(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2001年8月30日 (30.08.2001)

(10) 国際公開番号
WO 01/62291 A1

A61K 45/00, 38/08, 38/48, A61P 1/04, 1/12

(21) 国際出願番号:
PCT/JP01/01188

(22) 国際出願日:
2001年2月20日 (20.02.2001)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(30) 優先権データ:

(21) 出願人/米国を除く全ての指定国について:
扶桑薬品工業株式会社 (FUSO PHARMACEUTICAL INDUSTRIES, LTD.) [JP/JP]; 〒541-0045 大阪府大阪市中央区道修町1丁目7番10号 Osaka (JP).

(27) 発明者:
および

(74) 代理人: 青山 優, 外 (AOYAMA, Tamotsu et al.); 〒540-0001 大阪府大阪市中央区見1丁目3番7号 IMPビル 青山特許事務所 Osaka (JP).

(27) 発明者/出願人/米国についてのみ:
荒木昭宏 (ARAKI, Hiromasa) [JP/JP]; 〒639-1017 奈良県大和郡山市薬原町1-12 Nara (JP);
川畑結吉 (KAWABATA, Atsufumi) [JP/JP]; 〒635-0022 奈良県生駒郡金ヶ崎町之出町16-33-204 Nara (JP);
黒田良太郎 (KURODA, Ryotaro) [JP/JP]; 〒542-0012 大阪府大阪市中央区五

(54) Title: COMPOSITIONS FOR PREVENTING AND TREATING DIGESTIVE DISEASES

(54) 発明の名称: 消化器系疾患の予防、治療用組成物

(57) Abstract: Compositions for safely and effectively preventing and treating digestive diseases, in particular, gastric ulcer, duodenal ulcer, gastritis, diarrhea, enteritis, etc. Compositions having a novel function mechanism for solving the problem of side effects which can be hardly overcome by the publicly known function mechanisms. More particularly speaking, medicinal compositions essentially containing a component activating PAR-2 which are useful in controlling gastric hydrochloric acid secretion, promoting digestive mucus secretion, protecting gastric mucosa, repairing gastric tissues and preventing and treating gastric diseases.

WO 01/62291 A1

/経葉有/
本発明は、安全で効果的な消化器系疾患の予防、治療用組成物、特に胃潰瘍、十二指腸潰瘍、胃炎、下痢、腸炎等を治療、予防するための組成物を提供する。また、これまでの公知の作用機序では困難であった副作用の問題を解決すべく、新規な作用機序を有する組成物を提供する。詳細には、P A R - 2を活性化させる成分を必須成分とする胃酸分泌抑制用、消化管粘液分泌促進用、消化管粘膜保護用、消化管組織修復用、消化器系疾患の予防、治療用として有用な医薬組成物を提供する。
消化器系疾患の予防、治療用組成物

技術分野

本発明は、消化器系疾患予防、治療用組成物、特に、胃潰瘍、十二指腸潰瘍、胃炎、下痢、腸炎等を予防および治療するための組成物に関する。

背景技術

胃潰瘍、十二指腸潰瘍等の消化器系潰瘍の原因は、攻撃因子と防御因子とのバランスの破綻により生じる。破綻を惹起する因子としては、薬物（例えば、非ステロイド系消炎剤、副腎皮質ホルモン剤、抗生物質、抗ガン剤、経口血糖降下剤）、ストレス、アルコール、腐食性薬物、肝硬変、アミクサス、食生活等が挙げられる。現在、臨床においては、攻撃因子抑制薬、防御因子増強薬およびこれらの組み合わせが使用されている。

攻撃因子抑制薬としては、制酸薬（例えば、重曹、水酸化アルミニウムゲル、酸化マグネシウム等）、抗コリン薬（例えば、硫酸アトロピン、塩酸ビレンゼピル等）、H2受容体拮抗薬（例えば、シメチジン、ラニチジン、フォモチジン、ニザチジン、ロキサチジン等）、プロトンポンプ阻害薬（例えば、オメプラゾール、ランソプラゾール、ラベプラゾールナトリウム等）、抗ガストリン薬（例えば、プログルミド、セクレチン、ウロガストロンおよび抗ペプシン薬（ショ糖硫酸エステル、スクラルファート等）等が臨床において使用されている。

防御因子増強薬としては、粘膜保護薬（例えば、スクラルファート、レパミピド、テプレノン等）、粘膜被覆薬（例えば、アルギン酸ナトリウム、アズノール製剤等）、組織修復促進薬（例えば、アセグルタミドアルミニウム、アルジオキサ、ゲファルナート等）、粘液産生促進薬（例えば、プログルミド、テプレノン、セクレチン、アルジオキサ等）、粘膜微小循環改善薬（例えば、塩酸セトラキサート、ベネキサート、スルピリド等）、プロスタグランジン合成促進薬（例えば、ソファルコン）およびプロスタグランジン製剤（例えば、オルソプロスチル、ミ
ソプロストール、エンプロスチル等）等が臨床において使用されている。また、慢性胃炎には、消化管運動機能改善薬（例えば、シサブリド、ナバジシル酸アクランニウム、ベタネコール、ドンベリシン、メトクロプラミド、マレイン酸トリメブチン）も使用されている。

