APPARATUS AND METHOD FOR POLISHING CAVITIES IN MECHANICAL COMPONENTS

An apparatus (1) for polishing cavities in mechanical components (4), characterized in that said apparatus (1) comprises a supporting framework (2) supporting a working plane (3) thereon are housed the mechanical workpieces (4) to be subjected to the polishing process, said mechanical workpieces (4) being clamped to said working plane (3) by clamping means (5), said apparatus further comprising vibration generating means (6) cooperating with resilient components (7) adapted to transmit a vibration motion and amplify the action of said vibrating means (6), said apparatus (1) comprising furthermore a closed loop distributing system for distributing a mixture (8) containing a polishing and buffing cleansing material and a micro-abrading material, said mixture (8) being fed within said mechanical workpieces (4) together with metal bodies (9) having a ball shape and a different size and mass, adapted to move and stir said mixture (8) against the inner walls of the cavity of said mechanical workpieces (4) being processed.
The present invention relates to an apparatus and method for polishing cavities in mechanical components.

As is known, maintenance or servicing operations are conventionally required to provide a proper performance of mechanical components or elements in mechanical machines in general and for meeting tolerance and standard quality requirements as imposed by enforcing rules.

A drawback related to the above maintenance or servicing operations performed by prior polishing or buffing systems, is that an accurate polishing or buffing operation frequently requires the use of aggressive and abrading agents, such as, for example, in manual or automatic polishing processes using grinding or polishing machines and abrading cloth arrangements.

The above mentioned operations, while providing an accurate and quick polishing, contribute to reducing the precision of joining or coupling arrangements, thereby causing a quick decay of the mechanical component performance.

Thus, it is necessary to use apparatus designed for providing a performance like that, or higher than that of a conventional maintenance equipment and, in the meanwhile, it is further necessary to reduce a quick deterioration of the processed workpieces or
components.

SUMMARY OF THE INVENTION

Accordingly, the aim of the present invention is to provide such a polishing method and apparatus allowing to hold in a very high efficiency condition the processed mechanical components, to increase their useful life while reducing the operating costs.

Within the scope of the above mentioned aim, a main object of the invention is to provide an operatively flexible method and apparatus adapted to be used in several application fields for performing a perfect maintenance and servicing of mechanical components of a lot of different operating machines.

Another object of the invention is to provide such a polishing method and apparatus allowing to perfectly polish the mechanical components without using a tight or closed environment, that is an environment closed either by a closing plug or cover.

Yet another object of the present invention is to provide such a polishing method and apparatus allowing to process cavities in components made either by a metal or a non metal material.

Yet another object of the present invention is to provide such a polishing method and apparatus adapted to polish one or more components simultaneously, thereby providing a very high processing yield as well as allowing the operating life of the processed or polished components to be highly extended.

Yet another object of the present invention is
to provide such a polishing method and apparatus adapted to greatly reduce wear on mechanical components owing to an elimination of highly abrading and aggressive agents as those conventionally used in prior polishing processes, thereby providing great advantages mainly for elements having complex inner geometries and shapes such as, for example, molds used for processing glass materials.

Yet another object of the present invention is to provide such a polishing method and apparatus adapted to greatly reduce operating errors and problems due to an intervention of a human operator, that is specifically designed for reducing to a minimum the need of an intervention of a human operator.

Yet another object of the present invention is to provide such a polishing method and apparatus allowing to greatly reduce the polishing cost proper, by using a very quick and accurate polishing or buffing system.

Yet another object of the present invention is to provide such a polishing apparatus which, owing to its specifically designed constructional features, is very reliable and safe in operation.

According to one aspect of the present invention, the above mentioned aim and objects, as well as yet other objects, which will become more apparent hereinafter, are achieved by an apparatus for polishing cavities in mechanical components, characterized in that said apparatus comprises a supporting framework supporting a working plane thereon are housed the mechanical workpieces to be subjected to the polishing process, said mechanical workpieces being clamped to
said working plane by clamping means; said apparatus further comprising vibration generating means cooperating with resilient components adapted to transmit a vibration motion and amplify the action of said vibrating means; said apparatus comprising furthermore a closed loop distributing system for distributing a mixture containing a polishing and buffing cleansing material and a micro-abrading material, said mixture being fed within said mechanical workpieces together with metal bodies having a ball shape and a different size and mass, adapted to move and stir said mixture against the inner walls of the cavity of said mechanical workpieces being processed.

