(51) International Patent Classification:
H02M 3/28 (2006.01)

(21) International Application Number:
PCT/US2014/012450

(22) International Filing Date:
22 January 2014 (22.01.2014)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
61/756,036 24 January 2013 (24.01.2013) US

(72) Inventors: GONG, Bing; 11 Cabot Boulevard, Mansfield, Massachusetts 02048 (US). AFSHARIAN, Jahangir; 11 Cabot Boulevard, Mansfield, Massachusetts 02048 (US).

(74) Agent: MEDLEY, Peter; c/o Keating & Bennett, LLP, 1800 Alexander Bell Drive, Suite 200, Reston, Virginia 20191-5465 (US).

Published:
— with international search report (Art. 21(3))

(54) Title: INRUSH CURRENT CONTROL DURING STARTING OF RESONANT CONVERTERS

(57) Abstract: A converter with soft start includes a transformer; first and second switches connected to the transformer to supply power to the transformer; a controller connected to the first and second transistors and arranged to, during startup of the converter, switch the first switch with a variable duty cycle and switch the second switch with either a fixed duty cycle or a variable duty cycle with pulses larger than pulses of the variable duty cycle of the first switch; and a bleed device arranged to set initial conditions of the converter before startup of the converter by discharging a capacitor in the converter before startup.
INRUSH CURRENT CONTROL DURING STARTING OF RESONANT CONVERTERS

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to DC/DC converters. More specifically, the present invention relates to soft-start control schemes for resonant DC/DC converters.

2. Description of the Related Art

[0002] Known soft-start control schemes with high-side switch Pulse Width Modulation (PWM) control, low-side switch PWM control, or any other asymmetrical PWM control for resonant DC-to-DC converters (e.g., an LLC or an LLCLL resonant converter) requires consideration of the initial conditions in the resonant converter prior to startup. For example, if high-side switch PWM control is used (i.e., the high-side switch operates at a variable duty cycle while the low-side switch operates at a full duty cycle), inrush current will be determined by the initial voltage across the low-side switch. The higher this initial voltage is, the larger the inrush current will be.

[0003] A large inrush current can cause one or more of the following problems during startup of a resonant converter:

1) A high initial voltage can cause an over-voltage transient in the input capacitors (i.e., resonant capacitors) of a resonant converter, which can decrease the lifetime of the input capacitors.

2) A large inrush current can decrease the lifetime of the input switches (i.e., primary-side switches) of a resonant converter.

3) A large inrush current can also saturate the resonant inductor of a resonant converter. The inrush current can then further increase due to the resonant inductor being saturated.

4) A large inrush current can cause oscillations (e.g., a large ripple voltage) to appear at the output of the resonant converter during an initial stage of soft starting the resonant converter.
[0004] Sun et al. (U.S. 8,018,740) teaches operating an LLC resonant converter in a fixed-frequency and variable-pulse duty cycle operation mode during startup of the LLC resonant converter. Sun et al.’s LLC resonant converter switches to a variable-frequency and fixed-pulse duty cycle operation mode once startup is completed (e.g., when a predetermined voltage is reached at a load connected to the output of the LLC resonant converter). That is, during startup, Sun et al.’s LLC resonant converter operates in a PWM mode such that only the duty cycle is controlled and the frequency of the LLC resonant converter remains fixed and then switches to a Pulse Frequency Modulation (PFM) mode after startup.

[0005] Accordingly, one of the drawbacks with Sun et al.’s control scheme is that the implementation of this scheme using commercially available control integrated circuits (ICs) for LLC resonant converters is difficult because conventional control ICs for LLC resonant converters typically do not include a variable-pulse duty cycle capability. Thus, although this scheme can effectively limit inrush current in the LLC resonant converter, an external circuit is needed to control both high-side and low-side switches to operate at a variable pulse duty cycle. Such an external circuit requires a complex implementation to meet isolation requirements for the high-side switch. Another drawback of Sun et al.’s control scheme is a loss of soft switching during startup, which necessitates special considerations for gate drive design.

