1-Benzyl-3-naphthalen-1-yl-urea

(54) Titre : DERIVES DE BENZYLE SUBSTITUES COMME INHIBITEURS DE LA GSK-3
(54) Title: SUBSTITUTED BENZYL DERIVATIVES AS GSK-3 INHIBITORS

(57) Abrégé/Abstract:
The invention relates to urea derivatives of formula (I) as inhibitors of glycogen synthase kinase 3β, GSK-3, to processes of preparation of such compounds, to pharmaceutical compositions comprising them, and to their use for the treatment and or prophylaxis of a disease in which GSK-3 is involved, such as Alzheimer’s disease or non-insulin dependent diabetes mellitus.
(72) Inventeurs(suite)/Inventors(continued): CASTRO MORERA, ANA, ES; MARTIN APARICIO, ESTER, ES
(73) Propriétaires(suite)/Owners(continued): NOSCIRA, S.A., ES
(74) Agent: PERRY + CURRIER
Title: GSK-3 INHIBITORS

1-Benzyl-3-naphthalen-1-yl-urea

GSK3 activity (% in respect to the control)

Log (M)

-3
-2
-1
0
1
2
3

(57) Abstract: The invention relates to urea derivatives of formula (I) as inhibitors of glycogen synthase kinase 3B, GSK-3, to processes of preparation of such compounds, to pharmaceutical compositions comprising them, and to their use for the treatment and or prophylaxis of a disease in which GSK-3 is involved, such as Alzheimer's disease or non-insulin dependent diabetes mellitus.
SUBSTITUTED BENZYL DERIVATIVES AS GSK-3 INHIBITORS

FIELD OF THE INVENTION

The present invention relates to enzyme inhibitors, and more particularly to urea derivatives as inhibitors of glycogen synthase kinase 3β, GSK-3, to processes of preparation of such compounds, to pharmaceutical compositions comprising them, and to their use for the treatment and or prophylaxis of a disease in which GSK-3 is involved, such as Alzheimer's disease or non-insulin dependent diabetes mellitus.

BACKGROUND OF THE INVENTION

The search for new therapeutic agents has been greatly aided in recent years by better understanding of the structure of enzymes and other biomolecules associated with target diseases. One important class of enzymes that has been the subject of extensive study is the protein kinases. Many diseases are associated with abnormal cellular responses triggered by protein kinase-mediated events. These diseases include autoimmune diseases, inflammatory diseases, neurological and neurodegenerative diseases, cancer, cardiovascular diseases, allergies and asthma, Alzheimer's disease or hormone-related diseases. Accordingly, there has been a substantial effort in medicinal chemistry to find protein kinase inhibitors that are effective as therapeutic agents.

J, Rubie EA, Tsao MS, Jin O, Woodgett J, *Nature* 2000, 406:86-90). These diseases may be caused by, or result in, the abnormal operation of certain cell signalling pathways in which GSK-3 plays a role.

GSK-3 has been found to phosphorylate and modulate the activity of a number of regulatory proteins. These proteins include glycogen synthase which is the rate limiting enzyme necessary for glycogen synthesis, the microtubule associated protein Tau, the gene transcription factor β-catenin, the translation initiation factor eIF2B, as well as ATP citrate lyase, axin, heat shock factor-1, c-Jun, c-Myc, c-Myb, CREB, and CEPBα. These diverse protein targets implicate GSK-3 in many aspects of cellular metabolism, proliferation, differentiation and development.

In the State of the Art, some compounds containing an urea group have already been described as having GSK-3 inhibitory properties. This is the case, for example, of publications WO03/004472, WO03/004475 and WO03/089419. These publications refer each one to a very broad number of compounds defined by a Markush structure, said structure being big and complex, this circumstance making their preparation more complicated and increasing the probability of reactivity of the compounds. Particularly, these compounds pertain to structural subgroups such as substituted thiazole compounds and heterocyclic amines. These compounds may contain, among many other groups, an urea functional group. These compounds are generally said to have inhibitory effects on GSK-3, and thus potential activity in the treatment and prevention of a series of diseases related to GSK-3, such as dementias, diabetes and mood disorders. Nevertheless, no results regarding GSK-3 inhibition for any particular compounds are included in any of the above-mentioned publications; that is, neither for those comprising an urea functional group any results really proving any activity of these urea derivatives are shown.
On the other hand, Publication WO03/004478 and article “Structural Insights and Biological Effects of GSK-3 specific Inhibitor AR-A014418”, J. Biol. Chem., 278 (46), 2003 deal with one particular urea, 4-(4-methoxybenzyl)-N’-(5-nitro-1,3-thiazol-2-yl)urea; this urea indeed has a much smaller and simpler structure than the above mentioned ureas. It is described as having GSK-3 inhibitory properties, and thus as having potential activity for treating and/or preventing numerous conditions associated with glycogen synthase kinase 3. Nevertheless, it is not clear whether the GSK-3 inhibitory effect is due to the urea itself or to the nitro-thiazole, as heterocyclic compounds have been described as having GSK-3 inhibitory properties, see for example above-mentioned WO03/089419.

