wo 2014/143786 A1 [N NI 000000 R0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/143786 A1l

18 September 2014 (18.09.2014) WIPO I PCT
(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
HO04L 9/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. o HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21) International Application Number: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
PCT/US2014/027896 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
14 March 2014 (14.03.2014) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(25) Filing Language: English ZW.
(26) Publication Language: English (84) Designated States (uniess otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
13/840,446 15 March 2013 (15.03.2013) Us GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(71) Applicant: INFORMATICA CORPORATION TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
[US/US]; 2100 Seaport Blvd., Redwood City, CA 94063 EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, SM,
. . . TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
(72) Inventpr. BOUKOBZA, Eric; Yad Haruztim 14, 67778 KM, ML, MR, NE, SN, TD, TG).
Tel Aviv (IL).
(74) Agent: GREWAL, Amardeep, S.; Reed Smith LLP, 1301 T ublished:
K. Street, N.-W., Suite 1100, East Tower, Washington, DC — with international search report (Art. 21(3))
20005-3317 (US). — before the expiration of the time limit for amending the
(81) Designated States (unless otherwise indicated, for every claims and to be republished in the event of receipt of

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

amendments (Rule 48.2(h))

(54) Title: DATA TOKENIZATION IN AN INTERMEDIARY NODE

(57) Abstract: An apparatus, computer-readable medium, and computer-im-

plemented method for data tokenization are disclosed. The method includes

receiving, at a database network router, a database access request directed to
a tokenized database, the tokenized database containing one or more token-
ized data values, applying one or more rules to the request, rewriting the re-
quest based on at least one of the one or more rules, such that data values be-
ing added to the database will be tokenized data values, and data values re-

ceived from the database will be non-tokenized data values, and transmitting
the rewritten request to the database.

|
e
Token
Vault
106
N
[
Database . DNR 104
105 D E—
DNR
Agent 107 -
Application
103
Fig. 1B

WO 2014/143786 PCT/US2014/027896

DATA TOKENIZATION IN AN INTERMEDIARY NODE

RELATED APPLICATION DATA
[0001] This application claims priority to U.S. Patent Application Serial No. 13/840,446,

filed March 15, 2013, the disclosure of which is hereby incorporated by reference in its entirety.

BACKGROUND
[0002] Large amounts of data are stored in databases, such as enterprise databases.
Much of this data includes confidential or otherwise sensitive information. As a result,
enterprises often utilize tokenization to hide the values of potentially sensitive data in their
databases. This tokenization process can consist of replacing the data values in a database with
token values. The token-to-data value relationship may be stored in a vault, which may be
encrypted to prevent unauthorized access and ensure that only permitted users may access the
real values of the tokens in the database. Alternatively, rather than storing the real data values in
the token vault, the token vault may be used to extract a real data value that is embedded in a
token via a decryption process.
[0003] When an authorized user wishes to access the data in the database from an
application, that application has the responsibility of identifying the authorized user, and
replacing the tokens with the real values. Additionally, if an authorized user wishes to add new
data to the database, the application has the responsibility of tokenizing the new data prior to
adding it to the database. This places additional burdens on the application and requires the

application to be in communication with the token vault, as well as the database. For example, if

WO 2014/143786 PCT/US2014/027896

the user enters a data value to add to the database, the application first has to tokenize the data
value, then add the token-to-data values relationship to the vault, and then transmit the tokenized
data value to the database.

[0004] As a result of being responsible for most of the tasks related to tokenization, the
application must be heavily customized in order to integrate the particular tokenization
Application Programming Interface (API) used by each database provider, and cannot be utilized

with the APIs of other database providers or tokenization providers.

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] Fig. 1A is a system diagram showing the arrangement of system components and

the interactions between the components in prior tokenization schemes.

[0006] Fig. 1B is an exemplary apparatus for data tokenization according to a disclosed
embodiment.
[0007] Fig. 2 is an exemplary apparatus for data tokenization with multiple databases,

applications, and tokenization schemes according to a disclosed embodiment.

[0008] Fig. 3 is a flowchart showing an exemplary method for handling database access
requests by the database network router (DNR) according to a disclosed embodiment.

[0009] Fig. 4 is a diagram showing many of the rules and rule sets that can be applied to
the request by the DNR according to a disclosed embodiment.

[0010] Fig. 5 is a diagram of a sample token vault and sample tokenized database
containing a sample table according to a disclosed embodiment.

[0011] Fig. 6 is a diagram showing the sample token vault and sample table before and

after an update request.

WO 2014/143786 PCT/US2014/027896

3
[0012] Fig. 7 is a diagram showing the sample token vault and sample table before and
after an insert-into request.
[0013] Fig. 8 is a flowchart showing an exemplary method for handling incomplete

requests by the DNR according to a disclosed embodiment.

[0014] Fig. 9 is a flowchart showing an exemplary method for preventing unauthorized
access to a database by the DNR according to a disclosed embodiment.

[0015] Fig. 10 illustrates an exemplary computing environment that can be used to carry

out the method of data tokenization according to a disclosed embodiment.

DETAILED DESCRIPTION
[0016] While methods, apparatuses, and computer-readable media are described herein
by way of examples and embodiments, those skilled in the art recognize that methods,
apparatuses, and computer-readable media for data tokenization are not limited to the
embodiments or drawings described. It should be understood that the drawings and description
are not intended to be limited to the particular form disclosed. Rather, the intention is to cover
all modifications, equivalents and alternatives falling within the spirit and scope of the appended
claims. Any headings used herein are for organizational purposes only and are not meant to limit
the scope of the description or the claims. As used herein, the word “may” is used in a
permissive sense (i.¢., meaning having the potential to) rather than the mandatory sense (i.c.,
meaning must). Similarly, the words “include,” “including,” and “includes” mean including, but
not limited to.

[0017] Fig. 1A is a system diagram showing the arrangement of components in prior

tokenization schemes and the interactions between the components. Database 102 is a tokenized

WO 2014/143786 PCT/US2014/027896

database which stores data in a tokenized format. The token-to-data relationships may be stored
in the token vault 101. Application 100 has bi-directional communications with token vault 101
and database 102 storing tokenized data. So, for example, if a user wants to query the tokenized
database 102, the application 100 must first tokenize any filter values in the query, send the
query to the database 102 to retrieve the token values which satisfy the query, and then retrieve
the real values corresponding to the token values from the token vault 101. Similarly, if the user
wants to update the database, the application 100 must tokenize the new data values and send
them to the token vault 101, in addition to sending them to tokenized database 102.

[0018] Applicants have discovered a system for moving the tokenization responsibilities
out of the application and to an intermediary node that reduces required resources and simplifies
implementation. This change would allow database providers to utilize any application with
their tokenized database without having to customize the application to meet the needs of the
particular tokenization API. Additionally, the intermediary node could be utilized to serve
multiple database providers with different tokenization technologies.