[0006] Feng et al. ("Optimal Trajectory Control of Resonant LLC Converter for Soft Start-Up") teaches a control scheme for an LLC resonant converter that uses an asymmetrical current limitation band to settle initial voltage and current levels. Because a startup current in Feng et al. is controlled within the asymmetrical current limitation band, no inrush current exists during startup. Accordingly, one of the drawbacks of Feng et al.’s control scheme is that a resonant current measurement circuit is needed to implement the unsymmetrical current limitation band, which increases the overall cost of a system that includes Feng et al.’s control scheme. Another drawback of Feng et al.’s control scheme is that this control scheme is only applicable for half-bridge LLC resonant converter with a single resonant capacitor, as shown in Fig. 1, and not to a half-bridge LLC resonant converter with split resonant capacitors.
SUMMARY OF THE INVENTION

[0007] To overcome the problems described above, preferred embodiments of the present invention provide a soft-start control scheme for variable-frequency resonant converters for overcoming the above-described problems that occur during startup of conventional resonant converters. The soft-start control scheme according to the preferred embodiments of the present invention limit inrush current and reduce transient over-voltages by using a bleed device and performing variable duty cycle control for one switch (either high-side or low-side) to set the initial conditions of the resonant converter, which preferably includes setting a capacitor's voltage to zero or near zero, before startup of the resonant converter. If the bleed device is a bleed resistor, then the bleed resistor preferably has a very large resistance and thus has a negligible effect on normal operation of the resonant converter.

[0008] A converter with soft start according to a preferred embodiment of the present invention includes a transformer; first and second switches connected to the transformer to supply power to the transformer; a controller connected to the first and second transistors and arranged to, during startup of the converter, switch the first switch with a variable duty cycle and switch the second switch with either a fixed duty cycle or a variable duty cycle with pulses larger than pulses of the variable duty cycle of the first switch; and a bleed device arranged to set initial conditions of the converter before startup of the converter by discharging a capacitor in the converter before startup.

[0009] The bleed device is preferably connected in parallel with the second switch.

[0010] Preferably, either:

1) the first switch is a high-side switch and the second switch is a low-side switch;

or

2) the first switch is a low-side switch and the second switch is a high-side switch.

[0011] The converter further preferably includes first and second capacitors connected in series, where the first capacitor is preferably connected to the first transistor and where the second capacitor is preferably connected to the second transistor. Preferably, the bleed device is connected in parallel with the second capacitor, and the second capacitor is the capacitor in the converter discharged by the bleed device before startup.
Preferably, either:

1) the first switch is a high-side switch;
2) the second switch is a low-side switch;
3) the first capacitor is a high-side capacitor; and
4) the second capacitor is a low-side capacitor;

or

1) the first switch is a low-side switch;
2) the second switch is a high-side switch;
3) the first capacitor is a low-side capacitor; and
4) the second capacitor is a high-side capacitor.

The bleed device preferably discharges the capacitor in the converter before startup to zero or nearly zero. The converter further preferably includes a resonant inductor. Preferably, the resonant inductor is either a discrete inductor or a leakage inductance of the transformer. Preferably, the bleed device includes either a resistor or a switch. The converter preferably is a resonant converter. The switching of the first switch preferably is center-aligned, left-aligned, or right-aligned.

A soft-start method for a converter according to a preferred embodiment of the present invention includes the steps of providing a converter that includes a transformer and first and second switches connected to the transformer to supply power to the transformer; before startup of the converter, setting initial conditions of the converter by discharging a capacitor in the converter before startup; and during startup of the converter, switching the first switch with a variable duty cycle and switching the second switch with either a fixed duty cycle or a variable duty cycle with pulses larger than pulses of the variable duty cycle of the first switch.

The setting initial conditions step preferably is performed using a bleed device connected in parallel with the second switch.

The converter further preferably includes first and second capacitors connected in series, where the first capacitor is preferably connected to the first transistor and where the second capacitor is preferably connected to the second transistor, and the setting initial
conditions step is performed using a bleed device connected in parallel with the second capacitor.

[0017] The discharging of the capacitor in the converter before startup preferably discharges the capacitor to zero or nearly zero. The converter is preferably a resonant converter.

[0018] The above and other features, elements, characteristics, steps, and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Fig. 1 is a circuit diagram of a conventional half-bridge LLC resonant converter with single resonant capacitor C.

[0020] Fig. 2 is a circuit diagram of symmetric half-bridge LLC resonant converter with added bleed resistor R.

[0021] Figs. 3A-3D show waveforms during soft start using high-side PWM without bleed resistor R.

[0022] Figs. 4A-4D show waveforms during soft start using high-side PWM with bleed resistor R.