Some other ureas have been described in relation to the treatment of neurological disorders, but in relation with completely different methods of action, for example W000/06156, wherein the disclosed ureas are described to be potentiatiors of glutamate receptor function.

There is therefore still a need to find good GSK-3 inhibitors, being both effective and selective, and having good “drugability” properties, i.e. good pharmaceutical properties related to administration, distribution, metabolism and excretion. An additional advantage would be to find compounds with simple, stable structures, being easy to be prepared by ordinary proceedings known to the skilled person.

DESCRIPTION OF THE INVENTION

It has now been found that a group of stable and small urea derivatives shows inhibitory effects on GSK-3 enzyme.

Use of a compound of formula (I)
or any pharmaceutically acceptable salt, prodrug or solvate thereof,

wherein:

R_B is selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl wherein aryl is selected from the group of phenyl, naphthyl, fenanthryl and anthracyl, substituted or unsubstituted aralkyl wherein aralkyl is benzyl, heterocycle selected from the group of azepines, benzimidazole, benzothiazole, furan, imidazole, indole, piperidine, piperazine, purine, thiadiazole, tetrahydrofuran, benzodioxol, thiophene, benzofuran, indazole, quinazoline, pyridazine, pyrimidine, pyrazine, pyridine, isoxazole, pyrrole, pyrane, -OR_S, and -S(O)_{1-}R_S, wherein R_B comprises from 8 to 15 atoms selected from C, O, N, and S,

with the proviso that R_B is not a heterocycle substituted by a heterocycle,

R_3, R_4, R'_2, R'_3, R'_4, R'_5, and R'_6 are independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, -C(=O)R_7, -C(=O)OR_8, -C(=O)NR_9R_{10}, -C=NR_{11}, -CN, -OR_{12}, -OC(=O)R_{13}, -S(O)_{1-}R_{14}, -NR_{15}R_{16}, -NR_{17}C(=O)R_{18}, -NO_2, -N=CR_{19}R_{20} or halogen, wherein R_3 and R_4 together may form a =O group, and wherein any pair of R_3 R'_2, R_3 R'_5, R_4 R'_2, R_4 R'_5, R'_2R'_3, R'_3R'_4, R'_4R'_5, R'_5R'_6, R_{15}R_{16}, R_{17}R_{18} or R_{19}R_{20} may form together a cyclic substituent; t is 0, 1, 2, 3.
R₅ is selected from hydrogen, alkyl, aryl and heterocycle; R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄, R₁₅, R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, substituted or unsubstituted alkoxy, substituted or unsubstituted ariloxyl, halogen, in the manufacture of a medicament for the treatment and/or prevention of a GSK-3 mediated disease or condition wherein the disease or condition is selected from the group of diabetes, conditions associated with diabetes, chronic neurodegenerative conditions including dementias such as Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy, subacute sclerosing panencephalitic parkinsonism, postencephalitic parkinsonism, pugilistic encephalitis, guam parkinsonism-dementia complex, Pick's disease, corticobasal degeneration, frontotemporal dementia, Huntington's Disease, AIDS associated dementia, amyotrophic lateral sclerosis, multiple sclerosis and neurotraumatic diseases such as acute stroke, epilepsy, mood disorders such as depression, schizophrenia and bipolar disorders, promotion of functional recovery post stroke, cerebral bleeding such as due to solitary cerebral amyloid angiopathy, hair loss, obesity, hypertension, polycystic ovary syndrome, syndrome X, ischaemia, brain injury, traumatic brain injury, cancer, leukopenia, Down's syndrome, Lewy body disease, inflammation, chronic inflammatory diseases, cancer and hyperproliferative diseases as hyperplasias and immunodeficiency.

Preferred compounds are those wherein R₅ comprises an aromatic group.

In a particular embodiment, R₅ has at least 10 aromatic carbon atoms.