[0019] Referring to Fig. 1B, an exemplary apparatus for performing the above-mentioned
tasks and tokenizing data is shown according to a disclosed embodiment. The database network
router (“DNR”) 104 serves as the above-mentioned intermediary node between the application
103 and the tokenized database 105. The database 105 communicates directly with token vault
106 through the use of a DNR software agent 107 running on the database which parses and
executes commands received as part of database access requests from the DNR 104. Through
the use of the DNR 104 and the DNR software agent 107, the application 103 can be decoupled
from the database 105, and the burden of integrating tokenization APIs and performing

tokenization or de-tokenization functions can be shifted to the DNR 104 and the DNR software

WO 2014/143786 PCT/US2014/027896

agent 107. Additionally, by removing the tokenization and de-tokenization functions from the
application, multiple tokenization vendors or companies can utilize the DNR and a DNR
software agent as the interface between their own databases and applications.

[0020] An example of how the DNR can be used with multiple databases is shown in Fig.
2. Applications 200A , 200B, and 200C may be executing on different client machines (not
shown), and may be associated with three different tokenized databases 202A, 202B, and 202C.
A DNR software agent running on each of the databases, 204A, 204B, and 204C, communicates
with each of the respective token vaults, 203A, 203B, and 203C. Of course, a separate token
vault is not required for each database. For example, the databases 202B and 202C can use the
same tokenization scheme and can share a single token vault.

[0021] The DNR 201 can receive or intercept a request from application 200A and based
on the application, client machine, user credentials, request destination, request contents, or some
other parameter, determine that the request is associated with database 202A. The request can
then be processed in accordance with the rules associated with database 202A, as will be
described below, and forwarded on to the database 202A. At the database 202A, the DNR Agent
204 A may determine that some data value needs to be tokenized, or some tokenized value needs
to be de-tokenized, at which point it can communicate with the token vault 203A to perform the
appropriate operation prior to returning any results to the DNR 201 and eventually to the
Application 200A.

[0022] With reference to Fig. 3, a method of handling database access requests by the
DNR of a disclosed embodiment will now be described. At step 301, the DNR receives a
database access request from an application. The request can be directed to a target database and

re-routed to the DNR, or the request can be intercepted by the DNR. Alternatively, the request

WO 2014/143786 PCT/US2014/027896

can be sent to the DNR but specify a destination database. Many variations are possible for
receiving the database access request at the DNR.

[0023] The database access request can include any type of request, including a data
retrieval request, a data update request, a data insert request, a data delete request, or other
similar database access requests. Additionally, the language of the request can include any type
of database query language, including Structured Query Language (SQL), Contextual Query
Language (CQL), XQuery, YQL, Datalog, OQL, RDQL, and many others.

[0024] At step 302, the DNR can apply one or more rules to the request. These rules will
be discussed in greater detail below, but can include rules relating to the proper handling of
different types of database access requests, request routing, tokenization rules, and the like.
After applying the rules, the request can be rewritten at step 303, based on at least one of the one
or more of the rules. For example, the request can be rewritten to add one or more commands to
the database access request which will be parsed and executed by the DNR agent running on the
database. Additionally, one or more parameters can be passed to the DNR agent with the
commands to instruct the DNR agent on how to handle the data that is passed with the
commands. For example, parameters can specify specific tokenization schemes to use,
authorization of a particular user or machine, whether the command should be ignored, or
whether false values should be returned.

[0025] After the request is rewritten using one or more rules, the rewritten request can be
transmitted to the destination database at step 304. The actual transmission of the rewritten
request can also be based on one or more rules. For example, the destination database may be a
distributed database striped across a plurality of repositories. The DNR may apply a rule to the

database access request or its contents to determine which one of the repositories the request

WO 2014/143786 PCT/US2014/027896

should be forwarded to. Similarly, if the DNR is routing requests for multiple different
databases with different tokenization schemes, the DNR may need to apply rules to determine
the correct database to send the rewritten request to. Alternatively, if the DNR intercepts a
request that already specifies a destination database, the DNR can simply transmit the rewritten
request to that destination database.

[0026] Fig. 4 illustrates some possible rules and rule sets 400 that can be applied to the
request. The DNR can apply a set of rules based on the type of request that is received, such as
data retrieval request rules 401, data update request rules 402, and data insert request rules 403.
Additionally, although they are not shown, the DNR can also apply rule sets relating to data
delete requests. In practice, these would be similar to data update requests. Filter terms rules
404 can be applied when the access request includes one or more filter terms. For example, a
SQL query may state “select variable A where variable B=X.” The where clause and related
information are the filter terms, and a set of rules may be used to determine how to handle the
filter terms.

[0027] For example, filter terms may include non-tokenized data that requires
tokenization after it is passed to the DNR agent executing on the database. However, the
tokenization API may specify that a new token should not be created for data values that are
passed as filter data values, but rather that the token value (if one exists) should be looked up in a
token vault. As discussed further below, the filter terms rules can be used to insert a parameter
into a tokenization command that lets the DNR agent know that it should tokenize a passed value
but that it should not create a new token in the process.

[0028] Tokenization API rules 405 relate to the different rules that are used for retrieving

data from or sending data to tokenized databases having a variety of tokenization schemes. For

WO 2014/143786 PCT/US2014/027896

example, a first request may be directed to a first database that uses a first tokenization algorithm
to tokenize all data values stored therein, and a second request may be directed to a second
database that uses a second tokenization algorithm to tokenize only sensitive data stored therein.
So, for example, if the DNR receives a data retrieval request directed to the second database, it
can consult the associated tokenization API rules for that database and determine whether or not
the requested data is stored in token format. If it is, then the DNR can insert a de-tokenize
command into the request, and if it is not, then the de-tokenize command is unnecessary.

[0029] Tokenization API rules 405 can specify what types of data or data fields should be
tokenized. For example, one tokenization API may specify that all data should be tokenized,
while another tokenization API may specify that only data ficlds that contain personal or
confidential information should be tokenized.

[0030] Incomplete request rules 406 will also be discussed in greater detail below, and
can be applied when the DNR receives a request that is missing specific fields or any other
necessary information.

[0031] Authorization rules 407 and security rules 408 can be used to determine whether
the user, machine, or session associated with the user has sufficient credentials to carry out the
request, as well as to specify what actions to take in different situations where the user does not
have sufficient credentials. For example, in a consumer transactions database, security rules may
state that only each consumer should be able to view their own credit card information in de-
tokenized format. If a system administrator requests a list of transactions with all related fields,
security rules may be utilized to return the fields which are not protected in de-tokenized format
and return the associated credit-card numbers in token format. Alternatively, the security rules

can be utilized to instruct the database to return fake, or fictive, numbers for each credit card

WO 2014/143786 PCT/US2014/027896

number. Fictive values can be generated using some algorithm or can be selected from a pool of
fictive values. Authorization rules may be used to implement different levels of access for
different types of users. For example, only an administrator may have the requisite permissions
to update, insert, or delete records in the database, while all other users may have permission
only to run queries.

