FOOT TYPE AND PLANTAR PRESSURE MEASURING DEVICE

Inventor: Ming-Jor Lo, Taipei (TW)

Correspondence Address:
Tzuhn Yuan Lin
4303 Cliffwood Circle
Austin, TX 78759 (US)

Assignee: Tzuhn-Yuan Lin, Austin, TX (US)

Filed: Dec. 30, 2009

Foreign Application Priority Data
May 25, 2009 (JP) 2009-004079

Publication Classification
Int. Cl. A61B 5/103 (2006.01)

ABSTRACT

The present invention is an improved foot type and plantar pressure measuring structure which is comprised of a meshed pad, a semi-transparent thin film, a color pad, and a pad with resilient protrusions. These four layers are stacked in the order described. When a patient stands still on top of the structure for a few seconds and then steps off, the patient's foot type and plantar pressure is shown by color pattern displayed. Colored areas generated come from the direct stick-on contact between the thin film and the color pad with the interaction with the pad with resilient protrusions. The location of contact color, size of contact color and tone of contact color displayed from this device can be used to determine foot type and plantar pressure distribution. This invention provides a low cost and easy to operate system without the need of any paper, ink, or electricity for the measurement of foot type and plantar pressure distribution. Results can be obtained by visual inspection, and this information can be used for the review and design or fabrication of orthotics like shoes, insoles, or similar devices for the patient to use.

This device allows for repeated usage; after results have been obtained, the image can be cleared simply by separating the thin film and color pad from each other. The device is then ready to use again by stacking the four layers together.
FOOT TYPE AND PLANTAR PRESSURE MEASURING DEVICE

CROSS REFERENCE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a foot type and plantar pressure measuring structure. It is a display-via-contact mechanism. It can be used to investigate foot type and plantar pressure distribution. Foot type and plantar pressure are presented via color pattern displayed in different tone, size and location from the still standing measurement.

2. Description of Related Art

Feet play an important role for supporting our body weight, reducing the force exerted on our lower limbs and related joints, absorbing vibrations, buffering impacts and controlling the balance of our body when our body is in contact with the ground. Such functions can be carried out mainly by the coordination of our tissues including bones, ligaments and muscles, etc.

In general, at least 80% of us have foot problems. Injuries to our ankles or feet change the dynamics of our gait and further produce pressure on the joints of our lower limbs, and thus may cause pathological changes to our joints. However, such problems usually can be corrected by appropriate assessments, treatments and medical care.

Current plantar pressure measurement can be divided into two kinds, including dynamic gate assessment and free standing assessment. The cost of dynamic gate assessment is very high. It requires plantar pressure measurement system including sensors and computer equipment operated by professionals to conduct the assessment. The same system can also be used for free standing assessment.

On the other hand, one of the commonly used free standing assessment methods, so called Harris Mat, utilizes an ink contact-printing mechanism with printing patterns of squares and fine grids engraved in different levels of depth. When a patient steps on the back side of the patterned printing pad, the pre-inked printing pad is therefore forced to be in direct contact with the printing paper underneath. The greater the force exerted over the printing pad, the more the patterns of fine grids from deeper area gets printed over the paper. The printed pattern is used to investigate the patient’s plantar pressure.

The ink contact-printing method provides a low cost plantar pressure measurement. It relies on paper and inks as the output media. Therefore it is subject to the supplies of paper and quality of printing which depends on proper supply of inks on the printing surface. It requires repeat proper inking to maintain quality printing. Over inking causes a smeared print and must be redone. When conducting group diagnostic or mass screening, one must keep inking the printing surface properly, in addition to continuously replacing the printing paper. Both processes are none-value-added and cumbersome, and sometimes the inking process can be messy.

We therefore, identified the above needs for improvements. As an inventor with years of experience in this field coupled with a few approved patents, I intend to conduct research and further improve this method in order to reach the goal of a low cost and easy to use paperless and inkless solution that will also be environmental friendly. After tiresome research countless experiments, we finally reached an improved structure.

For the device structure of this invention, style, goal and spirit, please refer to following figures and examples that will provide a complete understanding of the invention.

For a better understanding of the structure, style, and goal of the invention, please refer to the following figures and examples.

BRIEF SUMMARY OF THE INVENTION

The present invention is a foot type and plantar pressure measuring structure which is comprised of a meshed pad, a semi-transparent thin film, a color pad, and a pad with resilient protrusions being stacked in the order described, such that when a patient stands on top for few seconds and steps off, the invention shows the patient’s foot type and plantar pressure by the color pattern displayed. Color areas that are generated come from the direct stick-on contact between the semi-transparent thin film and the color pad with interaction from the pad with resilient protrusions. The location of contact color, size of contact color, and tone of contact color displayed from this device can be used to determine foot type and plantar pressure distribution. The meshed pad can be an optional item to use. Without using the meshed pad, foot type and pressure are displayed without the pattern of mesh.

The tone of color displayed, size of contact area displayed, and locations of contact displayed are the response of a combined output of each layer from the structure to the various pressures from plantar area exerted to the measuring area. Such response from this measuring device can be used to evaluate foot type and plantar pressure distribution. This information can be used for the purchase or fabrication of orthotics shoes or insoles. Foot type and plantar pressure distribution can be obtained visually by this invention which is a low cost, easy to operate system without the need of any paper, ink or electricity.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustrative view of the popularly known square-and-grid printout showing the distribution of plantar pressure.

FIG. 2 is a perspective view of the first embodiment of the improved foot type and plantar pressure testing structure.

FIG. 3 is from this invention, an illustrative view of the resulting output of the foot type and plantar pressure testing structure.

FIG. 4 is an example of measuring results showing different tone of color that indicates different plantar pressure in the respective locations.

NAME OF PARTS AND SYMBOLS USED IN FIGURES

- 10 mesh pad
- 101 holes from mesh pad
- 20 thin film
- 30 color pad
Detailed Description of Embodiments

Example 1

FIG. 2 is the perspective view of the first example of the invention of foot type and plantar pressure measuring structure. It includes:

- A single or multiple layered meshed pad 10 with an array of holes 101 in a circle or polygonal in shape.
- A foggy or semi-transparent thin film 20 that is a soft flexible film with a sticky surface property.

A soft and flexible color pad or plate 30 constructed with color and sticky material; darker color is preferred for best performance.

A pad with resilient protrusions 40, being a firm or semi-rigid pad and having a plurality of protrusions 401 thereon, wherein the shape, size, coarseness, and density of distribution of said protrusions vary as needed.

The above mentioned mesh pad 10, thin film 20, color pad 30 and pad with resilient protrusions 40 are stacked up together in such order shown. If needed, the measuring device can be placed inside a box for easy assembly and disassembly.

As shown in FIG. 2, the mesh pad 10, thin film 20, color pad 30 and pad with resilient protrusions 40 are assembled in the order shown. A patient can stand still on top of the assembly for a few seconds and stop off. One can then lift or remove the mesh pad 10 from the assembly and, without the use of a computer, ink, or any paper, receive the measurement results by visual inspection directly, as shown in FIG. 3. The mesh pad 10 and film 20 are pressed down due to plantar pressure from top. When film 20 gets pushed down and becomes in contact with color pad 30 which was lighted pushed back up by the reactive force from the pad with resilient protrusions 40, film 20 and color pad 30 begin to stick together by contact and film 20 starts to show color. The size of the colored area and tone of the color are a function of pressure exerted to the area. FIG. 4 shows examples of results.