In an additional aspect, the invention is related to a compound of formula

![Chemical structure](attachment:image)
In another aspect, the invention is related to a pharmaceutical composition which comprises a compound of formula (I) as described above or a pharmaceutically acceptable salt, prodrug or solvate thereof and a pharmaceutically acceptable carrier, adjuvant or vehicle.

Preferably, the disease or condition mediated by GSK-3 is selected from Alzheimer's disease, type II diabetes, depression and brain injury.

According to another aspect, the compounds of formula (I) as defined above may be used in in vitro biological assays, preferably in the inhibition of GSK-3 activity.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. Represents the 1H-NMR and 13C-NMR spectra of 1-Benzyl-3-naphtalen-1-yl-urea

Figure 2. Represents the 1H-NMR and 13C-NMR spectra of 1-Benzo[1,3]dioxol-5-yl-3'-benzyl-urea

Figure 3. Diagram showing GSK-3 activity of 1-Benzyl-3-naphtalen-1-yl-urea measured at different concentrations. The results are reflected in comparison with the control.

Figure 4. Diagram showing GSK-3 activity of 1-Benzo[1,3]dioxol-5-yl-3'-benzyl-urea measured at different concentrations. The results are reflected in comparison with the control.

DETAILED DESCRIPTION OF THE INVENTION

The urea derivatives of formula (I) according to the present invention are chemical entities which surprisingly have shown good inhibitory effects on GSK-3 enzyme, together with a good stability and low toxicity.

As indicated above, in a first aspect the present invention is related to the use of compounds of formula (I) or any pharmaceutically acceptable salt, prodrug or solvate thereof, in the preparation of a medicament for the treatment of a disease or condition mediated by GSK-3. Preferably, R₈ comprises an aromatic group and even more preferably R₈ has at least 10 aromatic carbon atoms.
In a preferred embodiment, the compound of formula (I) has an aromatic group which is directly linked to the N atom of the urea group.

According to another particular embodiment, R₈ is a substituted or unsubstituted naphtyl group, preferably an unsubstituted alpha-naphtyl group.

Preferably, R₈ is selected from:

\[
\text{\includegraphics[width=2cm]{naphtyl}}\quad \text{\includegraphics[width=2cm]{alpha-naphtyl}}
\]

In a particular embodiment, R₃ and R₄ are H.

In another particular embodiment, R'₂, R'₃, R'₄, R'₅ and R'₆ are independently selected from hydrogen, substituted or unsubstituted alkyl, -C(=O)R₇, -C(=O)OR₈, -OR₉, -NR₁₀R₁₁, or halogen, wherein R₇, R₈, R₉, R₁₂, R₁₅ and R₁₆ are defined as above.

Preferably, R'₂, R'₃, R'₄, R'₅ and R'₆ are H.

Two preferred compounds of formula (I) are:

\[
\text{\includegraphics[width=2cm]{compounds}}
\]

Within the present invention, the expression “GSK-3 mediated disease or condition” means any disease or other deleterious condition or state in which GSK-3 is
known to play a role. This disease or condition may be, but is not limited to, diabetes, conditions associated with diabetes, chronic neurodegenerative conditions including dementias such as Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy, subacute sclerosing panencephalitic parkinsonism, postencephalitic parkinsonism, pugilistic encephalitis, guam parkinsonism-dementia complex, Pick's disease, corticobasal degeneration, frontotemporal dementia, Huntington's Disease, AIDS associated dementia, amyotrophic lateral sclerosis, multiple sclerosis and neurotraumatic diseases such as acute stroke, epilepsy, mood disorders such as depression, schizophrenia and bipolar disorders, promotion of functional recovery post stroke, cerebral bleeding such as due to solitary cerebral amyloid angiopathy, hair loss, obesity, hypertension, polycystic ovary syndrome, syndrome X, ischaemia, brain injury, traumatic brain injury, cancer, leukopenia, Down's syndrome, Lewy body disease, inflammation, chronic inflammatory diseases, cancer and hyperproliferative diseases as hyperplasias and immunodeficiency.

Preferably, the GSK-3 mediated disease or condition is either Alzheimer's Disease, type II diabetes, depression or brain injury.

According to further aspects of the invention, it is related to a compound of formula

\[
\text{\includegraphics[width=0.5\textwidth]{formula.png}}
\]

and to its use as a medicament.