[0032] Finally, as discussed carlier, routing rules 409 may be utilized to determine where
to forward requests. Routing rules 409 can be as simple as a rule that records the destination
database address of an intercepted requested and forwards the re-written request to that address.
[0033] Although all the rules are discussed in the framework of the DNR, it is understood
that some or all of the functionality of the rules can be implemented by the DNR software agent
running on the database. For example, if a user is not authorized to make a request, that
assessment may be made at the DNR, which can insert a “not-authorized” token or message into
the rewritten request which is sent to the database. At the database, the DNR software agent can
read the “not-authorized” token and determine that no action should be taken in response to the
request. Additionally, as will be understood by one of ordinary skill in the art, not all of these
rules are required to carry out the method of data tokenization disclosed herein.

[0034] Fig. 5 illustrates a sample tokenized database 501. Table XYZ 502 in sample
database 501 contains a tokenized listing of names and social security numbers. Token values
T1, T2, T3, and T4 are provided for illustration only and the actual token values can be any
sequence of numbers or alpha-numeric characters that the database owner/administrator or
tokenization provider prefers.

[0035] Sample database 501 also includes a DNR software agent 505 which implements

the commands that are parsed from rewritten requests received via the DNR 504. The DNR

WO 2014/143786 PCT/US2014/027896
10

agent 505 executing on sample database 501 is in communication with sample token vault 503
which contains the data values corresponding to the token values in the sample tokenized
database 501.

[0036] The DNR 504 receives database access requests from one or more applications
506 and, after processing/rewriting the requests, forwards the relevant rewritten requests to
sample tokenized database 501. Of course, DNR 504 can be in communication with multiple
tokenized databases (not shown) and multiple applications at one time, and limited components
are shown for illustration and clarity only.

[0037] The DNR 504 enables a user (not shown) who is using application 506 to enter
and transmit a database access request directed to the sample tokenized database 501 without the
application 506 being responsible for the tokenization or de-tokenization. The user can enter
database requests the way they ordinarily would be entered, and the application 506 can forward
them to the DNR 504, which handles all tokenization and de-tokenization related processing.
[0038] The operation of different types of requests and specific examples of each request
will now be described with reference to table XYZ 502 in sample tokenized database 501 and
sample token vault 503. Although the language in the examples conforms to SQL, it is provided
for illustration only, and any query language can be utilized.

[0039] If the DNR 504 receives a data retrieval request directed to sample tokenized
database 501, it first loads the appropriate rule set for data retrieval requests. After loading the
appropriate rule set, it evaluates the data retrieval request and re-writes it so that after it is sent to
the sample tokenized database 501, the values to be retrieved are returned in de-tokenized form.

[0040] For example, let’s say the data retrieval request is as follows:

“SELECT Name FROM Table XYZ”

WO 2014/143786 PCT/US2014/027896
11

[0041] If this query were run on table XYZ 502 in the sample tokenized database without
modification, the result set that would be returned would be:

Name: T1, T2
[0042] Of course, this is not the information that the user presumably wants to retrieve
with such a query. When the DNR 504 receives this query, the appropriate rule set is used to
rewrite the query to:

“SELECT deToken(Name) FROM Table XYZ”

[0043] The deToken function indicates to the DNR agent 505 executing on the sample
tokenized database 501 to de-tokenized the retrieved values before transmitting the result set
back to the DNR 504. So, using the example of the re-written query, the sample database 501
will execute the re-written query to retrieve the token values in the Name column, and the DNR
agent 505 will transmit those token values to the sample token vault 503 to retrieve the actual
values, which will then be passed back to the DNR 504.
[0044] Although the deToken function is shown taking only one parameter, this is only
for the sake of clarity. The deToken function can take multiple parameters. For example, the
deToken function can take a parameter including the DNR origin signature for verification so
that the DNR agent cannot be accessed directly. The function can take a parameter relating to a
particular tokenization scheme that is being used or include a parameter with information
relating to a particular user session, such as a user session identification stamp. The function can
also include security data relating to what type of values should be returned, as is discussed in

greater detail with regard to fictive values.

WO 2014/143786 PCT/US2014/027896
12

[0045] So the result set that will be transmitted back to the user at application 506 when
the query passes through DNR 504 and is re-written prior to being sent to sample tokenized
database 501 will be as follows:

Name: Miller, Sanchez
[0046] The deToken function can be selectively applied based on security or permissions
considerations, and can pass one or more additional variables to the sample database 501. These
variations will be discussed with reference to the security and fictive values features further
below.
[0047] If the DNR 504 receives a data update request directed to sample tokenized
database 501, it first loads the appropriate rule set for data update requests. After loading the
appropriate rule set, it evaluates the data update request and re-writes it so that after it is sent to
the sample tokenized database 501, the values to be added to the tokenized database are in token
format and the appropriate token-to-data relationships are stored in the sample token vault.
[0048] So if the data update request sent to the sample tokenized database 501 and
intercepted by the DNR 504 is:

UPDATE Table XYZ, SET SSN = 421-66-4567
[0049] Then the rewritten request can read:

UPDATE Table XYZ, SET SSN = Tokenize(421-66-4567)
[0050] The Tokenize function can indicate to the DNR agent 505 executing on the
sample tokenized database to create a token value for the update data. Although the Tokenize
function is shown taking only one parameter, this is only for the sake of clarity. The Tokenize
function can take multiple parameters. For example, the Tokenize function can take a parameter

including the DNR origin signature for verification so that the DNR agent cannot be accessed

WO 2014/143786 PCT/US2014/027896
13

directly. The function can take a parameter relating to a particular tokenization scheme to be
used or include a parameter with information relating to a particular user session, such as a user
session identification stamp. The function can also include security data relating to what type of
values should be returned, as is discussed in greater detail with regard to fictive values.

[0051] When the DNR agent 505 receives the Tokenize function, it can create a new
token for the data value passed in the function, if one does not already exist. Additionally, the
DNR agent 505 can then update the relevant portions of table XYZ 502 with the tokenized data
value, according to the update request specifications, and send the token-to-data value
relationship to the sample token vault 503 for storage. Of course, in practice, many update
commands will include a “where” clause to indicate which portions to update. These will be
discussed in greater detail with respect to filter values. The Tokenize function can optionally
also include a parameter that indicates to the DNR agent whether the token value generated from
the data value should be added to the token vault.

[0052] Referring now to Fig. 6, the sample token vault is shown at two times, at time T-0
603 before receiving the update request and at time T-1 604 after receiving the update request.
Additionally, table XYZ is also shown at the two times T-0 601 and T-1 602.

[0053] Using the example of the specific update request discussed above, the changes to
both the table XYZ and the token vault will be discussed. Since the update request included a
data value which does not already have a corresponding token, the new SSN number “421-66-
4567,” a new token value needs to be generated for the value. The DNR agent generates the new
token “T5” using the appropriate tokenization rule. The tokenization rule can be pre-loaded onto
the DNR agent during installation or received at some point after from the token vault, database,

or other appropriate source.

WO 2014/143786 PCT/US2014/027896
14

[0054] After generating the token TS5 corresponding to the new number 421-66-4567, the
new token and associated data value are stored in the sample token vault 604. Additionally, all
of the SSNs for each of the records in table XYZ 602 are updated with the new token T5. As
discussed above, this is because the update request did not include a “where” limitation.