攻撃因子抑制薬であるH₂受容体拮抗薬およびプロトンポンプ阻害薬等は強力な胃酸分泌抑制作用を有し、かつ顕著な治療効果を有しているため広く使用されている。しかしながら、一旦治癒した後であっても薬物の服用を中止すると、胃酸分泌のリバウンド、潰瘍の再発や悪化が高頻度で認められることが明らかとなっている。また、H₂受容体拮抗薬では治癒しない潰瘍が存在すること、およびプロトンポンプ阻害薬の使用によってはエンテロクロマフィン様細胞の過形成、高ガストリン血症、胃カルチノイドの出現等が報告され、その投薬量が制限されている等の問題があった。また、防御因子増強薬は上記攻撃因子拮抗薬に比較して作用が穏やかであるが、治療効果は補助的なものであった。そのため、消化器系疾患を有する患者および内科医からは、H₂受容体拮抗薬およびプロトンポンプ阻害薬ではなく、他の作用機序を介して安全で効果的に用いることが可能である攻撃因子拮抗薬または防御因子増強薬の開発が望まれていた。

PARにはPAR－1、PAR－2、PAR－3およびPAR－4のサブタイプが存在し、それぞれ機能が異なることが報告されている。PAR－1、PAR－3およびPAR－4はトロンピンによって活性化され（Vu, T. K. et al.,

しかし、P A R - 2の胃酸分泌抑制作用、粘液分泌促進作用、粘膜保護作用等の消化器系に関する報告は現在まで存在しない。

発明の目的

本発明は上記従来技術に鑑みて行われたものであり、本発明の目的は、安全で効果的な消化器系疾患の予防、治療用組成物、特に胃潰瘍、十二指腸潰瘍、胃炎、下痢、腸炎等を治療および／または予防するための組成物を提供することである。また、これまでの公知の作用機序では困難であった副作用の問題を解決すべく、新規な作用機序を有する上記組成物を提供することである。

発明の概要

本発明者らは、消化器系疾患、特に胃潰瘍、十二指腸潰瘍、胃炎、下痢、腸炎等を治療および／または予防するための組成物として好ましい薬剤を開発すべく研究を行い、新たな作用機序を見出すために誠意研究した結果、P A R - 2を活性化させる成分（アゴニスト）が消化器系に対する作用を有すること、すなわち、胃酸分泌を抑制し、消化管粘液分泌を促進し、さらに粘膜保護作用を有することを初めて見出し、本発明を完成した。

すなわち、本発明は、

（1）P A R - 2を活性化させる成分を含むことを特徴とする胃酸分泌抑制用組成物、

（2）P A R - 2を活性化させる成分を含むことを特徴とする消化管粘液分泌促進用組成物、

（3）P A R - 2を活性化させる成分を含むことを特徴とする消化管粘膜保護
用組成物、
（4）PＡＲ－２を活性化させる成分を含むことを特徴とする消化器系疾患の予防、治療用組成物、
（5）消化器系疾患が、胃潰瘍、十二指腸潰瘍、胃炎、下痢および腸炎から選択される疾患である上記（4）の組成物、
（6）成分がペプチドである上記（1）～（5）いずれか1項の組成物、
（7）ペプチドが、Ser-Leu-Ile-Gly-Arg-Leu-NH₂（配列番号1）およびtrans-シンナモイル-Leu-Ile-Gly-Arg-Leu-オルニチン-NH₂（配列番号2）から成る群からなる少なくとも1種の配列を含む上記（6）の組成物、
（8）成分がタンパク質である上記（1）～（5）いずれか1項の組成物、
（9）タンパク質がトリプシンおよびトリプターゼから選択される少なくとも1種である上記（8）の組成物、
（10）成分を失活化または分解する物質を阻害する物質を組み合わせる上記（1）～（9）いずれか1項の組成物、
（11）成分を失活化または分解する物質を阻害する物質を併用する上記（10）の組成物、
（12）成分を失活化または分解する物質を阻害する物質を配合する上記（10）の組成物、
（13）阻害する物質がペプチダーゼインヒビターである上記（10）～（12）いずれか1項の組成物、
（14）ペプチダーゼインヒビターがアマスタチンである上記（13）の組成物、および
（15）DDS製剤化されている上記（1）～（14）いずれか1項の組成物、を提供するものである。

図面の簡単な説明
図1は、In vivoにおけるカルバコール誘発胃酸分泌亢進に対するPＡＲ－２アゴニストペプチドの胃酸分泌抑制作用を示す図である。**P<0.01 vs V（Tukeyテスト）
図2は、In vivoにおけるPAR-2アゴニストペプチドの胃粘膜細胞からのムチン分泌に対する作用を示す図である。"P<0.01 vs V (Tukeyテスト)。

図3は、In vivoにおけるエタノールによる胃粘膜傷害に対するPAR-2アゴニストペプチドの作用を示す図である。"P<0.05 vs V (Tukeyテスト)。

図4は、In vivoにおける塩酸-エタノールによる胃粘膜傷害に対するPAR-2アゴニストペプチドの作用を示す図である。"P<0.01 vs V (Tukeyテスト)。

発明の詳細な説明

1997）等が挙げられる。さらに、PAR-2に対する抗体またはそのフラグメントも、PAR-2を特異的に活性化するタンパク質またはペプチドとなる可能性がある。

本明細書で用いる「ペプチド」なる用語は、オリゴペプチドおよび比較的短いポリペプチドをいう。ペプチドは、例えば、2〜40のアミノ酸残基、好ましくは3〜20アミノ酸残基、より好ましくは5〜15アミノ酸残基を含む。ペプチドは天然に存在するものであってもよく、または化学的に合成されたものであってもよい。ペプチドは、例えば、Carpino, L. A. et al., J. Org. Chem., 37, 3404-3409, 1972に記載されるような公知の方法にしたがって、合成することができる。ペプチドを組換えDNA技術を使用して製造することも可能である。さらに、ペプチドは修飾または非天然アミノ酸残基を含んでいてもよい。