Another aspect of the present invention is a pharmaceutical composition comprising a compound as defined above, or any pharmaceutically acceptable salt,
prodrug or solvate thereof, and a pharmaceutically acceptable earner adjuvant or vehicle; preferably, said pharmaceutical composition is for oral administration. Preferred diseases or conditions which may be treated with this pharmaceutical composition may be, but are not limited to, diabetes, conditions associated with diabetes, chronic neurodegenerative conditions including dementias such as Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy, subacute sclerosing panencephalitic parkinsonism, postencephalitic parkinsonism, pugilistic encephalitis, guam parkinsonism-dementia complex, Pick's disease, corticobasal degeneration, frontotemporal dementia, Huntington's Disease, AIDS associated dementia, amyotrophic lateral sclerosis, multiple sclerosis and neurotraumatic diseases such as acute stroke, epilepsy, mood disorders such as depression, schizophrenia and bipolar disorders, promotion of functional recovery post stroke, cerebral bleeding such as due to solitary cerebral amyloid angiopathy, hair loss, obesity, hypertension, polycystic ovary syndrome, syndrome X, ischaemia, brain injury, traumatic brain injury, cancer, leukopenia, Down's syndrome, Lewy body disease, inflammation, chronic inflammatory diseases, cancer and hyperproliferative diseases as hyperplasias and immunodeficiency.

Another aspect of this invention relates to a method of treating or preventing a GSK-3 mediated disease or condition with a GSK-3 inhibitor, which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a compound of formula (1) as defined above or a pharmaceutical composition thereof.

In another aspect the invention relates to inhibiting GSK-3 activity in a biological sample with the compounds of formula (1), which method comprises contacting the biological sample with a GSK-3 inhibitor of formula (1). The term "biological sample", as used herein, includes, without limitation, cell cultures or extracts thereof; preparations of an enzyme suitable for in vitro assay; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof. Thus, in one aspect the invention is directed to the use of compounds of formula I in in vitro biological assays, in particular in the inhibition of GSK-3 activity.
In the above definition of compounds of formula (I) the following terms have the meaning indicated:

"Alkyl" refers to a straight or branched hydrocarbon chain radical consisting of carbon and hydrogen atoms, containing no saturation, having one to eight carbon atoms, and which is attached to the rest of the molecule by a single bond, e. g., methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, n-pentyl, etc. Alkyl radicals may be optionally substituted by one or more substituents such as halo, hydroxy, alkoxy, carboxy, cyano, carbonyl, acyl, alkoxy carbonyl, amino, nitro, mercapto and alkylthio.

"Alkoxy" refers to a radical of the formula -OR where R is an alkyl radical as defined above, e. g., methoxy, ethoxy, propoxy, etc.

"Alkoxy carbonyl" refers to a radical of the formula -C(=O)OR where R is an alkyl radical as defined above, e. g., methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, etc.

"Alkylthio" refers to a radical of the formula -SR where R is an alkyl radical as defined above, e. g., methylthio, ethylthio, propylthio, etc.

"Amino" refers to a radical of the formula-NH₂, -NHR or -NR where R and R are independently a radical alkyl as defined above.

"Aryl" refers to a phenyl, naphthyl, indenyl, fenanthryl or anthracyl radical, preferably phenyl or naphthyl radical. The aryl radical may be optionally substituted by one or more substituents such as hydroxy, mercapto, halo, alkyl, phenyl, alkoxy, haloalkyl, nitro, cyano, dialkylamino, amino alkyl, acyl and alkoxy carbonyl, as defined herein.

"Aralkyl" refers to an aryl group linked to an alkyl group. Preferred examples include benzyl and phenethyl.

"Acyl" refers to a radical of the formula-C(=O)R and -C(=O)-R₄ where R₄ is an
alkyl radical as defined above and \(R_d \) is an aryl radical as defined above, e. g., acetyl, propionyl, benzoyl, and the like.

"Aroylalkyl" refers to an alkyl group substituted with \(-R_a\cdot C(\cdot)\cdot R_d\), wherein \(R_a \) is an alkyl radical as defined above and \(R_d \) is a radical aryl as defined above. Preferred examples include benzoylmethyl.

"Carboxy" refers to a radical of the formula \(-C(\cdot)OH\).

"Cycloalkyl" refers to a stable 3-to 10-membered monocyclic or bicyclic radical which is saturated or partially saturated, and which consist solely of carbon and hydrogen atoms. Unless otherwise stated specifically in the specification, the term "cycloalkyl" is meant to include cycloalkyl radicals which are optionally substituted by one or more such as alkyl, halo, hydroxy, amino, cyano, nitro, alkoxy, carboxy and alkoxy carbonyl.

"Halo" refers to bromo, chloro, iodo or fluoro.