[0055] Similar to the deToken function, the Tokenize function can be selectively applied
based on security or permissions considerations, or can pass one or more additional variables to
the sample database. These variations will be discussed with reference to the security and fictive
values features further below.

[0056] Insert data requests are handled similarly to update data requests, in that the
Tokenize function is utilized for the new data. So, for example, if a user wanted to add a record
to table XYZ, the record including the social security name of a person with the name “Jackson,”
the insert request could be written as follows:

INSERT INTO TABLE XYZ, VALUES (Jackson, 162-97-2441)

[0057] After this request is intercepted by the DNR and re-written to include the
Tokenize command, it can be sent to the sample tokenized database as:

INSERT INTO TABLE XYZ, VALUES (Tokenize(Jackson), Tokenize(162-97-2441))

[0058] This will alert the DNR agent running on the sample tokenized database to create
new token values for each of the new data values and update the database and token vault
accordingly.

[0059] Referring to Fig. 7, the result of the insert command listed above is shown. Table
XYZ at time T-0 701 represents the table prior to the insert data request being sent to the
database and table XYZ at time T-1 702 represents the table after the insert data request is sent.

Similarly, token vault at time T-0 703 shows the token vault prior to the insert data request being

WO 2014/143786 PCT/US2014/027896
15

sent to the database and token vault at time T-1 704 shows the token vault after the insert data
request is received at the database. Table XYZ at time T-1 702 and sample token vault at time
T-1 704 show the addition of two new tokens, TS5 and T6. These two new tokens correspond to
the new data values Jackson and 162-97-2441.
[0060] Many requests may include filter terms. That is, terms which reduce or filter the
scope and size of the data set to which the request applies. Using the earlier example of table
XYZ 502 in Fig. 5, a user may have the last name of someone and be interested in retrieving
their Social Security Number, but not the SSN’s of every person in the table. If the person
whose SSN they are looking for has the name “Miller,” they would normally transmit the
following query to the database to retrieve the SSN of Miller:

SELECT SSN FROM Table XYZ WHERE Name=Miller
[0061] Of course, if this query were transmitted as-is to the tokenized table XYZ in the
tokenized database, the name Miller would not be found and it would return no results, since this
query is intended for a non-tokenized database. In order to be compatible with the tokenized
database, the query would be re-written by the DNR as:

SELECT deToken(SSN) FROM Table XYZ WHERE Name=Tokenize(Miller)
[0062] The first change to the request is in the insertion of the deToken function, as is
discussed above with regard to data retrieval requests. The second change to the request is the
insertion of the Tokenize function for the filter data value “Miller”. This alerts the DNR agent
running on the database to look up the token value corresponding to “Miller” and then use that
token value as a filter when selecting SSNs.
[0063] In this case, the token value corresponding to “Miller” is T1 so the query will

result in the selection of the tokenized SSN corresponding to T1, which is T3. The DNR agent

WO 2014/143786 PCT/US2014/027896
16

will then apply the deToken function to T3 to generate the SSN “045-22-1246,” which is
returned to the user.

[0064] Optionally, the Tokenize function may pass a parameter which indicates whether
it associated with an insert data value, update data value, or a filter data value. This may useful
to the DNR agent in determining whether a new token is required to be generated for the data
value. For example, when the Tokenize function is used with an insert data value or update data
value, the DNR agent may check the token vault to see if a token value exists for the data value,
and generate a new token value if one does not exist. When the Tokenize function is used with a
filter data value, the DNR agent may determine that a new token does not need to be generated,
as the filter data values are used to filter a selected set of data values, and are not added to the
data tables. In this situation, the DNR agent can just look up the appropriate token value
corresponding to the filter data value in the token vault, and if a token value does not already
exist, the DNR agent can correctly determine that no records correspond to that filter data value,
since a token would have had to have been created for the data value if it was inserted or added
to the table earlier. Alternatively, the Tokenize function can be used to create token values for
all passed data values that do not already have an associated token value.

[0065] In addition to being used with data retrieval commands, filters can be utilized with
updates to the data values stored in the database. For example, referring to table XYZ 502 in
Fig. 5, a user may wish to update the SSN associated with the name “Sanchez.” To do so, they
could transmit the request:

UPDATE Table XYZ, SET SSN = 123-45-6789 WHERE Name=Sanchez

WO 2014/143786 PCT/US2014/027896
17

[0066] If the database was not tokenized, this would change the SSN associated with the
name “Sanchez” to “123-45-6789.” However, since the database is tokenized, the request must
be re-written by the DNR as:

UPDATE Table XYZ, SET SSN = Tokenize(123-45-6789) WHERE Name =
Tokenize(Sanchez)
[0067] The rewritten request instructs the DNR agent to make a new token for the new
data value to be added to the database, and to add the token value where the name is equal to the
token value T2. As before, the token value corresponding to the name Sanchez is determined by
the DNR applying the same tokenization rules as are used by the DNR Agent.
[0068] The DNR may handle and re-write additional types of database access requests
that are not specifically enumerated here. For example, the user can submit a delete request for a
specific data record. Of course, when deleting a record, no tokenization or de-tokenization is
required, but the DNR can optionally pass the data by re-writing the request to add a
removeToken function which tells the DNR agent to remove not only the record, but the token-
to-data relationship from the token vault. Additional types of requests and parameters that can
be adapted by the DNR to a tokenized database can include, for example, “select distinct” and
“order by” modifiers.
[0069] The DNR may have one or more rules for dealing with incomplete requests.
Referring to Fig. 8, the DNR may receive a database access request at step 801 and assess
whether the request is an incomplete request at step 802. Incomplete requests can be classified
as requests which are determined by one or more rules to be lacking necessary information.
Using the earlier example of Table XYZ 502 in Fig. 5, the request may be:

SELECT * FROM Table XYZ

WO 2014/143786 PCT/US2014/027896
18

[0070] In this example, the asterisk, or star-operator is used to indicate that the user
wants to select all possible fields in Table XYZ. However, in order to properly utilize the
deToken function, the list of actual column names may be required. Therefore the DNR may
determine at step 802 that the request is incomplete and proceed to step 803 where it sends out a
request for the missing data. The request can be sent to the database, the DNR agent on the
database, or some other repository which tracks the column names. Additionally, the missing
information may also be stored in some memory on the DNR itself.
[0071] So in the above example, the DNR will request a list of all columns that appear in
Table XYZ at step 803. This would result in the column identifiers for Name and SSN being
received at the DNR. At step 804, the DNR verifies that there is not any additional missing
information, and if so, proceeds to step 805. If there is still missing information, then the DNR
can send another request to the same or a different source for the missing information.
[0072] At step 805, the DNR proceeds to re-write the database access request, not only
according to the request based rules, but also to incorporate the missing information that has
been retrieved. So in the above example, the request can first be re-written as:

SELECT Name, SSN FROM Table XYZ
[0073] After this, the request can further be re-written as:

SELECT deToken(Name), deToken(SSN) FROM Table XYZ
[0074] This ensures that the data values in table XYZ, and not the token values, are
returned to the user. After the query is re-written, it is sent to the database at step 806.
[0075] Referring to Fig. 9, a DNR security process for preventing unauthorized access to
a database will now be described. The process may be implemented as one or more security

rules that are applied at the DNR as discussed carlier. After the request is receive at step 901, the

