ausführungen der vorliegenden Erfindung unter Bezug
auf die begleitenden Zeichnungen beschrieben; die Zeichnungen zeigen:

[0013] Fig. 1: eine schematische Darstellung einer ersten Systemkonfiguration gemäß einer Ausführungs-
form der vorliegenden Erfindung; und

[0014] Fig. 2: eine schematische Darstellung einer zweiten Systemkonfiguration gemäß einer Ausführungs-
form der vorliegenden Erfindung.

DETAILLIERTE BESCHREIBUNG EINER BEVORZUGTEN AUSFÜHRUNGSFORM

[0015] Das Folgende bezieht sich auf Fig. 1, in der ein System mit implizit zertifizierten öffentlichen Schlüs-
seln dargestellt ist, allgemein mit 10 gekennzeichnet. Dieses System 10 umfasst eine vertrauenswürdige dritte
Partei CA und wenigstens ein Paar aus einem ersten und einem zweiten Korrespondenten A bzw. B. Die Kor-
respondenten A und B tauschen über einen Kommunikationskanal Informationen aus und sowohl A als auch
B weisen eine Kryptographieeinheit zur Ausführung visueller Finde-/Prüf-Operationen und Verschlüsse-
lungs-/Entschlüsselungsoperationen auf.

[0016] Im Folgenden wird wiederum auf Fig. 1 Bezug genommen: Die vertrauenswürdige Partei CA wählt

P
*

3/26

DE 699 18 818 T2 2005.08.25
eine geeignete Primzahl p mit p=tq+1, wobei q eine große Primzahl ist, und einen Generator α der Ordnung q.
Die CA wählt eine zufällige ganze Zahl c, mit 1 ≤ c ≤ q-1, als ihren geheimen Schlüssel, dann berechnet sie
den öffentlichen Schlüssel β=αc mod p und veröffentlicht (β, α, p, q).

Schema 1:

1. Für jede Partei A wählt die CA eine(n) eindeutige(n), unterscheidbare(n) Namen ("distinguished name")
oder Identität IA (z.B. Name, Adresse, Telefonnummer) sowie eine zufällige ganze Zahl cA mit 1 ≤ cA ≤ q-1.
Dann berechnet CA γA=αCA mod p. (γA sind die öffentlichen Daten zur Rekonstruktion des öffentlichen
Schlüssels von A). Das Paar (IA, γA) dient als das implizite Zertifikat von A)
2. CA wählt eine Funktion f=F(IA, γA). Zum Beispiel F(γA, IA)=γA+h(IA) oder F(γA,IA)=h(γA+IA), in denen h eine
sichere Hash-Funktion ist, und löst die nachfolgende Gleichung für a, welches den geheimen Schlüssel der
Partei A darstellt. Falls a=0, so wählt CA ein anders cA und löst die Gleichung neu.

3. CA sendet das Tripel (γA, a, IA), welches CA's Signatur auf IA darstellt, auf sicherem Wege an A. Somit ist
α ist der geheime Schlüssel von A;
γA ist der Generator von A; und
γ (=αcAa) ist der öffentliche Schlüssel von A.
A veröffentlicht (α, IA, β, γA, p, q) im frei zugänglichen Bereich ("Public Domain").
4. Jedermann kann den (ID-basierten) implizit verifizierbaren öffentlichen Schlüssel der Partei A aus der Pu-
blic Domain durch Berechnen von

 erhalten, d.h. der öffentliche Schlüssel wird aus der obigen Gleichung hergeleitet, was lediglich eine einzige
Potenzierungsoperation erfordert.

[0017] Zwar kann der öffentliche Schlüssel der Partei A von jedermann aus öffentlichen Daten rekonstruiert
werden, jedoch bedeutet dies nicht, dass der rekonstruierte öffentliche Schlüssel γ zertifiziert ist. Dieses Sche-
ma ist effektiver, wenn es mit einem Applikationsprotokoll kombiniert wird, welches zeigt, dass der Partei A der
entsprechende geheime Schlüssel vollständig bekannt ist, so z.B. mit dem MQV-Schlüsselübereinstimmungs-
schema oder einem beliebigen Signaturschema und insbesondere mit einem KCDSA (Digitaler Signaturalgo-
rithmus auf Basis des koreanischen Zertifikats). Generell kann dieses Schema mit implizitem Zertifikat mit je-
dem Schema verwendet werden, bei dem eine Verifizierung des Zertifikats erforderlich ist. Dies kann unter Be-
zugnahme auf das Signaturschema mit digitalem Signaturalgorithmus (DSA) gezeigt werden.

[0018] Angenommen Alice hat den geheimen Schlüssel α, den Generator γA und veröffentlicht (α,IA,β,γA,p,q)
in der Public Domain. Alice will nun eine Nachricht M unter Verwendung von DSA unterzeichnen.

[0019] Alice geht wie folgt vor:
1. Sie wählt ein zufälliges k, berechnet r=γ (mod p);
2. sie berechnet e=sha-1(M);
3. sie berechnet s=k-1(e + ar) (mod p).
4. Die Signatur auf M ist (r,s).

[0020] Der Verifizierer geht wie folgt vor:
1. Er beschafft sich Alices öffentliche Daten (α, IA, β, γA, p, q) und rekonstruiert den öffentlichen Schlüssel

2. berechnet e=sha-1(M);
3. berechnet u1 = es-1 (mod q) und u2 = rs-1 (mod q);
4. berechnet mod p;
5. wenn r=r', so ist die Signatur verifiziert. Gleichzeitig ist Alices (ID-basierter) öffentlicher Schlüssel implizit
verifiziert.

[0021] Das Paar (IA,γA) dient als Alices Zertifikat. Die Rekonstruktion des öffentlichen Schlüssels dient als im-
plizite Verifizierung, sofern das Ergebnis des Applikationsprotokolls eine gültige Verifizierung ist. Man erinnere,
dass lediglich eine einzige Potenzierungsoperation erforderlich ist, um den öffentlichen Schlüssel zu erhalten.

A
a

A
a

A
k

4/26

DE 699 18 818 T2 2005.08.25
[0022] Bei einer alternativen Ausführungsform lässt sich das Schema durch entsprechendes Modifizieren der
Signaturgleichung zu den meisten ElGama1-Signaturschemata verallgemeinern. Im Folgenden einige Beispie-
le:

Schema 2:

[0023] CA verwendet die Signaturgleichung 1=ca+cAf (mod q). CA schickt das Tripel (γA, a, IA) gesichert an A,
a ist hierbei der geheime Schlüssel von A, β ist der Generator von A, und βa ist der öffentliche Schlüssel von
A. A veröffentlicht (α, IA, β, γA, p, q) in der Public Domain. Jedermann kann den (ID-based) implizit zertifizierten
öffentlichen Schlüssel der Partei A durch Berechnen von

aus der Public Domain erhalten.

[0024] Bei diesem Schema hat jeder Benutzer den gleichen Generator β, der den öffentlichen Schlüssel der
Partei CA darstellt.

Schema 3:

[0025] CA verwendet die Signaturgleichung a = cf + CA (mod q). CA schickt das Tripel (γA, a, IA) gesichert an
A; a ist hierbei der geheime Schlüssel von A, α ist der Generator von A und αa ist der öffentliche Schlüssel von
A. A veröffentlicht (α, IA, β, γA, p, q) in der Public Domain. Jeder kann den (ID-basierten) implizit zertifizierten
öffentlichen Schlüssel der Partei A aus der Public Domain erhalten, und zwar durch Berechnen von

[0026] Bei diesem Schema hat jeder Benutzer, einschließlich CA, den gleichen Generator α.

Schema 4:

[0027] CA verwendet die Signaturgleichung a ≡ CAf + c (mod q). CA schickt das Tripel (γA, a, IA) gesichert an
A; a ist hierbei der geheime Schlüssel von A, α ist der Generator von A und αa ist der öffentliche Schlüssel von
A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain. Jeder kann den (ID-basierten) implizit zertifizierten öf-
fentlichen Schlüssel der Partei A aus der Public Domain erhalten, und zwar durch Berechnen von

[0028] Bei diesem Schema hat jeder Benutzer, einschließlich CA, den gleichen Generator α.

[0029] In den obigen Schemata hat die Partei A nicht die Freiheit, ihren eigenen geheimen Schlüssel zu wäh-
len. Bei den nachfolgenden Schemata, dargestellt in Fig. 2, haben sowohl CA als auch der Benutzer die Kon-
trolle über den geheimen Schlüssel des Benutzers, jedoch kennt nur der Benutzer seinen geheimen Schlüssel.

Schema 5':

[0030] A wählt zunächst eine zufällige ganze Zahl k und berechnet αk, dann schickt A αk an CA. Der CA be-
rechnet mod p und löst die folgende Signaturgleichung für kA

[0031] Dann berechnet CA mod p und schickt das Tripel (γ , kA, IA) an A. A berechnet a=kAk-1 (mod
q) und γA = (γ)k(mod p). a ist hierbei der geheime Schlüssel von A, γA ist der Generator von A und γ ist der
öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain. Jeder kann den (ID-basierten)
implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Domain erhalten, und zwar durch Be-
rechnen von

Schema 6:

1. A wählt zufällig eine ganze Zahl k und berechnet βk, dann sendet A βk an CA.
2. CA wählt eine zufällige ganze Zahl cA, berechnet (mod p) und f=F(γA,IA), löst die Signaturglei-

A
1

A
1

A
a

5/26

DE 699 18 818 T2 2005.08.25
chung für kA (wenn kA=0, wähle ein anderes cA)

CA berechnet (mod p) und sendet das Tripel (γ , kA, IA) an A.
Anmerkung: (γ , kA, IA) kann über einen öffentlichen Kanal gesendet werden.
3. A berechnet (mod p), f=F(γA,IA) und a=kA-kf (mod q) (wenn a=0,1, zurück zu Schritt 1). A prüft
dann, ob βa = αγ . Nun ist a der geheime Schlüssel von A, β ist der Generator von A und βa ist der öffentliche
Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Schema 7:

[0032] A wählt zunächst zufällig eine ganze Zahl k und berechnet αk, welches A an CA schickt. Nun berechnet
CA γA=αkαCA (mod p) und löst die Signaturgleichung für kA