"Heterocycle" refers to a heterocycyl radical. The heterocycle refers to a stable 3-to 15 membered ring which consists of carbon atoms and from one to five heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, preferably a 4-to 8-membered ring with one or more heteroatoms, more preferably a 5- or 6-membered ring with one or more heteroatoms. For the purposes of this invention, the heterocycle may be a monocyclic, bicyclic or tricyclic ring system, which may include fused ring systems; and the nitrogen, carbon or sulfur atoms in the heterocycyl radical may be optionally oxidised; the nitrogen atom may be optionally quaternized; and the heterocycyl radical may be partially or fully saturated or aromatic. Examples of such heterocycles include, but are not limited to, azepines, benzimidazole, benzothiazole, furan, isothiazole, imidazole, indole, piperidine, piperazine, purine, quinoline, thiadiazole, tetrahydrofuran, thiadiazole, tetrahydrofuran, benzodioxol, thiophene, benzofuran, indazole, quinazoline, pyridazine, pyrimidine, pyrazine, pyridine, isoxazole, pyrrole, pyrazole, pyrane.
References herein to substituted groups in the compounds of the present invention refer to the specified moiety that may be substituted at one or more available positions by one or more suitable groups, e.g., halogen such as fluoro, chloro, bromo and iodo; cyano; hydroxyl; nitro; azido; alkanoyl such as a C1-6 alkanoyl group such as acyl and the like; carboxamido; alkyl groups including those groups having 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms and more preferably 1-3 carbon atoms; alkenyl and alkynyl groups including groups having one or more unsaturated linkages and from 2 to about 12 carbon or from 2 to about 6 carbon atoms; alkoxy groups having one or more oxygen linkages and from 1 to about 12 carbon atoms or 1 to about 6 carbon atoms; aryloxy such as phenoxy; alkylthio groups including those moieties having one or more thioether linkages and from 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms; alkylsulfanyl groups including those moieties having one or more sulfanyl linkages and from 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms; alkylsulfonyl groups including those moieties having one or more sulfonyl linkages and from 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms; aminoalkyl groups such as groups having one or more N atoms and from 1 to about 12 carbon atoms or from 1 to about 6 carbon atoms; unsubstituted cycloalkyl, wherein cycloalkyl is as it was described above; unsubstituted aryl, wherein cycloalkyl is as it was described above, particularly phenyl or naphthyl; and aralkyl such as benzyl.

Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other.

Unless otherwise stated, the compounds of the invention are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon or 15N-enriched nitrogen are within the scope of this invention.

The term "pharmaceutically acceptable salts, derivatives, solvates, prodrugs" refers to any pharmaceutically acceptable salt, ester, solvate, or any other compound which, upon administration to the recipient is capable of providing (directly or
indirectly) a compound as described herein. However, it will be appreciated that non-
pharmaceutically acceptable salts also fall within the scope of the invention since those
may be useful in the preparation of pharmaceutically acceptable salts. The preparation
of salts, prodrugs and derivatives can be carried out by methods known in the art.

5

For instance, pharmaceutically acceptable salts of compounds provided herein
are synthesized from the parent compound which contains a basic or acidic moiety by
conventional chemical methods. Generally, such salts are, for example, prepared by
reacting the free acid or base forms of these compounds with a stoichiometric amount of
the appropriate base or acid in water or in an organic solvent or in a mixture of the two.
Generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol or
acetonitrile are preferred. Examples of the acid addition salts include mineral acid
addition salts such as, for example, hydrochloride, hydrobromide, hydroiodide,
sulphate, nitrate, phosphate, and organic acid addition salts such as, for example,
acetate, maleate, fumarate, citrate, oxalate, succinate, tartrate, malate, mandelate,
methanesulphonate and p-toluenesulphonate. Examples of the alkali addition salts
include inorganic salts such as, for example, sodium, potassium, calcium, ammonium,
magnesium, aluminium and lithium salts, and organic alkali salts such as, for example,
ethylenediamine, ethanolamine, N,N-dialklylenethanolamine, triethanolamine,
20 glucamine and basic aminoacids salts.

Particularly favoured derivatives or prodrugs are those that increase the
bioavailability of the compounds of this invention when such compounds are
administered to a patient (e.g., by allowing an orally administered compound to be more
readily absorbed into the blood) or which enhance delivery of the parent compound to a
biological compartment (e.g., the brain or lymphatic system) relative to the parent
species.