[0023] Fig. 5 is a circuit diagram of a converter with a bleed resistor R connected in parallel with low-side resonant capacitor C2 for high-side PWM.

[0024] Fig. 6 is a circuit diagram of a converter with a bleed resistor R connected in parallel with low-side switch Q2 for high-side PWM.

[0025] Fig. 7A-7C show gate drive signals with variable duty cycle control for high-side switch Qi only. Fig. 7A shows a center aligned duty cycle, Fig. 7B shows a left-aligned duty cycle, and Fig. 7C shows a right-aligned duty cycle.

[0026] Fig. 8 is a circuit diagram of a converter with a bleed resistor R connected in parallel with high-side resonant capacitor C1 for low-side PWM.

[0027] Fig. 9 is a circuit diagram of a converter with a bleed resistor R connected in parallel with high-side switch Qi for low-side PWM.
Figs. 1OA-1OC show gate drive signals with variable duty cycle control for low-side switch Q2 only. Fig. 10A shows a center aligned duty cycle, Fig. 10B shows a left-aligned duty cycle, and Fig. IOC shows a right-aligned duty cycle.

Fig. 11 shows gate drive signals with asymmetric PWM.

Fig. 12 is a circuit diagram of half-bridge gate drive using a capacitive bootstrap.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Fig. 2 is a schematic diagram of an example of an LLC resonant converter according to a preferred embodiment of the present invention. The LLC resonant converter shown in Fig. 2 is a half-bridge LLC resonant converter that preferably includes at least one high-side switch Q1 and at least one low-side switch Q2. Preferably, the high-side switch Q1 and the low-side switch Q2 are metal-oxide-semiconductor field-effect transistors (MOSFETs). Further, the LLC resonant converter shown in Fig. 2 preferably includes a high-side resonant capacitor C1 and a low-side resonant capacitor C2 connected in series, a resonant inductor Lr, a magnetizing inductor Lmt, and a transformer. The high-side resonant capacitor C1 and the low-side resonant capacitor C2 are preferably split resonant capacitors. In particular, split resonant capacitors C1 and C2 can be used in medium-power and high-power applications to help reduce the input current ripple.

The resonant inductor can be a discrete inductor as shown, for example, in Figs. 5, 6, 8, and 9 as resonant inductor Lre or can be created by the leakage inductance of the transformer as shown, for example, in Figs. 2, 5, 6, 8, and 9 as resonant inductor Lr. The magnetizing inductor can be a discrete inductor as shown, for example, in Figs. 5, 6, 8, and 9 as a magnetizing inductor Lme or can be created by the magnetizing inductance of the transformer as shown, for example, in Figs. 2, 5, 6, 8, and 9 as magnetizing inductor Lmt. Further, the resonant and magnetizing inductors can each include both discrete inductors and leakage inductors as shown, for example, in Figs. 5, 6, 8, and 9. Secondary switches Q3 and Q4, together with the output capacitor C0, preferably define a secondary-side synchronous rectification circuit of the LLC resonant converter shown in Fig. 2. It is possible to use diode rectifiers instead of secondary switches Q3 and Q4.
In the preferred embodiment shown in Fig. 2, the switching of the high-side switch Q1 is controlled with a variable duty cycle, while the switching of the low-side switch Q2 is controlled with a full duty cycle. In other words, only the high-side switch Q1 is in PWM mode during startup of the LLC resonant converter.

A bleed resistor R is connected in parallel with the low-side resonant capacitor C2. Accordingly, the initial voltage across the low-side switch Q2 and the low-side resonant capacitor C2 is nearly zero before startup of the resonant converter. Because the bleed resistor R preferably has a large resistance, the bleed resistor R may not completely discharge the low-side resonant capacitor C2; however, the bleed resistor R can discharge the low-side resonant capacitor C2 to an acceptable low voltage.

When the low-side switch Q2 is turned on with a full duty cycle at startup, no large inrush current spike is generated because the voltage applied to the resonant inductor Lrt is small because the small initial voltage on the low-side resonant capacitor C2. When the high-side switch Q1 is turned on, the voltage applied to the resonant inductor Lrt is close to the input voltage Vi which causes a rapid increase in current. However, the high-side switch Q1 is PWM controlled such that the current can be easily controlled to be an acceptable level by changing the duty cycle of the high-side switch Q1. Thus, by properly setting initial conditions before the startup of the resonant converter, inrush current can be avoided.