[0033] Dann berechnet CA γ = (αk)CA (mod p) und schickt das Tripel (γ , kA, IA) an A. A berechnet γA = (γ)k-1

αk (mod p). Dann ist a = kA + k(mod q) der geheime Schlüssel von A, α ist der Generator von A und αa ist der
öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain. Jeder kann den (ID-basierten)
implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Domain erhalten, und zwar durch Be-
rechnen von

Schema 8:

1. A wählt zufällig eine ganze Zahl k, berechnet αk und sendet αk an CA.
2. CA wählt eine zufällige ganze Zahl cA, berechnet (mod p) und f=F(γA, IA), berechnet kA (wenn
kA=0, wähle ein anderes cA)

Dann berechnet CA (mod p) und schickt das Tripel (γ , kA, IA) an A.
Anmerkung: (γ , kA, IA) kann über einen öffentlichen Kanal geschickt werden.
3. A berechnet (mod p), f = F(γA,IA) und a = kA + kf (mod q) (wenn a=0,1, geht A zurück zu Schritt
1). A prüft dann, ob αa = γ β; a ist nun der geheime Schlüssel von A, α ist der Generator von A und αa ist
der öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

[0034] Bei den obigen Schemata 5-8 kann jeder eine Teilinformation über den geheimen Schlüssel α des Nut-
zers A erhalten, da kA über einen öffentlichen Kanal gesendet wird. Um diese Information zu verbergen und
um die Berechnung der obige Schemata zu beschleunigen, wird DES-Verschlüsselung eingeführt, so dass sich
die nachfolgenden Schemata 9-12 durch Modifizieren der Schemata 5-8 ergeben. Die Vorteile von Schemata
9-12 liegen darin, dass der Benutzer K leicht berechnen kann, da β fest ist.

Schema 9:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl CA, berechnet und f = F(γA,β,IA), A löst die Signatur-
gleichung für kA (wenn kA = 0, wähle ein anderes CA).

Als nächstes berechnet CA K = (ak)c(mod p) und kA = DESK (kA), dann schickt A das Tripel (γA,kA,IA) an A. γA

3. A berechnet K = βk (mod p), kA = DESk (kA), und a = kAk-1 (mod q) (wenn a=1, zurück zu Schritt 1). A prüft

A
1

A
1

A
-f

A
1

A
1

A
1

A
1

A
1

A
f

6/26

DE 699 18 818 T2 2005.08.25
dann, ob γ = αβ-f. A ist nun der geheime Schlüssel von A, γA ist der Generator von A und γ ist der öffent-
liche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Schema 10:

1. A wählt eine zufällige ganze Zahl k und berechnet βk, dann schickt A βk an CA.
2. CA wählt eine zufällige ganze Zahl CA, berechnet und f = F(γA, β, IA), löst die Sig-
naturgleichung für kA (wenn kA = 0, wähle ein anderes CA)

 Als nächstes berechnet und kA = DESK(kA), dann sendet CA das Tripel (γA kA,
IA) an A.
Anmerkung: (γA kA, IA) kann über einen öffentlichen Kanal geschickt werden.
3. A berechnet und berechnet α = kA - kf(modq)
(wenn a=0,1, zurück zu Schritt 1). A prüft dann, ob βa = αγ . Nun ist a der geheime Schlüssel von A, β ist
der Generator von A und βa ist der öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public
Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Schema 11

1. A wählt zufällig eine ganze Zahl k und berechnet ak, dann schickt A ak an CA.
2. CA wählt eine ganze Zahl CA, berechnet und f = F(γA, β, IA) berechnet kA (wenn kA =
0, wähle ein anderes CA)

Als nächstes berechnet CA K = (αk)c(mod p) und kA = DESK(kA), und schickt das Tripel (γA,kA,IA) an A.
Anmerkung: (γA,kA,IA) kann über einen öffentlichen Kanal geschickt werden.
3. A berechnet K = βk (mod p), kA = DESK(kA) und α = kA + k(modq) (wenn a=0,1, zurück zu Schritt 1). Dann
prüft A, ob αa = βfγA. Nun ist a der geheime Schlüssel von A, α ist der Generator von A und αa ist der öffent-
liche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von αa = γ (mod p).

Schema 12:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl CA, berechnet und f = F(γA,β,IA) berechnet kA (wenn
kA = 0, wähle ein anders CA) kA = cA f + c(mod q).
Als nächstes berechnet CA K = (αk)c(mod p) und kA = DESk(kA), dann schickt CA das Tripel (γA,kA,IA) an A.
Anmerkung: (γA,kA,IA) kann über einen öffentlichen Kanal geschickt werden.
3. A berechnet K = βk (mod p), kA = DESk (kA), f = F(γA, β, IA) und a = kA + kf(mod q) (wenn a=0,1, zurück zu
Schritt 1). Dann prüft A, ob αa = γ β. Nun ist a der geheime Schlüssel von A, α ist der Generator von A und
αa ist der öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q). Jeder kann den (ID-basierten) implizit
zertifizierten öffentlichen Schlüssel der Partei A aus der Public Domain erhalten, und zwar durch Berechnen
von

[0035] Die Vorteile der Schemata 9-12 liegen darin, dass K vom Nutzer A leicht berechnet werden kann, da
β fix ist, und dass kA so verschlüsselt ist, dass niemand anderes kA kennen kann.

[0036] Man bemerke, dass der Nutzen der Schemata 5-12 durch Hinzufügen eines Optionsparameters OP

A
a

A
a

A
-f

A
f

A
f

7/26

DE 699 18 818 T2 2005.08.25
zu der Funktion F(γA,β,IA) (d.h. f = F(γA,β,IA,OP) erhöht wird. Beispielsweise ist worin aE der geheime
Verschlüsselungsschlüssel des Nutzers A ist und der öffentliche Verschlüsselungsschlüssel des Nutzers
A. Auf Schema 15 folgt eine Modifizierung des Schemas 7. Schemata 5-12 können in gleicher Weise modifi-
ziert werden. Auch die Schemata 1-4 können in dieser Weise modifiziert werden.

Schema 13

1. A wählt zufällig eine ganze Zahl k und berechnet αk, A schickt dann αk an CA.
2. CA wählt eine zufällige ganze Zahl cA, berechnet und f = F(γA,IA,OP), berechnet kA (wenn kA

= 0, wähle ein anderes cA)

Als nächstes berechnet CA K = H((αk)c) und kA=DESK(kA), dann schickt CA das Tripel (f, kA, IA) an A.
3. A berechnet K = H(βk), kA = DESK(kA) und a=kA+k (mod q) (wenn a=0,1, zurück zu Schritt 1.) Dann be-
rechnet A γA = αaβ-f (mod p) und prüft, ob f = F(γA,IA,OP). Nun ist a der geheime Schlüssel von A, α ist der
Generator von A und αa ist der öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Do-
main.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

[0037] Weiterhin kann die Bandbreite durch das nachfolgende Schema 14 vermindert werden.

Schema 14:

1. A wählt eine zufällige ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und setzt A als die ersten 80
niedrigstwertigen Bits von γA. Dann berechnet CA f = F(A,IA,OP) und kA (wenn ka=0, wähle ein anderes cA)

Als nächstes berechnet CA K = (αk)c (mod p) und kA=DESK(kA), dann sendet CA (A, kA, IA) an A.
Anmerkung: (A, kA, IA) kann über einen öffentlichen Kanal geschickt werden.
3. A berechnet K = βk (mod p), kA = DESK(kA) und akA+k (mod q) (wenn a=0,1, zurück zu Schritt 1). A be-
rechnet dann F(A,β,IA), γA = αa β-f (mod p) und prüft, ob die ersten 80 niedrigstwertigen Bits von γA gleich

A sind. Nun ist a der geheime Schlüssel von A, α ist der Generator von A und αa ist der öffentliche Schlüssel
von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

[0038] Das Sicherheitsniveau 14 ist nicht so hoch wie das anderer, oben besprochener Schemata. Schema
14 hat eine 80-Bit-Sicherheit, die jedoch derzeit für praktische Anwendungen ausreicht. Die ersten 80
niedrigstwertigen Bits können auf die niedrigstwertigen Bits bis zur Hälfte der Bits von γA erweitert werden.

[0039] Das implizite Zertifikat kann zur Zertifizierung anderer nützlicher Information verwendet werden, und
zwar durch Aufnahme der Information in den Optionsparameter OP. Beispielsweise wobei aE

ein anderer geheimer Schlüssel des Benutzers A und der korrespondierende öffentliche Schlüssel ist. Das
folgende Schema 15 stellt eine Modifikation des Schemas 7 dar. Andere Schemata können in der gleichen
Weise modifiziert werden.

Schema 15:

1. A wählt zufällig eine ganze Zahl aE und berechnet
2. A wählt zufällig eine ganze Zahl k und berechnet αk, A schickt dann αk und an CA.
3. CA wählt zufällig eine ganze Zahl cA, berechnet und (Bei-
spielsweise berechnet kA (wenn kA = 0, wähle ein anderes
CA)

γ̂
γ̂

γ̂
γ̂

γ̂
γ̂

8/26

DE 699 18 818 T2 2005.08.25
Dann berechnet und sendet das Tripel (γ , kA, IA) an A.
Anmerkung: (γ , kA, IA) kann über einen öffentlichen Kanal geschickt werden.
4. A berechnet a=kA+k (mod q) (wenn a=0,1, zurück zu Schritt 1) und berechnet Danach
prüft A, ob αa = βfγA. Nun ist a der geheime Schlüssel von A, α ist der Generator von A und αa ist der öffent-
liche Schlüssel von A, aE ist der geheime Verschlüsselungsschlüssel von A und ist der öffentliche Ver-
schlüsselungsschlüssel von A. A veröffentlicht ((α, IA, β, γA, p, q) in der Public Domain.
5. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Anmerkungen: (zu Schemata 13-15)

1. Die Identität IA kann entweder von CA oder durch die Entität A gewählt werden.
2. CA sollte die Entität A authentifizieren. Dies kann mittels des in Anmerkung 2 zu Schema 11 beschriebe-
nen Verfahrens erfolgen.
3. (f, kA, IA) oder (A, kA,IA) oder (γ , kA, IA) kann über einen öffentlichen Kanal geschickt werden.