Any compound that is a prodrug of a compound of formula (1) is within the
scope of the invention. The term “prodrug” is used in its broadest sense and
ecompasses those derivatives that are converted in vivo to the compounds of the
invention. Such derivatives would readily occur to those skilled in the art, and include,
depending on the functional groups present in the molecule and without limitation, the
following derivatives of the present compounds: esters, amino acid esters, phosphate esters, metal salts sulfonate esters, carbamates, and amides. Examples of well known methods of producing a prodrug of a given acting compound are known to those skilled in the art and can be found e.g. in Krogsgaard-Larsen et al. "Textbook of Drugdesign and Discovery" Taylor & Francis (April 2002).

The compounds of the invention may be in crystalline form either as free compounds or as solvates (e.g. hydrates) and it is intended that both forms are within the scope of the present invention. Methods of solvation are generally known within the art. Suitable solvates are pharmaceutically acceptable solvates. In a particular embodiment the solvate is a hydrate.

The compounds of formula (I) or their salts or solvates are preferably in pharmaceutically acceptable or substantially pure form. By pharmaceutically acceptable form is meant, inter alia, having a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and including no material considered toxic at normal dosage levels. Purity levels for the drug substance are preferably above 50%, more preferably above 70%, most preferably above 90%. In a preferred embodiment it is above 95% of the compound of formula (I), or of its salts, solvates or prodrugs.

The compounds of the present invention represented by the above described formula (I) may include enantiomers depending on the presence of chiral centres or isomers depending on the presence of multiple bonds (e.g. Z, E). The single isomers, enantiomers or diastereoisomers and mixtures thereof fall within the scope of the present invention.

The compounds of formula (I) defined above can be obtained by available synthetic procedures, for example by reacting:
in a suitable solvent, such as N,N-dimethylformamide, dimethyl sulfoxide, dioxane, dichloromethane or tetrahydrofuran, at a temperature within the range of +20 to +150°C.

One preferred pharmaceutically acceptable form is the crystalline form, including such form in a pharmaceutical composition. In the case of salts and solvates the additional ionic and solvent moieties must also be non-toxic. The compounds of the invention may present different polymorphic forms, it is intended that the invention encompasses all such forms.

Examples of pharmaceutical compositions include any solid (tablets, pills, capsules, granules etc.) or liquid (solutions, suspensions or emulsions) composition for oral, topical or parenteral administration.

In a preferred embodiment the pharmaceutical compositions are in oral form. Suitable dose forms for oral administration may be tablets and capsules and may contain conventional excipients known in the art such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone; fillers, for example lactose, sugar, maize starch, calcium phosphate, sorbitol or glycine; tableting lubricants, for example magnesium stearate; disintegrants, for example starch, polyvinylpyrrolidone, sodium starch glycolate or microcrystalline cellulose; or pharmaceutically acceptable wetting agents such as sodium lauryl sulfate.

The solid oral compositions may be prepared by conventional methods of blending, filling or tableting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are conventional in the art. The tablets may for example be prepared by wet or dry granulation and optionally coated according to methods well known in normal pharmaceutical practice, in particular with an enteric coating.
The pharmaceutical compositions may also be adapted for parenteral administration, such as sterile solutions, suspensions or lyophilized products in the appropriate unit dosage form. Adequate excipients can be used, such as bulking agents, buffering agents or surfactants.

The mentioned formulations will be prepared using standard methods such as those described or referred to in the Spanish and US Pharmacopoeias and similar reference texts.

Administration of the compounds or compositions of the present invention may be by any suitable method, such as intravenous infusion, oral preparations, and intraperitoneal and intravenous administration. Oral administration is preferred because of the convenience for the patient and the chronic character of many of the diseases to be treated.

Generally an effective administered amount of a compound of the invention will depend on the relative efficacy of the compound chosen, the severity of the disorder being treated and the weight of the sufferer. However, active compounds will typically be administered once or more times a day for example 1, 2, 3 or 4 times daily, with typical total daily doses in the range of from 0.1 to 1000 mg/kg/day.

The compounds and compositions of this invention may be used with other drugs to provide a combination therapy. The other drugs may form part of the same composition, or be provided as a separate composition for administration at the same time or at different time.

In the following, the present invention is further illustrated by examples. They should in no case be interpreted as a limitation of the scope of the invention as defined in the claims.
EXAMPLES

Preparation of compounds of formula II

The compounds of formula II according to the present invention were prepared by reacting a convenient isocyanate with a convenient amine in order to obtain the corresponding urea, as described above.