WO 2014/143786 PCT/US2014/027896
19

DNR determines whether the user is authorized to make the request at step 902. This can include
determining whether the user is authorized to make any requests, such as checking for an
unauthorized system user, as well as checking whether the user is authorized to make a particular
kind of request, such as an update request. So, for example, a user who has read-only privileges
may be authorized to make a select request but not an update request. In other situations, the
user may be determined to be lacking authorization to access the database in any way.
[0076] If the user does not have authorization to make the request, at step 904 a security
action may be performed by the DNR. The security action can be selected from a variety of
possible security actions. For example, the DNR may rewrite the request to set a flag which tells
the database to disregard the request if it is an update or insert or to return fictive values if it is a
select request. For example, the Tokenize function can be configured to pass multiple variables,
one of them being a fictive values flag, such as Tokenize(value, fictive value?). So if the user is
not authorized to make updates and has entered an update request such as:

UPDATE Table XYZ, SET SSN = 123-45-6789
[0077] Then the rewritten request taking into account the security rules can be:

UPDATE Table XYZ, SET SSN = Tokenize(123-45-6789, true)
[0078] This will inform the DNR agent that the values in the Tokenize function are
fictive and that the update should be ignored. Similarly, if the request is a select request, the
deToken function can pass a fictive values flag. So if a user is unauthorized and has entered a
select request such as:

SELECT Name FROM Table XYZ

[0079] Then the rewritten request taking into account the security rules would be:

SELECT deToken(Name, true) FROM Table XYZ

WO 2014/143786 PCT/US2014/027896
20

[0080] This would alert the DNR that fictive values should be returned in response to the
select request rather than the real de-tokenized values. This can be accomplished in many ways.
For example, a random number generator can use the token value as a seed to generate a fictive
value to the return to the user. The fictive value flags in the deToken or Tokenize functions can
default to false, but can be changed to true when an unauthorized user is detected.

[0081] In addition to having a fictive values flag in the Tokenize and deToken functions,
a fictive value function can be utilized to pass the data values. For example, rather than a
deToken function being used to pass the data value, a returnFictiveValue function can be used to
tell the DNR agent to return a fictive value in response to the data request.

[0082] Furthermore, fictive values are not the only way of dealing with unauthorized
users or requests. The deToken function can include a flag which tells the DNR agent to return
an empty or NULL value when a user is unauthorized, or to return a token value instead of a de-
tokenized value. Additionally, the DNR can utilize the security rules to block an update, insert,
or select request when the user is unauthorized. Many variations are possible.

[0083] If the user does have authorization to make the request, at step 903 the DNR
determines whether there are any protected data fields in the request. For example, a table in a
database may contain several data fields, and one or more of them may be restricted to only a
subset of the users that have access to the database or the table. So, in the previous example of
table XYZ, the field “Name” can be a regular data field accessible to all users, whereas the data
field “SSN” can be restricted a subset of users such as administrators. Different authorization
levels may be utilized with different types of data fields, and the number of authorization levels
is not limited to two but may include many tiers of authorizations and associated data fields in a

database.

WO 2014/143786 PCT/US2014/027896
21

[0084] If there are no protected data fields, then at step 905 the request is processed as it
normally would be for an authorized user. If there are protected data fields, then at step 906 the
DNR examines user authorization levels for each protected data field and determines whether the
user has authorization to access that data field in the way that is specified by the request. This
may be accomplished by comparing the permissions/authorizations of the user with the
permissions/authorization required to perform the function indicated by the request on the
protected data field. For example, a protected data field may have a requirement that in order to
view any of the data, the user must have “level 5 authorization.” If a requesting user has lower
than level 5 authorization, then they will be determined to lack authorization for the request on
the protected data field. Similarly, the same protected data field may have a requirement that in
order to edit any of the data, the user must have “level 7 authorization.” In that situation, even a
level 5 user who had view access would not be able to successfully change the data in the
protected data field. So, using the earlier example of table XYZ, a request that stated “SELECT
SSN FROM Table XYZ” may be permitted, whereas a request of “UPDATE Table XYZ, SET
SSN=123,45,6789” by the same user may be unauthorized. Of course, authorization does not
have to be organized in levels. For example, authorization can be organized according to a user
role, condition, or any other basis for distinguishing between an authorized access and an
unauthorized access.

[0085] If the user is deemed to not have authorization to access a particular protected
data field, then the DNR can perform a security action for that protected data field at step 908.
This security action may be similar to the security actions described at step 904, including the

fictive values flags, but can apply specifically to the protected data fields that the user is not

WO 2014/143786 PCT/US2014/027896
22

authorized to access. So, in the example of table XYZ, if a user has authorization to access the
Name field but not the SSN field, and submits the request:

SELECT Name, SSN FROM Table XYZ
[0086] Then the request can be rewritten to include the fictive values flags as:

SELECT detoken(Name, false), deToken(SSN, true) FROM table XY Z
[0087] This re-written request tells the DNR that the deToken function for the Name
field should not return fictive values but the actual de-tokenized Name values, and the deToken
function for the SSN field should return fictive values. Additionally, as stated earlier, the
security action for the unauthorized data field can also include return NULL values for that field,
returning token values instead of deTokenized values, or blocking that portion of the request.
[0088] At step 907 the DNR determines whether there are additional protected data
fields, and if so, returns to step 906 for additional determinations and processing. If there are no
further protected data values, then the processing of the remainder of the request continues as
normal at step 909.
[0089] As used in the security process described above, authorization can refer to many
different types of security credentials and authorization schemes. For example, authorization
may be based on certain machine identifiers and not specific users, authorizations may be based
on the network information of the machine from which the request is received, authorization
schemes such as different levels of permissions or privileges may be used, as well as security
tokens, certificates or other forms of authentication or authorization. Additionally, although the
fictive value flag is discussed as being set to false as the default, the flag may be set to true as the
default (e.g. the default value may assume an unauthorized user or request), and may be modified

to false when the request authorization is confirmed. Many variations are possible and the

WO 2014/143786 PCT/US2014/027896
23

security rules are not limited to the specific examples of authentication and authorization
disclosed herein.

[0090] In addition to receiving and passing data values to the database, the DNR can also
receive and pass security tokens or credentials to the database. The DNR may receive a security
token with the request from the application. The security token can be a credential such as a
password, or a certificate, or some other data which allows the DNR to verify the user and verify
that the user is authorized.

[0091] The DNR can authenticate or otherwise verify the security token or credential
prior to re-writing and send the request to the database. If the security token is valid, the DNR
can utilize flags similar to the fictive value flags discussed earlier to indicate to the DNR agent
that the request is secure and authorized. For example, the Tokenize (or deToken) function may
pass two parameters, one being the data value, and the other indicting the validity of the security
token, such as Tokenize(data value, valid security credential?).

[0092] This security token flag can also be passed in addition to the fictive value flag in
some situations. For example, if the security token associated with a user is valid, but the user
has inadequate permissions to access a particular data field, then two flags can be passed in
addition to the data value in a Tokenize or deToken function.