[0040] Bei unseren Schemata ist (α, γA) die Signatur von CA auf der ID IA von A, es wurde davon ausgegan-
gen, dass (α,γA) öffentlich bekannt ist. Jetzt ist a jedoch nur dem Benutzer A bekannt. Werden diese Schemata
verwendet, sollte man also sicherstellen, dass in dem Applikationsprotokoll der Benutzer A seinen eigenen ge-
heimen Schlüssel kennt. Anders ausgedrückt, muss das Applikationsprotokoll sicherstellen, dass A bei den
Berechnungen seinen geheimen Schlüssel verwendet.

[0041] Die Sicherheit des neuen Schemas hängt von den Signaturgleichungen ab. Beispielsweise lautet die
Signaturgleichung in Schema 1:

[0042] Im Folgenden wird gezeigt werden, dass bei einer gewissen Wahl der Einwegfunktion (F(γA, IA) das
neue Schema 1 äquivalent ist mit DSA.

[0043] Angenommen CA verwendet die DSA-Signaturgleichung, um die Identität IA der Partei A zu signieren.
Zunächst wählt CA zufällig ein cA und berechnet γA = αcA mod p, dann verwendet CA eine sichere Hash-Funk-
tion h, um h(IA) zu berechnen, schließlich löst CA die Gleichung für s.

[0044] Hierbei ist (γA,s) CAs Signatur auf IA.

[0045] Durch Multiplikation der Gleichung (2) mit h(IA)-1 erhalten wir

[0046] Sei F(γA,IA) = γAh(IA)-1 und ersetze in obiger Gleichung sh(IA)-1 durch a, so ergibt dies Gleichung (1).
Gleichung (2) ist offensichtlich äquivalent mit Gleichung (1), wenn F(γA, IA) = γa h(IA)-1. Das bedeutet, dass wenn
jemand in der Lage ist, das die Signaturgleichung (1) verwendende Schema zu brechen, so kann er auch das
Schema brechen, das die Signaturgleichung (2) verwendet und bei dem es sich um ein DSA-Schema handelt.

[0047] Heuristische Argumente legen nahe, dass unsere neuen Schemata für eine geeignete Auswahl von
F(γA,IA), mit F(γA,IA) = γA h(IA) oder F(γA,IA) = h(γA,IA), sicher sind. Man bemerke, dass F(γA,IA) auch ein anderes
Format aufweisen kann, wenn z.B. IA klein ist, z.B. 20 Bits, q jedoch mehr als 180 Bits enthält, so kann
F(γA,IA)=γA + IA verwendet werden. Ein Nachteil der neuen Schemata besteht darin, dass alle Benutzer und die
CA die gleiche Feldgröße verwenden. Allerdings arbeiten alle Schemata mit ID-basiertem implizit zertifiziertem
Public-Key auf diese Weise, z.B. Giraults RSA-basiertes Diffie-Hellman-Schlüsselübereinstimmungsschema.

[0048] Ein weiterer Satz Schemata kann auch folgendermaßen beschrieben werden:
System-Setup: Eine vertrauenswürdige Partei CA wählt eine geeignete Primzahl p mit p=tq+1, wobei q eine
große Primzahl ist, und einen Generator α der Ordnung q. Die Partei CA wählt eine zufällige ganze Zahl c, mit
1<c<q als ihren geheimen Schlüssel, berechnet den öffentlichen Schlüssel β=αc mod p und veröffentlicht

A
1

A
1

γ̂ A
1

9/26

DE 699 18 818 T2 2005.08.25
(β,α,p,q). Dann wählt CA eine spezielle kryptographische Funktion f = F(γAIA,OP)(f:{0,1} * → {1,2,...(q-1)}), so
dass mit dieser Funktion das Signaturschema, das zur Erzeugung des impliziten Zertifikates verwendet wird,
sicher ist, wobei OP für Optionsparameter steht, die den Benutzer betreffen (z.B. das Datum, oder β, der öf-
fentliche Schlüssel der Partei CA). Beispielsweise sei h eine sichere Hash-Funktion, f kann eines der nachfol-
gend aufgeführten Formate aufweisen:

1. F(γAIAOP) = γA+β+h(IA)
2. F(γA,IA,OP) = h(γA || β || IA)
3. F(γA,IA,OP) = γA+β+IA wobei IA ein Muster aufweist (oder wenn IA klein ist, z.B. 20 Bits, und q mehr als 180
Bits hat)
4. F(γAIA,OP) = γA+h(IA)
5. F(γA,IA,OP) = h(γA || IA)
6. F(γA,IA,OP) = γA+IA wobei IA ein Muster aufweist (oder wenn IA klein ist, z.B. 20 Bits, und q mehr als 180
Bits hat)
7. Die Parameter ein wenig zu verändern, um aus einem gegebenen sicheren Signaturschema ein sicheres
Signaturschema zu erhalten, ist sehr leicht. So kann F(γA,IA,OP) jedes andere Format aufweisen, mit dem
garantiert ist, dass das zur Erzeugung des impliziten Zertifikats verwendete Signaturschema sicher ist. Man
bemerke, dass durch geeignete Wahl von F(γA,IA,OP) jedes bisher bekannte Elgamal-artige Signatursche-
ma mit einem der hierin vorgeschlagenen 4 Schematafamilien äquivalent ist, wenn es als implizites Zertifi-
kat-Schema nach Modifizierung verwendet wird. Jedoch besitzen die von uns vorgeschlagenen Schemata
die größte Effizienz.
Anmerkung: In den nachfolgenden Schemata wird von dem obigen System-Setup ausgegangen.

Schema 1.a:

1. Für jede Entität A wählt CA einen eindeutigen unterscheidbaren Namen ("distinguished name") oder
Identität IA (z.B. Name, Adresse, Telefonnummer) sowie eine zufällige ganze Zahl cA mit 1<cA<q. Dann be-
rechnet (γA sind die öffentlichen Daten zur Rekonstruktion des öffentlichen Schlüs-
sels von A. (IA, γA) dient als das implizite Zertifikat von A.)
2. CA berechnet f = F(γA,IA,OP) und löst die folgende Gleichung für a (wenn a = 0,1, c, c c, so wählt CA ein
anderes cA und löst die Gleichung erneut).

3. CA schickt das Tripel (γA, a, IA), welches CAs Signatur auf IA darstellt, gesichert an A. Hierbei ist a As
geheimer Schlüssel, γA ist As Generator und ist As öffentlicher Schlüssel. A veröffentlicht
(α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit verifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Anmerkung:

1. In Schritt 1 kann die Identität IA von der Entität A gewählt werden.
2. In Schritt 2 sei a=0,1 ausgeschlossen, da sonst jedermann mit Leichtigkeit den geheimen Schlüssel der
Partei A ermitteln kann. Insbesondere wenn a=0, c c, kann CAs geheimer Schlüssel c von jedermann aus
1=cf (mod q) berechnet werden.
3. Bei diesem Schema hat jeder Benutzer einen unterschiedlichen Systemgenerator γA.

Schema 1.b:

1. Für jede Entität A wählt CA eine(n) eindeutige(n) unterscheidbaren Namen oder Identität IA (z.B. Name,
Adresse, Telefonnummer) sowie eine zufällige ganze Zahl cA mit 1<cA<q. Danach berechnet

 (γA sind die öffentlichen Daten zur Rekonstruktion des öffentlichen Schlüssels der
Partei A. (IA, γA) dient als As implizites Zertifikat.)
2. CA berechnet f = F(γA,IA, OP) und löst die folgende Gleichung für a(wenn a=0,1,c, so wählt CA ein ande-
res cA und löst die Gleichung erneut).

3. CA schickt das Tripel (γA, a, IA), bei dem es sich um CAs Signatur auf IA handelt, sicher an A. Hierbei ist
a der geheime Schlüssel von A, β der Generator von A und βa der öffentliche Schlüssel von A. A veröffent-

A
-1

A
-1
10/26

DE 699 18 818 T2 2005.08.25
licht (α, IA,β, γA, p, q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit verifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Anmerkung:

1. In Schritt 1 kann die Identität IA von der Entität A gewählt werden.
2. In Schritt 2 sei a=0,1 ausgeschlossen, da sonst jedermann mit Leichtigkeit den geheimen Schlüssel der
Partei A ermitteln kann. Ist a=0, so ist CA nicht in dem Zertifikat involviert.
3. Bei diesem Schema hat jeder Benutzer den gleichen Systemgenerator β.

Schema 1.c:

1. Für jede Entität A wählt CA eine(n) eindeutige(n) unterscheidbaren Namen oder Identität IA (z.B. Name,
Adresse, Telefonnummer) sowie eine zufällige ganze Zahl cA mit 1<cA<q. Danach berechnet

 (γA sind die öffentlichen Daten zur Rekonstruktion des öffentlichen Schlüssels der
Partei A. (IA, γA) dient als As implizites Zertifikat.)
2. CA berechnet f = F(γA,IA, OP) und löst die folgende Gleichung für a (wenn a=0,1 oder c, so wählt CA ein
anderes cA und löst die Gleichung erneut).

3. CA schickt das Tripel (γA, a, IA), bei dem es sich um CAs Signatur auf IA handelt, gesichert an A. Hierbei
ist a der geheime Schlüssel von A, Ader Generator von A und αa der öffentliche Schlüssel von A. A veröf-
fentlicht (α, IA, β, γA, p, q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit verifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Anmerkung:

1. In Schritt 1 kann die Identität IA von der Entität A gewählt werden.
2. In Schritt 2 sei a=0,1 ausgeschlossen, da sonst jedermann mit Leichtigkeit den geheimen Schlüssel der
Partei A ermitteln kann.
3. Bei diesem Schema hat jeder Benutzer den gleichen Systemgenerator α.

Schema 1.d:

1. Für jede Entität A wählt CA eine(n) eindeutige(n) unterscheidbaren Namen oder Identität IA (z.B. Name,
Adresse, Telefonnummer) sowie eine zufällige ganze Zahl cA mit 1<cA<q. Danach berechnet

 (γA sind die öffentlichen Daten zur Rekonstruktion des öffentlichen Schlüssels der
Partei A. (IA, γA) dient als As implizites Zertifikat.)
2. CA berechnet f=F(γA,IA, OP) und löst die folgende Gleichung für a (wenn a=0,1 oder c, so wählt CA ein
anderes cA und löst die Gleichung erneut).