本明細書で用いる「タンパク質」なる用語は、ペプチドに比較してより長いポ
リベブチドをいう。タンパク質は天然供給源から精製されたものであってもよく、またはこのタンパク質をコードするDNAを含む組換え宿主細胞を培養することによって製造してもよい。ベブチドと同様に、タンパク質を化学的に合成することも可能である。タンパク質は修飾または非天然アミノ酸残基を含んでいてもよい。

かくして、PARCHを活性化させる成分は、胃酸分泌を抑制し、消化管粘液分泌を促進し、さらに粘膜保護作用を有するので、本発明のPARCHを活性化させる成分は、胃酸分泌抑制用組成物、消化管粘液分泌促進用組成物、消化管組織修復用組成物および消化管粘膜保護用組成物として有用であり、消化器系疾患の予防、治療用組成物、特に胃潰瘍、十二指腸潰瘍、胃炎、下痢、腸炎等を予防および/または治療するのに有用である。

予防剤または治療剤として用いる場合、本発明の組成物を、そのままあるいは水に希釈する等の各種処理を施して使用することができ、医薬品、医薬部外品等に配合して使用することができる。この場合、PARCHを活性化させる成分の配合量は製品に応じて適宜選択されるところではあるが、通常全身投与製剤の場合には、0.001～5.0重量％、特に0.01～1.0重量％とすることができる、0.001％より少ないと満足する予防または治療作用が認められない可能性があり、また、50％を越えると製品そのもののが安定性や香味等の特性が損なわれることがある。

本発明の組成物に含まれるPARCHを活性化する成分は、製剤学的に許容される塩として製剤中に含有されているともよい。製剤学的に許容される塩としては、例えば、無機塩基、有機塩基等の塩基との塩、無機酸、有機酸、塩基性または酸性アミノ酸などの酸付加塩等が挙げられる。無機塩基としては、例えば、ナトリウム、カリウム等のアルカリ金属、カルシウム、マグネシウム等のアルカリ土類金属、アルミニウム、アンモニウム等が挙げられる。有機塩基としては、例えば、エタノールアミン等の第一級アミン、ジエチルアミン、ジエタノールアミン、ジシクロヘキシルアミン、N,N-ジベンジルエチレンジアミン等の第二級アミン、トリメチルアミン、トリエチルアミン、ビリジン、ピコリン、トリエタノールアミン等の第三級アミン等が挙げられる。無機酸としては、例えば、塩酸、臭化水素酸、硝酸、硫酸、リン酸等が挙げられる。有機酸としては、例えば、ギ酸、酢
酸、乳酸、トリフルオロ酢酸、フマール酸、シュウ酸、酒石酸、マレイン酸、安息香酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等が挙げられる。塩基性アミノ酸としては、例えば、アルギニン、リジン、オルニチン等が挙げられる。酸性アミノ酸としては、例えば、アスパラギン酸、グルタミン酸等が挙げられる。

また、ペプチドおよびタンパク質は生体に存在するペプチダーゼにより分解されることから、PAR-2を活性化させる成分としてペプチドまたはタンパク質を用いる場合、ペプチダーゼインヒビターであるアマスタチン等の薬物と併用あるいは組み合わせることにより、PAR-2を活性化する作用の持続性を高めることができる。上記成分がペプチドでない場合、当業者は適切に、この成分を失活化または分解する物質を同定し、これを阻害する物質を選択し、これを併用あるいは配合できる。

本発明の組成物の投与方法としては、経口投与、静脈内投与以外に、経粘膜投与、経皮投与、筋肉内投与、皮下投与、直腸内投与等が適宜選択でき、その投与方法に応じて、種々の製剤として用いることができる。

以下に、各製剤について記載するが、本発明において用いられる剤型はこれらに限定されるものではなく、医薬製剤分野において通常用いられる各種製剤として用いることができる。

消化器系疾患の予防薬または治療薬として用いる場合には、PAR-2を活性化させる成分の経口投与量は、3mg/kg〜300mg/kgの範囲が好ましく、より好ましくは10mg/kg〜100mg/kgである。全身投与を行う場合、特に静脈内投与の場合には老若男女または体型等により変動があるが、有効血中濃度が2μg/mL〜200μg/mL、より好ましくは5μg/mL〜100μg/mLの範囲となるように投与すべきである。

経口投与を行う場合の剤型として、散剤、顆粒剤、カプセル剤、丸剤、錠剤、エリキシル剤、懸濁剤、乳剤およびシロップ剤等があり、適宜選択することがでできる。また、それら製剤について徐放化、安定化、易崩壊化、難崩壊化、腸溶性化、易吸収化等の修飾を施すことができる。また、口腔内局所投与を行う場合の剤型として、咀嚼剤、舌下剤、バッカル剤、トローチ剤、軟膏剤、貼布剤、液剤
等があり、適宜選択することができる。また、それら製剤について徐放化、安定化、易崩壊化、難崩壊化、腸溶性化、易吸収化等の修飾を施すことができる。

上記の各剤型について、公知のドラッグデリバリーシステム（D DDS）の技術を採用することができる。本明細書でいうDDS製剤は、徐放化製剤、局所適用製剤（トローチ、バックル錠、舌下錠等）、薬物放出制御製剤、腸溶性製剤および胃溶性製剤等、投与経路、バイオアペイラビリティー、副作用等を勘案した上で、最適の製剤形態にした製剤をいう。