Example 1

Preparation of 1-Benzyl-3-naphthalen-1-yl-urea

0.44 ml (4 mmol) benzylamine are reacted with 0.58 ml (4 mmol) 2-isocyanato-naphthalene in dichloromethane at room temperature during night:

![Chemical Structure]

The resulting white precipitate is filtered and washed with diethylether. 1.18 gr of a white powder with a molecular weight of 276 are obtained. Corresponding 1H-NMR and 13C-NMR spectra are indicated in Figure 1. They show the white compound to be 1-benzyl-3-naphthalen-1-yl-urea.
Example 2
Preparation of 1-Benzol[1,3]dioxol-5-yl-3-benzyl-urea

0.44 ml (4 mmol) benzylamine are reacted with 654.5 mg (4 mmol) 5-isocyanato-benzol[1,3]dioxole in dichloromethane at room temperature during night:

\[
\begin{align*}
\text{O} & \quad \text{N=CO} \\
\text{O} & \quad \text{H}_2\text{N} & \quad \text{C}_6\text{H}_{5}
\end{align*}
\]

The resulting white precipitate is filtered and washed with diethylether. 1 gr of a white powder with a molecular weight of 276 is obtained. Corresponding 1H-NMR and 13C-NMR spectra are shown in Figure 2. They show the white compound to be 1-benzyl-3-naphthalen-1-yl-urea.

Biological Methods

GSK-3β inhibition

The GSK-3β activity was determined by incubation of a mixture of recombinant human GSK-3 enzyme, a phosphate source and GSK-3 substrate in the presence and in the absence of the corresponding test compound, and by measuring the GSK-3 activity of this mixture.

Recombinant human glycogen synthase kinase 3β was assayed in MOPS 8 mM pH 7.3, EDTA 0.2 mM, MgCl\textsubscript{2} 10 mM and sodium orthovanadate 0.25 mM in the presence of 62.5 µM of Phospho-Glycogen Synthase Peptide-2 (GS-2), 0.5 µCi γ33P-ATP and unlabelled ATP at a final concentration of 12.5 µM. The final assay volume was 20 µl. After incubation for 30 minutes at 30 °C, 15 µl aliquots were spotted onto P81 phosphocellulose papers. Filters were washed four times for at least 10 minutes each and counted with 1.5 ml of scintillation cocktail in a scintillation counter.
The values for GSK-3 activity in the presence of the compounds according to the present invention were measured at different concentrations; the results, reflected in comparison with the control, are shown in Figures 3 and 4.

The compounds’ IC50 values were calculated analyzing inhibition curves by non-linear regression using GraphPad Prism. The IC50 (concentration at which 50% of enzyme inhibition is shown) values are gathered in Table 1:

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Benzy1-3-naphthalen-1-yl-urca</td>
<td>17.1</td>
</tr>
<tr>
<td>1-Benzo[1,3]dioxol-5-yl-3-benzyl-urca</td>
<td>38.4</td>
</tr>
</tbody>
</table>
CLAMS

1.- Use of a compound of formula (I)

```
R_3
  /|
 / |
R_2
  |
  |
  |
  R_1
```

(1)

or any pharmaceutically acceptable salt or solvate thereof,

wherein:

R_9 is selected from substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl wherein aryl is selected from the group of phenyl, naphthyl, phenanthryl and anthracyl, substituted or unsubstituted aralkyl wherein aralkyl is benzyl, heterocycle selected from the group of azepines, benzimidazole, benzothiazole, furan, imidazole, indole, piperidine, piperazine, purine, thiadiazole, tetrahydrofuran, benzodioxol, thiophene, benzofurane, indazole, quinazoline, pyridazine, pyrimidine, pyrazine, pyridine, isoxazole, pyrrrole, and pyrane, wherein R_9 comprises from 8 to 15 atoms selected from C, O, N, and S,