3. CA schickt das Tripel (γA, a, IA), bei dem es sich um CAs Signatur auf IA handelt, gesichert an A. Hierbei
ist a der geheime Schlüssel von A, α der Generator von A und αa der öffentliche Schlüssel von A. A veröf-
fentlicht (α, IA, β, γA, p, q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit verifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Anmerkung:

1. In Schritt 1 kann die Identität IA von der Entität A gewählt werden.
2. In Schritt 2 sei a=0,1 ausgeschlossen, da sonst jedermann mit Leichtigkeit den geheimen Schlüssel der
Partei A ermitteln kann.
11/26

DE 699 18 818 T2 2005.08.25
3. Bei diesem Schema hat jeder Benutzer den gleichen Systemgenerator α.

[0049] Zwar kann jeder den öffentlichen Schlüssel der Partei A aus den öffentlichen Daten rekonstruieren,
doch bedeutet dies nicht, dass der rekonstruierte öffentliche Schlüssel zertifiziert wurde. Um das Zertifikat ex-
plizit zu verifizieren, muss a bekannt sein. Sobald man a kennt, besteht das Verifizierungsverfahren darin, CAs
Signatur auf IA zu verifizieren. Wenn beispielsweise in Schema 1.a der Verifizierer αβ-f berechnet und ein Be-
nutzer A γ unter Verwendung von a berechnet, so können diese das Zertifikat zusammen verifizieren. Der Ve-
rifizierer muss aber sicherstellen, dass der Benutzer A tatsächlich a kennt. Somit dient die Rekonstruktion des
öffentlichen Schlüssels nur dann als implizite Verifizierung, wenn sie mit einem Applikationsprotokoll kombi-
niert ist, welches zeigt, dass der Benutzer A den entsprechenden geheimen Schlüssel vollständig kennt. Ge-
nerell kann das auf implizitem Zertifikat basierende Schema mit jedem Public-Key-Schema verwendet werden,
das die Subjekt-Entität und den öffentlichen Schlüssel authentifizieren muss.

[0050] Im Folgenden soll dies durch Verwendung des DSA-Signaturschemas als System mit implizit zertifi-
ziertem öffentlichen Schlüssel und des Schemas 1.a als Schema mit implizitem Zertifikat demonstriert werden.

[0051] Angenommen, Alice hat den geheimen Schlüssel a, den Generator γA und veröffentlicht (α,IA,β,γA,p,q)
in der Public Domain. Alice möchte nun eine Nachricht M unter Verwendung eines DSA signieren.

[0052] Alice geht wie folgt vor:
1. sie wählt zufällig ein k, berechnet r = γ (mod p).
2. sie berechnet e=sha-1(M).
3. sie berechnet s=x-1(e+ar) (mod q).
4. Die Signatur auf M ist (r,s).

[0053] Der Verifizierer geht wie folgt vor:
1. er beschafft sich Alices öffentliche Daten (α, IA, β, γA, p, q), berechnet f und rekonstruiert den öffentlichen
Schlüssel

2. berechnet e=sha-1(M).
3. berechnet u1 = es-1 (mod q) und u2 = rs-1 (mod q)
4. berechnet
5. ist r=r', so ist die Signatur verifiziert. Gleichzeit ist Alices (ID-basierter) öffentlicher Schlüssel implizit ve-
rifiziert.

[0054] Das Paar (IA, γA) dient als Alices Zertifikat. Für DSA wissen wir, dass es sehr schwer ist, Alices Signatur
zu fälschen, ohne a zu kennen. Die Rekonstruktion des öffentlichen Schlüssels dient dann als implizite Verifi-
zierung, falls das Applikationsprotokoll mit gültig endet. Man erinnere, dass lediglich eine Potenzierungsope-
ration erforderlich ist, um den öffentlichen Schlüssel zu erhalten. Aus diesem Grunde lässt sich sagen, dass
die Verifizierung des impliziten Zertifikats eine Potenzierungsoperation erfordert.

[0055] Die nachfolgenden Schemata mit implizitem Zertifikat können durch Modifizieren der obigen Sche-
mata, derart dass sowohl CA als auch die Entität die Kontrolle über den geheimen Schlüssel der Entität haben,
jedoch nur die betreffende Entität ihren geheimen Schlüssel kennt, abgeleitet werden.

[0056] In diesem Abschnitt ist ein weiterer Systemparameter H(*) erforderlich, wobei H(*) eine Kryptofunktion
ist, bei der es sich um eine sichere Hash-Funktion oder Einweg-Funktion oder eine Identity-Map handeln kann.

Schema 2.a:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und f = F(γA,IA,OP), löst die Sig-
naturgleichung für kA (wenn kA = 0 oder c, so wählt CA ein anderes cA)

Dann berechnet und schickt das Tripel (γ , kA, IA) an A.
3. A berechnet a=kAk-1 (mod q) (ist a = 1, so geht A zurück zu Schritt 1) und berechnet γA = (γ)k (mod p).
Dann prüft A, ob γ = αβ-f. Hierbei ist a der geheime Schlüssel von A, γA der Generator von A, und γ ist der

A
a

A
x

A
1

A
1

A
a

A
a

12/26

DE 699 18 818 T2 2005.08.25
öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Schema 2.b:

5. A wählt zufällig eine ganze Zahl k und berechnet βk, dann schickt A βk an CA.
6. CA wählt zufällig eine ganze Zahl cA, berechnet und f = F(γA,IA, OP), löst die Sig-
naturgleichung für kA (ist kA = 0, c, so wählt CA ein anderes cA)

Dann berechnet und schickt das Tripel (γ , kA, IA) an A.
7. A berechnet und a = kA – kf (mod q) (wenn a =0,1, so geht A zurück zu
Schritt 1). Dann prüft A, ob βa = αγ . Hierbei ist a der geheime Schlüssel von A, β ist der Generator von A,
und βa ist der öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
8. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Schema 2.c:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und f = F(γA,IA,OP), berechnet kA

(wenn kA = c, so wählt CA ein anderes cA)

Dann berechnet und schickt das Tripel (γ , kA, IA) an A.
3. A berechnet a=kA + k (mod q) (wenn a=0,1, so geht A zurück zu Schritt 1) und berechnet

 Danach prüft A, ob Hierbei ist a der geheime Schlüssel von A, α ist der Ge-
nerator von A, und αa ist der öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Schema 2.d:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und f = F(γA,IA, OP), berechnet kA

(wenn kA = cA, so wählt CA ein anderes cA)

Dann berechnet und schickt das Tripel (γ , kA, IA) an A.
3. A berechnet und a = kA + kf (mod q). (Wenn a = 0,1, so geht A zurück
zu Schritt 1). Danach prüft A, ob αa = γ β Hierbei ist a der geheime Schlüssel von A, α ist der Generator
von A, und αa ist der öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Anmerkungen: (zu den Schemata 2.a, 2.b, 2.c, 2.d)

1. Die Identität IA kann entweder von CA oder der Entität A gewählt werden.
2. CA sollte die Entität A authentifizieren. Dies kann durch Anwesenheit vor CA geschehen, oder über einen
sicheren Kanal oder über die Stimme (z.B. durch Telefon), oder durch das folgende Verfahren:
Anstatt das Tripel (γ , kA, IA) an A zu senden, schickt CA in Schritt 2 zuerst γ an A. A berechnet γA, setzt

A
1

A
-f

A
1

A
1

A
f

A
1

A
1

13/26

DE 699 18 818 T2 2005.08.25
K=H(γA), verschlüsselt die Authentifizierungsinformation AAI von A (z.B. VISA-Information) durch DES (oder
ein anderes auf einem symmetrischen Schlüssel basierendes System, "Symmetric-Key-System") und
schickt DESK(AAI) an CA. CA entschlüsselt DESK(AAI), um (AAI) zu erhalten. Nach Prüfung der Validität von
(AAI) schickt CA (kA,IA) an A.
3. (γ , kA, IA) kann über einen öffentlichen Kanal geschickt werden.

[0057] In den obigen Schemata 2.a-2.d, werden die Schemata mit implizitem Zertifikat durch die Subjekt-En-
tität und die CA beendet. Jedes Schema ist im Wesentlichen in zwei Teile aufgeteilt: der Schlüsselaustauschteil
und der Signaturteil. Eine Funktion des Schlüsselaustauschteiles besteht in der Übertragung der Information
des impliziten Zertifikats von CA an A über einen öffentlichen Kanal (hierauf wird in Abschnitt 6 näher einge-
gangen). Um die Berechnung der obigen Schemata zu beschleunigen, kann der Schlüsselaustauschteil modi-
fiziert werden. Die nachfolgenden Schemata 3.a-3.d werden durch Modifizierung der Schemata 2.a-2.d erhal-
ten. Der Vorteil von Schemata 3.a-3.d besteht darin, dass der Benutzer A, daß fix ist, in der Lage ist, K zu be-
rechnen, bevor er von CA eine Antwort erhält. Hier handelt es sich um eine vorteilhafte Eigenschaft, insbeson-
dere für den Online-Fall.

Schema 3.a:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und f = F(γA,IA, OP), löst die Sig-
naturgleichung für kA (wenn kA = 0, so wählt CA ein anders cA)

Als nächstes berechnet CA K = H((αk)c) und kA = DESK(kA), dann schickt CA das Tripel (γA,kA,IA) an A.
3. A berechnet K = H(βk), kA = DESK(kA) und a=kAk-1 (mod q). (Wenn a=1, so geht A zurück zu Schritt 1.)
Dann prüft A, ob γ = aβ-f. Hierbei ist a der geheime Schlüssel von A, γA ist der Generator von A, und γ ist
der öffentliche Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Schema 3.b:

1. A wählt zufällig eine ganze Zahl k und berechnet βk, dann schickt A βk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und f = F(γA,IA,OP), löst die Signa-
turgleichung für kA (wenn kA = 0, so wählt CA ein anderes cA)

Als nächstes berechnet und kA = DESK(kA) und schickt dann das Tripel (γA, kA,
IA) an A.
3. A berechnet und berechnet a = kA – kf (mod q)
(wenn a = 0,1, so geht A zurück zu Schritt 1). Dann prüft A, ob βa = αγ
Hierbei ist a der geheime Schlüssel von A, β ist der Generator von A, und βa ist der öffentliche Schlüssel
von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Anmerkung: (zu Schema 3.b)

1. Die Identität IA kann entweder von CA oder der Entität A gewählt werden.
2. CA sollte die Entität A authentifizieren. Dies kann durch Anwesenheit vor CA geschehen, oder über einen
sicheren Kanal oder über die Stimme (z.B. durch Telefon), oder durch das folgende Verfahren:
Anstatt das Tripel (γA, kA, IA) an A zu senden, schickt CA in Schritt 2 zuerst γA an A. A berechnet

 verschlüsselt die Authentifizierungsinformation AAI von A (z.B. VISA-Infor-
mation) durch DES (oder ein anderes mit einem symmetrischen Schlüssel arbeitendes System, "Symmet-
ric-Key-System") und schickt DESK(AAI) an CA. CA entschlüsselt DESK(AAI), um AAI zu erhalten. Nach Prü-
fung der Validität von AAI schickt CA(kA, IA) an A.