DDSの構成要素には基本的に薬物、薬物放出モジュール、被膜および治療プログラムから成り、各々の構成要素について、特に放出を停止させた時に速やかに血中濃度が低下する半減期の短い薬物が好ましく、投与部位の生体組織と反応しないおおいが好ましく、さらに、設定された期間において最良の薬物濃度を維持する治療プログラムを有するのが好ましい。薬物放出モジュールは基本的に薬物貯蔵庫、放出制御部、エネルギー源および放出孔または放出表面を有している。これら基本的構成要素は全て揃っている必要はなく、適宜追加あるいは削除等を行い、最良の形態を選択することができる。

DDSに使用できる材料としては、高分子、シクロデキストリン誘導体、レシチン等がある。高分子には不溶性高分子（シリコーン、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチルセルロース、セルロースアセテート等）、水溶性高分子およびヒドロキシルゲル形成高分子（ポリアクリルアミド、ポリヒドロキシエチルメタクリレート架橋体、ポリアクリル酸樹体、ポリビニルアルコール、ポリエチレンオキシド、水溶性セルロース誘導体、架橋ポロキサマー、キチン、キトサン等）、徐溶解性高分子（エチルセルロース、メチルビニルエーテル・無水マレイン酸共重合体の部分エステル等）、胃溶性高分子（ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、カルメロースナトリウム、マクロゴール、ポリビニルビロリドン、メタアクリル酸ジメチルアミノエチル・メタアクリル酸メチルコポリマー等）、腸溶性高分子（ヒドロキシプロピルメチルセルロースフタレート、酢酸フルタルセルロース、ヒドロキシプロピルメチルセルロースアセテートサクシネット、カルボキシメチルエチルセルロース、アクリル酸系ポリマー等）、生分解性高分子（熱凝固または
架橋アルブミン、架橋ゼラチン、コラーゲン、フィブリン、ポリシアノアクリレート、ポリグリコール酸、ポリ乳酸、ポリβヒドロキシ酢酸、ポリカプロラクトン等）があり、剤型によって適宜選択することができる。

特に、シリコーン、エチレングリコールビニル共重合体、エチレン−ビニルアルコール共重合体、メチルビニルエーテル・無水マレインサン共重合体の部分エステルは薬物の放出制御に使用でき、セルロースアセテートは浸透圧ボンプの材料として使用でき、エチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロースは徐放性製剤の膜素材として使用でき、ポリアクリル架橋体は口腔粘膜あるいは眼粘膜付着剤として使用できる。

また、製剤中にはその剤形（経口投与剤、注射剤、塗剤等の公知の剤形）に応じて、溶剤、賦形剤、コーティング剤、基剤、結合剤、滑沢剤、崩壊剤、溶解補助剤、懸濁剤、粘稠剤、乳化剤、安定剤、緩衝剤、等張化剤、無痛化剤、保存剤、塩味剤、芳香剤、着色剤等の添加剤を加えて製造することができる。

これらを各種添加剤について、それぞれ具体例を挙げて例示するが、これらに特に限定されるものではない。

溶剤：精製水、注射用水、生理食塩水、ラッカセイ油、エタノール、グリセリン、

賦形剤：デンプン類、乳糖、ブドウ糖、白糖、結晶セルロース、硫酸カルシウム、炭酸カルシウム、タルク、酸化チタン、トレハロース、キシリトール、

コーティング剤：白糖、ゼラチン、酢酸フタル酸セルロースおよび上記記載した高分子、

基剤：ワセリン、植物油、マクロゴール、水中油型乳剤性基剤、油中水型乳剤性基剤、

結合剤：デンプンおよびその誘導体、セルロースおよびその誘導体、ゼラチン、アルギン酸ナトリウム、トラガント、アラビアゴム等の天然高分子化合物、ポリビニルピロリドン等の合成高分子化合物、デキストリン、ヒドロキシプロピルスターチ、

滑沢剤：ステアリン酸およびその塩類、タルク、ワックス類、コムギデンプン、マクロゴール、水素添加植物油、ショ糖脂肪酸エステル、ポリエチレングリコール
崩壊剤：デンプンおよびその誘導体、寒天、ゼラチン末、炭酸水素ナトリウム、セルロースおよびその誘導体、カルメロースカルシウム、ヒドロキシプロピルスターチ、カルボキシメチルセルロースおよびその塩類ならびにその架橋体、低置換型ヒドロキシプロピルセルロース、
溶解補助剤：シクロデキストリン、エタノール、プロピレングリロール、ポリエチレングリコール、
懸濁化剤：アラビアゴム、トラガント、アルギン酸ナトリウム、モノステアリン酸アルミニウム、クエン酸、各種界面活性剤、
粘稠化剤：カルメロースナトリウム、ポリビニルピロリドン、メチルセルロース、ポリプロピレングリコール、トラガント、アラビアゴム、アラビアゴム、アリグン酸ナトリウム、
乳化剤：アラビアゴム、コレステロール、トラガント、メチルセルロース、各種界面活性剤、レシチン、
安定剤：亜硫酸水素ナトリウム、アスコルピン酸、トコフェロール、キレート剤、不活性ガス、還元性物質、
緩衝剤：リン酸水素ナトリウム、酢酸ナトリウム、ホウ酸、
等張化剤：塩化ナトリウム、ブドウ糖、
無痛化剤：塩酸プロカイン、リドカイン、ベンジアルコール、
保存剤：安息香酸およびその塩類、バリオキシ安息香酸エステル類、クロロプロタン、逆性石けん、ベンジアルコール、フェノール、チルメサール、
発味剤：水糖、サッカリン、カシソウエキス、ソルビトール、キシリトール、グリセリン、
芳香剤：トウヒチンキ、ローズ油、
着色剤：水溶性食用色素、レーキ色素。
上記したように、医薬品を徐放化製剤、腸溶性製剤または薬物放出制御製剤等のDDS製剤化することにより、薬物の有効量の絶絶化、バイオアベイラビリティーの向上等の効果が期待できる。しかし、PAR-2を活性化させる成分は生体内で失活化または分解され、その結果、所望の効果が低下または消失す