The transient over-voltage problem on the high-side resonant capacitor C1 and the low-side resonant capacitor C2 can also be eliminated because the inrush current is limited by this control scheme. In addition, a smooth soft-start can be achieved, and oscillations during the initial stage of the soft start can be significantly reduced and prevented.

Figs. 3A-3D are graphs of simulated voltage and current measurements for high-side PWM control of the LLC resonant converter of Fig. 2 without the bleed resistor R, and Figs. 4A-4D are graphs of simulated voltage and current measurements for high-side PWM control of the LLC resonant converter of Fig. 2 with the bleed resistor R. As shown in the graph of Fig. 3B without the bleed resistor R, the resonant current Ires through the resonant inductor Lrt, Lre exhibits a large inrush current spike during startup of the resonant converter. Further, this large
inrush current also results in a high-voltage spike across the high-side resonant capacitor CI, as shown in the graph of Fig. 3C.

[0038] As seen in Figs. 4A-4D with the bleed resistor R, both the inrush current and the initial voltage spike across the high-side resonant capacitor CI are significantly reduced, which reduces stress on the components of the resonant converter.

[0039] Another benefit of this control scheme is that the low-side switch Q2 is turned on at zero voltage. Thus, zero-voltage switching (ZVS) losses only occur in the high-side switch Q1 during startup of the resonant converter. Accordingly, switching noise is reduced as compared with a conventional PWM scheme.

[0040] Implementation of the control scheme is relatively simple because high-voltage half-bridge gate drivers can be used to drive the gate terminals of the high-side switch Q1 and the low-side switch Q2 to eliminate the need for bulky pulse transformers used in conventional resonant converters.

[0041] A commercial high-voltage half-bridge Gate Drive IC, which acts as buffer for the gate drive signals provided by a controller IC, is able to drive the high-side switch Q1 because of the use of a capacitive bootstrap, an example of which is shown in Fig. 12. The high-voltage half-bridge Gate Drive IC typically includes the following terminals: high-side power supply VB, high-side output HO, high-side ground or voltage offset VS, low-side power supply VCC, low-side output LO, and low-side ground COM. The low-side switch Q2 preferably is turned on with an appropriate minimum time interval to properly charge the bootstrap capacitor CB for the high-side gate driver power supply. The bootstrap capacitor CB is connected to the low-side power supply VCC, which is typically supplied by an auxiliary power supply at about 12 volts, through diode DB, which prevents the high voltage from the input voltage Vi from damaging the low-side power supply VCC. By using this arrangement, the low-side switch Q2 turns on with a full duty cycle, which allows the bootstrap capacitor CB for the high-side gate driver power supply to be fully charged at every cycle. As shown in Fig. 12, a low-side buffer capacitor CL provides a low-side output voltage buffer and recharges the bootstrap capacitor CB. The capacitance of the low-side buffer capacitor CL is preferably about ten times the capacitance of the bootstrap capacitor CB.
For high-side gate drive using a capacitive bootstrap, the low-side switch Q2 preferably turns on prior to the high-side switch Q1 to pre-charge the bootstrap capacitor CB. This arrangement charges the low-side resonant capacitor C2 and discharges the high-side resonant capacitor CI to some extent. Thus, the voltage across the high-side resonant capacitor CI increases before the high-side switch Q1 turns on, which results in larger inrush current. Reducing the capacitance of the bootstrap capacitor reduces the inrush current caused by the voltage across the high-side resonant capacitor CI increasing before the high-side switch Q1 turns on. However, the capacitance of the bootstrap capacitor should be carefully selected to ensure reliable operation of the gate driver.

According to a preferred embodiment of the present invention, high-side PWM control is used in a resonant converter that includes the bleed resistor R connected in parallel with the low-side switch Q2 as shown in Fig. 6. According to another preferred embodiment of the present invention, the bleed resistor R is connected in parallel with the low-side resonant capacitor C2, as shown in Fig. 5. The bleed resistor R is preferably connected to the low-side resonant capacitor C2 because it will have less effect during normal operation. Further, the effect during normal operation can be reduced by properly selecting the bleed resistor R.