[0093] The security flag can be used by the database or the DNR agent executing on the
database to determine how to handle the request. For example, if a deToken function is received
with the security flag set to false, then the de-tokenization step may be omitted, resulting in token
values being returned to the user. Similarly, if a Tokenize function is received with the security
flag set to false, then the DNR agent can ignore the function instead of tokenizing the data value

passed with it. So a deToken function such as deToken(Name, fictive value?, valid_security

WO 2014/143786 PCT/US2014/027896
24

credential?) can return fictive values for Name if the security credentials are valid but the user
does not have adequate permissions to retrieve Names, and not return any values if the security
credentials are invalid.

[0094] Additionally, the security token/credentials received at the DNR can be passed to
the DNR agent as an argument in one of the functions. In this scenario, an assessment of the
validity of the security tokens/credentials can be made directly at the DNR agent rather than at
the DNR.

[0095] One or more of the above-described techniques can be implemented in or involve
one or more computer systems. Fig. 10 illustrates a generalized example of a computing
environment 1000. The computing environment 1000 is not intended to suggest any limitation
as to scope of use or functionality of a described embodiment.

[0096] With reference to Fig. 10, the computing environment 100 includes at least one
processing unit 1010 and memory 1020. The processing unit 1010 executes computer-
executable instructions and may be a real or a virtual processor. In a multi-processing system,
multiple processing units execute computer-executable instructions to increase processing power.
The memory 1020 may be volatile memory (e.g., registers, cache, RAM), non-volatile memory
(e.g., ROM, EEPROM, flash memory, etc.), or some combination of the two. The memory 1020
may store software 1080 implementing described techniques.

[0097] A computing environment may have additional features. For example, the
computing environment 1000 includes storage 1040, one or more input devices 1050, one or
more output devices 1060, and one or more communication connections 1090. An
interconnection mechanism 1070, such as a bus, controller, or network interconnects the

components of the computing environment 1000. Typically, operating system software or

WO 2014/143786 PCT/US2014/027896
25

firmware (not shown) provides an operating environment for other software executing in the
computing environment 1000, and coordinates activities of the components of the computing
environment 1000.

[0098] The storage 1040 may be removable or non-removable, and includes magnetic
disks, magnetic tapes or cassettes, CD-ROMs, CD-RWs, DVDs, or any other medium which can
be used to store information and which can be accessed within the computing environment 1000.
The storage 1040 may store instructions for the software 1080.

[0099] The input device(s) 1050 may be a touch input device such as a keyboard, mouse,
pen, trackball, touch screen, or game controller, a voice input device, a scanning device, a digital
camera, remote control, or another device that provides input to the computing environment
1000. The output device(s) 1060 may be a display, television, monitor, printer, speaker, or
another device that provides output from the computing environment 1000.

[0100] The communication connection(s) 1090 enable communication over a
communication medium to another computing entity. The communication medium conveys
information such as computer-executable instructions, audio or video information, or other data
in a modulated data signal. A modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the signal. By way
of example, and not limitation, communication media include wired or wireless techniques
implemented with an electrical, optical, RF, infrared, acoustic, or other carrier.

[0101] Implementations can be described in the general context of computer-readable
media. Computer-readable media are any available media that can be accessed within a

computing environment. By way of example, and not limitation, within the computing

WO 2014/143786 PCT/US2014/027896
26

environment 1000, computer-readable media include memory 1020, storage 1040,
communication media, and combinations of any of the above.

[0102] Of course, Fig. 10 illustrates computing environment 1000, display device 1060,
and input device 1050 as separate devices for ease of identification only. Computing
environment 1000, display device 1060, and input device 1050 may be separate devices (e.g., a
personal computer connected by wires to a monitor and mouse), may be integrated in a single
device (e.g., a mobile device with a touch-display, such as a smartphone or a tablet), or any
combination of devices (e.g., a computing device operatively coupled to a touch-screen display
device, a plurality of computing devices attached to a single display device and input device,
etc.). Computing environment 1000 may be a set-top box, personal computer, or one or more
servers, for example a farm of networked servers, a clustered server environment, or a cloud
network of computing devices.

[0103] Having described and illustrated the principles of our invention with reference to
the described embodiment, it will be recognized that the described embodiment can be modified
in arrangement and detail without departing from such principles. It should be understood that
the programs, processes, or methods described herein are not related or limited to any particular
type of computing environment, unless indicated otherwise. Various types of general purpose or
specialized computing environments may be used with or perform operations in accordance with
the teachings described herein. Elements of the described embodiment shown in software may
be implemented in hardware and vice versa.

[0104] In view of the many possible embodiments to which the principles of our
invention may be applied, we claim as our invention all such embodiments as may come within

the scope and spirit of the following claims and equivalents thereto.

WO 2014/143786 PCT/US2014/027896
27

What 1s Claimed is:

1. A database network router apparatus for data tokenization, the apparatus comprising:
one or more processors; and
one or more memories operatively coupled to at least one of the one or more processors
and having instructions stored thercon that, when executed by at least one of the one or more
processors, cause at least one of the one or more processors to:
receive a database access request directed to a tokenized database, the tokenized
database containing one or more tokenized data values;
apply one or more rules to the request;
rewrite the request based on at least one of the one or more rules, such that data
values being added to the tokenized database will be tokenized data values, and data values
received from the tokenized database will be non-tokenized data values; and

transmit the rewritten request to the tokenized database.

2. The database network router apparatus of claim 1, wherein applying one or more rules
and rewriting the request comprises:
selecting a retrieval rule when the database access request is a data retrieval request; and
rewriting the request to insert a de-token command into the request, the de-token
command signaling to a software agent resident on the tokenized database to de-tokenize the
tokenized data values retrieved as a result of the request prior to transmitting the data values back

to the database network router.

3. The database network router apparatus of claim 1, wherein applying one or more rules
and rewriting the request comprises:

selecting an update rule when the database access request is a data update request, the
data update request further comprising one or more new data values; and

rewriting the request to insert a tokenize command into the request, the tokenize
command signaling to a software agent resident on the tokenized database to tokenize the one or

more new data values prior to adding them to the tokenized database.

WO 2014/143786 PCT/US2014/027896
28

4. The database network router apparatus of claim 1, wherein applying one or more rules
and rewriting the request comprises:

selecting an insert rule when the database access request is an insert data request, the
insert data request further comprising one or more new data values; and

rewriting the request to insert a tokenize command into the request, the tokenize
command signaling to a software agent resident on the tokenized database to tokenize the one or

more new data values prior to inserting them into the tokenized database.

5. The database network router apparatus of claim 1, wherein applying one or more rules
and rewriting the request comprises:

selecting a filter terms rule when the request includes one or more filter data values, the
one or more filter data values limiting the request to a subset of records related to the one or
more filter data values; and

rewriting the request to insert a tokenize command into the request, the tokenize
command signaling to a software agent resident on the tokenized database to tokenize the one or

more filter data values prior to the execution of the request on the tokenized database.