アミノペプチダーゼ阻害薬としては、アマスタチン、アファメンニンA、アファメンニンBおよびベスタチン等が知られている。これらの化合物は製剤中に配合してもよく、または別々に投与してもよい。上記成分がペプチドではない場合、当業者は適切に、この成分を失活化または分解する物質を同定し、これを阻害する物質を選択し、配合あるいは併用することができる。

製剤中には、上記以外の添加物として通常の組成物に使用されている成分を用いることができ、これらの成分の添加量は、本発明の効果を妨げない範囲で通常量とすることができる。

本発明の組成物は、ヘリコバクター・ピロリ菌の除菌療法にも併用できる。例えば、オメピラゾール40mg（1日2回）とアモキシシリン1,500mg（1日3回）に加えて、本発明の組成物300mg（1日3回）を併用できる。

慢性消化性潰瘍、若年者に多い潰瘍性大腸炎、クローン病等の難治性消化管障害の治療にも有用である。

つぎに、実施例を挙げて本発明をさらに詳しく説明するが、本発明は、これらに限定されるものではない。

実施例1

各種ペプチドの合成方法

Ser-Leu-Ile-Gly-Arg-Leu-NH₂（配列番号1、SLp-NH₂）の合成

Fmoc-PAL-PEG-PS-樹脂（PEバイオシステムズ）を1.33g（0.17meq/g）秤取し、これにジメチルホルムアミド10mlを加えて2～3時間放置し、樹脂を膨張させた後、ペプチド合成用のカラムに充填した。

Fmoc-L-Leu-OH 283mg（WAKO）、Fmoc-L-Arg（Pbf）-OH 519mg（PEバイオシステムズ）、Fmoc-L-Gly-283mg（BACHEM）、Fmoc-L-Ile-OH 283mg（WAKO）、Fmoc-L-Leu-OH 283mg（WAKO）、Fmoc-L-Ser(tBu)-OH 307mg（PEバイオシステムズ）を試験管に秤量し、これにHATU（0-（7-アザベンゾトリアゾール-1-イル）-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート）（PEバイオシステムズ）を各380mg加えた。上記のアミノ酸をC末端から順に並べ、ペプチド合成機PIONEER（PEバイオシステムズ）を用いて合成を行った。合成したペプチド-樹脂をTFA-H₂O-フェノールトリイソプロピルシラン（8:8:0.5:0.5:0.2）の混合溶液で3時間処理した後、樹脂を通過し、濁液をエーテルで再結晶し、粗ペプチドを得た。次に、この粗ペプチドをHPLC（A:0.02%TFA含H2O、B:0.02%TFA含50%CH₃CN）に供し精製した。

得られたフラクションを凍結乾燥し、Ser-Leu-Ile-Gly-Arg-Leu-NH₂を得た。

Leu-Ser-Ile-Gly-Arg-Leu-NH₂（配列番号5、LSp-NH₂）

LSp-NH₂はSLp-NH₂のSerとLeuを入れ替えることにより不活性体となる

上記の方法に準じてペプチド合成用カラムを作製し、Fmoc-L-Leu-OH 283mg（WAKO）、Fmoc-L-Arg（Pbf）-OH 519mg（PEバイオシステムズ）、Fmoc-L-Gly-283mg（BACHEM）、Fmoc-L-Ile-OH 283mg（WAKO）、Fmoc-L-Ser(tBu)-OH 307mg（PEバイオシステムズ）、Fmoc-L-Leu-OH 283mg（WAKO）を試験管に秤量し、これにHATU各380mg加えた。上記のアミノ酸をC末端から順に並べ、ペプチド合成機PIONEERを用いて合成を行った。合成したペプチド-樹脂を上記した方法により粗ペプチドを得、その後HPLCに供し精製した。得られたフラクションを凍結乾燥してLeu-Ser-Ile-Gly-Arg-Leu-NH₂を得た。

また、同じく実施例で使用したアゴニストペプチドであるtrans-シンナモイル-Leu-Ile-Gly-Arg-Leu-オルニチン-NH₂（配列番号2、tLp-NH₂）は、米国カル
ガリー大学医学部のHollenberg, M. D. 教授より御供与いただいた。

PAR-2を活性化させる成分である他の各種ペプチドは、例えば、以下のようにして合成できる。

Ser-Phe-Leu-Leu-Arg-NH₂（配列番号3、SFp-NH₂）の合成

Fmoc-PAL-PEG-PS-樹脂(PEバイオシステムズ)を1.33g(0.17meq/g)秤取し、これにジメチルホルムアミド10mLを加えて2〜3時間放置し、樹脂を膨張させた後、ペプチド合成用のカラムに充填する。

Fmoc-L-Arg(Pbf)-OH 519mg (PEバイオシステムズ)、Fmoc-L-Leu-OH 283mg(WAKO)、Fmoc-L-Leu-OH 283mg(WAKO)、Fmoc-L-Phe-OH 305mg(WAKO)、Fmoc-L-Ser(tBu)-OH 307mg(PEバイオシステムズ)を試験管に秤量し、これにHATU (PEバイオシステムズ)を各380mg加える。上記のアミノ酸をC末端から順に並べ、ペプチド合成機PIONEER(PEバイオシステムズ)を用いて合成を行う。合成したペプチド-樹脂をTFA-Η₂O-フェノール-トリイソプロピルシラン(8.8:0.5:0.5:0.2)の混合溶液で3時間処理した後、樹脂を漉過し、漉液をエーテルで再結晶し、粗ペプチドを得る。次に、この粗ペプチドをHPLC(A:0.02%TFA含H₂O、B:0.02%TFA含50%CH₃CN)に供し精製する。得られたフラクションを凍結乾燥することにより、Ser-Phe-Leu-Leu-Arg-NH₂を得ることができる。