A
1

A
a

A
a

A
-f
14/26

DE 699 18 818 T2 2005.08.25
3. (γA,kA,IA) kann über einen öffentlichen Kanal geschickt werden.

Schema 3.c:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und f = F(γA,IA, OP), berechnet kA

(wenn kA = 0, so wählt CA ein anderes cA)

Als nächstes berechnet CA K = H((αk)c) und kA = DESK(kA), dann schickt CA das Tripel (γA,kA,IA) an A.
3. A berechnet K = H(βk), kA = DESK (kA) und a=kA+k (mod q) (wenn a=0,1, zurück zu Schritt 1.) Dann prüft
A, ob αa = βfγA Hierbei ist a der geheime Schlüssel von A, α ist der Generator von A und αa ist der öffentliche
Schlüssel von A. A veröffentlicht (α,IA,β,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Schema 3.d:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und f = F(γA,IA, OP), berechnet kA

(wenn kA = 0, so wählt CA ein anderes cA)

Als nächstes berechnet CA K = H((αk)c) und kA = DESK(kA), dann schickt CA das Tripel (γA,kA,IA) an A.
3. A berechnet K = H(βk), kA = DESK (kA), f = F(γA,IA, OP) und a=kA+kf (mod q) (wenn a=0,1, zurück zu Schritt
1.) Dann prüft A, ob αa = γ β. Hierbei ist α der geheime Schlüssel von A, α ist der Generator von A und αa

ist der öffentliche Schlüssel von A. A veröffentlicht (α,IAβ,γA,p,q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Anmerkungen: (zu Schemata 3.a, 3.c, 2.d)

1. Die Identität IA kann entweder von CA oder der Entität A gewählt werden.
2. CA sollte die Entität A authentifizieren. Dies kann entweder durch Anwesenheit vor CA geschehen, oder
über einen sicheren Kanal oder über die Stimme (z.B. durch Telefon), oder durch das folgende Verfahren:
In Schritt 1 berechnet A αk und K=H(βk) und schickt dann αk und DESK(AAI) an CA. CA berechnet K = H((αk)c)
und entschlüsselt DESK(AA1), um (AA1) zu erhalten. Nach Prüfung der Validität von AA1 fährt CA mit Schritt
2 fort.
3. (γA,kA,IA) kann über einen öffentlichen Kanal geschickt werden.

[0058] Die Vorteile der Schemata 3.a, 3.c und 3.d liegen darin, dass der Benutzer A problemlos in der Lage
ist, K zu berechnen, da β fix ist, und dass kA so verschlüsselt ist, dass andere keine Kenntnis von kA haben
können. Tatsächlich wird durch die öffentliche Bekanntheit von kA die Sicherheit des Zertifikatsschemas nicht
vermindert. Zweck der Verschlüsselung von kA ist es, sicherzustellen, dass k der Entität bekannt ist. Somit kann
bei den Schemata 3.a-3.d der DES-Verschlüsselungsteil entfallen und kA durch kA ersetzt werden, vorausge-
setzt, dass das Zertifikatsschema das in Anmerkung 2 beschriebene Verfahren anwendet.

[0059] Um in den obigen Schemata an Übertragungsbandbreite einzusparen, können die Schemata durch
Senden von f = F(γA,IA, OP) anstelle von γA modifiziert werden. (Man bemerke, dass die Größe von γA im All-
gemeinen größer ist als 160 Bits, während f lediglich 160 Bits enthält.) Das nachfolgende Schema 4.c ist eine
Modifizierung von Schema 3.c.

Schema 4.c:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und f = F(γA,IA, OP), berechnet kA

A
f

15/26

DE 699 18 818 T2 2005.08.25
(wenn kA = 0, so wählt CA ein anderes cA)

Als nächstes berechnet CA K = H((αk)c) und kA = DESK(kA) und schickt dann das Tripel (f, kA, IA) an A.
3. A berechnet K = H(βk), kA = DESK(kA) und a = kA + k (mod q) (wenn a = 0,1, so geht A zurück zu Schritt
1.) Dann berechnet A γA = αaβ-f (mod p) und prüft, ob f = F(γA,IA, OP). Hierbei ist a der geheime Schlüssel
von A, α der Generator von A und αa der öffentliche Schlüssel von A. A veröffentlicht (α, IA, β, γA, p, q) in der
Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

[0060] Des Weiteren kann die Bandbreite durch das folgende Schema 5.c vermindert werden:

Schema 5.c:

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA.
2. CA wählt zufällig eine ganze Zahl cA, berechnet und setzt A als die ersten 80
niedrigstwertigen Bits von γA. Dann berechnet CA f = F(A,IA,OP) und kA (wenn kA = 0, so wählt CA ein an-
deres cA)

Als nächstes berechnet CA K = (αk)c (mod p) und kA = DESK(kA) und schickt das Tripel (A,kA,IA) an A.
Anmerkung: (A,kA,IA) kann über einen öffentlichen Kanal geschickt werden.
3. A berechnet K = βk (mod p), kA = DESK(kA) und a = kA + k (mod q) (wenn a = 0,1, so geht A zurück zu
Schritt 1.) Dann berechnet A f = F(A, β, IA), γA = αaβ-f (mod p), γA = αaβ-f (mod p) und prüft, ob die ersten 80
niedrigstwertigen Bits von γA gleich A sind. Hierbei ist a der geheime Schlüssel von A, α der Generator von
A und αa der öffentliche Schlüssel von A. A veröffentlicht (α, IA, β, γA, p, q) in der Public Domain.
4. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

[0061] Das Sicherheitsniveau 5.c ist nicht so hoch wie das anderer, oben besprochener Schemata. Schema
5.c hat nur eine 80-Bit-Sicherheit, die jedoch derzeit für praktische Anwendungen ausreicht. Die ersten 80
niedrigstwertigen Bits können auf die niedrigstwertigen Bits bis zur Hälfte der Bits von γA erweitert werden.

[0062] Das implizite Zertifikat kann zur Zertifizierung anderer nützlicher Informationen verwendet werden, und
zwar durch Aufnahme der Information in den Optionsparameter OP. Beispielsweise wobei
aE ein anderer geheimer Schlüssel des Benutzers A und der korrespondierende öffentliche Schlüssel ist.
Das folgende Schema 6.c stellt eine Modifikation des Schemas 2.c dar. Andere Schemata können in der glei-
chen Weise modifiziert werden.

Schema 6.c:

1. A wählt zufällig eine ganze Zahl aE und berechnet
2. A wählt zufällig eine ganze Zahl k und berechnet ak, dann schickt A αk und an CA.
3. CA wählt zufällig eine ganze Zahl cA, berechnet und

 berechnet kA

(wenn kA = 0, so wählt CA ein anderes cA)

Dann berechnet und schickt das Tripel (γ , kA, IA) an A.
4. A berechnet a=kA+k (mod q) (wenn a = 0,1, so geht A zurück zu Schritt 1) und berechnet

 Dann prüft A, ob αa = βfγA. Hierbei ist a der geheime Signierschlüssel von A, α der Ge-
nerator von A und αa der öffentliche Signierschlüssel von A. αE ist der geheime Verschlüsselungsschlüssel
von A und der öffentliche Verschlüsselungsschlüssel von A. A veröffentlicht (α, IA, β, γA, p, q) in
der Public Domain.
5. Jeder kann den (ID-basierten) implizit zertifizierten öffentlichen Schlüssel der Partei A aus der Public Do-

γ̂
γ̂

ŷ
ŷ

ŷ
ŷ

A
1

16/26

DE 699 18 818 T2 2005.08.25
main erhalten, und zwar durch Berechnen von

Anmerkung: (zu den Schemata 4.c, 5.e, 6.c)

1. Die Identität IA kann von CA oder durch die Entität A gewählt werden.
2. CA sollte die Entität A authentifizieren. Dies kann durch das in der Anmerkung 2 zu Schema 3.c beschrie-
bene Verfahren erfolgen.
(f, kA, IA) oder (A, kA, IA) oder (γ , kA, IA) können über einen öffentlichen Kanal geschickt werden.

CA-Verkettungsschema

[0063] zur Implementierung einer CA-Verkettungsstruktur, d.h. CA1 authentifiziert CA2, CA2 authentifiziert
CA3 und CA3 authentifiziert den Benutzer A. In diesem Abschnitt wird ein Beispiel mit 3 CAs in der CA-Kette
beschrieben. Wir verwenden das Grundschema 3', um dieses Beispiel zu demonstrieren.

System-Setup:

[0064] Die Partei CA1, die das höchste Vertrauen genießt, wählt eine geeignete Primzahl p mit p=tq +1, wobei
q eine große Primzahl ist, und einen Generator α der Ordnung q. CA1 wählt eine zufällige ganze Zahl c1, mit
1≤c1≤q-1 als ihren geheimen Schlüssel, dann berechnet CA1 den öffentlichen Schlüssel und
veröffentlicht (β1, α, p, q).

Phase 1. CA2 beantragt einen implizit zertifizierten öffentlichen bei CA1

1. CA2 wählt zufällig eine ganze Zahl k2 und berechnet dann schickt CA2 an CA1.
2. CA1 wählt eine(n) eindeutige(n) unterscheidbare(n) Namen oder Identität ICA2 und eine zufällige ganze
Zahl cCA2, mit 1 ≤ cCA2 ≤ q-1. Dann berechnet CA1 (mod p)(γCA2 sind die öffentlichen Daten
zur Rekonstruktion des öffentlichen Schlüssels von CA2).
3. CA1 wählt eine Funktion f1 = F(γCA2,ICA2) und berechnet kCA2 (wenn kCA2=0, so wählt CA1 in Schritt 2 ein
anderes cCA2 und führt eine neue Berechnung von kCA2 durch).