with the proviso that R_9 is not a heterocycle substituted by a heterocycle,

R_3, R_4, R_5, R_6, R_7 and R_8 are independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, -C(=O)R_7, -C(=O)OR_8, -C(=O)NR_9R_{10}, -C=N_R_{11}, -CN, -OR_{12}, -OC(=O)R_{13}, -S(O)R_{14}, -NR_{15}R_{16}, -NR_{17}C(=O)R_{18}, -NO_2, -N=CR_{19}R_{20} or halogen,
wherein R₃ and R₄ together may form a =O group, and wherein any pair of R₃ R'₂, R₃ R'₆, R₄ R'₂, R₄ R'₆, R'₂R'₃, R'₃R'₄, R'₄R'₅, R'₅R'₆, R₁₃R₁₆, R₁₇R₁₈ or R₁₉R₂₀ may form together a cyclic substituent;
t is 0, 1, 2, 3
R₇, R₈, R₉, R₁₀, Rₑ₁, R₁₃, R₁₄, R₁₅, R₁₆, R₁₇, R₁₈, R₁₉ and R₂₀ are independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, substituted or unsubstituted alkoxy, substituted or unsubstituted aryloxy, halogen,
R₁₂ is selected from hydrogen, unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, substituted or unsubstituted alkoxy, substituted or unsubstituted aryloxy, halogen,
in the manufacture of a medicament for the treatment and/or prevention of a GSK-3 mediated disease or condition wherein the disease or condition is selected from the group of diabetes, conditions associated with diabetes, chronic neurodegenerative conditions, neurotraumatic diseases, epilepsy, mood disorders, promotion of functional recovery post stroke, cerebral bleeding, hair loss, obesity, hypertension, polycystic ovary syndrome, syndrome X, ischaemia, brain injury, traumatic brain injury, cancer, leukopenia, Down's syndrome, Lewy body disease, inflammation, chronic inflammatory diseases, cancer and hyperproliferative diseases as hyperplasias and immunodeficiency.

2.- Use according to claim 1, wherein R₉ comprises an aromatic group.

3.- Use according to claim 1, wherein R₉ has at least 10 aromatic carbon atoms.

4.- Use according to claim 2, wherein the aromatic group is directly linked to the N atom of the urea group.

5.- Use according to claim 3, wherein R₉ is a substituted or unsubstituted naphthyl group.
6.- Use according to claim 5, wherein \(R_N \) is an unsubstituted alpha-naphthyl group.

7.- Use according to claim 1, wherein \(R_B \) is a group selected from:

\[
\text{[Structural diagrams here]}
\]

8.- Use according to claim 1, wherein \(R_3 \) and \(R_4 \) are \(H \).

9.- Use according to claim 1, wherein \(R'_2, R'_3, R'_4, R'_5 \) and \(R'_6 \) are independently selected from hydrogen, substituted or unsubstituted alkyl, \(-C(=O)R_7, -C(=O)OR_8, -OR_{12}, -NR_{13}R_{16}\) or halogen, wherein \(R_7, R_8, R_{12}, R_{13} \) and \(R_{16} \) are defined as in claim 1.

10.- Use according to claim 1, wherein \(R'_2, R'_3, R'_4, R'_5 \) and \(R'_6 \) are \(H \).

11.- Use according to claim 1, wherein the compound of formula (I) is selected from:

\[
\text{[Structural diagrams here]}
\]

12.- Use according to claim 1, wherein the neurodegenerative condition is selected from Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy,
subacute sclerosing panencephalitic parkinsonism, postencephalitic parkinsonism, pugilistic encephalitis, guam parkinsonism-dementia complex, Pick's disease, corticobasal degeneration, frontotemporal dementia, Huntington's Disease, AIDS associated dementia, amyotrophic lateral sclerosis, and multiple sclerosis.

13.- Use according to claim 1, wherein the neurotraumatic disease is acute stroke.

14.- Use according to claim 1, wherein the mood disorder is selected from the group consisting of depression, schizophrenia and bipolar disorders.

15.- Use according to claim 1, wherein the cerebral bleeding is due to solitary cerebral amyloid angiopathy.

16.- Use according to claim 12 wherein the disease is Alzheimer's disease.

17.- Use according to claim 1 wherein the disease is type II diabetes.

18.- Use according to claim 14 wherein the disease is depression.

19.- Use according to claim 1 wherein the disease is brain injury.

20.- A compound of formula

![Chemical structure](image-url)
21.- A compound of formula

for use as a medicament.

22.- A pharmaceutical composition which comprises a compound of formula as defined in any one of claims 1 to 11 or a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, adjuvant or vehicle.

23.- A pharmaceutical composition according to claim 22 for oral administration.

24.- Use of a compound of formula (I) as defined in any of claims 1 to 11 as a reactive for GSK-3 inhibition.
Figure 1

1H-NMR

13C-NMR
Figure 2

1H-NMR

13C-NMR
Figure 3

1-Benzyl-3-naphthalen-1-yl-urea

![Graph showing GSK3 activity vs Log (M)]

Figure 4

1-Benzo[1,3]dioxol-5-yl-3-benzyl-urea

![Graph showing GSK3 activity vs Log (M)]
1-Benzyl-3-naphthalen-1-yl-urea

GSK3 activity (% in respect to the control)

Log (M)

[Diagram of the chemical structure (I)]