During startup of the resonant converters shown in Figs. 5 and 6, the high-side switch Q1 is controlled with a variable duty cycle, while the low-side switch Q2 operates with a full duty cycle. Figs. 7A-7C show gate drive waveforms for the resonant converters of Figs. 5 and 6. A high-side gate drive signal Vgs1 for the high-side switch Q1 and a low-side gate drive signal Vgs2 for the low-side switch Q2 can be center-aligned as shown in Fig. 7A, left-aligned as shown in Fig. 7B, or right-aligned as shown in Fig. 7C. Preferably, the gate drive signals are right-aligned to provide ZVS for the low-side switch Q2.

The resonant converters shown in Figs. 5 and 6 and the gate drive signals shown in Figs. 7A-7C reduce the inrush current and the initial voltage spike across the high-side resonant capacitor CI so as to reduce stress on the components of the resonant converter.

According to a preferred embodiment of the present invention, low-side PWM control is used in a resonant converter that includes the bleed resistor R connected in parallel with the high-side switch Q1, as shown in Fig. 9. According to another preferred embodiment of
the present invention, the bleed resistor R is connected in parallel with the high-side resonant capacitor C1, as shown in Fig. 8. The bleed resistor R is preferably connected to the high-side resonant capacitor C1 because it will have less effect during normal operation. Further, the effect during normal operation can be reduced by properly selecting the bleed resistor R.

[0047] During startup of the resonant converters shown in Figs. 8 and 9, the low-side switch Q2 is controlled with a variable duty cycle while the high-side switch Q1 operates with a full duty cycle. Figs. IOA-IOC are gate drive waveforms for the resonant converters of Figs. 8 and 9. A high-side gate drive signal Vgs1 for the high-side switch Q1 and a low-side gate drive signal Vgs2 for the low-side switch Q2 can be center-aligned as shown in Fig. 10A, left-aligned as shown in Fig. 10B, or right-aligned as shown in Fig. IOC. Preferably, the gate drive signals are right-aligned to provide ZVS for high-side switch Q1.

[0048] The resonant converters shown in Figs. 8 and 9 and the gate drive signals shown in Figs. IOA-IOC reduce the inrush current and the initial voltage spike across the high-side resonant capacitor C2 so as to reduce stress on the components of the resonant converter.

[0049] Accordingly, the resonant converters shown in Figs. 5, 6, 8, and 9 can be easily implemented using commercially available control ICs for LLC resonant converters with high-side gate drive capability using a capacitive bootstrap, an example of which is shown in Fig. 12 and described above. Because commercially available control ICs for LLC resonant converters can only operate at frequency modulation mode, the duty cycles of the high-side switch Q1 and the low-side switch Q2 are not directly controllable. However, low-side PWM control can be easily implemented by adding a simple external circuit to selectively filter out a portion of each of the pulses included in low-side gate drive signals output by the control IC to provide the low-side gate drive signal Vgs2. High-side PWM control is difficult to implement with commercially available control ICs for LLC resonant converters because isolation between the circuit that provides pulse blanking (i.e., filtering or zeroing out a portion of each of the voltage pulses in the low-side gate drive signal Vgs2) and the circuit that generates the high-side gate drive signal should be considered. In particular, a bulky pulse transformer can be required. Thus, low-side PWM control provides an easier implementation of soft startup in a resonant converter when commercially available control ICs for LLC resonant converters are used.
The bleed resistor R, when connected in parallel with the high-side switch Q_1 or the high-side resonant capacitor C_I, can pre-discharge the high-side resonant capacitor C_I such that the voltage across the high-side resonant capacitor C_I is nearly zero before startup of the resonant converter. When the high-side switch Q_1 is turned on with full duty cycle at startup, no large inrush current spike is generated because the voltage across the resonant inductor L_r, L_{re} is small because of the small initial voltage on the high-side resonant capacitor C_I. The low-side PWM control can achieve similar soft-start performance as that of the high-side PWM control described above. Thus, by properly setting initial conditions before the startup of the resonant converter, inrush current can be avoided.

For a high-side gate drive using a capacitive bootstrap, the low-side switch Q_2 preferably turns on prior to the high-side switch Q_1 to pre-charge the bootstrap capacitor C_B. This arrangement charges the low-side resonant capacitor C_2 and discharges the high-side resonant capacitor C_I to some extent. Thus, the voltage across the high-side resonant capacitor C_I increases before the high-side switch Q_1 turns on, which results in larger inrush current. Reducing the capacitance of the bootstrap capacitor can reduce the inrush current caused by the voltage across the high-side resonant capacitor C_I increasing before the high-side switch Q_1 turns on. However, the capacitance of the bootstrap capacitor should be carefully selected to ensure reliable operation of the gate driver.