4. CA1 berechnet und schickt das Tripel (γ , kCA2, ICA2) an CA2.
5. CA2 berechnet Somit ist c2 = kCA2 + k2 (mod q) der geheime Schlüssel von CA2,
α ist der Generator von CA2 und ist der öffentliche Schlüssel von CA2. CA2 veröffentlicht (α, ICA2,
β1, β2, γCA2, p, q) in der Public Domain.
Anmerkung: Vertraut ein Benutzer CA2, so kann er β2 direkt verwenden.
6. Jeder kann den (ID-basierten) implizit verifizierten öffentlichen Schlüssel der Partei CA2 aus der Public
Domain erhalten, und zwar durch Berechnen von

Phase 2. CA3 fordert bei CA2 einen implizit zertifizierten Schlüssel an

1. CA3 wählt zufällig eine ganze Zahl k3 und berechnet und schickt dann an CA2.
2. CA2 wählt eine(n) eindeutige(n) unterscheidbare(n) Namen oder Identität ICA3 und eine zufällige ganze
Zahl cCA3 mit 1 ≤ cCA3 ≤ q-1. Dann berechnet CA2 (γCA3 sind die öffentlichen Daten
zur Rekonstruktion des öffentlichen Schlüssels von CA3.)
3. CA2 wählt eine Funktion f2=F(γCA3, ICA3) und berechnet kCA3 (wenn kCA3=0, so wählt CA2 in Schritt 2 ein
anderes cCA3 und führt eine neue Berechnung von kCA3 durch).

4. CA2 berechnet und schickt das Tripel (γ , kCA3, ICA3) an CA3.
5. CA3 berechnet Somit ist c3 = kCA3 + k3 (mod q) CA3s geheimer Schlüssel, α ist
CA3s Generator und ist CA3s öffentlicher Schlüssel. CA3 veröffentlicht (α, ICA3,β2, β3, γCA3, p, q)
in der Public Domain.
Anmerkung: Vertraut eine Entität CA3, so kann sie β3 direkt verwenden.
6. Jeder kann den (ID-basierten) implizit verifizierten öffentlichen Schlüssel der Partei CA3 aus der Public

γ̂ A
1

CA2
1

CA3
1

17/26

DE 699 18 818 T2 2005.08.25
Domain erhalten, und zwar durch Berechnen von

Phase 3. Der Benutzer A beantragt bei CA3 einen implizit zertifizierten öffentlichen Schlüssel.

1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA3.
2. CA3 wählt einen eindeutigen unterscheidbaren Namen oder Identität IA und eine zufällige ganze Zahl cA

mit 1 ≤ cA ≤ q-1. Dann berechnet (γA sind die öffentlichen Daten zur Rekons-
truktion des öffentlichen Schlüssels von A.)
3. CA3 wählt eine sorgfältig ausgewählte Funktion f3=F(γA, IA) und berechnet kA (wenn kA=0, so wählt CA3
in Schritt 2 ein anderes cA und führt eine neue Berechnung von kA durch).

4. CA3 berechnet und schickt das Tripel (γ ,kA,IA) an A.
5. A berechnet Somit ist a = kA + k (mod q) As geheimer Schlüssel, α ist As Generator
und βA = αa ist As öffentlicher Schlüssel. A veröffentlicht (α, IA, β3, βA, γA, p, q) in der Public Domain.
Anmerkung: Vertraut ein Benutzer A, so kann er βA direkt verwenden.
6. Jeder kann den (ID-basierten) implizit verifizierten öffentlichen Schlüssel der Partei A aus der Public Do-
main erhalten, und zwar durch Berechnen von

Phase 4. Die Signatur des Benutzers A und Verifizierung

[0065] Zur Signierung einer Nachricht M geht der Benutzer A wie folgt vor:
1. A wählt zufällig x, berechnet r=αx (mod p).
2. A berechnet e=fA= F(r, M), wobei F eine feste Funktion ist.
3. A berechnet s=ae+x (mod q)
4. Die Signatur auf M ist (r,s).

[0066] Der Verifizierer geht wie folgt vor:
1. Er holt sich die öffentlichen Daten von CA1, CA2, CA3 und die des Anwenders A

2. er rekonstruiert As öffentlichen Schlüssel

3. berechnet e=fA=F(r, M)
4. berechnet r' = αSβ (mod p)
5. wenn r=r', so ist die die Signatur verifiziert. Gleichzeitig ist der (ID-basierte) öffentliche Schlüssel von
CA2, CA3 und des Benutzers A implizit verifiziert.

[0067] Die Rekonstruktion des öffentlichen Schlüssels des Benutzers A erfordert nur 3 Potenzierungsopera-
tionen mit bekannter Basis sowie 3 Multiplikationsoperationen. Ist die Signatur gültig, so ist der (ID-basierte)
öffentliche Schlüssel von CA2, von CA3 und des Benutzers A implizit verifiziert.

Anmerkungen:

1. Vertraut der Verifizierer der Partei A, so ist As öffentlicher Schlüssel βA

2. Vertraut der Verifizierer der Partei CA3, so ist der öffentliche Rekonstruktionsschlüssel

3. Vertraut der Verifizierer der Partei CA2, so ist der öffentliche Rekonstruktionsschlüssel

Mitzeichnungsschema ("Co-signing Scheme")

[0068] Im Folgenden wird ein Schema beschrieben, dass es einer Mehrzahl von CAs erlaubt, EIN implizites
Zertifikat zu signieren. Dies wird anhand des Falles erläutert, in dem drei CAs, ein Zertifikat mit Verwendung

A
1

A
-e
18/26

DE 699 18 818 T2 2005.08.25
des Grundschemas 3' mitzeichnen.

System-Setup:

[0069] CA1, CA2 und CA3 sollen gemeinsame Systemparameter aufweisen: (1) die Primzahl p mit p =tq+1,
wobei q eine große Primzahl ist; (2) ein Generator α der Ordnung q; (3) eine sorgfältig ausgewählte Funktion
f = F(γ, (IA1 + IA2 + IA3)) Die Partei CA1 wählt ein zufällige ganze Zahl c1, mit 1 ≤ c1 ≤ q-1 als ihren geheimen
Schlüssel, berechnet dann den öffentlichen Schlüssel und veröffentlicht (β1,α, p, q). CA2
wählt eine zufällige Zahl c2, mit 1≤c2≤q-1 als ihren geheimen Schlüssel, berechnet dann den öffentlichen
Schlüssel und veröffentlicht (β2,α, p, q). CA3 wählt eine zufällige ganze Zahl c3, 1≤c3≤q-1 als ihren
geheimen Schlüssel, berechnet dann den öffentlichen Schlüssel und veröffentlicht (β3,α, p,
q).

[0070] Schritt 1. A wählt zufällig eine ganze Zahl k und berechnet αk, dann schickt A αk an CA1, CA2 und CA3.

[0071] Schritt 2. Die CAs tauschen Information aus und berechnen implizite Zertifikate.

Phase 1.

1. CA1 wählt eine(n) eindeutige(n) unterscheidbare(n) Namen oder Identität IA1 und eine zufällige ganze
Zahl cA1 mit 1≤cA1≤q-1, berechnet und schickt an CA2 und CA3.
2. CA2 wählt eine(n) eindeutige(n) unterscheidbare(n) Namen oder Identität IA2 und eine zufällige ganze
Zahl cA2 mit 1≤cA2≤q-1, berechnet und schickt an CA1 und CA3.
3. CA3 wählt eine(n) eindeutige(n) unterscheidbare(n) Namen oder Identität IA3 und eine zufällige ganze
Zahl cA3 mit 1≤cA3≤q-1, berechnet und schickt an CA1 und CA2.

Phase 2.

1. CA1 berechnet (γ sind die öffentlichen Daten zur Rekonstruktion des öffent-
lichen Schlüssels von A), berechnet f=F(γ,(IA1+IA2+IA3)) und berechnet kA1 (wenn kA1 = 0, so geht CA1 zurück
zu Phase 1)

CA1 berechnet und schickt das Tripel (γ , kA1, IA1) an A.
2. CA2 berechnet (γ sind die öffentlichen Daten zur Rekonstruktion des öffent-
lichen Schlüssels von A), berechnet f=F(γ,(IA1+IA2+IA3)) und berechnet kA2 (wenn kA2 = 0, so geht CA2 zurück
zu Phase 1)

CA2 berechnet und schickt das Tripel (γ , kA2, IA2) an A.
3. CA3 berechnet γ sind die öffentlichen Daten zur Rekonstruktion des öffent-
lichen Schlüssels von A), berechnet f = F(γ, (IA1+IA2+IA3)) und berechnet kA3 (wenn kA3 = 0, so geht CA3 zu-
rück zu Phase 1).

CA3 berechnet und schickt das Tripel (γ , kA3, IA3) an A.

[0072] Schritt 3A berechnet implizit co-zertifizierte geheime Schlüssel und die Information zur Public-Key-Re-
konstruktion

1. A berechnet a=kA1 + kA2 + kA3+k (mod q). (Wenn a 0 oder 1 ist, geht A zurück zu Schritt 1.)
2. A berechnet Dann verifiziert A, ob

3. Hierbei ist a der implizit co-zertifizierte geheime Schlüssel von A, α ist der Generator von A, IA = IA1+IA2+IA3

ist die gemeinsame ID von A und (β1β2β3)
fγ ist der implizit co-zertifizierte öffentliche Schlüssel von A.

4. A veröffentlicht (α,IA1,IA2,IA3,β1,β2,β3,γ,p,q) in der Public Domain.
5. Jeder kann den (ID-basierten) implizit mitzertifizierten öffentlichen Schlüssel der Partei A aus der Public
Domain erhalten, und zwar durch Berechnen von (β1,β2,β3)

fγ (mod p)

A1
1

A2
1

A3
1

19/26

DE 699 18 818 T2 2005.08.25
Anwendungen

[0073] Die nachfolgenden Beispiele werden mit Bezug auf Schema 3 (oder Schema 7') als CAs Signaturglei-
chung beschrieben, da bei diesem Schema jeder den gleichen Generator hat. Jeder Benutzer kann eine an-
dere CA haben, solange die CAs die gleichen Systemparameter (p,q,d) verwenden und jeder Benutzer die glei-
che Generierung hat.