To improve the cleaning/polishing efficiency of the polishing process, the above mixture contains a high efficiency polishing liquid and a micro-abrading material, the liquid component of the fluid mixed to the micro-abrading material being fed, through a suitable loop recirculating circuit comprising pumps, to the inside of the cavities of the mechanical components and, after having performed the desired cleaning, polishing and buffing action, being caused to fall on a bottom of a plate element to be collected, through suitable holes, in an underlying tank and being brought again by a pump to recirculate to perform again the polishing operating cycle.

BRIEF DESCRIPTION OF THE DRAWINGS

Further characteristics and advantages of the present invention will become more apparent hereinafter from the following detailed disclosure of a preferred,
though not exclusive, embodiment of the invention, which is illustrated, by way of an indicative, but not limitative, example, with reference to the accompanying drawing, the sole figure of which schematically shows the polishing apparatus according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference to the number references of the above mentioned figures, the polishing or buffing apparatus, according to the invention, which has been generally indicated by the reference number 1, comprises a bearing framework 2, preferably made of a steel material, having a high mechanical strength, so as to resist against vibrations generated by specifically designed vibrating systems, thereby providing an efficient polishing process while preserving very high safety requirements for the apparatus operator.

Said apparatus comprises, moreover, a working plane 3, preferably made of a same material as that of the bearing framework, thereon the mechanical workpieces or components 4 to be subjected to the polishing or buffing process are arranged.

More specifically, said mechanical workpieces or components 4 are clamped to the processing plane 3 by clamping flanges and studs 5.

Said apparatus comprises moreover electric power supply systems designed for generating vibrations, and including a plurality of motor driven vibrating systems 6, cooperating with resilient components 7, adapted to
transmit a vibratory motion and amplify the vibrations provided by said motor driven vibrating systems.

A suitably developed and balanced mixture 8, containing a polishing and buffing cleansing material and a micro-abrading material, is supplied to the inside of the mechanical components 4 together with metal bodies 9, having a ball shape and different sizes and masses, adapted to drive the mixture 8 and stir it against the inner walls of the cavity of the workpiece or component 4 to be processed.

In particular the mixture 8 is distributed through a distributing circuit including a recirculation pump 10.

The polishing or buffing apparatus according to the present invention operates as follows.

The workpieces or components 4, which are subjected to a servicing polishing operation, must be properly arranged above the working plane delimited by the steel plate 3 supported by the bearing framework 2, designed for bearing the overall weight of said plate and mechanical workpieces or components 4.

The mechanical workpieces 4 are rigidly coupled with said plate 3 by suitable restraining or clamping systems, including pairs of flanges and threaded studs 5, to provide a perfect transmission of the generated vibrations.

The vibratory motion is provided by a pair of motor driven vibrating elements 6, of a small electric power, which are supplied by electric power and are directly housed in the region underlying the plate 3.

The spring elements 7, arranged under said plate 3, in addition to providing a cushioning of the
vibrations directed toward the framework 2, also amplify the vibrating effects provided by the motor driven vibrator or vibrating elements 6, in cooperation with a plurality of corresponding springs arranged above said plate 3, to assure a proper linearity of the generated vibrations as well as an increase of the vibration frequency.

Upon arranging the mechanical workpiece 4 to be polished on the plate 3, and after having anchored said workpiece to said plate by the flange 5 locking system, a mixture holding, in different percentages, steel balls 9 and abrading mixture is fed into the cavities of the workpiece 4.

In performing the polishing process, to amplify the combined effect of said steel balls 9 and abrading mixture, is further used in a continuous loop circuit, a fluid 8, which is driven by a dedicated electric pump 10.

Said fluid 8 advantageously comprises a polishing and cleansing solution, the effect of which is further enhanced by a given percentage or rate of a micro-abrading material.

The above system allows the mixture to hold its abrading, buffing and polishing properties constant, while reducing the processing time and greatly improving the finishing of the inner surfaces of the processed cavities.

The above disclosed apparatus has a very high polishing efficacy and efficiency.

One of the most important improvements of the inventive system is that the polishing operation is not performed inside a tight cavity, but through a loop
circuit allowing a continuous recirculation of the used fluid.

Moreover, the polishing apparatus according to the present invention exploits the mechanical principles of vibrations applied to the workpieces to be processed by using a vibrating metal plate on the top surface thereof the workpieces are anchored or clamped by a suitable clamping and locking system.

Thus, the generated vibrations cause the used mixture, which may contain therein steel balls, ceramics abrading materials, plastics or glass materials, silicon carbide or corindon materials, to be emulsified and stirred inside the cavities to be polished.