Other devices or circuits can be added to a resonant converter to achieve similar results as those achieved with the bleed resistor R. For example, a transistor or switch can be used in place of the bleed resistor R to selectively charge or discharge the high-side resonant capacitor C_I or the low-side resonant capacitor C_2. For example, before startup, the transistor or switch can be turned on to discharge the high-side resonant capacitor C_I or the low-side resonant capacitor C_2, and then the transistor or switch can be turned off so that the converter can startup.

Asymmetrical PWM control can be used in the resonant converters described above and controlled in a similar manner as high-side PWM control and low-side PWM control described in the preferred embodiments of the present invention. Fig. 11 shows gate drive waveforms for asymmetrical PWM control, including a high-side gate drive signal V_{gsl} for the...
high-side switch Ql and a low-side gate drive signal Vgs2 for the low-side switch Q2. If the high-
side gate drive signal Vgsl initially has a wider pulse width than the low-side gate drive signal
Vgs2, the bleed resistor R is preferably connected in parallel with the high-side switch Q1 or the
high-side resonant capacitor Cl. However, if the low-side gate drive signal Vgs2 initially has a
wider pulse width than the high-side gate drive signal Vgsl, the bleed resistor R is preferably
connected in parallel with the low-side switch Q2 or the low-side resonant capacitor C2.

[0054] The preferred embodiments of the present invention are described above with
respect to analog circuits. However, the preferred embodiments of the present invention can
also be implemented with digital circuits. In particular, the control IC for the resonant
converters can be a digital IC or an analog IC. Further, the preferred embodiments of the
present invention can be applied to any type of DC-to-DC converter, including LLC resonant
converters and LLC resonant converters.

[0055] If a single resonant capacitor is used instead of split resonant capacitors Cl and C2,
then the bleed resistor R can be placed in parallel with the single resonant capacitor.

[0056] It should be understood that the foregoing description is only illustrative of the
present invention. Various alternatives and modifications can be devised by those skilled in the
art without departing from the present invention. Accordingly, the present invention is
intended to embrace all such alternatives, modifications, and variances that fall within the
scope of the appended claims.
WHAT IS CLAIMED IS:

1. A converter with soft start comprising:
 a transformer;
 first and second switches connected to the transformer to supply power to the transformer;
 a controller connected to the first and second transistors and arranged to, during startup of the converter, switch the first switch with a variable duty cycle and switch the second switch with either a fixed duty cycle or a variable duty cycle with pulses larger than pulses of the variable duty cycle of the first switch; and
 a bleed device arranged to set initial conditions of the converter before startup of the converter by discharging a capacitor in the converter before startup.

2. A converter of claim 1, wherein the bleed device is connected in parallel with the second switch.

3. A converter of claim 2, wherein:
 the first switch is a high-side switch; and
 the second switch is a low-side switch.

4. A converter of claim 2, wherein:
 the first switch is a low-side switch; and
 the second switch is a high-side switch.

5. A converter of claim 1, further comprising first and second capacitors connected in series; wherein
 the first capacitor is connected to the first transistor; and
 the second capacitor is connected to the second transistor.

6. A converter of claim 5, wherein:
the bleed device is connected in parallel with the second capacitor; and
the second capacitor is the capacitor in the converter discharged by the bleed device
before startup.

7. A converter of claim 6, wherein:
the first switch is a high-side switch;
the second switch is a low-side switch;
the first capacitor is a high-side capacitor; and
the second capacitor is a low-side capacitor.

8. A converter of claim 6, wherein:
the first switch is a low-side switch;
the second switch is a high-side switch;
the first capacitor is a low-side capacitor; and
the second capacitor is a high-side capacitor.

9. A converter of claim 1, wherein the bleed device discharges the capacitor in the
converter before startup to zero or nearly zero.

10. A converter of claim 1, further comprising a resonant inductor.

11. A converter of claim 10, wherein the resonant inductor is a discrete inductor or a
leakage inductance of the transformer.

12. A converter of claim 1, wherein the bleed device includes a resistor.

13. A converter of claim 1, wherein the bleed device includes a switch.

14. A converter of claim 1, wherein the converter is a resonant converter.
15. A converter of claim 1, wherein switching of the first switch is center-aligned, left-aligned, or right-aligned.