Setup:

[0074] Um zu zeigen, wie das neue Schema zu verwenden ist, wird das MTI/C0-Schlüsselübereinstimmungs-
protokoll angewandt.

[0075] Angenommen Alice und Bob möchten einen Schlüsselaustausch durchführen. Das MTI/C0-Protokoll
1. Alice rekonstruiert Bobs öffentlichen Schlüssel wählt zufällig eine ganze Zahl x und be-
rechnet (ab)x, dann schickt Alice (αb)x an Bob.
2. Bob rekonstruiert Alices öffentlichen Schlüssel wählt zufällig eine ganze Zahl y und be-
rechnet (αa)y, dann schickt (αa)y an Alice.
3. Alice berechnet den gemeinsamen Schlüssel
4. Bob berechnet den gemeinsamen Schlüssel

[0076] Es handelt sich hierbei um ein Two-Pass-Protokoll. Bei dem erfindungsgemäßen Schema mit implizi-
tem Zertifikat führt jede Partei nur drei Potenzierungsoperationen aus, um den gemeinsamen Schlüssel zu er-
halten, während sie gleichzeitig eine Verifizierung der Authentifizierungsschlüssel-Übereinstimmung und des
impliziten öffentlichen Schlüssels durchführen.

[0077] Die nachfolgenden Beispiele sind Beispiele für Schemata mit kombinierter Signatur und Verschlüsse-
lung ("Signcryption Schemes"). Als CAs Signaturgleichung wird hier das Schema 3 (oder Schema 7) verwen-
det, da bei diesem Schema jeder den gleichen Generator hat. Für das danach folgende Schema wird Schema
13 als CAs Signaturgleichung verwendet. Bei allen in diesem Abschnitt aufgeführten Schemata kann jeder Be-
nutzer eine andere CA haben, solange die CAs die gleichen Systemparameter (p,q,α) verwenden und jeder
Benutzer den gleichen Generator hat.

Setup:

[0078] Bob möchte Alice eine signierte und verschlüsselte Nachricht M schicken.

Signcryption-Protokoll (Protokoll mit kombinierter Signierung und Verschlüsselung) 1:

[0079] Angenommen, Bob möchte Alice eine signierte und verschlüsselte Nachricht M schicken: Bob geht wie
folgt vor:

1. rekonstruiert Alices öffentlichen Schlüssel
2. wählt zufällig eine ganze Zahl x und berechnet einen Schlüssel r = (αa)x(mod p)
3. berechnet C=DESr(M)
4. berechnet e = hash(C||IA)
5. berechnet s=be+x(mod q)
6. schickt das Paar (C,s) an Alice, somit ist C die verschlüsselte Nachricht und s die Signatur.

[0080] Um die Nachricht wiederherzustellen, geht Alice wie folgt vor:

CA1: Systemparameter (α, β1, p,q,d)
Alice hat einen geheimen Schlüssel a und einen Generator α und veröffentlicht (α, IA, β, γA, p, q) in
der Public Domain.

CA2: Systemparameter (α, β2, p, q)
Bob hat einen geheimen Schlüssel b und einen Generator α und veröffentlicht (α, IA, β, γA, p, q) in der
Public Domain.

CA1: Systemparameter (α, β1, p,q)
Alice: geheimer Schlüssel a, Generator α, und (α IA, β1, γA, p, q) in der Public Domain.
CA2: Systemparameter (α, β2, p, q)
Bob: geheimer Schlüssel b, Generator α, und (α, IB, β2, γB, p, q) in der Public Domain.
20/26

DE 699 18 818 T2 2005.08.25
1. berechnet e = hash(C||IA)
2. rekonstruiert Bobs öffentlichen Schlüssel
3. berechnet αas(αb)-ac (mod p), was r ist
4. entschlüsselt die Nachricht M=DESr(C)
5. prüft auf Redundanz

[0081] Somit führt Bob lediglich zwei und Alice drei Potenzierungsoperationen aus. Sowohl Alice als auch Bob
sind jedoch bezüglich ihrer jeweiligen Authentifizierung sicher. Es sei darauf hingewiesen, dass bei diesem
Schema die Nachricht M eine gewisse Redundanz oder ein gewisses Muster aufweisen muss.

Signcryption-Protokoll 2 (allgemeiner Fall):

Setup:

[0082] Anmerkung: Dieses Setup gilt für ein implizites Zertifikat. Für Schemata mit gewöhnlichem Zertifikat ist
es lediglich erforderlich, dass Alice und Bob den gleichen Generator haben.

[0083] Zum kombinierten Signieren und Verschlüsseln einer Nachricht an Alice geht Bob wie folgt vor:
1. holt sich Alices öffentlichen Schlüssel αa (im Falle eines Schemas mit implizitem Zertifikat rekonstruiert
er Alices öffentlichen Schlüssel
2. wählt zufällig eine ganze Zahl x und berechnet r = (αa)x (mod p)
3. berechnet C=DESr(M)
4. berechnet e = hash(C||αa)
5. berechnet s=be+x (mod q)
6. schickt (C,s) an Alice. C ist die verschlüsselte Nachricht und s die Signatur.

[0084] Um die Nachricht wiederherzustellen, geht Alice wie folgt vor:
1. berechnet e = hash(C||αa)
2. holt sich Bobs öffentlichen Schlüssel αb (im Falle eines Schemas mit implizitem Zertifikat rekonstruiert sie
Bobs öffentlichen Schlüssel
3. berechnet αas (αb)-ae (mod p), was r ist
4. entschlüsselt die Nachricht M=DESr(C)

Anmerkung:

1. Wenn es sich bei dem Zertifikatsschema nicht um das hier beschriebene implizite Zertifikat handelt, so
sollte Alices und Bobs öffentlicher Schlüssel verifiziert werden.
2. Die Nachricht M muss eine gewisse Redundanz oder ein gewisses Muster aufweisen.
3. Jeder, der einen Wert r kennt, ist in der Lage, jede Nachricht von Bob an Alice zu entschlüsseln, da der
Wert αab offen gelegt wird.
4. Generell sollte ein Optionsparameter in den Hash e aufgenommen werden, d.h. e = hash(C||αa||OP).
Beispielsweise OP = αb oder OP = αb||βi||β2

[0085] Die obigen Signcryption-Schemata haben den Nachteil, dass dann, wenn der Signierer seinen gehei-
men Signierschlüssel verlieren sollte, alle von dem Signierer gleichzeitig signiert und verschlüsselten Nach-
richten dem Publikum offen gelegt werden. Um Nachrichten nach der Verschlüsselung zu schützen, wird hier-
mit ein neues Signcryption-Schema vorgeschlagen. Bei diesem neuen Schema verfügt jeder Benutzer über
zwei Schlüsselpaare, davon ist ein Paar für den Signaturschlüssel und ein Paar ist der Verschlüsselungs-
schlüssel. Das neue Schema kann mit jedem Zertifikatsschema verwendet werden, jedoch ist es effizienter,
wenn es mit dem erfindungsgemäßen Zertifikatsschema verwendet wird.

CA1: Systemparameter (α, β1, p, q)
Alice: geheimer Schlüssel a, Generator α, und (α, IA, β1, γA, p, q) in der Public Domain.
CA2: Systemparameter (α, β2, p, q)
Bob: geheimer Schlüssel b, Generator α, und (α, IA, β2, γB, p, q) in der Public Domain.
21/26

DE 699 18 818 T2 2005.08.25
Signcryption-Protokoll 3 (allgemeiner Fall):

Setup:

[0086] Anmerkung: Dieses Setup gilt für ein implizites Zertifikat, welches das Schema 6.c verwendet. Für Sys-
teme, die auf Schemata mit gewöhnlichem Zertifikat basieren, ist es lediglich erforderlich, dass Alice und Bob
den gleichen Generator haben

[0087] Zur Signierverschlüsselung einer Nachricht an Alice geht Bob wie folgt vor:
1. Er beschafft sich Alices öffentlichen Signaturschlüssel αa und den öffentlichen Verschlüsselungsschlüssel

 im Falle eines Schemas mit implizitem Zertifikat rekonstruiert er Alices öffentlichen Signaturschlüssel

2. wählt zufällig eine ganze Zahl x und berechnet
3. berechnet C=DESr(M)
4. berechnet
5. berechnet s = be + x + bE (mod q)
6. schickt (C,s) an Alice. C ist die verschlüsselte Nachricht und s die Signatur.

[0088] Um die Nachricht wiederherzustellen, geht Alice wie folgt vor:
1. Sie berechnet
2. beschafft sich Bobs öffentlichen Signaturschlüssel αb und den öffentlichen Verschlüsselungsschlüssel (im
Falle eines Schemas mit implizitem Zertifikat rekonstruiert Alice Bobs öffentlichen Signaturschlüssel

3. berechnet was gleich r ist
4. entschlüsselt die Nachricht M=DESr(C)

Anmerkung:

1. Es ist denkbar, dass der geheime Schlüssel des Empfängers Alice a+aE lautet. Dies bedeutet, dass der
Empfänger nur einen geheimen Schlüssel anstelle von zwei geheimen Schlüsseln benötigt. Der Sender
Bob benötigt hingegen zwei geheime Schlüssel. Im Falle eines normalen Zertifikats benötigt der Empfänger
nur einen einzigen privaten Schlüssel.
2. Wenn das Zertifikatsschema nicht das in dieser Anmeldung beschriebene implizite Zertifikat ist, so sollten
Alices und Bobs öffentliche Schlüssel verifiziert werden.
3. Die Nachricht M muss eine gewisse Redundanz oder ein Muster aufweisen.
4. Der Parameter OP im Hash kann leer sein oder OP = β1||β2

5. Die Kenntnis eines einzigen Wertes r enthüllt keine Information der späteren Nachrichten.
6. Bei einem Schema mit implizitem Zertifikat führt Bob lediglich 2 Potenzierungsoperationen durch und Ali-
ce 4 Potenzierungsoperationen. Alice und Bob sind sich jedoch beide sicher, dass es sich bei dem jeweils
anderen um eine authentifizierte Partei handelt.
7. Kennt jemand Alices geheimen Schlüssel a+aE oder verliert Bob beide geheimen Schlüssel, so kann die
Nachricht nach der Verschlüsselung nicht geschützt werden.