Ser-Leu-Ile-Gly-Arg-Leu-OH（配列番号4、SLp-OH）の合成

Fmoc-L-Leu-PEG-PS-樹脂(PEバイオシステムズ)を1.00g(0.21meq/g)秤取し、これにジメチルホルムアミド10mLを加えて2〜3時間放置し、樹脂を膨張させた後、ペプチド合成用のカラムに充填する。

Fmoc-L-Arg(Pbf)-OH 519mg (PEバイオシステムズ)、Fmoc-L-Gly-OH 238mg(BACHEM)、Fmoc-L-Ile-OH 283mg(WAKO)、Fmoc-L-Leu-OH 283mg(WAKO)、Fmoc-L-Ser(tBu)-OH 307mg(PEバイオシステムズ)を試験管に秤量し、これにHATU各380mg加える。上記のアミノ酸をC末端から順に並べ、ペプチド合成機PIONEERを用いて合成を行う。合成したペプチド-樹脂を上記した方法により粗ペプチドを得、その後、HPLCに供し精製する。得られたフラクションを凍結乾燥することにより、Ser-Leu-Ile-Gly-Arg-Leu-OHを得ることができる。
実施例2

カルパコール誘発胃酸分泌亢進に及ぼす影響

使用動物

実験には5週齢のWistar系雄性ラットを使用した。各動物は室温23±2℃、湿度50±5%および12時間の明暗サイクル（明期：07:00から19:00）の環境下で1週間の予備飼育の後、実験に供した。予備飼育期間および実験期間中は水および固型飼料を自由に摂取させた。

また、実験に用いた例数は全て4〜14匹であり、結果を平均値±標準誤差で示した。有意差検定はTukeyの多重比較検定で行った。

方法

18〜24時間の絶食後、ラットをエーテルで麻酔し、胸部剝状骨下端下方を、約1cm開腹した。開腹孔より十二指腸をはさみだし、幽門と十二指腸の接合部を結紮し、開腹部を縫合した。その30分後にラットを放血致死させ、胃を取り出し、胃液を採取した。採取した胃液を濁過した後、胃液中の酸度を滴定法により測定した。カルパコール（60μg/kg）は幽門結紮直後に皮下投与し、その1分後にアマスタチン（2.5μmol/kg）を、また、その1分後にSLp-NH₂およびLSp-NH₂を静脈内投与し、カルパコールの投与によって亢進した胃酸分泌に対する作用を調べた。

結果

結果を図1に示す。

図1において、縦軸は胃酸分泌量（μmol/30min）を、横軸は投与薬物および投与量（Vは、ビヒクルの投与）を示す。図1に示すとく、PAR-2アゴニストペプチドであるSLp-NH₂は1.25から5μmol/kgの用量においてカルパコールの投与によって亢進した胃酸分泌を用量依存的に抑制した。これに対して、SLp-NH₂のコントロールペプチドであるLSp-NH₂は5μmol/kgの用量においてもカルパコールによって亢進した胃酸分泌に対して何ら影響を与えなかった。

実施例3

ラット胃粘膜細胞からのムチン分泌に及ぼす影響

方法
上記と同様の方法で胃幽門を結紮した。結紮直後にアマスタチン（2.5 µmol/kg）を、また、アマスタチン投与1分後にSλp-NH₂、LSp-NH₂およびtclp-NH₂を静脈内投与した。結紮30分後にラットを放血致死させ、胃を取り出し、胃液を採取した。得られた胃液を10000gで30分間遠心分離し、上清をMillipore MC FREE（MW10000）で反復洗浄した後凍結乾燥した。この凍結乾燥サンプルに2MのTFAを加え100℃の条件下で4時間加水分解を行った。その後遠心分離を行い、上清を蒸発乾固した。この蒸発乾固したサンプルに0.1 M Tris-HCl 200 µLを加え溶解した。このサンプル50 µLにガラクトースキシダーゼ（1 U）、パーオキシダーゼ（0.5 µL）およびHPPA（0.25 µ mol）を含む反応溶液を150 µL加え37℃で30分間インキュベートした後、励起波長320nmおよび蛍光波長405nmでガラクトース量を測定した。
結果
結果を図2に示す。
図2において、縦軸はムチン分泌量（ng ガラクトース）を、横軸は投与薬物および投与量（Vは、ビヒクルの投与）を示す。図2に示すごとく、Sλp-NH₂は0.02から5 µ mol/kgの用量においてラット胃粘膜細胞からのムチン分泌を用量依存的に亢進させた。また、Sλp-NH₂よりもP A R - 2特異的であるアゴニストペプチドのtclp-NH₂もSλp-NH₂と同様にムチン分泌を亢進させた。これに対して、Sλp-NH₂のコントロールペプチドであるLSp-NH₂はムチン分泌に影響を与えるなかった。
実施例4
エタノールおよび塩酸-エタノール誘発胃粘膜傷害に及ぼす影響
方法
エタノールおよび塩酸-エタノール誘発胃粘膜傷害の作製は、Robert（Robert, A. et al., Gastroenteral, 77, 433-443, 1979）らの方法に準じて行った。すなわち、ラットを18-24時間飼食した後、75%エタノールまたは150 mM塩酸を含む60%エタノール1mLを経口投与し、60分後に放血致死させ胃を摘出した。摘出した胃を大縫に沿って切開し、洗浄したのち10%ホルムアルデヒドにて固定し、胃粘
膜傷害部位の面積を画像解析ソフト Mac aspect（三谷商会株式会社、千葉県）を用いて測定した。SLp-NH2は75%エタノールあるいは150mM塩酸含有60%エタノール投与の5分前に静脈内投与した。また、アマスタチン（2.5 µ mol/kg）はSLp-NH2投与1分前に投与した。