16. A soft-start method for a converter comprising the steps of:

providing a converter that includes:

a transformer; and

first and second switches connected to the transformer to supply power to the transformer;

before startup of the converter, setting initial conditions of the converter by discharging a capacitor in the converter before startup; and

during startup of the converter, switching the first switch with a variable duty cycle and switching the second switch with either a fixed duty cycle or a variable duty cycle with pulses larger than pulses of the variable duty cycle of the first switch.

17. A soft-start method of claim 16, wherein the setting initial conditions step is performed using a bleed device connected in parallel with the second switch.

18. A soft-start method of claim 16, wherein:

the converter further includes first and second capacitors connected in series;

the first capacitor is connected to the first transistor;

the second capacitor is connected to the second transistor;

the setting initial conditions step is performed using a bleed device connected in parallel with the second capacitor.

19. A soft-start method of claim 16, wherein discharging of the capacitor in the converter before startup discharges the capacitor to zero or nearly zero.

20. A soft-start method of claim 16, wherein the converter is a resonant converter.
Fig. 1 Prior Art

Fig. 2
Fig. 5

Fig. 6
Fig. 11

Fig. 12
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H02M 3/28(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H02M 3/28; H02M 3/335

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: resonant converter, switch, duty cycle, soft start-up, inrush current

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2012-0044721 A1 (JIN-HUNG LIAO et al.) 23 February 2012</td>
<td>1,5,9-14,16,19-20</td>
</tr>
<tr>
<td></td>
<td>See paragraphs [0003], [0014H0015], claim 1 and figures 1, 4.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0164437 A1 (BOSHENG SUN et al.) 07 July 2011</td>
<td>2-4,6-8,15,17-18</td>
</tr>
<tr>
<td></td>
<td>See paragraphs [0014], [0025], claim 1 and figure 4.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 2009-0316442 A1 (REINHOLD ELFERICH) 24 December 2009</td>
<td>1,5,9-14,16,19-20</td>
</tr>
<tr>
<td></td>
<td>See paragraph [0051] and figure 1.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 2009-0310387 A1 (WEI-CHUN LU) 17 December 2009</td>
<td>2-4,6-8,15,17-18</td>
</tr>
<tr>
<td></td>
<td>See paragraphs [0027]-[0028], claim 1 and figures 4-5.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 2012-0294045 A1 (MARTIN FORNAGE et al.) 22 November 2012</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>See paragraph [0024] and claim 1.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search

07 May 2014 (07.05.2014)

Date of mailing of the international search report

07 May 2014 (07.05.2014)

Name and mailing address of the ISA/KR

National Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer

PARK, Hye Lynn
Telephone No. +82-42-481-3463

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>us 2012-0044721 Al</td>
<td>23/02/2012</td>
<td>JP 2012-044853 A</td>
<td>01/03/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201210184 A</td>
<td>01/03/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>us 8437153 B2</td>
<td>07/05/2013</td>
</tr>
<tr>
<td>us 2011-0164437 Al</td>
<td>07/07/2011</td>
<td>CN 102783004 A</td>
<td>14/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013-516955 A</td>
<td>13/05/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>us 8018740 B2</td>
<td>13/09/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011-084379 A2</td>
<td>14/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011-084379 A3</td>
<td>06/10/2011</td>
</tr>
<tr>
<td>us 2009-0316442 Al</td>
<td>24/12/2009</td>
<td>CN 101473518 A</td>
<td>01/07/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101473518 B</td>
<td>14/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2036193 A2</td>
<td>18/03/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-1377723 B1</td>
<td>24/03/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2009-0023709 A</td>
<td>05/03/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>us 8174851 B2</td>
<td>08/05/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2007-148271 A2</td>
<td>27/12/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2007-148271 A3</td>
<td>06/03/2008</td>
</tr>
<tr>
<td>us 2009-0310387 Al</td>
<td>17/12/2009</td>
<td>us 7948775 B2</td>
<td>24/05/2011</td>
</tr>
<tr>
<td>us 2012-0294045 Al</td>
<td>22/11/2012</td>
<td>cn 103518166 A</td>
<td>15/01/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2012-159101 Al</td>
<td>22/11/2012</td>
</tr>
</tbody>
</table>