[0089] Bei normalen Signaturen besteht ein Problem darin, dass der Signierer die Signierung leugnet. Dies
wird als Nichtanerkennung (Repudiation) bezeichnet. Die obigen Protokolle 1 und 2 weisen ein Nachweisbar-
keitsmerkmal (Non-repudiation) auf, vorausgesetzt, dass dem Richter vertraut wird. Dies bedeutet, dass der
Signierer nicht leugnen kann, dass er die signierte und verschlüsselte Nachricht signiert hat. Protokoll 3 hat
auch dann ein Nachweisbarkeitsmerkmal, wenn der Richter kein Vertrauen genießt. Das nachfolgende Proto-
koll zeigt, wie ein Richter einen Fall entscheidet, in dem Bob die Signatur leugnen will.

Non-Repudiation-Protokoll (Protokoll mit Nachweisbarkeit):

1. Alice schickt (C,s) an den Richter
2. Der Richter berechnet (Anmerkung: Alices und Bobs zwei Paare

Alice: geheimer Signierschlüssel a und geheimer Verschlüsselungsschlüssel aE, Generator α, und (α,
IA, β1, γA, p, q) in der Public Domain

CA2: Systemparameter (α, β2, p, q)
Bob: geheimer Signierschlüssel b und geheimer Verschlüsselungsschlüssel bE, Generator α, und (α,

IB, β2, γB, p, q) in der Public Domain
22/26

DE 699 18 818 T2 2005.08.25
von öffentlichen Schlüsseln sollten verifiziert werden. Im Falle eines Schemas mit implizitem Zertifikat soll-
ten die öffentlichen Schlüssel mit den öffentlichen Rekonstruktionsdaten rekonstruiert werden.)
3. Der Richter wählt zufällig zwei ganze Zahlen r1 und r2, berechnet und schickt L an Alice.
4. Alice berechnet und schickt dies zurück an den Richter
5. Der Richter berechnet und stellt die Nachricht durch M=DESr(C) her
6. Hat M das richtige Format, so muss (C,s) von Bob signiert und verschlüsselt werden.
7. Nachdem der Richter eine Entscheidung gefällt hat, schickt er die Werte an Alice
und Bob, um seine Entscheidung zu stützen.

[0090] Bei den beiden anderen Signcryption-Protokollen sind die Non-Repudiation-Protokolle ähnlich unter
der Voraussetzung, dass der Richter volles Vertrauen genießt.

[0091] Schließlich ist ersichtlich, dass das vorliegende Schema, wenn es kombiniert wird mit einem Applika-
tionsprotokoll, für das der geheime Schlüssel des Anwenders in der Berechnung direkt verwendet werden
muss, einen implizit zertifizierten ID-basierten öffentlichen Schlüssel des Benutzers bereitstellt. Diese Sche-
mata können auch von einem Schlüsselauthentifizierungszenter (KAC) verwendet werden, um implizit zertifi-
zierte öffentliche Schlüssel an die Nutzer zu verteilen.

[0092] Eine weitere Anwendung implizit zertifizierter öffentlicher Schlüssel besteht darin, dass die Bitstärke
der Zertifizierungsstelle genauso groß ist, wie die öffentlichen Schlüssel des Benutzers oder der Entität, welche
zertifiziert werden. "Bitstärke" bedeutet die relativen Schlüsselgrößen und die Rechenleistung der betreffenden
Entitäten.

[0093] Eine Herangehensweise an dieses Problem besteht darin, die implizit zertifizierten öffentlichen Schlüs-
sel in traditionellere Zertifikatsstrukturen, z.B. wie spezifiziert in X.509-Zertifikaten, einzubetten, bei denen die
Signatur auf dem Zertifikat eine größere Bitstärke aufweist als der implizit zertifizierte öffentliche Schlüssel.

[0094] Die CA hat also den öffentlichen Schlüssel des Nutzers auf zwei verschiedenen Sicherheitsniveaus
zertifiziert. Jede andere Entität, die einen öffentlichen Schlüssel abruft, kann entscheiden, welches Sicherheits-
niveau sie akzeptieren möchte. Bei einigen Anwendungen kann es sein, dass zur Erbringung der erforderli-
chen Leistung lediglich das durch den impliziten Wert bereitgestellte niedrigere Sicherheitsniveau nötig ist.

[0095] Zwar wurde die Erfindung in Verbindung mit spezifischen Ausführungsformen und spezifischen An-
wendungen beschrieben, doch sind für den Fachmann auch verschiedene abgewandelte Ausführungsformen
ersichtlich, ohne dass diese vom Erfindungsgedanken, wie er in den beigefügten Ansprüchen angegeben ist,
abweichen. Beispielsweise wird in der obigen Beschreibung bevorzugter Ausführungsformen multiplikative No-
tation angewendet, jedoch kann das Verfahren der vorliegenden Erfindung ebenso gut unter Verwendung der
additiven Notation beschrieben werden. Es ist z.B. allgemein bekannt, dass der im ECDSA enthaltene ellipti-
sche-Kurve-Algorithmus zu dem DSA äquivalent ist und dass das elliptische-Kurve-Analogon ein Äquivalent
eines Diskreter-log-Algorithmus ist, der üblicherweise in einer Gruppe F , der multiplikativen Gruppe der gan-
zen Zahlen modulo eine Primzahl, beschrieben wird. Es besteht eine Korrespondenz zwischen den Elementen
und Operationen der Guppe F und der elliptische-Kurve-Gruppe E(Fq). Weiterhin ist diese Signatur-Verfah-
rensweise ebenso gut auf Funktionen anwendbar, die in einem über Fp und definierten Feld ausgeführt wer-
den. Es wird außerdem darauf hingewiesen, dass das oben beschriebene DSA-Signaturschema ein spezifi-
sches Beispiel des verallgemeinerten ElGamal-Signaturschemas darstellt, dass den Fachleuten bekannt ist;
daher sind die vorliegenden Verfahrensweisen auf dieses anwendbar.

Patentansprüche

1. Verfahren zur Erzeugung eines öffentlichen Schlüssels in einem sicheren digitalen Kommunikationssys-
tem (10) mit wenigstens einer, das Vertrauen genießenden Entität CA und mit Teilnehmerentitäten A, wobei
das Verfahren die folgenden Schritte umfasst:
A) für jede Entität A wählt die das Vertrauen genießende Entität CA eine eindeutige Identität IA, durch welche
die Entität A gekennzeichnet ist;
B) die das Vertrauen genießende Entität CA erzeugt öffentliche Daten γA zur Rekonstruktion des öffentlichen
Schlüssels einer Entität A durch mathematische Kombination öffentlicher Werte, die aus jeweiligen geheimen
Werten der das Vertrauen genießenden Entität CA und der Entität A erhalten wurden, um ein Paar (IA, γA) zu
erhalten, das als das implizite Zertifikat von A dient;
C) Kombinieren der impliziten Zertifikatsinformation (IA, γA) gemäß einer mathematischen Funktion F(IA, γA), um
eine Entitätsinformation f abzuleiten;

p
*

p
*

23/26

DE 699 18 818 T2 2005.08.25
D) Erzeugen eines Wertes kA durch Verknüpfen der besagten Entitätsinformation f mit geheimen Werten der
das Vertrauen genießenden Entität CA,
Übertragen des besagten Wertes kA an die Entität A, um es A zu ermöglichen, einen geheimen Schlüssel aus
besagtem Wert kA, dem geheimen Wert der Entität A und dem impliziten Zertifikat zu erzeugen, wobei der öf-
fentliche Schlüssel der Entität A aus öffentlicher Information, den besagten öffentlichen Daten γA zur Rekons-
truktion des öffentlichen Schlüssels und der besagten Identität IA rekonstruiert werden kann.

2. Verfahren nach Anspruch 1, bei dem die mathematische Funktion F eine sichere Hash-Funktion ist.

3. Verfahren nach Anspruch 1, bei dem der geheime Wert der Entität A bei der Entität A zur Verfügung ge-
stellt wird und der daraus erhaltene, entsprechende öffentliche Wert bei der das Vertrauen genießenden Entität
CA zur Verfügung gestellt wird.

4. Verfahren nach Anspruch 1, bei dem die mathematische Kombination in Schritt (b) eine Multiplikation ist.

5. Verfahren nach Anspruch 1, bei dem die geheimen Werte der das Vertrauen genießenden Entität CA
einen geheimen Schlüssel und eine ganze Zahl enthalten.

6. Verfahren nach Anspruch 5, bei dem einer der in Schritt (b) verwendeten öffentlichen Werte dem besag-
ten geheimen Schlüssel der das Vertrauen genießenden Entität CA entspricht.

7. Verfahren nach Anspruch 5 oder 6, bei dem der Wert kA durch Multiplizieren der besagten Entitätsinfor-
mation f der Entität A mit der besagten ganzen Zahl und Hinzuaddieren des besagten geheimen Schlüssels
der das Vertrauen genießenden Entität CA berechnet wird.

8. Ein von einer das Vertrauen genießenden Entität CA erzeugtes Zertifikat, das zur Erzeugung eines öf-
fentlichen Schlüssels durch eine Teilnehmerentität A in einem sicheren digitalen Kommunikationssystem (10)
dient, welcher durch Kombinieren der Zertifikatsinformation gemäß einer mathematischen Funktion erzeugt
wird, um eine Entitätsinformation f abzuleiten, und Erzeugen eines Wertes KA durch Verknüpfen dieser Entität-
sinformation f mit geheimen Werten der besagten CA, wobei das Zertifikat eine eindeutige Identität IA umfasst,
welche die besagte Entität A kennzeichnet, sowie öffentliche Daten zur Rekonstruktion des öffentlichen
Schlüssels der besagten Entität A, welches durch mathematisches Kombinieren öffentlicher Werte erzeugt
wird, die aus jeweiligen geheimen Werten der besagten das Vertrauen genießenden Partei CA und der Entität
A erhalten werden.

Es folgen 2 Blatt Zeichnungen
24/26

DE 699 18 818 T2 2005.08.25
Anhängende Zeichnungen
25/26

DE 699 18 818 T2 2005.08.25
26/26

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