結果

75%エタノール投与の結果を図3に、また、150mM塩酸含有60%エタノール投与の結果を図4に示す。

図3および図4において、縦軸は胃粘膜障害部位の面積（cm²）を、横軸は投与薬物および投与量（Vは、ビヒクルの投与）を示す。

図3に示すごとく、エタノールによる胃粘膜障害に対してSLp-NH2は0.25および0.5 µ mol/kgの用量において保護作用を示した。また、図4に示すごとく、塩酸-エタノールによる胃粘膜障害に対してもエタノールによる胃粘膜障害と同様に0.25および0.5 µ mol/kgの用量において保護作用を示した。

実施例5

錠剤

以下の処方に従い、常法により錠剤を調製した。

結晶セルロース 18 mg
SLp-NH2 15 mg
低置換度ヒドロキシプロピルセルロース 12 mg
ヒドロキシプロピルメチルセルロース 10 mg
ステアリン酸マグネシウム 1 mg
乳糖 適量

25 合計 1,000 mg

実施例6

錠剤

以下の処方に従い、常法により錠剤を調製した。
アマスタチン & 20 mg
結晶セルロース & 18 mg
SLp-NH2 & 15 mg
低置換度ヒドロキシプロピルセルロース & 12 mg
ヒドロキシプロピルメチルセルロース & 10 mg
ステアリン酸マグネシウム & 1 mg
乳糖 & 適量

合計 & 100 mg

実施例7
カプセル剤
以下の処方に従い、常法によりカプセル剤を調製した。
SLp-NH2 & 15 mg
低置換度ヒドロキシプロピルセルロース & 15 mg
架橋型カルボキシメチルセルロースナトリウム & 5 mg
ステアリン酸マグネシウム & 2 mg
乳糖 & 63 mg

合計 & 100 mg

実施例8
カプセル剤
以下の処方に従い、常法によりカプセル剤を調製した。
SLp-NH2 & 15 mg
低置換度ヒドロキシプロピルセルロース & 15 mg
アマスタチン & 5 mg
架橋型カルボキシメチルセルロースナトリウム & 5 mg
ステアリン酸マグネシウム & 2 mg
乳糖 63 mg

合計 100 mg

5 実施例9
注射剤
以下の処方に従い、常法により注射剤を調製した。

ブドウ糖 10 mg
SLp-NH2 1 mg
アマスタチン 1 mg
注射用精製水 適量

合計 200 mL

これの実施例9で得られた製剤は、いずれも本発明の胃酸分泌抑制用組成物、消化管粘液分泌促進用組成物、消化管粘膜保護用組成物、消化器系疾患の予防、治療用組成物として使用できる。

産業上の利用の可能性

本発明の組成物は優れた胃酸分泌抑制作用、粘液分泌促進作用、粘膜保護作用、消化管組織修復作用等を有する優れた予防・治療薬となる。

したがって、PAR-2を活性化させる成分であるSer-Leu-Ile-Gly-Arg-Leu-NH2および／またはtrans-シナモイル-Leu-Ile-Gly-Arg-Leu-オルニチン-NH2等のペプチドを使用することにより、効果的に消化器系疾患を予防および／または治療することができる。また、上記ペプチドは生体に存在するペプチダーゼにより分解されることから、ペプチダーゼインヒビターであるアマスタチン等の薬物と併用あるいは配合することにより、上記ペプチドの作用の持続性を高めることができる。

配列表フィーテキスト
SEQ ID NO: 1
Designed peptide having PAR-2 agonist activity. The C-terminal amino acid residue is amidated.

SEQ ID NO: 2
Designed peptide having PAR-2 agonist activity. Xaa at 1 is trans-cinnamoyl-Leu. Xaa at 6 is Orn. The C-terminal amino acid residue is amidated.

SEQ ID NO: 3
Designed peptide having PAR-1 and PAR-2 agonist activity. The C-terminal amino acid residue is amidated.

SEQ ID NO: 4
Designed peptide having PAR-2 agonist activity. The C-terminal amino acid residue is hydroxylated.

SEQ ID NO: 5
Designed control peptide. The C-terminal amino acid residue is amidated.
請求の範囲

1. P A R - 2 を活性化させる成分を含むことを特徴とする胃酸分泌抑制用組成物。

2. P A R - 2 を活性化させる成分を含むことを特徴とする消化管粘液分泌促進用組成物。

3. P A R - 2 を活性化させる成分を含むことを特徴とする消化管粘膜保護用組成物。

4. P A R - 2 を活性化させる成分を含むことを特徴とする消化器系疾患の予防、治療用組成物。

5. 消化器系疾患が、胃潰瘍、十二指腸潰瘍、胃炎、下痢および腸炎から選択される疾患である請求項 4 記載の組成物。

6. 成分がペプチドである請求項 1 ～ 5 いずれか 1 項記載の組成物。

7. ペプチドが、Ser-Leu-Ile-Gly-Arg-Leu-NH₂（配列番号 1）および trans-シ
 ナノノイール-Leu-Ile-Gly-Arg-Leu-オルニチン-NH₂（配列番号 2）から成る群か
 らなる少なくとも 1 種の配列を含む請求項 6 記載の組成物。