6. The database network router apparatus of claim 1, wherein applying the one or more
rules and rewriting the request comprises:

selecting an incomplete request rule when the request is determined to be incomplete;

transmitting a request for missing data to the tokenized database, wherein the missing
data is the incomplete portion of the database access request;

receiving the missing data from the tokenized database; and

rewriting the database access request to include missing data.

7. The database network router apparatus of claim 1, wherein applying one or more rules
and rewriting the request further comprises:
comparing the authorization level associated with the request with the authorization level

required to access one or more data fields in the tokenized database;

WO 2014/143786 PCT/US2014/027896
29

identifying one or more unauthorized data fields in the request based on the comparison;

for every unauthorized data field in the request, rewriting the request to insert a fictive-
data command into the request, the fictive-data command signaling to a software agent resident
on the tokenized database to return fictive data values in response to the request if the request is a
data retrieval request for data in the unauthorized data field, or to disregard the data values
passed to the software agent as fictive values if the request is an update or insert request

including data in the unauthorized data field.

8. The database network router apparatus of claim 1, wherein the database access request
includes a security credential and the security credential is transmitted to the tokenized database

as part of the rewritten request.

9. A computer-implemented method for data tokenization by one or more computing
devices, the method comprising:

receiving, by the one or more computing devices, a database access request directed to a
tokenized database, the tokenized database containing one or more tokenized data values;

applying, by one or more computing devices, one or more rules to the request;

rewriting, by the one or more computing devices, the request based on at least one of the
one or more rules, such that data values being added to the tokenized database will be tokenized
data values, and data values received from the tokenized database will be non-tokenized data
values; and

transmitting, by the one or more computing devices, the rewritten request to the

tokenized database.

10. The computer-implemented method of claim 9, wherein applying one or more rules and
rewriting the request comprises:

selecting, by the one or more computing devices, a retrieval rule when the database
access request is a data retrieval request; and

rewriting, by the one or more computing devices, the request to insert a de-token

command into the request, the de-token command signaling to a software agent resident on the

WO 2014/143786 PCT/US2014/027896
30

tokenized database to de-tokenize the tokenized data values retrieved as a result of the request

prior to transmitting the data values back to the database network router.

11. The computer-implemented method of claim 9, wherein applying one or more rules and
rewriting the request comprises:

selecting, by the one or more computing devices, an update rule when the database access
request is a data update request, the data update request further comprising one or more new data
values; and

rewriting, by the one or more computing devices, the request to insert a tokenize
command into the request, the tokenize command signaling to a software agent resident on the
tokenized database to tokenize the one or more new data values prior to adding them to the

tokenized database.

12. The computer-implemented method of claim 9, wherein applying one or more rules and
rewriting the request comprises:

selecting, by the one or more computing devices, an insert rule when the database access
request is an insert data request, the insert data request further comprising one or more new data
values; and

rewriting, by the one or more computing devices, the request to insert a tokenize
command into the request, the tokenize command signaling to a software agent resident on the
tokenized database to tokenize the one or more new data values prior to inserting them into the

tokenized database.

13. The computer-implemented method of claim 9, wherein applying one or more rules and
rewriting the request comprises:

selecting, by at least one of the one or more computing devices, a filter terms rule when
the request includes one or more filter data values, the one or more filter data values limiting the
request to a subset of records related to the one or more filter data values; and

rewriting, by at least one of the one or more computing devices, the request to insert a

tokenize command into the request, the tokenize command signaling to a software agent resident

WO 2014/143786 PCT/US2014/027896
31

on the tokenized database to tokenize the one or more filter data values prior to the execution of

the request on the tokenized database.

14. The computer-implemented method of claim 9, wherein applying the one or more rules
and rewriting the request comprises:

selecting, by the one or more computing devices, an incomplete request rule when the
request is determined to be incomplete;

transmitting, by the one or more computing devices, a request for missing data to the
tokenized database, wherein the missing data is the incomplete portion of the database access
request;

receiving, by the one or more computing devices, the missing data from the tokenized
database; and

rewriting, by the one or more computing devices, the database access request to include

missing data.

15. The computer-implemented method of claim 9, wherein applying one or more rules and
rewriting the request further comprises:

comparing, by the one or more computing devices, the authorization level associated with
the request with the authorization level required to access one or more data fields in the
tokenized database;

identifying, by the one or more computing devices, one or more unauthorized data fields
in the request based on the comparison;

for every unauthorized data field in the request, rewriting, by the one or more computing
devices, the request to insert a fictive-data command into the request, the fictive-data command
signaling to a software agent resident on the tokenized database to return fictive data values in
response to the request if the request is a data retrieval request for data in the unauthorized data
field, or to disregard the data values passed to the software agent as fictive values if the request is

an update or insert request including data in the unauthorized data field.

WO 2014/143786 PCT/US2014/027896
32

16. The computer-implemented method of claim 9, wherein the database access request
includes a security credential and the security credential is transmitted to the tokenized database

as part of the rewritten request.

17. At least one non-transitory computer-readable medium storing computer-readable
instructions that, when executed by one or more computing devices, cause at least one of the one
or more computing devices to:

receive a database access request directed to a tokenized database, the tokenized database
containing one or more tokenized data values;

apply one or more rules to the request;

rewrite the request based on at least one of the one or more rules, such that data values
being added to the tokenized database will be tokenized data values, and data values received
from the tokenized database will be non-tokenized data values; and

transmit the rewritten request to the tokenized database.

18. The at least one non-transitory computer-readable medium of claim 17, wherein applying
one or more rules and rewriting the request comprises:
selecting a retrieval rule when the database access request is a data retrieval request; and
rewriting the request to insert a de-token command into the request, the de-token
command signaling to a software agent resident on the tokenized database to de-tokenize the
tokenized data values retrieved as a result of the request prior to transmitting the data values back

to the database network router.

19. The at least one non-transitory computer-readable medium of claim 17, wherein applying
one or more rules and rewriting the request comprises:

selecting an update rule when the database access request is a data update request, the
data update request further comprising one or more new data values; and

rewriting the request to insert a tokenize command into the request, the tokenize
command signaling to a software agent resident on the tokenized database to tokenize the one or

more new data values prior to adding them to the tokenized database.

WO 2014/143786 PCT/US2014/027896
33

20. The at least one non-transitory computer-readable medium of claim 17, wherein applying
one or more rules and rewriting the request comprises:

selecting an insert rule when the database access request is an insert data request, the
insert data request further comprising one or more new data values; and

rewriting the request to insert a tokenize command into the request, the tokenize
command signaling to a software agent resident on the tokenized database to tokenize the one or

more new data values prior to inserting them into the tokenized database.

21. The at least one non-transitory computer-readable medium of claim 17, wherein applying
one or more rules and rewriting the request comprises:

selecting a filter terms rule when the request includes one or more filter data values, the
one or more filter data values limiting the request to a subset of records related to the one or
more filter data values; and

rewriting the request to insert a tokenize command into the request, the tokenize
command signaling to a software agent resident on the tokenized database to tokenize the one or

more filter data values prior to the execution of the request on the tokenized database.