To further improve the cleansing/buffing efficiency of the inventive process, the mixture further contains a buffing or polishing liquid having a very high polishing efficiency, and further contains a micro-abrading material.

The liquid component of the fluid mixed with the micro-abrading material, is fed, through a suitable loop recirculating circuit comprising recirculating pumps, to the inside of the workpiece cavities and, after having provided a required cleansing, polishing and buffing action, is caused to fall on the bottom plate.

Then, through suitable depositing holes, it is collected in an underlying tank and is again taken by a pump to be again recirculated to start again its polishing operating cycle.

This specifically designed feature of the inventive machine, that is the continuous recirculating
of the mixture, allows the mechanical workpieces to be polished without the need of providing a tight environment, in particular an environment closed by a closing plug or cover.

It has been found that the invention fully achieves the intended aim and objects.

In fact, the invention provides a polishing apparatus allowing to properly process cavities of mechanical workpieces or components made either of a metal or a non metal material.

The apparatus, in particular, allows to perform polishing or buffing operations either on a single or on a plurality of mechanical components simultaneously, thereby providing a very enhanced operating yield, as well as an increased useful life of the processed components.

Thus, the inventive apparatus provides a lot of operating improvement advantages.

In fact, the apparatus according to the present invention allows to greatly reduce wear on the mechanical components, owing to an elimination of highly abrading and aggressive agents as conventionally used in prior polishing methods, with a consequent great advantages in particular for elements having very complex inner geometries and shapes, such as, for example, molds used in molding glass materials which molds, as known, are very difficult to be processed and, moreover, in conventional processes are undesirably worn on their corner portions, with a serious deterioration of their performance.

Furthermore, the polishing apparatus according to the present invention allows to reduce errors and
problems related to the operator intervention, since the inventive apparatus reduces to a minimum the human operations, which are necessary only for properly locating and/or removing the workpieces to be polished, and for switching the apparatus on and off.

Moreover, the polishing apparatus according to the present invention allows to greatly reduce the polishing cost since the polishing process carried out by said apparatus is very quick and accurate, the polishing operating time being included in a operating range from 2 to 10 hours, depending on the type of the components to be polished, of the used mixture and the finishing quality to be achieved.

The apparatus according to the present invention can be used in a broad range of applications, since the materials which can be polished by the inventive process may be either metal materials, such as steel or stainless steel, aluminium, bronze-aluminium materials, or hollow glass, ceramics and plastics material.

Finally, the apparatus according to the present invention allows to operate without the need of using vessels and related covers for holding therein the abrading and polishing mixture, with a consequent further reduction of the cost and size.

In practicing the invention, the used materials, as well as the contingent size and shapes, can be any, according to requirements.
CLAIMS

1. An apparatus for polishing cavities in mechanical components, **characterized in that** said apparatus comprises a supporting framework supporting a working plane thereon are housed the mechanical workpieces to be subjected to the polishing process, said mechanical workpieces being clamped to said working plane by clamping means; said apparatus further comprising vibration generating means cooperating with resilient components adapted to transmit a vibration motion and amplify the action of said vibrating means; said apparatus comprising furthermore a closed loop distributing system for distributing a mixture containing a polishing and buffing cleansing material and a micro-abrading material, said mixture being fed within said mechanical workpieces together with metal bodies having a ball shape and a different size and mass, adapted to move and stir said mixture against the inner walls of the cavity of said mechanical workpieces being processed.

2. An apparatus, according to claim 1, **characterized in that** said bearing framework is made of a very high strength steel adapted to resist against vibrations generated by said vibrating means and provide an efficient process while preserving safe conditions for the apparatus operators, said working plane comprising a plate made of a same material as that of said supporting framework.

3. An apparatus, according to claim 1, **characterized in that** said clamping means comprise each a pair of flanges and threaded stud elements.
4. An apparatus, according to claim 1, characterized in that said vibration generating means comprise low absorption motor-vibrating means which are electrically supplied from an electric power supply.

5. An apparatus, according to one or more of the preceding claims, characterized in that the resilient components comprise spring elements, arranged under said plate and providing a vibration damping action for damping vibrations directed toward said framework and adapted to amplify the vibrations provided by said motor-vibrators, in cooperation with the spring elements arranged above said plate and providing linear vibrations and an increase of the frequency of said vibrations.

6. An apparatus, according to one or more of the preceding claims, characterized in that said mixture distributing system comprises a loop circuit, controlled by an electric pump.