8. 成分がタンパク質である請求項 1 ～ 5 いずれか 1 項記載の組成物。

9. タンパク質がトリプシンおよびトリプターゼから選択される少なくとも 1 種
 である請求項 8 記載の組成物。

10. 成分を失活化または分解する物質を阻害する物質を組み合わせる請求項 1
 ～ 9 いずれか 1 項記載の組成物。

11. 成分を失活化または分解する物質を阻害する物質を併用する請求項 10 記
 載の組成物。

12. 成分を失活化または分解する物質を阻害する物質を配合する請求項 10 記
 載の組成物。

13. 阻害する物質がペプチダーゼインヒビターである請求項 10 ～ 12 いずれか
 1 項記載の組成物。

14. ペプチダーゼインヒビターがアマスタチンである請求項 13 記載の組成物。

15. DDS製剤化されている請求項 1 ～ 14 いずれか 1 項記載の組成物。
図1

胃酸分泌量（μmol/30 min）

<table>
<thead>
<tr>
<th></th>
<th>V</th>
<th>1.25</th>
<th>2.5</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLp-NH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(μmol/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSp-NH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(μmol/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ アマスタチン (2.5μmol/kg)
図2

[図表内容]

SLp-NH2
(μmol/kg)
LSp-NH2tcLp-NH2
(μmol/kg) (μmol/kg)

アマスタチン (2.5 μmol/kg)
図3

胃粘膜傷害部面積 (cm²)

V 0.25 0.5

SLp-NH2 (μ mol/kg)

アマスタチン (2.5μ mol/kg)
図4

胃粘膜損傷部位面積(cm²)

SLp-NH₂(μmol/kg) + アマスタチン(2.5μmol/kg)
〈110〉 Fuso Pharmaceutical Industries Ltd.

〈120〉 Pharmaceutical Composition for Preventing, Treating Digestive Organs

〈130〉 662384

〈150〉 JP2000-047515
〈151〉 2000-02-24

〈160〉 5

〈210〉 1
〈211〉 6
〈212〉 PRT
〈213〉 Artificial Sequence

〈220〉
〈221〉 AMIDATION
〈222〉 6
〈223〉 Designed peptide having PAR-2 agonist activity. The C-terminal amino acid residue is amidated.

〈400〉 1
Ser Leu Ile Gly Arg Leu

1 5
Designed peptide having PAR-2 agonist activity. Xaa at 1 is trans-cyannamoyl-Leu. Xaa at 6 is Orn. The C-terminal amino acid residue is amidated.

Xaa Ile Gly Arg Leu Xaa

1 5

Designed peptide having PAR-1 and PAR-2 agonist activity. The C-
terminal amino acid residue is amidated.

Ser Phe Leu Leu Arg

1 5

<210> 4

<211> 6

10 <212> PRT

<213> Artificial Sequence

<220>

<221> MOD RES

15 <222> 6

<223> Designed peptide having PAR-2 agonist activity. The C-terminal amino acid residue is hydroxylated.

Ser Leu Ile Gly Arg Leu

1 5

20 <210> 5

<211> 6

25 <212> PRT

<213> Artificial Sequence

<220>

<221> AMIDATION
Described control peptide. The C-terminal amino acid residue is amidated.

Leu-Ser-Ile-Gly-Arg-Leu

1 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl A61K45/00, A61K38/08, A61K38/48, A61P1/04, A61P1/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl A61K45/00, A61K38/08, A61K38/48, A61P1/04, A61P1/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Jitsuyo Shinan Koho 1922-1996
- Toroku Jitsuyo Shinan Koho 1994-2001
- Kokai Jitsuyo Shinan Koho 1971-2001
- Jitsuyo Shinan Toroku Koho 1996-2001

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- CA (STN)
- EMBASE (STN)
- MEDLINE (STN)
- BIOSIS (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Takayuki SHIRAI, "I, Juunishichou Kaiyou", Medicina (1994), Vol.31, No.1, pp.30-34, Full text</td>
<td>1,4-15</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.
See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search
11 May, 2001 (11.05.01)

Date of mailing of the international search report
22 May, 2001 (22.05.01)

Name and mailing address of the ISA/
Japanese Patent Office
Authorized officer

Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. A61K45/00, A61K38/08, A61K38/48, A61P1/04, A61P1/12

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. A61K45/00, A61K38/08, A61K38/48, A61P1/04, A61P1/12

最小限資料以外の資料で調査を行った分野に含まれるもの

- 日本国実用新案公報 1922-1996年
- 日本国公表実用新案公報 1971-2001年
- 日本土登録実用新案公報 1994-2001年
- 日本国実用新案登録公報 1996-2001年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

- CA (STN), EMBASE (STN), MEDLINE (STN), BIOSIS (STN)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー*</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>川端篤史ら、「プロテアーゼ受容体（PAR）の生理的役割：特に消化器系機能への関与について」、日本薬理学雑誌（1999）、Vol.114、Suppl.1、p.173-179全文</td>
<td>2-15</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特定の理由を確認するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発表の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文脈のみで発表の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

- 引用文献のカテゴリー

- 引用文献名及一部の箇所が関連するときは、その関連する箇所の表示

<table>
<thead>
<tr>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-15</td>
</tr>
<tr>
<td>1-15</td>
</tr>
</tbody>
</table>

- 関連する請求の範囲の番号

- 関連する請求の範号
<table>
<thead>
<tr>
<th>引用文献のカテゴリー＊</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>白井孝之、”胃・十二指腸潰瘍”、Medicina (1994) Vol.31, No.1 p.30-34、全文</td>
<td>1,4-15</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページの続き）（1998年7月）