22. The at least one non-transitory computer-readable medium of claim 17, wherein applying
one or more rules and rewriting the request comprises:

selecting an incomplete request rule when the request is determined to be incomplete;

transmitting a request for missing data to the tokenized database, wherein the missing
data is the incomplete portion of the database access request;

receiving the missing data from the tokenized database; and

rewriting the database access request to include missing data.

23. The at least one non-transitory computer-readable medium of claim 17, wherein applying
one or more rules and rewriting the request further comprises:
comparing the authorization level associated with the request with the authorization level

required to access one or more data fields in the tokenized database;

WO 2014/143786 PCT/US2014/027896
34

identifying one or more unauthorized data fields in the request based on the comparison;

for every unauthorized data field in the request, rewriting the request to insert a fictive-
data command into the request, the fictive-data command signaling to a software agent resident
on the tokenized database to return fictive data values in response to the request if the request is a
data retrieval request for data in the unauthorized data field, or to disregard the data values
passed to the software agent as fictive values if the request is an update or insert request

including data in the unauthorized data field.

24. The at least one non-transitory computer-readable medium of claim 17, wherein the
database access request includes a security credential and the security credential is transmitted to

the tokenized database as part of the rewritten request.

WO 2014/143786

Database
102

1/11

Token
Vault
101

PCT/US2014/027896

N

Fig. 1A

Application

100

WO 2014/143786

:

Database
105

DNR

2/11

U

Token
Vault
106

Agent 107

PCT/US2014/027896

DNR 104

i

Application

103

Fig. 1B

WO 2014/143786 3/11 PCT/US2014/027896

U
U
U

Token Token Token
Vault Vault Vault
203A 203B 203C

) (
) (

Database Database Database
202A 202B 202C
DNR DNR DNR

Agent Agent Agent
L 204A | 204B 204C

(

) (

(

N
/

Application Application Application

200A 200B 200C

Fig. 2

WO 2014/143786

4/11

Receive a database
access request from an
application at the DNR

301

Apply one or more rules
to the request

302

Rewrite the request,
based on the one or
more rules

303

Transmit the rewritten
requests to the database

304

PCT/US2014/027896

WO 2014/143786 5/11 PCT/US2014/027896
Rules
400
Data Retrieval Data Update Data Insert Request
Request Rules Request Rules Rules
401 402 403
Access Request Tokenization API Incomplete Request
Filter Terms Rules Rules Rules
404 405 406
Authorization Rules Security Rules Routing Rules
407 408 409

WO 2014/143786 PCT/US2014/027896

6/11

Sample Token Vault
503
Token Data Value
T1 Miller
T2 Sanchez
T3 045-22-1246
T4 241-31-6313
Table XYZ
502
Name SSN
DNR Agent
505 T1 T3
T2 T4
Sample Tokenized Database
501

Flg 5 DNR 504 < E > Application(s)
506

WO 2014/143786 7/11 PCT/US2014/027896
Sample Token Vault at Time T-0
603
Table XYZ at Time T-0
601 Token Data Value
T1 Miller
Name SSN
T2 Sanchez
T1 T3
T3 045-22-1246
T2 T4
T4 241-31-6313
Re-written Update Request:
UPDATE Table XYZ, SET
SSN = Tokenize(421-66-
4567)
Table XYZ at Time T-1 Sample Token Vault at Time T-1
602 604
Token Data Value
Name SSN
T1 Miller
T1 T5
T2 Sanchez
T2 T5
T3 045-22-1246
T4 241-31-6313
T5 421-66-4567

Fig. 6

WO 2014/143786

8/11

Table XYZ at Time T-0

701
Name SSN
T1 T3
T2 T4

PCT/US2014/027896

Sample Token Vault at Time T-0

703
Token Data Value
T1 Miller
T2 Sanchez
T3 045-22-1246
T4 241-31-6313

Re-written Insert Request:
INSERT INTO Table XYZ,
VALUES
(Tokenize(Jackson),
Tokenize(162-97-2441))

Table XYZ at Time T-1

702
Name SSN
T1 T3
T2 T4
T5 T6

Fig. 7

Sample Token Vault at Time T-1

704
Token Data Value

T1 Miller

T2 Sanchez
T3 045-22-1246
T4 241-31-6313
T5 Jackson
T6 162-97-2441

WO 2014/143786

Send request for missing
data

803

9/11

PCT/US2014/027896

Receive database access
request at DNR

801

Yes

No

All missing data acquired?

804

Request incomplete?

802

No

Yes

Fig. 8

Re-write database access
request

805

Transmit re-written
request to database

806

WO 2014/143786

Process request

905

Fig. 9

Process remainder of
request

909

10/11

Receive request

901

User has
authorization to

make request? No
902
Yes
Protected data
i ?
No Fields?
903
Yes;
Setn=1
Is user authorized to
access the nth data
field? No
906
Ves Yes;
n++
More protected data
i ?
No fields?
907

PCT/US2014/027896

Perform security
action for request

904

Perform security
action for nth data
field

908

WO 2014/143786

11/11

PCT/US2014/027896

1090

,,,,,,

Fig. 10

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US14/27896

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - HO4L 9/32 (2014.01)
USPC - 707/781

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8) Classification(s): GO6F 17/30; HO4L 9/00, 9/32 (2014.01)
USPC Classification(s): 707/769, 781; 726/10

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

intermediary

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

MicroPatent (US-G, US-A, EP-A, EP-B, WO, JP-bib, DE-C,B, DE-A, DE-T, DE-U, GB-A, FR-A); ProQuest; |IEEE; Google/Google Scholar
Keywords: database, request, query, tag, flag, command, encrypt, decrypt, token, update, write, read, retrieve, rule, mediation,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X 1,9,17
--------- US 2005/0086256 A1, (OWENS, T. et al.), 21 April 2005; paragraphs [0062], [0160], [0210].
Y 2-6, 8, 10-14, 16, 18-22,
24
Y WO 2002/046861 A2, (MEFFERT, G. et al.), 13 June 2002; page 5, paragraph 1, page 13, 2,10, 18
paragraph 11.
Y US 2005/0223222 A1, (GRAVES, A. et al.), 06 October 2005; paragraphs [0068], [0069], [0070]. | 3-5, 11-13, 18-21
Y US 2011/0131643 A1, (LAWRENCE, C. et al.), 02 June, 2011; paragraphs [0024], [0038], 4-5, 8, 12-13, 16, 20-21,
[0039]. 24
Y US 8,380,630 B2, (FELSHER, D.), 19 February 2013; column 73, lines 50-59; 5,13, 21
Y US 2011/0196955 A1, (ODAKA, T. et al.), 11 August 2011; paragrapghs [0122}, [0149], [0155]. | 6, 14, 22
A US 2003/0101341 A1, (KETTLER, Ill, E. et al.), 29 May 2003; paragraphs [0036], [0041], [0062]. | 1-24

I:I Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

later document published after the international filing date or riority
date and not in conflict with the application but cited to un erstand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

w
oy

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

wy»

“&” document member of the same patent family

Date of the actual completion of the international search

25 July 2014 (25.07.2014)

Date of mailing of the international search report

19 AUG 2014

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Shane Thomas

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - wo-search-report