7. An apparatus, according to one or more of the preceding claims, characterized in that said mixture comprises steel balls, ceramics, plastics, gas, siliconcarbide or corundum abrading materials and is emulsified and stirred in said cavity to be polished.

8. An apparatus, according to one or more of the preceding claims, characterized in that, for improving the buffing/polishing efficiency, said mixture contains moreover a high efficiency polishing liquid and a micro-abrading material.

9. A method for polishing cavities or recesses of mechanical workpieces or components, said method being characterized in that it comprises the following steps of:
- arranging said workpieces to be polished on a working plane supported by a supporting framework;
- clamping said workpieces to said working plane by clamping and holding systems, to provide a perfect transmission of vibrations;
- generating vibrations by vibrating means cooperating with resilient means;
- pouring into the cavities of said workpieces to be polished a mixture containing steel balls and an abrating material, through a fluid in a continuous manner in a loop circuit, thereby the generated vibrations cause said mixture, containing steel balls, ceramics, plastics, glass, siliconcarbide or corundum abrasive material, to be emulsified and stirred in said cavities of said workpieces to be polished.

10. A method, according to claim 9, characterized in that, to improve the buffing/polishing efficiency of said method, said mixture comprises moreover a high efficiency polishing liquid and a micro-abrading material, the liquid component of the fluid mixed with said micro-abrading material, through a specifically designed loop recirculating circuit comprising driving pumps, being supplied to the inside of the cavities of said workpieces and, upon cleaning, buffing and polishing said cavities, is caused to fall on a bottom of said plate, thereby, through a plurality of throughgoing holes, it is stored in an underlying tank and again drawn by a pump which bring again said mixture to circulate to perform the polishing cycle again.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B24B1/00 B24B1/04 B24B31/00 B24B31/06

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B24B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00/32355 A (MINGOT ROBERTO [IT]; MINGOT CLAUDIO [IT]) 8 June 2000 (2000-06-08)</td>
<td>1,2,4, 7-9</td>
</tr>
<tr>
<td>Y</td>
<td>figure 1, page 1, lines 3-5, page 2, line 32 - page 3, line 15, page 4, line 3 - line 25, page 5, line 1 - line 5</td>
<td>3,5,10</td>
</tr>
<tr>
<td>X</td>
<td>US 3 584 419 A (HULET FRANK A ET AL) 15 June 1971 (1971-06-15)</td>
<td>1,0</td>
</tr>
<tr>
<td>Y</td>
<td>figures 1,4, column 1, line 36 - line 40, column 1, line 60 - column 2, line 10, column 2, line 24 - line 37</td>
<td>-/-</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C

X See patent family annex

* Special categories of cited documents

A' document defining the general state of the art which is not considered to be of particular relevance
E' earlier document but published on or after the international filing date
L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O' document referring to an oral disclosure, use, exhibition or other means
P' document published prior to the international filing date but later than the priority date claimed

T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X' document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y' document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
S' document member of the same patent family

Date of the actual completion of the international search

17 February 2010

Date of mailing of the international search report

26/02/2010

Name and mailing address of the ISA/Authorized officer

European Patent Office, P B 5818 Patentlia x 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Fax (+31-70) 340-3016

Janzon, M irja
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 276 998 A (JOEN ANTON P [US] ET AL)</td>
<td>1, 4, 6, 8</td>
</tr>
<tr>
<td></td>
<td>figures 1, 4, 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, line 21 - column 5, line 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 6, line 29 - line 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>WO 00/32354 A (MINGOT ROBERTO [IT]; MINGOT CLAUDIO [IT])</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>8 June 2000 (2000-06-08)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 1, line 1 - line 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 2, line 35 - page 4, line 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 5, line 5 - line 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 2 353 492 A (O'CONNOR JOHN C)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>11 July 1944 (1944-07-11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract; figures 2-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE 77 24 441 U1 (BUTSCHEK, INGEBORG, 7326 HEININGEN)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17 November 1977 (1977-11-17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 2</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT B0980664 A1</td>
</tr>
<tr>
<td>US 3584419 A</td>
<td>15-06-1971</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 0032354 A</td>
<td>08-06-2000</td>
<td>AT 232434 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1173000 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69905347 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69905347 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1066132 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2192890 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT B0980665 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 421616 B</td>
</tr>
<tr>
<td>US 2353492 A</td>
<td>11-07-1944</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 7724441 U1</td>
<td>17-11-1977</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)